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To the memory of Robert Steinberg

Given an octonion algebra C over a field k, its automorphism group is an
algebraic semisimple k-group of type G2. We study the maximal tori of G

in terms of the algebra C .

1. Introduction

For classical algebraic groups, and in particular for arithmetic fields, the investiga-
tion of maximal tori is an interesting topic in the theory of algebraic groups and
arithmetic groups; see [Prasad and Rapinchuk 2009, § 9; 2010] and also [Garibaldi
and Rapinchuk 2013]. It is also related to the Galois cohomology of quasisplit
semisimple groups by Steinberg’s section theorem; that connection is an important
ingredient of this paper.

Let k be a field, let ks be a separable closure and denote by �k D Gal.ks=k/
the absolute Galois group of k. In this paper, we study maximal tori of groups of
type G2. We recall that a semisimple algebraic k-group G of type G2 is the group
of automorphisms of a unique octonion algebra C [Knus et al. 1998, 33.24]. We
come now to the following invariant of maximal tori [Gille 2004; Raghunathan
2004]. Given a k-embedding of i W T ! G of a rank -2 torus, we have a natural
action of �k on the root system ˆ.Gks

; i.Tks
//, and the yoga of twisted forms

defines then a cohomology class type.T; i/ 2H 1.k;W0/, which is called the type
of the couple .T; i/. Here W0 Š Z=2Z� S3 is the Weyl group of the Chevalley
group of type G2. By Galois descent [Knus et al. 1998, 29.9], a W0-torsor is
nothing but a couple .k0; l/, where k0 (resp. l) is a quadratic (resp. cubic) étale
k-algebra. The main problem is then the following: given an octonion algebra C
and such a couple .k0; l/, under which additional conditions is there a k-embedding
i W T !G D Aut.C / of type Œ.k0; l/� 2H 1.k;W0/?
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We give a precise answer when the cubic extension l is not a field (Section 4.4).
When l is a field, we use subgroups of type A2 of G to relate with maximal tori
of special unitary groups where we can apply results of Knus, Haile, Rost and
Tignol [Haile et al. 1996]. This provides a criterion which is quite complicated (see
Proposition 5.2.6).

The problem above can be formulated in terms of existence of k-points for a
certain homogeneous space X under G associated to k0; l ; see [Lee 2014, §1] or
Section 2.6. We recall here Totaro’s general question [2004, Question 0.2].

For a smooth connected affine k-group G over the field k and a homogeneous
G-variety Y such that Y has a zero-cycle of degree d > 0, does Y necessarily have
a closed étale point of degree dividing d?

Starting with Springer’s odd extension theorem for quadratic forms, there are
several cases where the question has a positive answer, mainly for principal homo-
geneous spaces (i.e., torsors). We quote here the results by Totaro [2004, Theorem
5.1] and Garibaldi and Hoffmann [2006] for certain exceptional groups, Black
[2011] for classical adjoint groups and Black and Parimala [2014] for semisimple
simply connected classical groups of rank � 2.

If the base field k is large enough (e.g., Q.t/, Q..t///, we can construct a homo-
geneous space X under G of the shape above having a quadratic point and a cubic
point but no k-point (Theorem 4.5.3). This provides a new class of counterexamples
to the question in the case d D 1 which are geometrically speaking simpler than
those of Florence [2004] and Parimala [2005].

Finally, in case of a number field, we show that this kind of variety satisfies the
Hasse principle. In this case, our results are effective; that is, we can describe the
type of the maximal tori of a given group of type G2, for example, for the “compact”
G2 over the rational numbers (see Examples 6.4).

Let us review the contents of the paper. In Section 2, we recall the notion of
type and oriented type for a k-embedding i W T ! G of a maximal k-torus in a
reductive k-group G. We study then the image of the map H 1.k; T /!H 1.k;G/

of Galois cohomology and relate it, in the quasisplit case, with Steinberg’s theorem
on Galois cohomology. Section 3 gathers basic facts on octonion algebras which
are used in the core of the paper, namely Sections 4 and 5. The number field case
is considered in the short Section 6. Finally, the Appendix deals with the Galois
cohomology of k-tori and quasisplit reductive k-groups over Laurent series fields.

