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In memory of Robert Steinberg

Let K be a global field of characteristic not 2. The embedding problem for
maximal tori in a classical group G can be described in terms of algebras
with involution. The aim of this paper is to give an explicit description of the
obstruction group to the Hasse principle in terms of ramification properties
of certain commutative étale algebras, and to show that this group is iso-
morphic to one previously defined by the second author. This builds on our
previous work as well as on results of Borovoi. In particular, we show that
this explicit obstruction group can be identified with the group of Borovoi
(J. Reine Angew. Math. 473 (1996), 181–194), where X is the homogeneous
space associated to the embedding functor defined by the second author
(Comment. Math. Helv. 89 (2014), 671–717).

Introduction

Let K be a field of characteristic 6= 2, and let G be a reductive linear algebraic group
defined over K . The paper [Lee 2014] is concerned with embeddings of maximal
tori into G. In particular, if K is a global field, then results of Borovoi [1999] are
used to show that the Brauer–Manin obstruction is the only obstruction to the Hasse
principle. More precisely, the paper [Lee 2014] defines a homogeneous space X
over G having the property that the obstruction to the Hasse principle can be seen
as an element of the dual of the group B(X), where B(X) is the locally trivial
subgroup of the algebraic Brauer group of X (see [Borovoi 1999, p. 493, p. 499]).

If G is a classical group, then the above-mentioned embedding problem can
be described in terms of embeddings of algebras with involution. The aim of the
present paper is to give an explicit description of the obstruction group B(X) in
terms of ramification properties of certain commutative étale algebras.
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We are not aware of similar descriptions in the case of exceptional groups. Note
however that when G is of type G2, the group B(X) vanishes; in particular, the
Hasse principle holds (see [Beli et al. 2015, Proposition 6.1]).

The paper is structured as follows. In Section 1, we recall from [Lee 2014]
the definition of the oriented embedding functor, and we discuss its relationship
with embedding questions of algebras with involution. In Sections 2–5, we assume
moreover that K is a global field. In these sections we give the description of the
obstruction group B, and prove that B'B(X) (see Theorem 2.1). Finally, Section 6
discusses Brauer–Manin obstructions to the Hasse principle, and the relationship of
the results of the present paper with those of [Bayer-Fluckiger et al. 2014].

1. Embedding functor, algebras with involution and orientation

1.1. The embedding functor. Let K be a field of characteristic 6= 2, let Ks be a
separable closure of K , and let 0K = Gal(Ks/K ). Let G be a reductive group
over K . Let T be a torus and let 9 be a root datum attached to T (see [Demazure
and Grothendieck 2011, Exposé XXI, Definition 1.1.1]). For a maximal torus T ′

in G, we let 8(G, T ′) be the root datum of G with respect to T ′. If 8(G, T ′)Ks

and 9Ks are isomorphic, then we say that G and 9 have the same type.
Assume that G and9 have the same type. Let Isom(9,8(G, T ′)) be the scheme

of isomorphisms between the root data 9 and 8(G, T ′). Define

Isomext(9,8(G, T ′))= Isom(9,8(G, T ′))/W(9),

where W(9) is the Weyl group of 9. The scheme Isomext(9,8(G, T ′)) is inde-
pendent of the choice of the maximal torus T ′, and we denote it by Isomext(9,G).
An orientation is by definition an element of Isomext(9,G)(K ).

The embedding functor E(G, 9) is defined as follows: for any K-algebra C ,
let E(G, 9)(C) be the set of embeddings f : TC → GC such that f is both a
closed immersion and a group homomorphism which induces an isomorphism
f 9 :9C −→

∼ 8(GC , f (TC)) such that f 9(α)= α ◦ f −1
| f (TC ′ )

for all the C ′-roots α
in 9C ′ for each C-algebra C ′ (see [Lee 2014, §2.1]). Given an orientation ν in
Isomext(9,G)(K ), we define the oriented embedding functor as follows (see [Lee
2014, §2.2]): for any K-algebra C , set

E(G, 9, ν)(C)= { f : TC ↪→ GC | f ∈ E(G, 9)(C) and

the image of f 9 in Isomext(9,G)(C) is ν}.

