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ASYMPTOTIC BEHAVIOR OF PALAIS-SMALE SEQUENCES
ASSOCIATED WITH
FRACTIONAL YAMABE-TYPE EQUATIONS

Y1 FANG AND MARIA DEL MAR GONZALEZ

In this paper, we analyze the asymptotic behavior of Palais—Smale sequences
associated to fractional Yamabe-type equations on an asymptotically hyper-
bolic Riemannian manifold. We prove that Palais—Smale sequences can
be decomposed into the solution of the limit equation plus a finite num-
ber of bubbles, which are the rescaling of the fundamental solution for the
fractional Yamabe equation on Euclidean space. We also verify the non-
interfering fact for multibubbles.

1. Introduction and statement of results

Let Q2 be a smooth bounded domain in R”, n > 3. Fix a constant A, and consider
the Dirichlet boundary value problem of the elliptic PDE

(I-1

{—Au—ku =ululi= inQ,
u=0 on 0€2.

The associated variational functional of (1-1) in the Sobolev space WOI’Z(Q) is
1 -2 n
E(u) = —[(|Vu|2 —u?)dx — "—/ |72 dx.
2 Jo 2n Jo

Suppose that the sequence {Uy }oen C WO1 2 (£2) satisfies the Palais—Smale condition,
{E(ug)}aen is uniformly bounded and DE (uq) — 0, strongly in (WOI’Z(Q))',

as @ — +o00, where (WOI’Z(Q))’ is the dual space of WOI’Z(SZ). In an elegant paper,
M. Struwe [1984] considered the asymptotic behavior of {uy}yen. In fact, in
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the Wol’2 (£2) norm, uy can be approximated by the solution to (1-1) plus a finite
number of bubbles, which are the rescaling of the nontrivial entire solution of

—Au=u|u|n472in[R" and u(x)—0as |x| > +o0.

One may pose the analogous problem on a manifold. Let (M", g) be a smooth
compact Riemannian manifold without boundary. Consider a sequence of elliptic
PDE:s like

(Eg) —Agu +hqu =uﬁJ—r

[SJ[\]

where @ € Nand A denotes the Laplace—Beltrami operator of the metric g. Assume
that Ay satisfies the condition that there exists C > 0 with |/, (x)| < C for any o
and any x € M; also hy — heo in L?2(M) as « — +oo. The limit equation is
denoted by

(Eoo) —Agu + hoott = i

(SIS}

The related variational functional for (Ey,) is
1 1
Eg (u) = 3 /M|Vu|§, dvg + 3 /Mhmu2 dvg —

Suppose that {ug > 0}gen C W12(M) also satisfies the Palais—Smale condition.
0. Druet, E. Hebey, and F. Robert [Druet et al. 2004] proved that, in the W 1-2(M)
sense, Uy can be decomposed into the solution of (Es) plus a finite number of
bubbles, which are the rescaling of the nontrivial solution of

2
n—nz dvg .

_Au=uiZ inR"
Let (M", g) be a compact Riemannian manifold with boundary dM. Recently,
S. Almaraz [2014] considered the following sequence of equations with nonlinear
boundary value condition:

—Agu =0 in M,

—ai on IM,
Ng

(1-2)

n
U+ hgu =un—2

where « € N and 7, is the inward unit normal vector to dM. The associated energy
functional for (1-2) is

— 1 5 1 5 2(n=1)
Eg(u)ZE/MWulgdvg-l-E/aMhau dog — 2(n 1)/ lu| »=2" dog,

foru € HY (M) := {u | Vu € L2(M), u € L>(3M)}. Here dvg and dog are the
volume forms of M and dM, respectively. He also showed that a nonnegative
Palais—Smale sequence {1y }gen Of {Eg }aen converges, in the H 1(M) sense, to
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a solution of the limit equation (the equation replacing sy by s in (1-2)) plus a
finite number of bubbles.

Motivated by these facts and the original study of the fractional Yamabe problem
by M.d.M. Gonzalez and J. Qing [2013] (see also [Gonzélez 2015]), in this paper
we shall be interested in the asymptotic behavior of nonnegative Palais—Smale
sequences associated with the fractional Yamabe equation on an asymptotically
hyperbolic Riemannian manifold.

Let (X n+l g"'), n >3, be a smooth Riemannian manifold with smooth boundary
dX"T1 = M". A function py is called a defining function of the boundary M" in
X1 if it satisfies

px>0in X"t p,=00n M", dps+#0on M".

We say that a metric g is conformally compact if there exists a defining function

o« such that (X7+1 g,) is compact for g, = p2g™. This induces a conformal
class of metrics /1 = &« |pmn when defining functions vary. The conformal manifold
(M", [il]) is called the conformal infinity of (X", gT). A metric g% is said to be
asymptotically hyperbolic if it is conformally compact and the sectional curvature
approaches —1 at infinity. It is easy to check then that |dp« ??* =1on M"

Using the meromorphic family of scattering operators S(s) introduced by C.R.
Graham and M. Zworski [2003], we will define the so-called fractional order scalar
curvature. Given an asymptotically hyperbolic Riemannian manifold (X"t gt
and a representative h of the conformal infinity (M", [h]) there is a unique geodesic
defining function ps such that, in M" x (0,8) in X"+ for small §, g™ has the
normal form

gt = p i +hp,),
where /1, is a one parameter family of metric on M" such that
ho, =h+hWps + 0(p2).

It is well-known [Graham and Zworski 2003] that, given f € C*°(M") and s € C,
Re(s) > n/2 and s(n — s) is not an L? eigenvalue for —A ¢+ then the generalized
eigenvalue problem

(1-3) —Agtii—s(n—s)u =0 in xntl
has a solution of the form

i = F(ps)"" + G(ps)*, F.Ge€®(X"), Fly—0=f
The scattering operator on M" is then defined as

S(s)f =Glmn.
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Now we consider the normalized scattering operators

T'(y)
['(=y)
Note that Py g™, iz] is a pseudodifferential operator whose principal symbol is

equal to the one of (—Aj)Y. Moreover, Py[g™, iz] is conformally covariant, i.e., for
any ¢, w € €*°(X"*+1) and w > 0,

Plgt hl=d,S(E+y), dy=2%

_4 A _n+2y ~
(1-4) Pylgt w2 h](p) = w2 Py g T, hl(we).

Thus we shall call P, [g, iz] the conformal fractional Laplacian for any y € (0,1/2)
such that n?/4 — y? is not an L? eigenvalue for —Ag+t.
The fractional scalar curvature associated to the operator Py [g™, h] is defined as

o = p,[g* (1),

The scattering operator has a pole at the integer values y. However, in such cases
the residue may be calculated and, in particular, when g™ is Poincaré-Einstein
metric, for y =1,

n—2
4(n—1)

Pilgt hl = —Ah + Rj,

which is exactly the so-called conformal Laplacian, and

i n—2
T
Here, R}, is the scalar curvature of the metric h.

Fory =2, P»[g™, iz] is precisely the Paneitz operator and its associated curvature
is known as Q-curvature [2008]. In general, Py[g™, iz] for k € N are precisely the
conformal powers of the Laplacian studied in [Graham et al. 1992].

We consider the conformal change flw = w*@=2V)}; for some w > 0; then by
(1-4),

A~ 7 n+2 A~
Pylgt hl(w) = Qhvw = in (M",}).
If for this conformal change Q?“’ is a constant C, on M", this problem reduces to
+ A n+2y . n A
(1-5) Pylg™, hl(w) = Cywn=2v in (M", h),

which is the so-called fractional Yamabe equation or the y-Yamabe equation, studied
in [Gonzélez and Qing 2013].

Throughout the paper, we always suppose that y € (0, 1), and such that the first
eigenvalue for —A, + satisfies A; > n?/4 —y2, as was pointed out in [Case and
Chang 2015; Case 2015].
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It is well known that the above fractional Yamabe equation may be rewritten as
a degenerate elliptic Dirichlet-to-Neumann boundary problem. For that, we first
recall some results obtained by Chang and Gonzélez in [2011] (see also the paper
by J. Case and S.A. Chang [2015]). Suppose that u* solves

(1-6) {—Ag+u*—s(n—s)u* =0 inX"t]

limp, o o5 "u* =1 on M".
Proposition 1.1 [Chang and Gonzalez 2011; Gonzalez and Qing 2013]. Suppose
that f € €°°(M). Assume that i, u™ are solutions to (1-3) and (1-6), respectively.
Then p = (u*)Y/"=5) js 4 geodesic defining function. Moreover, u =i Ju* = p* "1
solves

—div(o!=2Y V) = Y n+l
(1-7) { div(p u)=0 in ,

u=f on M,

with respect to the metric g = p>g™, and u is the unique minimizer of the energy
functional

1) = 12|92 d
0= [ oIl d

among all the extensions v € W1H2(X" 1 p1=2Y) (see Definition 2.1) satisfying
v|pn = f. Moreover,

= (1+—Q’iz 2+ 0( 2))
p=pe\l (g P Pl

near the conformal infinity and
A . d
+ _ * 1: 1—2 h * y
Pyle™.h(f) = —dy lim p""Topu + 0y f. d, =5, >0

provided that Trj, k(") = 0 when y € (%, 1). Here glpn = h, and has asymptotic
expansion

g = dp*[1+ 0(p*")] + h[1 + O (p*)].