A. Fiori [2015] investigated independently maximal tori of algebraic groups of
type G2 and their rational conjugacy classes. Though his scope is different, certain
tools are common with our paper, for example, the definition and the study of the
subgroup of type A2 attached to a maximal torus (Proposition 5.5 in [loc. cit.],
§5.1 here).
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2. Maximal tori of reductive groups and image of the cohomology

Let G be a reductive k-group. We are interested in maximal tori of G and also
in the images of the map H 1.k; T /! H 1.k;G/. We shall discuss refinements
of the application of Steinberg’s theorem on rational conjugacy classes to Galois
cohomology.

2.1. Twisted root data.

2.1.1. Definition. In [Lee 2014, 1.3] and [Gille 2014, §6.1], in the spirit of [De-
mazure and Grothendieck 1970a; 1970b; 1970c], the notion of twisted root data is
defined over an arbitrary base scheme S . We focus here on the case of the base
field k and use the equivalence of categories between étale sheaves over Spec.k/
and the category of Galois sets, namely sets equipped with a continuous action of
the absolute Galois group �k .

We recall from [Springer 1998, §7.4] that a root datum is a quadruple ‰ D
.M;R;M_; R_/, where M is a lattice, M_ its dual, R �M a finite subset (the
roots), R_ a finite subset of M_ (the coroots), and a bijection ˛ 7! ˛_ of R onto
R_ which satisfy the next axioms (RD1) and (RD2).

For each ˛ 2R, we define endomorphisms s˛ of M and s_˛ of M_ by

s˛.m/Dm� hm; ˛
_
i˛; s_˛ .f /D f � h˛; f i˛

_ .m 2M;f 2M_/:

(RD1) For each ˛ 2R, h˛; ˛_i D 2;

(RD2) For each ˛ 2R, s˛.R/DR and s_˛ .R
_/DR_.

We denote by W.‰/ the subgroup of Aut.M/ generated by the s˛; it is called
the Weyl group of ‰.

2.1.2. Isomorphisms, orientation. An isomorphism of root data

‰1 D .M1; R1;M
_
1 ; R

_
1 / �!
� ‰2 D .M2; R2;M2

_; R2
_/

is an isomorphism f W M1 �!
� M2 such that f induces a bijection R1 �!� R2

and f induces a dual isomorphism f _ W M_2 �!
� M_1 such that f _ induces a

bijection R2_ �!� R_1 . Let Isom.‰1; ‰2/ be the scheme of isomorphisms be-
tween ‰1 and ‰2. We define the quotient Isomext.‰1; ‰2/ by Isomext.‰1; ‰2/D
W.‰2/n Isom.‰1; ‰2/, which is isomorphic to Isom.‰1; ‰2/=W.‰1/.

An orientation u between‰1 and‰2 is an element u2 Isomext.‰1; ‰2/. We can
then define the set Isomintu.‰1; ‰2/ of inner automorphisms with respect to the ori-
entation u as the preimage of u by the projection Isom.‰1; ‰2/! Isomext.‰1; ‰2/.

We denote by Aut.‰/ D Isom.‰;‰/ the group of automorphisms of the root
datum ‰, and we have an exact sequence

1!W.‰/! Aut.‰/! Autext.‰/! 1;
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where Autext.‰/D Isomext.‰;‰/ stands for the quotient group of automorphisms
of ‰ (called the group of exterior or outer automorphisms of ‰). The choice
of an ordering on the roots permits us to define a set of positive roots ‰C, its
basis and the Dynkin index Dyn.‰/ of ‰. Furthermore, we have an isomorphism
Aut.‰;‰C/ �!� Autext.‰/ so that the above sequence is split.