The oriented embedding functor is a homogeneous space under the adjoint action
of G. For each root datum9, we can associate a simply connected root datum sc(9)
to it (see [Demazure and Grothendieck 2011, Exposé XXI, §6.5.5 (iii)]). Let sc(T )
be the torus associated to sc(9).
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1.2. Algebras with involution and the embedding functor. Let L be a field of
characteristic 6= 2, and let A be a central simple algebra over L . Let τ be an
involution of A, and let K be the fixed field of τ in L . Recall that τ is said to be
of the first kind if K = L and of the second kind if K 6= L; in this case, L is a
quadratic extension of K . Let dimL(A)= n2. Let E be a commutative étale algebra
of rank n over L , and let σ : E→ E be a K-linear involution such that σ |L = τ |L .
An embedding of (E, σ ) in (A, τ ) is by definition an injective homomorphism
f : E→ A such that τ( f (e))= f (σ (e)) for all e ∈ E .

The unitary groups U(A, τ ) and U(E, σ ) are defined as follows. For any com-
mutative K-algebra C , set

U(A, τ )(C)= {x ∈ A⊗K C | xτ(x)= 1}
and

U(E, σ )(C)= {x ∈ E ⊗K C | xσ(x)= 1}.

Let G = U(A, τ )◦ be the connected component of U(A, τ ) containing the neutral
element, and let T =U(E, σ )◦ be the connected component of U(E, σ ) containing
the neutral element.

Set F = {e ∈ E | σ(e) = e}. If L 6= K , then we have dimK (F) = n (see for
instance [Prasad and Rapinchuk 2010, Proposition 2.1]). If L = K , then let us
assume that dimK (F)= [(n+ 1)/2].

Then one can associate a root datum 9 to the torus T such that G is of type 9
(see [Lee 2014, §2.3.1]). Moreover, except for A of degree 2 with τ orthogonal,
there exists a K-embedding from (E, σ ) to (A, τ ) if and only if there exists an
orientation ν such that E(G, 9, ν)(K ) is nonempty (see [Lee 2014, Theorem 2.15
and Proposition 2.17]).

1.3. Orientations in terms of algebras. Let (E, σ ) and (A, τ ) be as above. As-
sume moreover that (A, τ ) is orthogonal, and that the degree of A is even. Let
1(E) be the discriminant of the étale algebra E (see [Knus et al. 1998, Chapter V,
§18, p. 290]), and let Z(A, τ ) be the center of the Clifford algebra of (A, τ ) (see
[Knus et al. 1998, Chapter II (8.7)]). Then an orientation can be thought of as the
choice of an isomorphism 1(E)→ Z(A, τ ). More precisely:

Proposition 1.3.1. We have an isomorphism

Isom(1(E), Z(A, τ ))' Isomext(9,G).

Proof. Let Eτ be a maximal τ-invariant étale subalgebra of A. Let Tτ = U(Eτ , τ )◦;
then Tτ is a maximal torus of G. Let 8(G, Tτ ) be the root datum of G with respect
to Tτ . Then we have a natural map α : Isom((E, σ ), (Eτ , τ ))→ Isom(9,8(G, Tτ )).
Using the identification of Aut(E, σ ) and Aut(9), we see that α is equivariant
under the action of Aut(E, σ ). Let 00 be the subgroup of Aut(E, σ ) corresponding
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to the Weyl group of 9 under this identification. Note that 00 is the twisted constant
scheme which consists of even permutations in Aut(E, σ )⊂ Aut(E). Indeed, by
[Lee 2014, Lemma 2.1.1 (2)] the automorphisms of (E, σ ) are in bijection with
those of the root datum 9. By [Bourbaki 1981, Planche IV, numéro X], these
consist of even permutations. Let us consider the following commutative diagram:

Isom((E, σ ), (Eτ , τ ))

��

// Isom(9,8(G, Tτ ))

��

Isom((E, σ ), (Eτ , τ ))/00 // Isom(9,8(G, Tτ ))/W(9)

Recall that Isom(9,8(G, Tτ ))/W(9)= Isomext(9,8(G, Tτ )), and note that we
have Isom((E, σ ), (Eτ , τ ))/00 ' Isom(1(E),1(Eτ )).

If we pick another maximal étale subalgebra E ′τ of A invariant by τ , then
the method used for Isomext(9,9τ ) in [Lee 2014, §2.2.1] shows that we have a
canonical isomorphism between Isom(1(E),1(E ′τ )) and Isom(1(E),1(Eτ )).

