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ROBERT STEINBERG (1922–2014): IN MEMORIAM

V. S. VARADARAJAN

He touched nothing that he did not adorn.

The quotation above is by Samuel Johnson, writing about his friend Oliver Gold-
smith. I think it is the most satisfying way to describe the work and legacy of
Robert Steinberg, who passed away on May 25, 2014 on his 92nd birthday. His
towering stature as one of the great masters of the theory of algebraic groups and
finite groups, the vast scope, depth, and beauty of his papers (some key ones were
published in the PJM), and his gigantic presence in the algebraic scene in Southern
California, are the reasons that led the Board of Governors of the PJM to request
that a special volume of the PJM be published in his memory. In this brief essay
I shall try to sketch a portrait of a master who wore his mantle of greatness with
unassuming simplicity and charm.

This is a melancholy task for me, to write about someone who was a good friend
and role model for me for nearly fifty years. In these days of ever multiplying awards,
million dollar grants, medals, and so on, it is refreshing, even humbling, to talk
about a man who never sought the limelight, who worked quietly on the problems
that appealed to him, and evolved into one of the great masters and innovators
of the theory of semisimple algebraic groups. The problems he worked on and
considered important became the central problems of the subject. His influence
on the subject was enormous. Even after he retired he could surprise experts with
new and easier proofs of some of the fundamental theorems of the subject. His
monumental set of lecture notes on Chevalley groups [1968] has been studied by
hundreds of mathematicians (I myself lectured twice on them) and will appear as a
publication of the AMS. In spite of his greatness he was a gentle and modest man,
aware of his gifts certainly, but accepting them and trying to get the job done.

His work is widely available in his Collected papers [1997] and its scope is
extraordinary. It is a very difficult task to present his work in one short essay and I
will not even attempt it, nor do I have the competence for it. But I will describe
some highlights so that most of the readers will get some idea of what he achieved
in his lifetime. I thank Professor Alexander Merkurjev for enlightening me on the
impact of Steinberg’s work on algebraic K-theory and other parts of mathematics.
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He told me that he and his collaborators have used every major theorem of Steinberg
in their work.

I was spiritually close to Steinberg as a mathematician. In his words I was also a
semisimple mathematician, as he said when he first introduced me to his close friend
and collaborator Tonny Springer, a Dutch semisimple mathematician. However I
was more interested in the transcendental aspects of real semisimple Lie groups,
such as infinite dimensional representations and harmonic analysis.

After his beloved wife Maria passed away, he gradually lost the desire and will
to do things, and I became closer to him in those days by visiting him as frequently
as I could. His passing away was traumatic to his nephew and nieces and to all of
his friends and relatives.

He was born in Romania but his parents settled in Canada very soon afterwards.
I am sure he was deeply influenced by the wide open spaces of Canada and thereby
acquired his lifelong love for long hikes and camping trips. He and Maria spent a
part of almost every summer by hiking and camping in the high sierras. Maria’s
strength of mind and decisiveness blended well with his gentle personality, and
they became one soul.

He studied under Richard Brauer and got his doctorate degree in 1948. He came
to UCLA in 1948 and never left it. In 1985 he was given the Leroy P. Steele Prize
of the AMS for lifetime achievement. He was elected to the National Academy
of Sciences in the same year. He wrote a letter to me on that occasion and said
that this proves he still has friends. He was awarded the Jeffery–Williams Prize
of the Canadian Mathematical Society in 1990. He was an avid fan of basketball
and hockey, and the Bruins and Lakers were his favorite teams, and Jerry West his
all-time favorite player. He was generally taciturn but always charming, and could
open up to close friends.

To understand roughly the scope of his achievement, it is essential to know what
simple and semisimple groups are. In 1894, Elie Cartan classified all simple Lie
algebras over C, and found that they fall into four infinite families (the classical
algebras), and five isolated ones (the exceptional algebras). This is the same as the
classification of simply connected complex Lie groups which are essentially simple.
The semisimple groups are, up to a cover, products of simple groups. The classical
groups (so christened by Weyl) are the group of matrices of determinant 1, the orthog-
onal (or spin) groups, and the symplectic groups. These groups have the remarkable
property that they make sense over any field or even any commutative ring with unit.
Over a finite field they become finite groups which are almost simple and these were
studied intensively by Dickson in the late nineteenth century. It is a natural question
to ask if the exceptional groups also make sense over finite fields. In the early 1950s,
Chevalley had started to study algebraic groups over fields of characteristic 0 by
using the exponential map and coming down to the Lie algebras. But this method was
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not very successful and certainly could not touch the case when the field had positive
characteristic. But Borel changed the entire landscape by studying the algebraic
groups directly using algebraic geometric methods, proving the existence of what are
now called Borel subgroups, and their conjugacy, over any algebraically closed field.
Chevalley then used Borel’s work as a starting point and completed the classification
of all semisimple affine algebraic groups by methods of algebraic geometry (up to a
finite cover, semisimple groups are products of simple groups, and reductive groups
are products of semisimple groups and tori). He found that the simple groups are
classified in the same way as Cartan’s. He then discovered the further remarkable
fact that any semisimple group is naturally a group scheme over Z, and hence it
makes sense to look at its points over any field (this is an oversimplification). In
particular it makes sense to speak of the simple groups over finite fields, and this
process led Chevalley to discover new simple finite groups hitherto unknown. The
groups he constructed over any field became known as the Chevalley groups.