2.1.3. Twisted version. A twisted root datum is a root datum equipped with a
continuous action of �k . To distinguish from the absolute case, we shall use
the notation ‰. The Weyl group W.‰/ is then a finite group equipped with
an action of �k . If ‰1, ‰2 are two twisted root data, the sets Isom.‰1; ‰2/,
Isomext.‰1; ‰2/ are Galois sets. An orientation between ‰1, ‰2 is an element
u 2 Isomext.‰1; ‰2/.k/, and the set Isomintu.‰1; ‰2/ is then a Galois set.

2.2. Type of a maximal torus. We denote by G0 the split form of G. We denote
by T0 a maximal k-split torus of G0 and by ‰0 D‰.G0; T0/ the associated root
datum. We denote by W0 the Weyl group of ˆ0 and by Aut.‰0/ its automorphism
group.

Let i W T !G be a k-embedding as a maximal torus. The root datum

‰.G; i.T //D‰.G.T /ks
; i.T /ks

/

is equipped with an action of the absolute Galois group �k , so it defines a twisted
root datum. It is a k-form of the constant root datum ‰0 and we define the type of
.T; i/ as the isomorphism class of

Œ‰.G; i.T //� 2H 1.k;Aut.‰0//:

Recall that by Galois descent, those ks=k-forms are classified by the Galois coho-
mology pointed set H 1.k;Aut.‰0//.

If two embeddings i; j have the same image, then type.T; i/ D type.T; j / 2
H 1.k;Aut.‰0//. If we compose i W T !G by an automorphism f 2 Aut.G/.k/,
we have type.T; i/D type.T; f ı i/ 2H 1.k;Aut.‰0//.

Remark 2.2.1. If G is semisimple and has no outer isomorphism (as is the case for
groups of typeG2),W0DAut.‰0/ and the next considerations will not add anything.

We would like to have an invariant with value in the Galois cohomology of some
Weyl group. The strategy is to “rigidify” by adding an extra data to i W T ! G,
namely an orientation with respect to a quasisplit form of G.

Given a k-embedding i W T ! G, we denote by Dyn.G; i.T // the Dynkin
diagram k-scheme of ‰.G; i.T //; it is finite étale and then encoded in the Galois
set Dyn.Gks

; i.T /ks
/. There is a canonical isomorphism: Dyn.G/ŠDyn.G; i.T //

[Demazure and Grothendieck 1970c, XXIV, 3.3].
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We denote by G0 a quasisplit k-form of G. Let .T 0; B 0/ be a Killing couple
of G0, and denote by ‰0 D ‰.G0; T 0/ the associated twisted root datum and by
W 0 DNG0.T

0/=T 0 its Weyl group, which is a twisted constant finite k-group.
Suppose that G is semisimple simply connected or adjoint; in this case, the ho-

momorphism Autext.G/!AutDyn.Dyn.G// is an isomorphism [ibid., XXIV, 3.6].
We fix then an isomorphism v W Dyn.G0/ �!� Dyn.G/. Together with the canonical
isomorphism Dyn.G/ŠDyn.G; i.T //, it induces an isomorphism Qv WDyn.G0/�!�

Dyn.G; i.T //. For G semisimple simply connected or adjoint, the isomorphism Qv
defines equivalently an orientation

u 2 Isomext
�
‰.G0; T 0/.k/;‰.G; i.T //

�
:

Then the Galois set Isomintu
�
‰.G0; T 0/; ‰.G; i.T //

�
is a right W 0-torsor and its

class in H 1.k;W 0/ is called the oriented type of i W T ! G with respect to the
orientation v. It is denoted by typev.T; i/ and we bear in mind that it depends on
the choice of G0 and on v.

2.3. The quasisplit case. We deal here with the quasisplit k-group G0 and with
the exact sequence 1! T 0! NG0.T

0/ �
�!W 0! 1. Here we have a canonical

isomorphism id WDyn.G0/ŠDyn.G0/ and then a natural way to define an orientation
for a k-embedding j WE!G0 of a maximal k-torus. Keeping the notations above,
let us state the following result.