Let us fix an isomorphism 1(Eτ )→ Z(A, τ ) as in [Bayer-Fluckiger et al. 2014,
§2.3]. This gives an isomorphism Isom(1(E),1(Eτ ))→ Isom(1(E), Z(A, τ )).
Hence, we have

Isom(1(E), Z(A, τ ))' Isomext(9,8(G, Tτ ))= Isomext(9,G). �

See [Bayer-Fluckiger et al. 2014, §2] for details concerning the construction and
properties of orientation in terms of algebras with involution.

2. Obstruction groups

Assume now that K is a global field, let (E, σ ), (A, τ ) be as in Section 1, and
suppose that τ is either orthogonal or unitary. Note that L = K in the first case, and
L 6= K in the second case. The aim of this section and the following ones is to recall
the definition of the obstruction group to the Hasse principle defined in [Bayer-
Fluckiger et al. 2014, §3, §5.1], and show that it is isomorphic to the obstruction
group of [Lee 2014] (see Proposition 2.2), as well as to the one considered by
Borovoi [1996; 1999] (see Theorem 2.1). As we will see, the group B(E, σ ) is
defined in terms of ramification properties of the algebra (E, σ ).

Let us denote by �K the set of places of K . For all v ∈ �K , we denote by Kv
the completion of K at v. For all K-algebras B, set Bv = B⊗K Kv.

The commutative étale algebra E is by definition a product of separable field
extensions of L . Let us write E=E1×· · ·×Em , with σ(Ei )=Ei for all i=1, . . . ,m,
and such that Ei is either a field stable by σ or a product of two fields exchanged
by σ . Recall that F = Eσ .
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Set I = {1, . . . ,m}. We have F = F1 × · · · × Fm , where Fi is the fixed field
of σ in Ei for all i ∈ I . Note that either Ei = Fi = K or Ei = Fi × Fi or Ei is a
quadratic field extension of Fi .

Let us write
E = E1× · · ·× Em1 × Em1+1× · · ·× Em,

where Ei/Fi is a quadratic extension for all i = 1, . . . ,m1 and where Ei = Fi × Fi

or Ei = K if i = m1+ 1, . . . ,m. Set E ′ = E1× · · · × Em1 and I ′ = {1, . . . ,m1}.
If i ∈ I ′, let 6i be the set of places v ∈�K such that all the places of Fi over v split
in Ei . Given an m1-tuple x = (x1, . . . , xm1) ∈ (Z/2Z)m1 , set

I0 = I0(x)= {i | xi = 0}, I1 = I1(x)= {i | xi = 1}.

Note that (I0, I1) is a partition of I ′. Let S′ be the set

S′ =
{
(x1, . . . , xm) ∈ (Z/2Z)m1 |

(⋂
i∈I0
6i
)
∪
(⋂

j∈I1
6j
)
=�K

}
,

and set
S = S′ ∪ (0, . . . , 0)∪ (1, . . . , 1).

We define an equivalence relation on S by

(x1, . . . , xm1)∼ (x
′

1, . . . , x ′m1
) if (x1, . . . , xm1)+ (x

′

1, . . . , x ′m1
)= (1, . . . , 1)

or (x1, . . . , xm1)= (x
′

1, . . . , x ′m1
).

Let us denote by B(E, σ ) the set of equivalence classes of S under the above
equivalence relation. It is easy to check that B(E, σ ) is a group under compo-
nentwise addition (see [Bayer-Fluckiger et al. 2014, Lemma 3.1.1]). Note that
in [Bayer-Fluckiger et al. 2014], the group B(E, σ ) is denoted by X(E ′, σ ) (see
[Bayer-Fluckiger et al. 2014, §3, §5.1]).

Set X = E(G, 9, u). Recall that we are assuming that τ is either orthogonal (and
L = K ) or unitary (and L 6= K ). The group B(X) is defined in [Borovoi 1999, §3].

Theorem 2.1. The groups B(E, σ ) and B(X) are isomorphic.

This theorem is a consequence of Propositions 2.2 and 2.3 below.

Proposition 2.2. The groups X1(K , sc(T̂ )) and B(E, σ ) are isomorphic.

Proposition 2.3. The groups X1(K , sc(T̂ )) and B(X) are isomorphic.

The proofs of these propositions will be given in the next sections. Let us start by
introducing some notation that will be used in both proofs. For any finite separable
field extension N/N′ and any discrete 0N-module M , set IN/N′(M) = Ind0N′

0N
(M).