We fix y € (0, 1). By Proposition 1.1, one can rewrite the fractional Yamabe
equation (1-5) into the following problem:

—div(p! "2’ Vu) =0 in (X"*1, ).
(1-8) U=w on (M" h),
—d limy_g p' =273 hy = Cywiy M"h
y limp—0 0 bt + O, w yWw =2y on (M™ h).

In this paper we consider the positive curvature case C, > 0. Without loss of
generality, we assume that Cy, = d.
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In the particular case y = %, one may check that (1-8) reduces to (1-2), which
was considered in [Almaraz 2014]. The main difficulty we encounter here is the
presence of the weight that makes the extension equation only degenerate elliptic.

Next, we introduce the so-called y-Yamabe constant [Gonzalez and Qing 2013].
For the defining function p mentioned above, we set

4 Jy P72 IVul dvg + Jy QP dojy
(fyul2* do)

then the y-Yamabe constant is defined as

Iyu, gl =

(1-9) Ay (M, [h]) = inf{I,[u, g] |u € WI2(X, p'=2)}.

It was shown in [loc. cit.] that in the positive curvature case C,, > 0 we must have

Ay (M. [R]) > 0.

Now we take a perturbation of the linear term Qhw to a general d Qlw,
where QY € €*®°(M"), a € N. Suppose that for any & € N and any x € M" there
exists a constant C > 0 such that |Q} (x)| < C. Also assume that Q) — QX in
L*(M™, iz) as @ — +o00. We will consider a family of equations

—div(p! ™2’ Vu) =0 in (X", g),
(1-10) u=w on (M™ h),

—hm =279 — wisy n
I o + QY w = wn=2v on (M" h).

The associated Varlatlonal functional to (1-10) is

1
1-11) I1Y%u) = - 1=27\vu|2 d
1) 10 =3 [ o1l dug

1 n—2y 2n
— Yu? doj, — / u|n—2v doj,.
+5 o (034 T, Mnl | h

Hyperbolic space (H"*1, gyy) is the first example of a conformally compact
Einstein manifold. As (H"*1, gi) can be characterized as the upper half-space
[F\E'rrl endowed with metric g = y~2(|dx|? + dy?), where x € R", y € R, then
the Dirichlet-to-Neumann problem (1-8) reduces to

—div(y'=2*Vu) =0 in (RTFI, |dx|? + dy?),
(1-12) U=w on (R", |dx|?),
1-2 N n 2
hmy Vyu = wn—2v on (R", |dx|?).

And the Variatlonal functional to (1-12) is defined as

-2 "
E() = _/ +1y1—2V|Vu(x,y)|2 dx dy—nz_y/ |u(x,0)|7"327 dx.
Rﬁ_ n R"
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Up to multiplicative constants, the only solution to problem (1-12) is given by the

standard
n—2y

A 2
w(x) = w[}(x) = (m)

for some a € R" and A > 0 [Gonzélez and Qing 2013; Jin et al. 2014]. By the
Poisson formula of L. Caffarelli and L. Silvestre [2007], the corresponding extension
can be expressed as

y2

A _ A
(1‘13) Ua (X, y) - R (|X _E|2 +y2)(n+2y)/2 wa (E) dé

Here U‘fL is called a “bubble’. Note that all of them have constant energy.
Remark 1.2. For any ¢ € R" and A > 0, we have

Eh=EWh =2 [ 1030 ax.
n Jrn
Now we give some notations which will be used in the following. In the half

space R = {(x,y) = (x1,....x" y) e R"T! | y > 0} we define, for r > 0,

BY(z0)={z e [Ri:’fl ||z—zol <71, zo € [R{Trl},

Dr(x0) ={x € R" | [x —xo| <1, xo € R"},

' B (z0) = B/ (z0) NR",
9t B, (z0) = 9B (zo) N R
Fix y € (0, 1). Suppose that (X, g*) is an asymptotically hyperbolic manifold

with boundary M satisfying, in addition, Trj, A)) = 0 when y € (1/2,1). Let p
be the special defining function given in Proposition 1.1 and set g = p?g™ and
h = g|p. Also, define

Bt (z0) ={z€ X |dg(z.20) <7, 20 € X},

D,(x0)={x €M |djp(x,x9) <r, xo € M},
Now, modulo the definitions of the weighted Sobolev space W2 (X, p!=27) and

of a Palais—Smale sequence (see Section 2), the main result of this paper is the
following fractional type blow up analysis theorem:

Theorem 1.3. Let {ugq > 0}qen C WH2(X, p'72) be a Palais-Smale sequence
for_{lg’a}aeN. Then there exists an integer m > 1, sequences {1, > 0}qen and
{x)Yaen C M for j =1,...,m, a nonnegative solution u® € Wh2(X, p!=27) to
(2-4) and nontrivial nonnegative functions Uakj:i € WI’Z(RZ_—H, y1727) for some
Aj >0anda; € R" as given in (1-13), satisfying, up to a subsequence,
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(D) ,u({,—>0asa—>+oo,f0rj =1,...,m;
2) {xé}aeN converges on M as ¢« — 400, for j =1,...,m;

3) Asa — 400,

) (2) = (g,

m
— O_Z oyt —
Ug —U Nala W1.2(X,pl-2)
Jj=1

where

1(Z))

a/

forz e, J (B (O)) and ¢, j are Fermi coordinates centered at xa € M with
ro>0 small and nd, are cutoﬁ‘ functions such that

ny=1ing (BA(0) and 15,=0inM\g (B (0):
(4) The energies
17%(ug) —I;o(uo)—mE(U‘i.j) —0, asa— +oo;
(5) Forany 1 <i,j <m,i # J,

i J di xi Xj 2
M—‘;+M—?+h(f"—’;‘)—>+oo, as o — +00.
Mo Mo My M

Remark 1.4. (i) We call njul, abubble for j = 1,...,m

(ii) If ug — u® strongly in W12(X, p'=27) as a — +o0o, then m = 0.

Although the local case y =1 is well known [Druet et al. 2004; Struwe 1984],
the most interesting point in the fractional case is the fact that one still has an energy
decomposition into bubbles, and that these bubbles are noninterfering, which is
surprising since our operator is nonlocal.

We finally recall that in the flat case, compactness problems for the fractional
Laplacian were considered in the nice papers by Palatucci and Pisante [2014; 2015],
and also the paper by Yan, Yang, and Yu [Yan et al. 2015].

This paper is organized as follows: In Section 2, we will first recall the definition
of weighted Sobolev spaces and Palais—Smale sequences. Then we will derive a
criterion for the strong convergence of a given Palais—Smale sequence. At last,
e-regularity estimates will be established. In Section 3, we will extract the first
bubble from the Palais—Smale sequence which is not strongly convergent. In
Section 4, we will give the proof of Theorem 1.3. Finally, some regularity estimates
of the degenerate elliptic PDE are given in the Appendix.
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2. Preliminary results

Most of the arguments in this section are analogous to the results in [Druet et al.
2004, Chapter 3]. For the convenience to the reader, we also prove these lemmas
with the necessary modifications.

From now on we use 2* = 2n/(n —2y), y € (0, 1) for simplicity, and always
assume that Palais—Smale sequences are all nonnegative. Moreover, the notation
o(1) will be taken with respect to the limit @ — +o0.

Definition 2.1. The weighted Sobolev space W12(X, p=27) is defined as the
closure of € (X) with norm

2-1) lullwi2cx, pr-2v) = (/X p' 2 |Vul? dvg +[Mu2do,;)

where dvy is the volume form of the asymptotically hyperbolic Riemannian manifold
(X, g) and doj, is the volume form of the conformal infinity (M, [h]).