Theorem 2.3.1 (Kottwitz). (1) The map

Ker
�
H 1.k;NG0.T

0//!H 1.k;G0/
� ��
��!H 1.k;W 0/

is onto.

(2) For each  2H 1.k;W 0/, there exists a k-embedding j WE!G0 of a maximal
k-torus such that typeid..E; j //D  .

In [Kottwitz 1982, Corollary 2.2], this result occurs only as a result on embeddings
of maximal tori. It was rediscovered by Raghunathan [2004] and independently
by the second author [Gille 2004]. The proof of (1) uses Steinberg’s theorem on
rational conjugacy classes, and we can explain quickly how one can derive (2)
from (1). Given  2H 1.k;W 0/, assertion (1) provides a principal homogeneous
space P under N 0 D NG0.T 0/ together with a trivialization � W G0 �!� P ^N

0

G0

such that ��ŒP �D  . Then � induces a trivialization at the level of twisted k-groups
�� WG

0 �!� PG0. Now if we twist i 0 W T 0!G0 by P , we get a k-embedding

P i 0 W PT 0! PG0
��
 �� G0;

and one checks that typeid
�
PT 0;P i 0

�
D  .
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2.4. Image of the cohomology of tori. We give now a slightly more precise form
of Steinberg’s theorem [1965, Theorem 11.1]; see also [Serre 1994, III.2.3].

Theorem 2.4.1. Let Œz� 2 H 1.k;G0/. Let i W T ! zG
0 be a maximal k-torus

of the twisted k-group zG
0. Then there exists a k-embedding j W T ! G0 and

Œa� 2H 1.k; T / such that j�Œa�D Œz� and such that typecan.T; i/D typeid.T; j /.

In the result, the first orientation is the canonical one, namely arising from the
canonical isomorphism Dyn.G0/ �!� Dyn.z.G0//.

Proof. If the base field is finite, there is nothing to do since H 1.k;G0/ D 1 by
Lang’s theorem. We can then assume that k is infinite. We denote by P.z/ the
G0-homogeneous space defined by z and by � W G0

ks
�!� P.z/ks

, a trivialization
satisfying z� D ��1 ı �.�/ for each � 2 �k . It induces a trivialization ' WG0

ks
�!�

.z.G
0//ks

satisfying int.z� /D '�1 ı �.'/ for each � 2 �k .
We denote by .G0/sc the simply connected cover of DG0 and by f W .G0/sc!G0

the natural k-homomorphism. Let T sc be .zf /�1.i.T //. Let gsc be a regular
element in T sc.k/ and consider the G0sc

.ks/-conjugacy class C of '�1.gsc/ in
.G0/sc.ks/. This conjugacy class is rational in the sense that it is stabilized by �k
since .'�1.gsc// D z�

�.'�1.gsc//z�1� for each � 2 �k . According to Steinberg
[1965, Corollary 10.1] (and [Borel and Springer 1968, 8.6] in the nonperfect case),
C\ .G0/sc.k/ is not empty, so there exist gsc

1 2 .G
0/sc.k/ and hsc 2 .G0/sc.ks/ such

that '�1.gsc/ D .hsc/�1gsc
1 h

sc. We put g D zf .g
sc/, g1 D f .gsc

1 /, h D f .h
sc/,

T1 DZG0.g1/ and i1 W T1!G0.
Since g 2 .z.G0//.k/ and g1 2G0.k/, we have h�1g1hD z� �.h�1g1h/z�1� D

z�h
��g1

�hz�1� for each s 2 �k , whence

g1 D a�g1a
�1
� ;

where a� D hz�h�� is a 1-cocycle cohomologous to z with values in T1.ks/ D
ZG0.g1/.ks/. It remains to show the equality on the oriented types. By the rigidity
trick (see the proof of Proposition 3.2 in [Gille 2004]), up to replacing k by the
function field of the T1-torsor defined by a, we can assume that Œa�D 12H 1.k; T1/.
We write a� D b�1�b for some b 2 T1.ks/, and we have that z� D .bh/�1 �.bh/
and '�1.g/D .bh/�1g1bh.