Note that IN/N′(Z) is the character group of RN/N′(Gm). Let ŜN/N′ be the character
group of the norm-one torus R(1)N/N′(Gm).
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3. Proof of Proposition 2.2 when L = K and τ is orthogonal

We keep the notation of the previous sections, and assume that L = K and that τ is
orthogonal. The aim of this section is to prove Proposition 2.2 in this case. The
proof of Proposition 2.2 when L 6= K is the subject matter of Section 4.

Let us consider the diagram

(1)

1

��

1

��

1 // R(1)F/K (Gm) //

��

R(1)E/K (Gm) //

��

sc(T ) // 1

1 // RF/K (Gm) //

��

RE/K (Gm)

��

1 // Gm
×2

//

��

Gm

��

1 1

where the first row (see [Lee 2014, Lemma 3.16]) and the columns are exact. Then
consider the corresponding diagram of character groups:

(2)

0

��

0

��

Z
×2

//

��

Z

��

IE/K (Z)
π
//

��

IF/K (Z) //

��

0

0 // sc(T̂ ) // ŜE/K
π

//

��

ŜF/K //

��

0

0 0

Note that we have IE/K (Z) =
⊕m

i=1 IEi/K (Z) and IF/K (Z) =
⊕m

i=1 IFi/K (Z).
The module IEi/K (Z) can also be written as IFi/K (IEi/Fi (Z)). Let d be the degree
map from IEi/Fi (Z) ' Z⊕ Z to Z, which sends (x, y) to x + y. Then on each
IFi/K (IEi/Fi (Z)), the map π is the map induced by the degree map from IEi/Fi (Z)

to Z.
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Set 0 = 0K . We derive the following long exact sequence from diagram (2):

0→ sc(T̂ )0→ (ŜE/K )
0 π
−→ (ŜF/K )

0
→ H1(K , sc(T̂ ))→ H1(K , ŜE/K ).

Thus we have the exact sequence

0→ (ŜF/K )
0/π((ŜE/K )

0) δ
−→H1(K , sc(T̂ ))→ H1(K , ŜE/K ).

Note that H2(K ,R(1)E/K (Gm)) injects into H2(K ,RE/K (Gm)) by Hilbert’s The-
orem 90. By the Brauer–Hasse–Noether Theorem, X2(K ,RE/K (Gm)) vanishes,
hence so does X2(K ,R(1)E/K (Gm)). By Poitou–Tate duality, we have

X1(K , ŜE/K )'X2(K ,R(1)E/K (Gm))
∗
= 0.

Therefore, X1(K , sc(T̂ )) is in the image of (ŜF/K )
0/π((ŜE/K )

0).
Since the Fi s are field extensions of K , we have IFi/K (Z)

0
' Z. Thus, we have

IF/K (Z)
0
'
⊕m

i IFi/K (Z)
0
' Zm , and (ŜF/K )

0
' Zm/(1, . . . , 1).

If Ei = Fi×Fi , then π sends IEi/K (Z)
0
' IFi/K (Z)

0
×IFi/K (Z)

0 surjectively onto
IFi/K (Z)

0
' Z. If Ei = K , then IEi/K (Z)' Z' IFi/K (Z). If Ei is a quadratic field

extension of Fi , the map π sends IEi/K (Z)
0
'Z to IFi/K (Z)

0
'Z by multiplication

by 2. Recall that m =m1+m2, where m1 is the number of indices i such that Ei is
a quadratic field extension of Fi , and m2 is the number of indices i such that either
Ei = Fi × Fi or Ei = K . Then we have

(ŜF/K )
0/π((ŜE/K )

0)' (Z/2Z)m1/(1, . . . , 1).

We claim that the map δ : (ŜF/K )
0/π((ŜE/K )

0)→ H1(K , sc(T̂ )) sends bijec-
tively B(E, σ ) to X1(K , sc(T̂ )).

Let (I0, I1) ∈ B(E, σ ), let a be the corresponding element in

(ŜF/K )
0/π((ŜE/K )

0)

and let x be the image of a in H1(K , sc(T̂ )). We claim that x is in X1(K , sc(T̂ )).
It suffices to prove that, for any v ∈�K , we have av = 0.

For a place v ∈
⋂

i∈I1
6i , we have that Evi splits over Fvi for all i ∈ I1. Hence,

π maps IEvi /Kv (Z)
0v ' IFvi /Kv (Z)

0v ⊕ IFvi /Kv (Z)
0v onto IFvi /Kv (Z)

0v for each i ∈ I1,
and so (ŜF/K )

0v/π((ŜE/K )
0v ) = 0 for each i ∈ I1 and avi = 0. On the other hand,

for each i ∈ I0, we have ai = 0 by definition. Therefore, av = 0.
For a place v ∈

⋂
i∈I0
6i , we replace (a1, . . . , am1) by (a1, . . . , am1)+(1, . . . , 1).