Proposition 2.2. The norm defined above is equivalent to the following traditional

norm
2
(2-2) ||u||>’1:1/1,2(X’p1—2y) = (/X Pl_zy(|Vu|§, +u?) dvg) .
On one hand, || - || can be controlled by || - ||*. This is a easy consequence of

the following two propositions. The first one is a trace Sobolev embedding on
Euclidean space.

Proposition 2.3 [Jin and Xiong 2013]. For any u € ¢ (R},

2%
([ 0P ax)™ < st [ 5190 pPdxdy
+

where

S(n,y)=

1T F(%)(F(m))?
27 T(1—y) 1 () '

I'3)

Using a standard partition of unity argument, one obtains a weighted trace
Sobolev inequality on an asymptotically hyperbolic manifold:

Proposition 2.4 [Jin and Xiong 2013]. For any ¢ > 0, there exists a constant Cg > 0
such that

2
(1" doi)” = Sty [ o427 19ul g . [ o120 .
M X X
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On the other hand, || - ||* can be controlled by || - ||, which is implied by the
following proposition.

Proposition 2.5. For any u € W12(X, p'=27), there exists a constant C > 0 such

that
/ o' 72 u? dv, < C(/ p1_2y|Vu|§, dvg ~|—/ u? da;,).
X X M

Proof. We use a contradiction argument. Thus, assume that for any o > 1 there
exists uq satisfying

/ P2 dy > a(/ p' 72 |Vuy|2 dvg +/ uZ da;,).
b X M

Without loss of generality, we can assume that [y p'72Yu2 dvg = 1. Then we have
/ Pl_zy(|vua|§ + uz) dvg <1+ l
X o

Then there exists a weakly convergent subsequence, also denoted by {u}, such
that ug — ug in WH2(X, p'=27 || - |*).
Since
. 1-2y 2 _ . 2 g . _
Olll)moo . P |Vugl|g dug =0  and aleoo Mua doj, =0,
we get that up = 0. On the other hand, via the following Proposition 2.6, the
embedding W12(X, p!727 || - ||*) = L?(X, p'~2Y) is compact. So we have

/ p' " u dvg =1,
X
which contradicts the fact that ug = 0. Then the proof is completed. g

Proposition 2.6 [Jin and Xiong 2013; Kufner 1985; Di Nezza et al. 2012]. Let

15p§q<oowith¢>l—l

n+1 rp q
(i) Suppose2—2y < p. Then WHP (X, p'=27 || - ||*) is compactly embedded in
LA(X, p' 27 if
22y - 1 1
pn+2-2y) p q
(i) Suppose2—2y > p. Then WLP (X, p =2V || - ||*) is compactly embedded in
L9(X, p'=2Y) if and only if
1 - 1 1
(n+2-2y) p q

We will always use the norm in W 1-2(X, p!=27) in the following unless otherwise
stated.
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Definition 2.7. The weighted Sobolev space W 12(X, p!=27) is the closure of
65°(X) in W2(X, p'=27) with the norm

1
2
”u”Wl,z(X’pl—Zy) = (]); p1—2y |VU|§ dUg) .

Now we define Palais—Smale sequences for the functional (1-11) precisely.

Definition 2.8. The sequence {uy }oeny C WH2(X, p!727) is called a Palais—Smale
sequence for {Ig}/’a}aeN if:

(i) {12 (ua)}aen is uniformly bounded; and
(i) as ¢ — 400,
DI}*(ug) — 0, strongly in wl2(x, pt=2y,

where we have defined W 1-2 (X, p1—2)/)/ as the dual space of W1’2(X, pzy—l)’
i.e., forany 0 € W12(X, p1727),

(2-3) DI}%(ug)-0
:/ P72 (Vug, VO), dvg+[ quaeda,;—/ u2 10 doj,
X M M

=o(l0llwr2(x, p1-2r)):  as @ — +o0.

The main properties of Palais—Smale sequences are contained in the next several
lemmas:

Lemma 2.9. Let {uy}oen C WH2(X, p'=2Y) be a Palais—Smale sequence for the
Junctionals {Ié”“}aeN, then {ug }aen is uniformly bounded in W'-2(X, p'=27).

Proof. We can take 6 = ug € WH2(X, p!=27) as a test function in (ii) of
Definition 2.8. Then, we get

/p1—2V|Vua|§, dvg+/ quﬁ doﬁ:/ Mé*dO'il+0(”ua||Wl,2(X,pl—2y)),
X M M
which yields that

Ive _l 1—2ylv |2d +l y 2d ,\_l Z*d ~

P (“a)—i XP Ug g dVg ) MQa”a Op o M“a Oh

V4 *
= —/ ui doj, + o(uallwi2(x, p1-2vy)-
nJm

Since {12"* (ua)}aen is uniformly bounded by (i) of Definition 2.8, there exists a
constant C > 0 such that

[ 42 doi =€ + olluallragr, oo
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which by Holder’s inequality yields

2
2 4 2, \** 2/2*
/Mua doj, < C(/Mua dOh) <C+ 0(””01”W1,2(X,p1—2y))'

Note that since |Q)| < C for some constant C > 0, we can choose sufficiently
large C; > 0 such that C; + Q) > 1 on M. It follows that

2
||u(¥||W1,2(X7pl—2y)

=f p1_2V|Vua|§ dvg+/ u’ doj,
X M

5] P! | Vugl3 dvg+f qugdaﬁcl[ u’ doj,
X M M
2% . 2/2*
= [M“a doj, + 0(||ua”W1-2(X,p1—21’)) +C +0(”u0‘”W1’2(X,p‘—2V))

2/2*
< € +o(luallwi2cx, pr-2v)) + 0 (Ul 2y, pary):

from which we conclude that {uy }yen is uniformly bounded in W 1-2(X, p1=27)
since 2/2* < 1. O
Remark 2.10. From Lemma 2.9, it is easy to see that there exists a function 1 in
WL2(X, p'=27) such that ug — u® weakly in W1H2(X, p!=27) as « — +o0.

0

Proposition 2.11. The function u® is nonnegative in X.

Proof. Using Proposition 2.4, we can easily get that u, — u® in L?(M, }At) as
o — +00, so we have uy — u° almost everywhere on M. Noting that 1, > 0 on
M, we obtain that u° > 0 on M. On the other hand, by Proposition 2.6 and by
the equivalence of the norms || - || and || - ||*, we have ugq — u® in L2(X, p'=27)
as o — +oo. For any z € X, take d, < dist(z, M); then we also have uy — u°
in Lz(%Jr (2), p'72). Smce p'727 is bounded below by a positive constant
in %+ (z) we get uy — u® almost everywhere in %Jr (z), up to passing to a
subsequence Noting that uy > 0 in X, we obtain u°® > 0in %Jr (z). Since z is
arbitrary in X, we have u° > 0 in X. Combining the above arguments we conclude
that u > 0 in X. d

Next we define the two limit functionals

1 1-2 2 1 2% o
Ig(u):E/Xp V|Vu|gdvg—§[M|u| dUh

and

1 _ 1 1 .
172 (u) = E/XPI 2| Vul} dvg-i'E/Mng“szﬁ—;/Mlmz doj,.
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Lemma 2.12. Let {ugtoen C WE2(X, p'=27) be a Palais—Smale sequence for
{Iz,/’a}aeN, and ug — u® weakly in WH2(X, p'=2¥) as a — +o00. We also set
g =uqg —u® e WH2(X, p'=27). Then,

() u® is a nonnegative weak solution to the limit equation

{ —div(p' ™ Vu) =0 in X,

(2-4) —1im p" " du+ Qlu=u>"" onM;
p—0

(i1) Ig}”a(ua) = Ig}’(ﬁa) + Ig’oo(uo) +o(1) asa — +o0;
(iii) {#y }aen is a Palais—Smale sequence for I g),/ .

Proof. (i) As €*°(X) is dense in W12(X, p!=27), we only consider the proof
in €*°(X). Let § € €*°(X). Since QY — Q% in L?>(M,h) as « — 400 and
ug — u® weakly in Wh2(X, p!=27) as a — 400,

/ quaedﬁ,:/ QY u°0 daj, +o(1).
M M

Passing to the limit in (2-3), we get easily that

fp1—2V<vu°,ve)gdvg+/ nguOQdo;,:/ ®)?" 710 doj,,
X M M

i.e., u? is a weak solution to the limit equation (2-4).