In my opinion, the fact that the semisimple groups are really group schemes over
Z accounts for their great importance, depth, and vitality. Over arbitrary fields it
led Borel, Chevalley, Tits, Steinberg, Lusztig, Deligne, Curtis, and others to erect
a beautiful theory of their structure and representations. Over the real and p-adic
fields they become Lie groups on which one could do geometry and analysis, as
Weyl, Gel’fand, Mautner, Harish-Chandra, Mostow, Bruhat, Kazhdan, and others
did. Over the adeles their structure and representation theory led Langlands to
formulate his program linking the harmonic analysis on the adelic groups to the
most fundamental aspects of algebraic number theory, the so-called Langlands
program, which has inspired and animated a huge number of mathematicians of his
and later generations.

Chevalley’s discovery that semisimple groups are group schemes over Z was the
mathematical context when Steinberg started his research. In his words, he wanted
to become a semisimple mathematician, and soon became one. His field was the
entire theory of Chevalley groups and the associated finite groups, their structure
and their linear representations. He had important things to say on all aspects
of these groups. But the striking fact was that he used only elementary methods,
including basic algebraic geometry, and seldom ventured into the cohomological
aspects. I feel he resembled Harish-Chandra in this: he got to where he wanted to
go with very simple ideas and methods.

In his Collected papers, he discussed all his papers, elaborating some fine points
and putting his work within the framework of current knowledge, occasionally
adding some personal reminiscences. About one paper he wrote that it was entirely
worked out in the High Sierras when he was in his sleeping bag looking at the
stars! About another paper he wrote that this was his only paper for which he got
money from the Russians when they translated it, and mentions that the translation
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of his Lectures on Chevalley groups [1975] fetched him no money as it was before
glasnost!!

New finite simple groups. In what follows I shall describe some highlights of his
vast opus. His first major work was a couple of papers starting with the famous
Variations on a theme of Chevalley [1959] in the PJM, where he constructed new
families of finite simple groups not covered by the Chevalley groups and obtained
for them structure properties similar to those of the Chevalley groups. Suzuki and
Ree and others followed him with further families of new finite simple groups,
all of them collectively known as the twisted Chevalley groups. The Chevalley
groups and their twists were called finite simple groups of Lie type, and the great
classification theorem of finite simple groups is just the statement that apart from the
cyclic groups of prime order p, the alternating groups An (n� 5), and 26 sporadic
groups, a finite simple group is of Lie type.

Generators and relations for Chevalley groups. In the famous paper Générateurs,
relations et revêtements de groupes algébriques [1962], Steinberg considers Cheval-
ley groups corresponding to a root system † and field K. They are generated by
unipotent elements gr .t/ with r 2†, t 2K. Among all the relations between the
generators there are (obvious) ones (R) that can be written uniformly for all †, K.
He then considers the abstract group yG generated by symbols xr .t/ (r 2†, t 2K)
subject to the relations (R) and the natural surjective homomorphism

� W yG �!G:

Thus, Ker.�/ describes all the relations between the generators modulo the obvious
relations. Steinberg proves the remarkable result that the covering � is central, i.e.,
Ker.�/ is contained in the center of yG, and that � is a universal central extension.
J. Milnor has used Steinberg’s construction in the case of a general linear group over
an arbitrary ring S to define the group K2.S/ that describes the relations between
the elementary matrices over S modulo the obvious relations. The corresponding
group yG is known as the Steinberg group of S . Thus, this paper of Steinberg made
a great impact on the development of higher algebraic K-theory. The kernel of �
was studied in a profound manner by Moore and Matsumoto over a p-adic field, and
their work led to deep relationships with the norm residue symbol of number theory.
Among other things the work of Moore and Matsumoto highlighted the importance
of the two-fold covering of the symplectic group, the so-called metaplectic group,
over the local fields and the adeles. The adelic metaplectic group was the platform
which Weil used in his reformulation of Siegel’s work on quadratic forms.