Note that (a1, . . . , am1)+ (1, . . . , 1) and (a1, . . . , am1) represent the same class a
in (ŜF/K )

0/π((ŜE/K )
0). By the same argument as above, we have av = 0. Since(⋂

i∈I0
6i
)
∪
(⋂

j∈I1
6j
)
=�K , we have av = 0 for all v ∈�K , which proves that

x is an element of X1(K , sc(T̂ )).
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This proves that δ induces a map B(E, σ )→X1(K , sc(T̂ )). We already know
that this map is injective. Let us prove that it is also surjective.

Let 0 6= x ∈ X1(K , sc(T̂ )). Let a ∈ (ŜF/K )
0/π((ŜE/K )

0) be the preimage
of x , let av be the localization of a at the place v, and let (a1, . . . , am1) be a lift
of a in (Z/2Z)m1 . Let (I0, I1) be the corresponding partition. Now we claim that(⋂

i∈I0
6i
)
∪
(⋂

j∈I1
6j
)
=�K . Suppose that

(⋂
i∈I0
6i
)
∪
(⋂

j∈I1
6j
)
6=�K , and let

v ∈�K \
(⋂

i∈I0
6i
)
∪
(⋂

j∈I1
6j
)
. Therefore, there exist i0 ∈ I0 and i1 ∈ I1 such that

Evi0
is not split over Fvi0

and Evi1
is not split over Fvi1

. Let Fvi =
∏ni

j=1 L i, j , where
the L i, j s are field extensions of Kv . Let Evi =

∏ni
j=1 Mi, j , where Mi, j is a quadratic

étale algebra over L i, j . Set 0v = 0Kv . Then we have

IFvi /Kv (Z)
0v/π(IEvi /Kv (Z)

0v )=

ni⊕
j=1

IL i, j/Kv (Z)
0v/π(IMi, j/Kv (Z)

0v ).

If Mi, j is split over L i, j , then

IMi, j/Kv (Z)
0v = IL i, j×L i, j/Kv (Z)

0v = IL i, j/Kv (Z)
0v ⊕ IL i, j/Kv (Z)

0v ,

so π sends IMi, j/kv (Z)
0v surjectively to IL i, j/kv (Z)

0v . On the other hand, if Mi, j is a
field extension over L i, j , then π maps IMi, j/Kv (Z)

0v ' Z to 2Z⊆ Z' IL i, j/Kv (Z)
0v

and we have
IL i, j/Kv (Z)

0v/π(IMi, j/Kv (Z)
0v )' Z/2Z.

For ai ∈ IFi/K (Z)
0/π(IEi/K (Z)

0)' Z/2Z, the localization map sends ai diago-
nally into

IFvi /Kv (Z)
0v/π(IEvi /Kv (Z)

0v )'
⊕

j where Mi, j
is nonsplit

Z/2Z.

Let avi be the image of ai in IFvi /Kv (Z)
0v/π(IEvi /Kv (Z)

0v ). By our choice of v,
we have that IFvi0/Kv (Z)

0v/π(IEvi0/Kv (Z)
0v ) (resp. IFvi1/Kv (Z)

0v/IEvi1/Kv (Z)
0v ) is non-

trivial. In particular, avi1
is nonzero as ai1 is nonzero. Note that⊕

i

(ŜFvi /Kv )
0v/π((ŜEvi /Kv )

0v )=

⊕
i IFvi /Kv (Z)

0v/π(IEvi /Kv (Z)
0v )

(1̄, . . . , 1̄)
,

where 1̄ denotes the image of the diagonal element of IFvi /Kv (Z)
0v in

IFvi /Kv (Z)
0v/π(IEvi /Kv (Z)

0v ).

Since av = 0, we have either avi = 0 ∈ IFvi /Kv (Z)
0v/π(IEvi /Kv (Z)

0v ) for all i , or
avi = 1̄ ∈ IFvi /Kv (Z)

0v/π(IEvi /Kv (Z)
0v ) for all i . In particular, this implies that avi0

and avi1
are either both 0 or both 1, which is a contradiction. Therefore, we have(⋂

i∈I0
6i
)
∪
(⋂

j∈I1
6j
)
=�K and (I0, I1) ∈ B(E, σ ). �
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4. Proof of Proposition 2.2 when L 6= K

We keep the notation of the previous sections and assume that L 6= K . The aim of
this section is to prove Proposition 2.2 in this case.