For the proof of (ii), recall that

| otuzdoi= [ 0% doj + o),
M M

and

1 _ 1 1
Ig,a(ua)zzfxpl 2V|Vua|§, dug+§/Mqu§do,;__

7 Mué doj,,
1 _ 1 1 .
Ig’oo(uo)zzprl 77|Vl ? dvg+E/Mng(uo)sz;l—?/M(uO)z doj,
X 1 o 1 e
) =5 [ 67 Vel dvg - 5, [ 1t do,
where fig = 1y —u°. Then,
10 (ug) — IV °) — I} (i)

1
:/ pl_zy(Vuo,Vﬂa)g dvg——/ by doj, +o(1),
b 2*Im

where
Dy = |fiq + u° > —|ia)* — O
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Note that #i, — 0 weakly in W12(X, p!=27) as @ — +o0, thus
1-2y 19,0 v
0 (Vu”, Vilg)g dvg — 0, as o — oo.
b

On the other hand, it is easy to check that there exists a constant C > 0, independent
of o, such that

. 012% _ 5 125 _ 1 002" 25 =1 0 012" 12
litg +u’1> —ia> —u’)? | < C(lial> ~Hu®| + [u® 7 ial).

As a consequence, since 114 — 0 weakly in L (M, iz) by Proposition 2.4, we have
/ |Py|doj, =0, asoa— +oo.
M

The proof of (ii) is completed.
(iii) For any 6 € €*°(X), by (i) we have

DI -6 =0.
Since, in addition,
/ Qruybdoj, = / QZOMOQ doj, +o(|0lwr2x, p1—2v))>
M M

then
(2-5) Dlg’“(ua) -0 = D]g(ﬁa) -0 —/ V.0 doj, + 0(||0||W1,2(X,p172y)),
M

where Wy = [fig +u°2 2(llg + u°) — |fig|? 211 — [u°|2 2% and it is easy to
check that there exists a constant C > 0 independent of « such that

|Wo| < C(|u(x|2 2 Iuol + [ty |u0|2 2)-

By Holder’s inequality and the fact ilq — 0 weakly in W12(X, p1=27) as o — +o0,

[Wae doj,
M

S( 2%—2 lu

= o101 L2x(ar)-
Thus from (2-5),

~ 02*
|tlg| |

W Lo -vqary + Nital 101272 ponsae s apy) 190225

DIY*(uq) -6 = DI () -6 + o()|0] L2+ 4y

which implies that DI (1) — 0 in W12(X, p!=27) as & — +o00, since {ug }aen
is a Palais—Smale sequence for {/ g,’ *Y en.
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Finally, from (ii), we know that {liy}yen is a Palais—Smale sequence for g,/ .
This completes the proof of the lemma. O

Now we give a criterion for strong convergence of Palais—Smale sequences.

Lemma 2.13. Let {iiy }qen be a Palais—Smale sequence for I zf such that g — 0
weakly in WE2(X, p1=27) as @ — +o0. If I} (i) — B and

(2-6) B < Bo=T(d}) T A (M. (7)Y,

then iy — 0 in WH2(X, p'=2Y) as @ — +o0.

Proof. By Lemma 2.9 (here Qg = 0), there exists a constant C > 0 such that
[fallwi2cx, p1—2v) < C forall @ € N, so

DI} (fiy) - e :/ p' 7 |Vilg |}, dvg—/ 1| do,
X M
= o(|liallwr2x, p1-2v)) = o(1).

Then note that Igy (lg) — B as @ — 400, 0O

(2-7) B+o(l) =1)(iia)

1 1-2 A2 1 ~ 2 N
ZE/X’O V|Vua|gdvg—§k/M|ua| doj

=L [ 912 \Vital} dvg +o(1)
nJjx

:Z[ i |?" doj, + 0(1).
nJm

On the other hand, in the positive curvature case, it was shown in [Gonzélez and
Qing 2013] that the y-Yamabe constant (1-9) must be positive: A, (M, [h]) > 0.
Moreover, by definition,

2
3

~ « 2
2-8) Ay(M, [h])( /Mlﬁalz dUﬁ)
5d;‘/ p' 7| Vilg |2 dvg+/ o102 doj,.

X M

where d;," > (. We also know that |Q§| < C on M™". Note that, by Proposition 2.4,
g — 0in Lz*(M,fAz) as o — +00, so

/ ﬁédd;l—>0, as o — 400,
M
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since the embedding L (M, iz) c L*(M, iz) is compact. So we get from (2-7) and
(2-8) that

2

(58 +0()" <d7 Ay (M)~ 2B +o().

Taking o — +00, we must have 8 = 0 because of our initial condition (2-6). [

Note that the Palais—Smale condition (ii) is the weak form of a Dirichlet-to-
Neumann problem for a degenerate elliptic PDE. In fact, as DI g,’ () — 0 in
WL2(X, p'=27Y, it follows that, for any ¢ € W1-2(X, p1=27),

@9) [ P Vit Vil dvg — [ 10"y do
X M

= oY llw12x, pi-2)-
In particular, for any ¥ € Wh2(X, pl=27),

| P72 Vi, T g = oD 25,120y
which is precisely the weak formulation of the asymptotic equation
(2-10) —div(p'™?’Vilg) = 0(1) in X.

Multiplying both sides of (2-10) by ¥ € W1:2(X, p!=27) and integrating by parts,
we obtain

[M lim P dilq Y do;,+/X p 72 (Vilg, Vi) g dvg =0 (D) |[¥ llw1.2(x. p1-27).

which, combined with (2-9), yields that
/ lim o'~ 3y iy doj, + / 12" ity doj, = o (D) [ ¥l y1.2x, p1—20)-
M P—>0 M

and this is precisely the boundary equation in the weak sense

(2-11) — lim p' "2 8,11y = |iig|* “%lg +0(1) on M.

p—0
For (2-10) and (2-11) with {14 }oen, We have the following energy estimate, which
will play an important role in the proof of the strong convergence in Section 3. We
use the notation B; instead of B (0) for convenience.

Lemma 2.14. (e-regularity estimates) Suppose that {vy }oen Satisfies the following
asymptotic boundary value problem

—div(p!™2Vuy) = o(1) in X,

(2-12) — lim pl_zyapva = |va|2*_2va +o(1) on M.
p—0
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If there exists small ¢ > 0 depending on n and y such that / N |va|2*d0;l <e¢
uniformly in o for some small r > 0, then "Bar

1-2y 2
A+ I |Vvg |5 dvg
r

< — 14 2 2 ~
= 2/%;/0 vadvg—}—C/MBJFvadoh+o(1)[1$$|va|dvg,

’
2r
where C = C(n, ¢, y) independent of «.

Proof. Let  be a smooth cutoff function in X such that 0 <5 <1, n=11in B} (0)
and n=0in X \ SB;, (0). Multiplying both sides of the first equation in (2-12) by
n?vg, integrating by parts and substituting the second equation in (2-12), we get

/ P12 (Vog, V(1 ve)) g dug
B3,

— _ : 1-2y 2 n 2
/Z;’%;_, ;1_13}):0 (apva)n Ve dUh +o(1) %;_rn Vg dl)g

Z/ 772|Ua|2*d0i,+0(1)/ n* vy dvg,
B3 D

so we have

/‘B+ p' T 02| Vg2 dug

2r

_ f P2 200 (V. V) g dvg
B3,

v
EID:

2r

1 _ _
§§/+772/01 2V|Vva|§ dvg—l—Z/Jr o! 2y|Vr)|Z,v§dvg

%2;* (32r

v
EID:

2r

Plval?" do +0(0) [ 1P val dvg
»3,

Plval?" doj +0(1) [ 1Pl du.
B
which implies that

[ ol g

2r

1-2 2.2
54/%+p V|Vn|gvadvg+2/f;/ .

2r %Zr

Plval?" doj, +0(0) [ 1P lval g
»3,

¢ 1-2y,2 20, (2%=2 7 . 2
= r_2/%+p Vg dvg +2/8/%+(nva) M doj, +0(1)/%+r] |vg| dug.
2r 2r 2r
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By Holder’s inequality and our initial hypothesis,

2 2*%—2
2% 2%
2 2%—2 N 2% ~ 2% ~
[t 2ao = ([l aos) ([ el o)
s o8, 55,

2r 2

2

2% o . 5%

<e ? |77Uot|2 doj, .
BT

2r

Then it follows from above that

[P Il g

2r

1-2 2.2 2 2
<2 P (VnRE + P IVea) dvg

%Zr
C 1-2y,2 2 2* e 2
< p vy dvg +Ce 2 / Inve|” doj, +o(1)/ N Vg dvg.
reJsy B3 81

The trace Sobolev inequality on our manifold setting (Proposition 2.4) gives that

2
* 2% _
(/a N |nva|2 daﬁ) < C/ +p1 27|V(77Ua)|§ dvg +C/ +(77”a)2 doy,.
’%Zr B 8/%2r

2r

Therefore,

| P9 0 g

2r

C _ A _
<C [ prmzan e / P2 |V (v 2 dvg
reJss B3
G 2 2
+Ce¢ ? / (nvg) dajl—i—o(l)/ N~ |ve| dvg.
B3 B

2*%—2
Now, fix 7 > 0 small such that ¢ is small enough to satisfy Ce 2* < % Then,

1-2y 2
L+p Vg |5 dvg
k.

c 1-2y,2 /
<— p Vv dvg + C
- .2 o -4

reJss ¥

véda;l—i-o(l)/ |va| dvg. O
B3 D

3. The first bubble argument

In this section, we focus on the blow up analysis of a Palais—Smale sequence
which are not strongly convergent. In particular, using the e-regularity estimates
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(Lemma 2.14), we can figure out the first bubble. We will also show that the Palais—
Smale sequence obtained by subtracting a bubble is also Palais—Smale sequence
and that the energy is splitting.