Regular elements of semisimple algebraic groups [Steinberg 1965]. This is one of
his most admired and beautiful papers. Here he studies conjugacy classes of regular
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elements in a semisimple group G. For simplicity let us assume that the ground
field is algebraically closed. An element g 2G is called regular if the dimension of
the orbit of g under the action of G by conjugacy has maximal dimension (which is
dim.G/� rank.G//. In this paper he proves that the regular conjugacy classes have
an affine space section in the algebraic geometric sense, for every simply connected
semisimple group. For example, for SL.n/ we get the space of companion matrices,
a result that goes back at least to Gantmacher. Actually he does not restrict himself
to the algebraically closed ground field and proves that if G is a simply connected
quasisplit group over a field K (that is, it contains a Borel subgroup defined over
K), then every conjugacy class defined over K contains an element defined over
K. As a consequence of the main result, Steinberg proves that every principal
homogeneous space of a quasisplit semisimple group admits reduction to a maximal
torus. This result yields the solution of the famous Serre conjecture:

If K is a field of cohomological dimension 1, then all principal homoge-
neous spaces of a connected algebraic group over K are trivial.

The result that the regular conjugacy classes have a section in the algebraic
geometric sense led to an interesting interaction between us. I was looking at this
question on a semisimple Lie algebra over C. Kostant had constructed a beautiful
affine cross section for the regular orbits of the adjoint representation (which reduces
to the companion matrices for sl.n/), roughly at the same time as Steinberg’s work.
When I looked at the Lie algebra problem, it occurred to me that by making use of
some ideas of Harish-Chandra I could obtain a proof of many of Kostant’s results
in a very simple way. I had this published in the American Journal of Mathematics
and left a reprint in Bob’s mail box. He then asked me to come to his office and
explained the corresponding global result. I treasure the memory of that discussion
between us which had no element of condescension in it, when I was a young
researcher and he was at the peak of his powers.

The Steinberg representation. The complex representations of the finite Chevalley
groups are difficult to construct, even though Green had quite early worked out the
irreducible characters of GL.n/. The final results were obtained by Deligne and
Lusztig who realized the representations using certain étale cohomology spaces.
But Steinberg found one of the most important and ubiquitous ones very early in his
career. It is now called the Steinberg representation, and one can find a masterful
essay on its various incarnations in his Collected papers. For a Chevalley group G

over a finite field, if B is a Borel subgroup, and 1G
B

is the representation of G induced
by the trivial representation of B, then St is the unique irreducible component of
1G

B
which does not occur in any 1G

P
where P is any parabolic subgroup containing

B properly. Correspondingly, there is a formula for its character as an alternating
sum of the characters of the 1G

P
. Remarkably, this character formula makes sense in
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a p-adic field and its properties play a fundamental role in the harmonic analysis on
the p-adic semisimple groups, as developed by Harish-Chandra, Jacquet, and others.
Borel and Serre proved, using the cohomology of the Bruhat–Tits buildings, that St is
an irreducible square integrable (hence unitary) representation of the p-adic group.

The Steinberg representation also plays a basic role in the Langlands correspon-
dence. For example, an elliptic curve over Q has split multiplicative reduction
at a prime p if and only if the unitary automorphic representation associated to
it by the Langlands correspondence has for its component at p the Steinberg
representation. In general, under the correspondence, ignoring scalar twists by
one dimensional representations, a Steinberg representation at p corresponds to a
Galois representation for which the image of a decomposition group at p contains
a regular unipotent element.1

For lack of time I cannot discuss some of the other major discoveries in his work. I
mention the new and easier proofs of the isomorphism and isogeny theorems of
algebraic semisimple groups, which say that an isomorphism (isogeny) between
semisimple algebraic groups is always induced by an isomorphism (isogeny) of
their corresponding root data and conversely. The other item is his new and simpler
counterexample to Hilbert’s 14th problem, which asks one to prove that the ring
of invariant polynomials of a linear action of any algebraic group is finitely gener-
ated. For semisimple groups over the complex field this was proved for SL.n/ by
Hilbert, and for all semisimple groups over a field of characteristic 0 by Weyl, as
a consequence of his famous result that all finite dimensional representations of
a semisimple Lie algebra are direct sums of irreducible representations. In prime
characteristic the Weyl reducibility fails to hold and one needs a weakening of
it, called geometric reductivity, conjectured by Mumford and proved by Haboush.
The finite generation of invariants then follows from geometric reductivity, as was
shown by Nagata. So to find counterexamples to the finite generation of invariants,
one has to leave the category of semisimple or even reductive groups. Nagata
found a counterexample for a finite-dimensional action of a product of the additive
groups. In the late 1990s, Steinberg found much simpler classes of examples in all
characteristics, and made a thorough analysis of the problem, sharpening Nagata’s
construction and relating the examples to plane cubic curves and their geometry.

I know I have given only a brief discussion of a very minute part of Steinberg’s
work which is astonishing in its scope, depth, and beauty. His profound insights
about semisimple groups, and the easy grace and charm of his personality, cannot
ever be forgotten by people who came into contact with him. I have known very
few like him.

1These remarks on the Steinberg representation and elliptic curves were pointed out to me by
Professor Don Blasius.
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