In this case, the torus sc(T ) fits in the following exact sequence:

(3) 1→ sc(T )→ RF/K (R
(1)
E/F (Gm))→ R(1)L/K (Gm)→ 1.

We take the dual sequence of exact sequence (3):

(4) 0→ ŜL/K
ι
−→ IF/K (ŜE/F )

p
−→ sc(T̂ )→ 0,

from which we derive the long exact sequence

(5)
· · · → H1(K , ŜE/K )

ι1
−→H1(K , IF/K (ŜE/F ))

p1
−→H1(K , sc(T̂ ))→ H2(K , ŜE/K ).

By Poitou–Tate duality, we have X2(K , ŜE/K )'X1(K ,R(1)E/K (Gm))
∗. We claim

that X2(K , ŜE/K )'X1(K ,R(1)E/K (Gm))
∗
= 0. To see this, we consider the follow-

ing exact sequence:

1→ R(1)L/K (Gm)→ RL/K (Gm)→ Gm→ 1.

By Hilbert Theorem 90, we have H1(K ,R(1)L/K (Gm)) = K×/NL/K (L×), where
NL/K is the norm map from L to K . Since the norms of the quadratic extension
L over K satisfy the local-global principle, we have X1(K ,R(1)L/K (Gm))= 0. Hence
X2(K , ŜL/K )= 0. Therefore, the group X1(K , sc(T̂ )) is contained in the image
of H1(K , IF/K (ŜE/F )).

Let us consider the following exact sequence:

(6) 1→ Gm→ RL/K (Gm)
π
−→R(1)L/K (Gm)→ 1,

where π(x)= x/σ(x). Considering the dual sequence, we get

(7) 0→ ŜL/K → IL/K (Z)
d
−→Z→ 0,

where d is the degree map which maps (a, b) ∈ Z⊕Z' IL/K (Z) to a+ b. Taking
the long exact sequence associated to (7), we have

(8) IL/K (Z)
0 d
−→Z→ H1(K , ŜL/K )→ H1(K , IL/K (Z))= 0.

Since L is a quadratic field extension of K , we obtain

H1(K , ŜL/K )' Z/d(IL/K (Z)
0)= Z/2Z.
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Similarly, we have

H1(K , IF/K (ŜE/F ))= H1(F, ŜE/F )=

m∏
i=1

H1(Fi , ŜEi/Fi ).

If Ei = Fi× Fi , then H1(Fi , ŜEi/Fi )= 0 since d is surjective. If Ei is a quadratic
extension of Fi , then H1(Fi , ŜEi/Fi )= Z/2Z. Recall that m = m1+m2, where m1

is the number of indices i such that Ei is a quadratic extension of Fi , and m2 is the
number of indices i such that Ei = Fi × Fi . Then H1(K , IF/K (ŜE/F ))' (Z/2Z)m1 .

The map ι1 : H1(K , ŜL/K )→ H1(K , IF/K (ŜE/F )) maps Z/2Z diagonally into
(Z/2Z)m1 . Therefore, we have

X1(k, sc(T̂ ))⊆ Im(p1)' (Z/2Z)m1/(1, . . . , 1).

Let us show that p1 maps B(E, σ ) bijectively to X(K , sc(T̂ )).
Let (I0, I1) be in B(E, σ ), and let a in H1(K , IF/K (ŜE/F )) be the corresponding

element. We want to show that p1(a) is an element of X1(K , sc(T̂ )). Let v ∈�K .
If v ∈

⋂
j∈I1
6j , then av = 0. Hence, it suffices to prove that, for v ∈�K \

⋂
i∈I1
6i ,

we have av = ι1v(1)= ι
1(1)v. Now, since

(⋂
i∈I0
6i
)
∪
(⋂

j∈I1
6j
)
=�K , we have

v ∈
⋂

i∈I0
6i . Consequently, H1(Fi , ŜEvi /Fvi ) = 0 for all i ∈ I0, and the projection

of ι1v(1) to these components are trivial. For i ∈ I1, we have that ai and the i-th
coordinate of ι1(1) are both 1, so their images in H1(Fvi , ŜEvi /Fvi ) are equal. This
proves that av = ι1v(1), hence p1(av)= 0.