Lemma 3.1. Let {iig}qen be a Palais—Smale sequence for Ig such that tig, — 0
weakly in W12(X, p'=27), but not strongly as o — +o0o. Then, there exists a
sequence of real numbers {jig > O}gyen, Uo —> 0 as @ — +00, a converging
sequence of points {xq }qen C M, and a nontrivial solution u to the equation

—div(y!"2"Vu) = 0 in R%F1,
G-1) — lim y'™2Y9,u = > ~2u on R",
y—0

such that, up to a subsequence, if we take

8a(2) = 10 (@) — e (g T Uiy 05 (). 2 € px, (B, (0)),

where ro, N¢(2), and @y, (z) are the same as in Theorem 1.3, then we have the
following three conclusions:

(1) Dg — 0 weakly in WL2(X, p'=2Y) as a — +00;
(2) {Daaen is also a Palais—Smale sequence for 1Y ;
(3) 1) (ba) = I} (lig) — E(u) + 0(1) as @ — 4-o0.

Proof. Without loss of generality, we assume that i, € €°°(X). By the proof of
Lemma 2.13,

1) () = Z/ p' 7 |Vily|} dvg +o(1) = Z/ it > doj, + o(1).
nJx nJjm

Note that {fiq }aen is uniformly bounded in W1-2(X, p!=27) by Lemma 2.9, so
there exist a subsequence, also denoted by {#iy }oen and a nonnegative constant 3,
such that

1) (lle) =B +o(1), asa— +oo.

Since 71y — 0 weakly in W12(X, p!=27) but not strongly as @ — +o0, again by
Lemma 2.13,

lim / hg|¥ doy =2p>1 0-
Ml «|” doj, yﬂ yﬂ

a—>+00

We will decompose the rest of the proof into several steps:

Step 1. Pick up the likely blow up points.

Claim 1. For any ty > 0 small, there exist xo € M and gy > 0 such that, up to a

subsequence,
A *
| el doj = e
Dt()(-x())
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Proof. If the claim is not true, then there exists # > 0 small, such that for any x € M,

/ |iig|? doj, > 0, @ — 400,
D¢(x)

On the other hand, since (M, };) is compact and M C (J,.cps s (x), there exists
an integer N > 1 such that M C U,N=1©t (x;). Thus,

N
[ |120,|2*d0;,52/ liig|? doj, > 0, @ — 400,
M i=1 33t(xi)

which is a contradiction. O

For ¢t > 0, we set

wy (1) = max |72a|2*d0;,.
xXeM Jo,(x)

Then, by Claim 1, there exists x, € M such that
we (to) :/ fie|? doj, > eo.
@[0 Xo

Note that
/ |ﬁa|2*d0;}—>0, ast — 0.
:Dt(xoc)

Hence, for any ¢ € (0, g9), there exists #, € (0, zp) such that

(3-2) £ = / |iig|? doj,.
©ta(xa)

Step 2. At each likely blow up point, we will establish weak convergence of a
Palais—Smale sequence after properly rescaling.

For r¢g > 0 small, consider the Fermi coordinates at the likely blow up point
Xg €M, @x, : B;O(O) — X. Here we restrict ro to ro <ig(X)/2, where ig(X) is
the injectivity radius of X. Then, for any 0 < gy < 1, we define

i (2) = pI 7220, (0x, (Ra2)),
ga(z) = (w;ag)(//«az),
ha(x) = (@} 1) (1ax),

if z € B;-1,,(0) and x € ' B, -1, (0).
Given zg € [F\R'rrl and r > 0 such that |zg| +7 < u;lro, we have

=2y o 12 _ 12y 1vn 12
0 |Vua|~a dv~a —/ 0 |Viig |5 dv,,
/B#(ZO) ¢ o 8e o (e B (20) £
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where
~ _ -1
Pa(2) = g P(@xy (HaZ))

and |dpg|g, =1 0on 8’ B, (zo) since |dp|g =1 on M.
On the other hand, if zg € R", and |zo| +r < uy ' ro, then

/ lig|? do; :/ |ﬁa|2*da,;§/ 1| doj.
Dy (z0) ¢ Pxa (e Dy (20)) ®2uar(¢xa (Maz0))

Here we have used that ¢y, (o Dr(20)) = @x, (Duyr (Mazo)), and for x, y € R”,
with |x| < ro. |y| < ro, we have 3|x — y| < dg (¢, (X), 9o (1)) < 2x — .

Next, take r € (0, rg) and choose ¢y in Claim 1 such that 0 < ¢y < 2r. For any
¢ € (0, &p), with ¢ to be determined later, and #, € (0, tp), let

r_lto <1.

N|—=

0<pg = %r‘lta <

Then, by the definition of & from (3-2), if |zo| + 7 < uy 'ro,

(3-3) / gl dor <e.
VBF o) e

Note that ¢y, (0’ B; 110, (0)) = Dy (xq), we have

A2% g VAP TR
8=/ ltig|” doj, =f N lig|” doj,
:Dta(xa) (an(a/Bera (0))

i | do,;:/ L il doy,,.
¥ B3 (0)

/%ma ¥ B3 (0))

This r¢g > 0 can be chosen smaller again, such that for any 0 < ¢ <1 and any
Xo € M, we can assume that

1 1-2y 2 ~1—-2y 2
(3-4) E/R’fl y |Vul|dx dy < /[R’fl Pxo. it |Vu|g'x0.u dvé’xo,u

52/ y1727 | Vu|? dx dy,
Rn+l
+

= ~1-2 ~ -
Where uc W1’2 (R1+1? IO.XO,[,Z/)’ Supp(u) - B;_M_l rO(O)’ pxo,u(z) =H lp ((Pxo (MZ))’
and gx,u(2) = (¢x,8)(1z). And foru € L' (R™) such that supp(u) C 8’BZ+M—1 ro(0),
we can also assume that

1
—/ |u|a’x§/ lu| doj; 52/ |u| dx,
2 Rn Rn X0- K R7

where ﬁxo,,b(x) = ((p;‘oiz)(ux).
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Letn e %8°(R’i+1) be a cutoff function satisfying 0 < 7 <

. {1, in B+4(0)
0, in [Ri"+1 \B3/4(0),

and set 7o (z) = 7j(ry ' Ha2).
Claim 2. {fiqiia}aen is uniformly bounded in W12 (R';* L yl=2r),

Proof. Note that
/ it pa Y IV (latia) |3, dvg, + / o P (fiaiiq)? dvg,
Ry R

= fRnH Pa " CAVilalg, +iia) g dvg, +2 / Pa 2 gl Vilal}, dvg,
+ +

< C/ P! 702 dug + C/ p1_2y|Vﬁa|§, dvg < C,
X X
since {ilg }aen is uniformly bounded in W12(X, p!=2¥). Combining this with
(3-4), we get that {7qly }een is uniformly bounded in Wl’z([l%ﬁ:r Lyl=2ry. O

Due to the weak compactness of Wl’z([R{:’_H, y1727), there exists some u in
WL2(®RAH, y1727) such that fgile — u in WH2(REFY y1727) as o — +o0.

Step 3. The weak convergence is in fact strong via e-regularity estimates.

Claim 3. Letry = %0. Then, there exists €1 = €1(y, n) such that for any 0 <r <ry,
0 < & <min{eg, 1}, we have gty — U in W1’2(32+r(0), y172Y) as @ — +o0.