We next show that the restriction of the map p1 to B(E, σ ) is surjective onto
X1(K , sc(T̂ )).

Let a = (a1, . . . , am1) ∈ (Z/2Z)m1 ' H1(K , IEσ/k(ŜE/F )) and let (I0, I1) be
the associated partition. If a = 0 or a = (1, . . . , 1), then a is in the image of ι1

and we have p1(a) = 0 ∈X1(K , sc(T̂ )). Hence, we may assume that I0 and I1

are nonempty.
We claim that 0 6= p1(a) ∈X1(K , sc(T̂ )) if and only if I0 and I1 are nonempty

and
(⋂

i∈I0
6i
)
∪
(⋂

j∈I1
6j
)
=�K .

Suppose 0 6= p1(a)∈X1(K , sc(T̂ )). Let v ∈�K \
⋂

i∈I0
6i . Then Lv � Kv

×Kv

and we have H1(Lv, ŜLv/Kv
)=Z/2Z. Let av denote the localization of a at v. Since

p1(a)∈X1(K , sc(T̂ )), we have av in the image of ι1v , so either av= 0 or av= ι1v(1).
It suffices to show that v ∈

⋂
i∈I1
6i . Consider the i-th component of (Z/2Z)m1 ,

which corresponds to H1(K , IFi/K (ŜEi/Fi )) = H1(Fi , ŜEi/Fi ). If Ei splits over Fi

at a place v ∈ �K , then by the exact sequence (8), the map d is surjective and
H1(Fvi , ŜEvi /Fvi ) = 0, which means that the i-th component vanishes at place v.
Since v /∈

⋂
i∈I0
6i , there exists an i ∈ I0 such that Evi is not split over Fvi . Let

Fvi =
∏ni

j=1 L i, j , where the L i, j s are field extensions of Kv. Let Evi =
∏ni

j=1 Mi, j ,
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where Mi, j is a quadratic étale algebra over L i, j . Then

H1(Fvi , ŜEvi /Fvi )=
∏

j

H1(L i, j , ŜMi, j/L i, j ).

By the choice of i , there is a j such that Mi, j is not split over L i, j , and hence
H1(L i, j , ŜMi, j/L i, j ) 6= 0. Therefore, the projection of ι1v(1) to H1(L i, j , ŜMi, j/L i, j )

is 1. On the other hand, the projection of av to the same component is 0 since
i ∈ I0. Therefore, av = 0 which means that H1(Fvi , ŜEvi /Fvi )= 0 for all i ∈ I1, hence
v ∈

⋂
i∈I1
6i . This proves that a ∈ B(E, σ ). �

5. The proofs of Proposition 2.3 and Theorem 2.1

We keep the notation of the previous sections. As we will see, Theorem 2.1 follows
from Propositions 2.2 and 2.3, which we’ll now prove.

Proposition 2.3. The groups X1(K , sc(T̂ )) and B(X) are isomorphic.

For a connected reductive group H , we denote by H tor the quotient of H by its
derived group. Note that H tor is a torus.

Proof of Proposition 2.3. Let sc(G) be the simply connected cover of G. Recall
that X = E(G, 9, u). Since X is a homogeneous space under the adjoint action
of G, we can view X as a homogeneous space under sc(G). Let x be in X (Ks)

and let H = Stabsc(G)Ks
(x) be the stabilizer of x over Ks . Then H is isomorphic

to sc(T )Ks (see [Lee 2014, Lemma 3.9]). Let H m be the K-form of the multiplicative
quotient of H constructed in [Borovoi 1999, §§1.1–1.2, pp. 493–494] (note that
the hypotheses of [Borovoi 1999, §1.1]. are satisfied: (1.1.1) holds since sc(G) is
simply connected, and (1.1.2) is satisfied since H ' sc(T )Ks ). We have H m

' sc(T )
(see [Lee 2014, Lemma 3.9]). Let i : H m

→ sc(G)tor be the morphism of algebraic
groups constructed in [Borovoi 1999, §1.2, p. 494]. Let Ĥ m (resp. sc(Ĝ)tor) be the
character group of H m (resp. sc(G)tor). We view the dual map of i as a complex of
finitely generated Galois modules sc(Ĝ)tor

→ Ĥ m , where sc(Ĝ)tor is in degree 0 and
Ĥ m is in degree 1. Then we have B(X)=X2(K , sc(Ĝ)tor