Proof. Given r sufficiently small, to be determined later, for any z¢ € [R'jr“, let
Y € 6 (B (20) NWIARYH, y1727). Let

N _n—2y
Va(2) =y 2 V(g '0r (2)) forz € e, (B} (20)).
Since {1y} satisfies the asymptotic equation (2-10),
oMV 12t -2y = 0 () [Vallr2x, p1-2v)

/ (11 B ( ))pl_w(wdﬂ%k e
Pxoq Ma By (Z0

= /B t oo (e 0 72 (V(iiatia), V) g, dvg,.

since 7 is supported in B3 / 4(0)and 7 n =1lin B 4(0) Also, note that s1nce na (Z) =

(1arytz), we have 7y = 1 in B, thus we need |zo| +7 < 4:“0:

1/4ugtro’
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It is easy to check that u'p — y as @ — +oo since |d(u‘;1p)|ga =1 onR"
and g4 — (|dx|? + dy?). Then we have the asymptotic equation

(3-5) —div(y' " V(i) = o(1) in B} (zo).
Since figiiq — u weakly in W 1:2 ([R’_frl, y1727), we simultaneously get that
(3-6) —div(y'™?*Vu) =0 in B;f (z0).

Now, let ¥ € W12(BF(z0), y'~27). Then, multiplying both sides of (3-5) by
Y and integrating by parts, we get

R — : 1-2y s~ -
(3-7) o(1) ||W||W1,2(Bj(20),y1—2y) /3’Br+(20) ylgg)y dy (Natla) Y daha

[, VIV Gdia). Vg, dug,.
B (20)
On the other hand, using (2-10), (2-11), and the definition of 1/Af0,,

(3-8) y1—2y (V(alia), VW)ga dvga
B/ (z0)

/ e P Vi Vi) g
Pxo Mo DBy (Z0

- /M lim o' @pita)Via doj + 0 (1) [Vallwrcx, o1-2v)

_ /Mmap*_zﬁa% doj, + o) |Vallw.2x, pro2v

:/am atal™ 2 eV dof, +0() Wl 20x o120
"B, (zo

Since |W”W1s2(B,+(z0),y1—2V) = ||'&allwl.2(X,p1—2y), combining expressions (3-7)
and (3-8) yields

o(1) ”w”WLZ(B;"(zO),yl_%’) = »/8/B+(zo) }}l_r)r{) yl_z"ay (Natia) Y da};a

[ el i) doj,
¥ B (z0) «
1.e.,

~ lim 170, (afla) = [fudal2(iaiia) +0(1) on B (z0)
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Meanwhile, since figiiq — u weakly in W 1-2 ([R{T'l, y1727), the same argument
as above gives that

— lim y'" 2 9yu = > “2u  on 3 Bt (z0).

y—0

If we denote by
Fa = lilatial” > (atia) = [u*" "1~ |faila —u> > (atia —u).
then
—div(y' "2V (ijgiiq —u)) = o(1) in B}t (20),
(3-9) = lim y! 7, (uile —u)
y—>0 o~ o~ 2*_2 ~ o~ / -|-

= [Natlq — U] (Nattg —u) + Ty +0(1) on d'B;"(z0).
We have proved in (3-3) that for any r > 0 and &1 > 0, there exists a sequence
{lta }oen such that, if |zo| +7 <rp < ,u;lro, then

/ liig|* dx <e1.
¥ Bt (z0)

Therefore, we can also choose r small enough such that, if |z¢| + 3r < rg, then

/ |ﬁa7/~‘a—u|2*d)€§81.

¥ Bt (z0)

We claim that Ty = o(1) in the sense that for any § € WL2(RAH, y1727y,
/af3+(zo)|rae|d0’; =00l 2% pzgyy 88 @ = +00.

We can use the same arguments as in the proof of Lemma 2.12 to show this claim.
Then by the e-regularity estimates and the compact embedding of the weighted
Sobolev space, we can prove that fjgiiy — u in W2(BF(z¢), y1727). Then, by

the finite covering we can prove that fgiig — u in W12 (B2+r (0), y1727). O
Applying Claim 3, noting that 7y, — u in WI’Z(B; (0), y1727) and that
fle = 1in 8’Bl+/4M_1rO since 0 < g <1 and 2r < 22,

£ = liig|? do =/ |fiiia|? do: 52/ lu? dx +o(1),
/8'32*,-(0) Che Jysto 0 T et

where we used fgilq — u in L2 (8’32’: (0), |dx|?) as a — +o0 by Proposition 2.4.
So, u # 0.

Claim4. Ilim puq =0.
a—>—+00

In fact, if g — o > 0, then gty — 0 in WI’Z(B;(O), yl_zy) since g — 0 in
WL2(X, p'=27). But, u # 0, which is a contradiction.
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Claim 5. For any 0 < po < 1, tiq — u strongly in WI’Z(BJEI 0), y1727) as
o — 400, and u is a weak solution of (3-1).

Proof. Let 0 < o < 1. By Claim 4, we know that 0 < pg < o for « large. Then,
(3-3) holds for |zg| + 7 < ,uo_lro. By the same arguments, it is easy to check that

fatiq —u in WH2(BS, -1(0), y'72).
For « large, 7l = 1 in B;}M—l (0), so we have
g —>u in Wb Z(Bzm_ 0), y1=27)

strongly as o« — +o00.
Finally, we claim that u solves the boundary problem

—div(y'"2'Vu) =0 in R,

(3-10) — lim y'™2Y9yu = > 2u  on R
y—0

Since 0 < g <1 is arbitrary, iy, — u strongly in WI’Z(B}r (0), y'727) for any
large R > 0. Without loss of generality, let ¢ € %SO(R’j_H) and supp ¥ C B;go (0)
for some Ry > 0. Set

Va(2) = 13 "7 W (g 05 (2)).

For « large enough,

/pl_zy(Vﬁa,Vlﬁa)g dvg :/ ~1 ZV(V(naua) VW) dvga,
b Ry
and

/ |ﬁa|2*_2ﬁawadvg=/ |f]aﬂa|2*_2(ﬁaﬁa)1//dv§a-
M R7

Note that g4 — |dx|*> + dy? in %I(B}'(O)) as @ — 400, {liy} is a Palais—Smale
sequence for 7} and figiiq — u in W12(B% (0)) for any R > 0. Then, we have

/ Y (VU VY dxdy —/ u> “2uy dx dy =0,
Ry R

which yields our desired result. O

Step 4. The Palais—Smale sequence minus a bubble is still a Palais—Smale sequence.
Define

(3-11) ;

We(z) = na g ulpy! 92 (2)), 2 € px, (B3, (0)),
We(z) =0, otherwise,

where 74 is a cut-off function satisfying e = 1in (pxa (B (0)) and 7y = 0 in
M\ ¢y, (BZr0 (0)). Here we have % (xa) Oxy (BZr0 (O)) Let gy = tig — Wq.
We claim:
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(i) D¢ — 0in WL2(X, p1727) as a — +o0;

(i) DI (Vg) — 0in WI2(X, p!727) as & — +o0;
(iii) Ig}’(ﬁa) = Ig,/(fta) —Eu)+o0(1) as ¢ > +00;
(iv) {Dg}aen is also a Palais—Smale sequence for / g .

The remainder of the proof of Lemma 3.1 consists of proving these claims.

(i) Since iig — 0 in WL2(X, p1=27) as @ — +o0, it suffices to prove g — 0
in Wh2(X, p'727) as @ — +oo. First, we prove that [, e doj, = o(1) as
o — 400 for any ¥ € €°°(X). Given R > 0,

(3-12) / oV doj, =/ oV doj, +/ oV doj,.
M :D,U,(XR(XO‘) M\QMQR(X(X)
Note that /g (x) = (goj;ail)(uax). Using (3-11),
~ N _n—2y 1 —
[ evdoi= [ dwCong T u e ) doj
DMD[R(XQ) :DMQR(XCX)

n4+2y

1 [ 200 00 ¥, 1)) o,
Dr(0)

n+2y/ [u(x)| dx.
Dr(0)

< ClY oo ) g 2
Similarly, we can deal with the second term in the right hand side of (3-12):

M\:‘DMO(R(xa) ®2r0(xa)\®,uaR(xa)
n-EZy

=ClyliLeemymg > |u(x)| dx

/D2r0,u.a1 (0\Dr(0)

1
n+2y * 2*
< ClY leoqan 15" ( fD (o dx)

2;‘0;4&1 (0)\DR (0)

2n
X (/ dx)
Darguz ! (0\Dr(0)
1

* 2%
< CIV ) ( f (o) dx) .
D2yougzgl (0\Dgr(0)

Since u € L2 (R", |dx|?) and e — 0 as @ — o0, taking R large enough we get

/lf)awda;lzo(l) as o — +o00.
M
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Next, we will show that
/ P! 72 (Viby, V) g dvg = 0(1) as @ — +00
X

for any ¥ € (600()?) Let g (2) = Na(Pxq (HaZ)), Palz) = M;lp((ﬂxa(l/vaz))-

Noting that W, =0 in X \ %;rro (xq), then for any R > 0 and o large,

(3-13) / P72 (Vida, V) g dvg = / p' 2 (Vida. V) g dvg
X B

o)

Lo P Vi VY du
%2’0 (xot)\%R“a(xa)

+ L (Vi VY dvg
‘BRMa(th)

=11+ 1.