→ Ĥ m). This follows
from [Borovoi and van Hamel 2012, Theorem 3] (note that the statement was already
proved in [Borovoi 1999, Theorem 3.3] under the condition that X (Kv) 6=∅ for all
v ∈�K , and that Theorem 3 of [Borovoi and van Hamel 2012] was conjectured in
[Borovoi 1999, Conjecture 3.2]). Since sc(G) is semisimple, we have sc(G)tor

= 1.
Therefore, we have X2(K , sc(Ĝ)tor

→ Ĥ m)=X2(K , 1→ Ĥ m). On the other hand,
we have X2(K , 1→ Ĥ m)=X1(K , Ĥ m) by the definition of hypercohomology.
Recall that H m

' sc(T ). Therefore, B(X)'X1(K , sc(T̂ )). �

Theorem 2.1. The groups B(E, σ ) and B(X) are isomorphic.

Proof of Theorem 2.1. By Proposition 2.3 we have B(X) 'X1(K , sc(T̂ )), and
Proposition 2.2 implies that X1(K , sc(T̂ ))' B(E, σ ). �
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6. Hasse principle and Brauer–Manin obstruction

We keep the notation of the previous sections and assume that K is a global field. In
particular, (E, σ ) is an étale algebra with involution and (A, τ ) is a central simple
algebra with involution, as in Section 2.

The embeddings of (E, σ ) into (A, τ ) were investigated in several papers; see
for instance [Prasad and Rapinchuk 2010; Lee 2014; Bayer-Fluckiger et al. 2014].
In particular, Prasad and Rapinchuk proved in [2010, Theorem 5.1] that the Hasse
principle holds if τ is symplectic, and they obtained partial results for τ orthogonal
and unitary as well (see the introduction of the same paper).

Since the case where τ is symplectic is covered by the results of Prasad and
Rapinchuk, we henceforth assume that τ is either orthogonal or unitary.

In [Bayer-Fluckiger et al. 2014] we defined the obstruction group B(E, σ ) (see
Section 4 of the present paper; note that this group is denoted by X(E ′, σ ) in [Bayer-
Fluckiger et al. 2014, §3, §5.1]). Under the hypothesis that (E, σ ) can be embedded
into (A, τ ) everywhere locally, we also defined an element f̄ = f̄ ((E, σ ), (A, τ ))
of B(E, σ )∗ which gives a complete obstruction to the Hasse principle:

Theorem 6.1. (E, σ ) can be embedded into (A, τ ) if and only if

f̄ ((E, σ ), (A, τ ))= 0.

This is proved in [Bayer-Fluckiger et al. 2014, Theorem 4.6.1 and Proposi-
tion 5.1.1].

On the other hand, Borovoi [1996] studied the Hasse principle for homogeneous
spaces of connected linear algebraic groups with connected or abelian stabilizers.
If Y is such a space, he defined a group B(Y ) and, provided Y (Kv) 6= ∅ for all
v ∈�K , an element mH (Y ) ∈B(Y )∗ such that Y (K ) 6=∅ if and only if mH (Y )= 0.

Borovoi’s results were applied to the embedding problem of algebras with
involution in [Lee 2014]. Recall that G = U(A, τ )◦ and T = U(E, σ )◦ (see
Section 1), and that X = E(G, 9, u) (see Sections 1 and 4). By Theorem 2.1 we
have B(E, σ )' B(X).

We don’t know whether the isomorphism between B(E, σ ) and B(X) carries
f̄ ((E, σ ), (A, τ )) to mH (X). However, these elements vanish simultaneously, and
they both provide complete obstructions to the Hasse principle. More precisely:

Theorem 6.2. Assume that (E, σ ) can be embedded into (A, τ ) everywhere locally
(or, equivalently, that X (Kv) 6=∅ for all v ∈�K ). Then the following assertions
are equivalent:

(i) (E, σ ) can be embedded into (A, τ ).

(ii) X (K ) 6=∅.

(iii) f̄ ((E, σ ), (A, τ ))= 0.
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(iv) mH (X)= 0.

Proof. The equivalence of (i) and (ii) follows from [Lee 2014, Theorem 2.1.5]. The
equivalence of (i) and (iii) is proved in [Bayer-Fluckiger et al. 2014, Theorem 4.6.1
and Proposition 5.1.1]. Finally, the equivalence between (ii) and (iv) follows from
[Borovoi 1996, Theorem 2.2]. �
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