By Hoélder’s inequality and the fact that u € WI’Z(RT' L y1=2r),

1
2
I < (/ p1_2y|VlI)a|§ dvg)
B, (Xa)\B o (%a)

2
1-2y 2

x P2 T )
(/:B;,O(xa)\%jg_ua(xa) i

1

AL 9 (o) 2 dvga)

( / + +
B 1 O\BEO

2
x(/+ . pl‘”w@dvg) =: B(R).
%Zro(x“)\%Ru,a(xa)

where

(3-14) lim lim suppB(R)=0.

R—+o00 a—>+00
The previous limit is estimated because u € w2 ([R’_frl, yl_zy), so for any «, R,
3
~1-2y 1= 2
AV Gal, dvg,) < Clily gt ooy
(/B;Outxl(o)\B;(O) * Ba 8w WALy
and for any € > 0 and any « large, there exists Rg > O such that for R > Ry,

1
2
T
%Zro(x“)\%Rua(x“)
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Meanwhile,
1 1
pe(f,  pwaagan) ([, e )
B e (Xa) B RuaFe)
1 1
2 2
([, o waaoR,an) ([, o vk an) o),
BR(O) %Rua(x"‘)

uniformly in R as « — +o00. To see this, for any R > 0,

~1-2 SN2 :
(/ LB ylv(ﬂauﬂgadvgra) < Cllullyrapt y1-avy:
B3(0)

also in Claim 4 we have proved that

lim pueg =0

a—>+00

and note that v € W12(X, p!=27). Since R > 0 is arbitrary, (3-13) implies that

[ P72 0 V) dv = o)
as o — +o0.

(ii) For any ¢ € W12(X, p!=27), the proof of (i) and Propositions 2.4 and 2.6
imply that

doj -0, asa — 4o00.

On the other hand, we have
DI} (o) -y = prl_zyWﬁa, Vi) g dug —/Mlﬁalz*_zﬁaw doj,

= DI (o) ¥ = DI () v = [ @y doy,
where
bl

N * __ A A A *__ A A * __ N
by = |ty — Wy 2 2(”0: — W) + |wa|2 zwoc - |“oc|2 zua-

Following the same argument of [Druet et al. 2004, pp. 39—40], we can prove that

/ Oy doj, — 0, aso — +o0.
M

Then, we get that Dlg(ﬁa) — 0in WH2(X, p'=27) as a — 400, since {ilg }aeN
is a Palais-Smale sequence for /..
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(iii) Note that 0y = flg — e and e = 0 in X \ B3, (x4). Given R > 0, for
large,

(3-15) /Xpl—znvlaa@ dvg

_ 12y |gs |2 1-2y v |2
= 0 |Vig |y dvg +[ o |Vilg |5 dvg
.Z;;h;xa> ¢ X\B3, () ’

- 1-2y 1y |2 12y 1vs |2
= 0 |Vig s dug —}—[ Jo |Vig |y dug
[‘Biaﬂxa) ¢ 55, e\ B e (er) §

+ / P72 |Viig|? dvg
X\B, (x) ¢

=311+12+/ L P | Vilg|g dvg.
X\%zro(xoz)

Since fgliq — U in Wl’z([RT'l, y1727) as @ — 400 because of Claim 5,
L= / N P |V (g — uA)a)li, dvg
%MQR(XOZ)

— ~1-2y ~ 2 B
= [, B |Vla —w)2, dvg,

/BI(O) * ¢ g8
52/ Y172V (g —u)|>dx dy = o(1), asa — +00,

B (0)

where we have used that 7, = 1 in B; (0) for « large.
On the other hand, direct computations give that

1-2y A2 _
p " |Vidg g dug —/
& B, =1 (0\B}; (0)

52/ yI=2|\Vu|?dx dy
B;;OH&] (0\B} (0)

=B(R).

since u € WH2(RAT, y1727) and pug — 0 as & — +00, where B(R) is defined as
in (3-14). Hence, we get

~1—2y 2 B
P [Vulz  dvg,
/z%;,o<xa)\%:aR<xa> ’ )

I = / p' T (Vi |2 + [V |2 —2(Vily, Vidy)g) dug
B3, (o) \ B () ¢ ¢
_ 1-2y A2
- P2 |Vitg 2 dug + B(R).
/%j,o(xa)\%jak(xa) ¢
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Here we have used Holder’s inequality and the fact that {#iy } is uniformly bounded
in WH2(X, p1=27) to get

/ L P (Vig, Vi) dug = B(R).
%Zro(xa)\%u-aR(xa)

Therefore, noting that i, — u in WI’Z(RT'I, y172¥) as @ — 400, by (3-15),
/ p' 7|V} dug
X

= [ VR v~ [ Vil dug + BR +o(1)
X %,u.aR(x“)

:/ p1—27|vﬁa|§ alvg_/Jr ﬁé—21’|vz}a|§a dvg, + B(R) +o(1)
X B} (0)

R

= [ P Vialzdue = [ 12Ul dxdy + BCR)+ o(1)

r O

= [ PV vy [ VU dx dy -+ BOR) + o(0).
o

In a similar way,

/ 0| doj, = / |iiq|? doj, —/ u|*"dx + B(R) +o(1).
M M R
These imply that
1Y (ba) = 17 (a) — E(u) + B(R) + o(1).
Since R > 0 is arbitrary, we get conclusion (iii).

(iv) It is a direct consequence of (ii) and (iii). O

4. Proof of the main results

Proof of Theorem 1.3. From Remark 2.10, we have ug — u® in WI2(X, p1=27)
as « — +00. And uy, — u® a.e. on M as « — +o00. Then, u® > 0 on M since
Uy > 0. Also, fiy = uy —u? satisfies the Palais—Smale condition and

1} (i) = 17 (ug) — 17 () + o (1),

If ig — 0in WH2(X, p1=27) as @ — 400, then the theorem is proved. If iy, — 0
but not strongly in W12(X, p!=27) as a — 400, then, using Lemma 3.1, we can
obtain a new Palais—Smale sequence {i}}oen satisfying

1Y (0g) = 1) (i) — E(u) + o(1).
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Now, either 12& — 0in W12(X, p'72¥) as @ — 400, in which case the theorem
holds, or 71}, — 0 but not strongly in W1:2(X, p!=2¥) as @ — +o00, in which case
we again use Lemma 3.1.

Since {/ g,/ "*(Ug) }aen is uniformly bounded, after a finite number of induction
steps, we get the last Palais—Smale sequence (for m > 1)

{ilg Yaen with 1) (i15') — B < Po.
Then, by Lemma 2.13, we can get that
am —0 in WX, p* ) as @ — +o0.

Applying Lemma 3.1 in the process, we can get that {u/ };." , are solutions to (3-1).

We will prove the positivity of u/, j =1,...,m, in Lemma 4.2, and the relation (5)
of Theorem 1.3 in Lemma 4.1.
For the regularity of u/, we can use Lemmas A.1 and A.2. O

Lemma 4.1. For any integer k in [1,m], and any integer [ in [0, k — 1], there exist
an integer s and sequences {vd yaen C M and (AL > Olqen, j = 1,....5, such
that di,(xg, y({,)/,u’(; is bounded, )Lé/,u’é — 0as @ — 400, and for any R, R’ > 0,

l
ﬁa—Zufx—uz

i=1

2*
doj, = o(1) + &(R"),

4-1) / |
D G\ U210, 0)

where

lim lim supe(R’) =0,

R’—+00 a—>+00

and {uf,} is derived from the rescaling of u* we obtained in the above proof of
Theorem 1.3, and {x,} is the i-th likely blow up points sequence.

Proof. We prove this lemma by iteration on /. For any integer k (1 < k <m), if
| =k — 1, then combining the above proof of Theorem 1.3 with Lemma 3.1 and

Proposition 2.4,
/9 Rk (&)

so (4-1) holds for s = 0.
Suppose that (4-1) holds for some [, 1 <[ <k — 1, we need to show that (4-1)
holds for [ — 1.

k—1 2%
T Z ul, —uk| doj =o0(1),

i=1
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Case 1: dj, (xé, x{;) -+ 0 as o — +o00. Then, for any R > 0, up to a subsequence,
gﬁué (xtlx) N @RM{; (xé‘!) = &, so we have

l,2* A l2* A
P doi= [ P
M\gkué('xa)

<C / u'|*" doj;
R"\ Dz o) “

<C / ! | dx.
R7 \DE(O)

/QR“/& xO\Uj=, DR/A({[(%{.)

Since R > 0 is arbitrary and ul e L2" (),

(4-2) [ _ |u(lx|2*d0jl =o0(l), asa— +oo.
K3

ok FONUi =1 D7 070
So by the induction hypothesis for / and (4-2), we obtain

-1
g —Zuﬁx —uk

i=1

2*
doj,

/zvmz& CEONUj=1 Dy, 034)

l 2%
ﬁa—Zufx—ug doj,

i=1

S 22*—1/
k J
Ok EO\Uj =1 DR,A{); )

+22*_1/ , |u‘lx|2*dcr;Z
Dy CENUS =1 D, 1 00)

=o0(1) +&(R)).
Thus we have proven that (4-1) holds for [ — 1.

Case 2: dj, (xé, x§ ) — 0 as @ — +o00. Let r¢ be sufficiently small such that for any
PeM, x,yeR" and |x|,|y| < ro,

3lx =yl < di(pp(x). op(»)) <2|x —y|.
Let ¥, = (1§) ™9 (x¢) and 3 = (u§) ™" ¢ (ya)- Then,
Dt (B © (1) ™" 0 ¢ Opt, (52)) € Dopyf, s (Fa)-

(4-3) 5J ky—1_—1 J ~J
D%;Lé/ul&(ya) C (iq) ('ng (CDR)Lé (ya)) C DZRAé/u’oi (Va)-

Given R > 0, from Lemma 3.1, Proposition 2.4, and the proof of Theorem 1.3,

(4-4) /
QRM& (xéz)

2*
doj, = o(1).
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By the assumption for 1 </ <k —1, i.e.,

I 2%
~ ] k /
g — ) uy—uy| doj =o(1)+e(R'),
/@RM;& CE\Uj =19, 0d) ,; © e
combined with (4-4),
/ . k|2 do, = 0(1) + (R,
s CENU =1 Dy, GDIN D1 ()

so using (4-3) we arrive at

(4-5) / ,
[Dg(O\Uj=: D

2R},

|uk|2*da,;a =o(1)+&(R").

=J =1
//'L]O(( a)ln D1/21~?M£x/ﬂ§ (X&)

Next, we consider two scenarios: first, assume that dj, (xé, x{;) / pfo‘l — 400 as

o — +00. We claim that di,(xé, x{;)/,ufx — 400 as ¢ — +00. If not, then (4-5)
with R large enough yields that fo / M’Oj — 0 as @« — +o00. Moreover,

di(xg. x§) _ il x§) ply
Iy we M

so we can choose R > 0 such that D Rk (x§ )NDp ul (xé) = &, which reduces to
the previous Case 1; as a consequence, (4-1) holds for / — 1.

Second, if dj, (x(lx,xg)/,ulo‘l -+ 400 as ¢ — 400, then, up to a subsequence,
dj, (x‘lx, x{;)/ulg{ converges. So, (4-5) implies that M(lx//ilé — +00. Set STl = xi
and AS! = ul . Then,

l 2%
flg — Z ul —uk| doj =o0(1) + (R

i=1

A’Rug CO\ULI 2, 0d)
and

[ 2% n [ 2% R
L doj, < f k2" da

/ﬂ k s+1 (v /
DR’wlé(xot)\LJJ'=1 QR/Aé(ya) M\QR’M(IX(XO‘)

<cC / Wl P dx < o(R),
R\ D/ (0)

which yield that

-1 2%
fg — Z ul —ukl doj =o0(1) +e(R)).

i=1

/ k s+1 (v
QRM/&(XQ)\UJ'=] QR,A&(J’a)

In particular, (4-1) holds for / —1, as desired. The iteration process is thus completed.
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Moreover, we have also shown that for any i # j
o wg | di(xl. x3)?

A N
compare [Almaraz 2014; Druet et al. 2004; Struwe 1984]. Note that this convergence
contains two kinds of bubbles: one case is that ,ufx = O(ul) when o — +00; then
the two blow up points are far away from each other. The other case is that

,ufx =o(u) or pl = o(ufx) when a — +o00; then the distance of the two blow up
point cannot be determined. Also we get that 12,/ /J,](; —0as o - +o0. O

— 400 as o — +0o0;

Lemma 4.2. The u' (fori =0,1,...,m) that we get in the Theorem 1.3 are all
nonnegative. In particular, for i > 1, u' is of the form Uti." for some A; > 0 and
a; € R", where Uil." is as in (1-13).

Proof. First of all, note that u® > 0 in X by Proposition 2.11. So, we just need to
prove the positivity of u’ for i > 1. For any k € [1, m], taking [ = 0 in Lemma 4.1,

(4-6) liig — US1? doj, = o(1) + &(R)

/em GO\Uj=1 9, 02)
where
UK (x) = (ub)y=" 2" uk (k) ! ¢i (x)  forx € Dp i (xf)

is called a bubble. Since ug = 1ig + u°, for x € D, «(0) C R", where rq is the

same as the one mentioned in Theorem 1.3,

ro/Ua

ub (x) = @k (x) + ad* (x),
where
uk () = (1) T ua (g, (1),

ik (x) = (b =" ua«pxk (1Ex)),

1%k (x) = (uk)=" O(goxk (ukx)).
Then, (4-6) implies that

4-7) itk —u*|>"dx = o(1) + &(R),

/DR(O)\Uj;] D, it s )

R/)Lj
where ya = (,ua) @i (ya) Since {d}, (xa, ya)/u }aen is uniformly bounded
by Lemma 4.1, {J }aeN is bounded and there exists a subsequence, also denoted
by {ya} such that 7 — 7/ as @ — 400 for j = 1,...,s. Combining (4-7) with
Aé/u’é — 0 as o — 400, we get

ii* —>uk in L2 (Dr(0) \Y),
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asa—>+ooforY:{)7j}j SO

=1

ii* >u* ae inR"

since R > 0 is arbitrary.
Also note that

[ o= [ do,
Dk O D (0) “

where 7% (x) = (<p:kiz)(uf§x). Then, uX — 0 as @ — +oo and u® € L2" (M, h)
yield that “

~0,k

%% -0, in L2 (Dg(0), |dx|?)

as @ — +00, SO
%% -0 ae. inR"

since R > 0 is arbitrary.

In particular, we have shown that u’é — u* almost everywhere on R” as o« — +00.
Note that u, is nonnegative by definition, so u’; > 0 on R”. We conclude that
uk >0 on R”. Then by the maximum principle, it follows that uk >0 in [R{’_’i_ﬂ.
Due to the previous arguments, uk is of the form Uf % for some Ag > 0 and a; € R",
where Ufkk is as in (1-13). O

Appendix

We will prove the €°° estimates from the L°° estimates by the Harnack inequality.
The two important lemmas are given here.

Lemma A.1 [Gonzélez and Qing 2013]. Let R > 0 and u be a weak solution of

—div(y' "2’ Vu) =0 in B;5(0),

A-8 .
(A-8) —limy—0 Y1727 0yu = f(x)u+ g(x)|u|*> 2u on Dyg(0).

Here, f and g are smooth functions on D, g(0). Assume that
A= [u|? dx < oo.
D> r(0)
Then, for any p > 1, there exists a constant C, = C(p, A) such that
n+2—"2y

sup [ul + sup [ul < Cp(R™ 7 ull o oy + R 7 Nullodaicon)-
B} (0) Dr(0)
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Lemma A.2 [Jin et al. 2014]. Let a(x), b(x) € 6*(D>(0)) for some 0 < a ¢ N and
letu € Wl’Z(B;' (0), y1=27) be a weak solution of

—div(y'™2’Vu) =0 in B3 (0),
—limy—0 y'7270yu = a(x)u +b(x) on D2(0).

If2y +a ¢ N, then u(-,0) is of €2YT*(D{(0)), and

(A-9)

luC-. O)llc2r+ep, o)) = CUUll oo (g4 (0y) + I1llce(D20))

where C > 0 depends only onn, y, a, and ||a||¢e(p,(0))-
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