Putting h2Dbh2G0.ks/, we have z�Dh�12
�h2 and '�1.g/Dh�12 g1h2. We get

k-isomorphisms �2 D �ıLh�1
2
WG0! P.z/ and '2 D 'ıint.h�12 / WG0 �!� z.G

0/

such that the following diagram commutes

T1
i1
//

'2o

��

G0

'2o

��

T
i
//
z.G

0/
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Thus typecan.T; i/D typeid.T1; i1/ 2H
1.k;W 0/. �

2.5. Image of the cohomology of tori, II. Recall the following well-known fact.

Lemma 2.5.1. Let H be a reductive k-group and T be a k-torus of the same rank
as H . Let i; j W T !H be k-embeddings of a maximal k-torus T . If j D Int.h/ı i
for some h 2 H.ks/, then we have h�1 �h 2 i.T /.ks/ for all � in the absolute
Galois group �k .

Proof. For any � 2� and any t 2T .ks/, we have j.�t /D �h�i.�t /��h�1. Therefore,
we have j D Int.�h/ ı i D Int.h/ ı i , and h�1 �h is a ks-point of the centralizer
CH .i.T //D i.T /. �

Lemma 2.5.2. Let H be a reductive k-group and let T be a k-torus of the same
rank as H . Let v be an orientation of H with respect to a quasisplit form H 0. Let
i; j W T !H be k-embeddings of a maximal k-torus T which areH.ks/-conjugate.
Then we have Im.i�/D Im.j�/�H 1.k;H/ and typev.T; i/D typev.T; j /.

Proof. Let j D Int.h/ı i for some h 2H.ks/. By Lemma 2.5.1, we have h�1 �h 2
i.T /.ks/. Let Œ˛� 2 Im.j�/ and ˛ be a cocycle with values in j.T .ks// which
represents Œ˛�. Define ˇ� D h�1˛��h. Then ˇ is cohomologous to ˛ and ˇ� D
.h�1˛�h/ � .h

�1 �h/ 2 i.T .ks//. Hence Œ˛� D Œˇ� 2 Im.i�/, which shows that
Im.i�/D Im.j�/�H 1.k;H/.

Let T1 D i.T / and T2 D j.T /. Let TransptG.T1; T2/ be the strict transporter
from T1 to T2 [Demazure and Grothendieck 1970a, VIB, Définition 6.1(ii)]. Note
that TransptG.T1; T2/ is a right NG.T1/-torsor. We have a canonical isomorphism

TransptG.T1; T2/^ Isomintv.‰0; ‰.G; T1// �!� Isomintv.‰0; ‰.G; T2//:

Since j D Int.h/ıi , we have h2TransptG.T1; T2/.ks/ and h defines a trivialization
�h W NG.T1/ ! TransptG.T1; T2/ which sends the neutral element to h. Let
W1 DNG.T1/=T1. Since ��1

h
ı �.�h/D h

�1 �h 2 T1.ks/, the image of the class
of TransptG.T1; T2/ in H 1.k;W1/ is trivial. Hence Isomintv.‰0; ‰.G; T1// '
Isomintv.‰0; ‰.G; T2//; i.e., typev.T; i/D typev.T; j /. �

Proposition 2.5.3. Let T be a k-torus of the same rank as G. Let i1; i2 W T !G be
k-embeddings of T in G. Let v be an orientation of G with respect to a quasisplit
form G0. If typev.T; i1/D typev.T; i2/ 2H 1.k;W 0/, then there is a k-embedding
j W T ! G such that j.T /D i1.T / and j , i2 are G.ks/-conjugate. In particular,
the images of i1;�, i2;�, j WH 1.k; T /!H 1.k;G/ coincide.

Proof. Let T1D i1.T / and T2D i2.T / and again put Wi DNG.Ti /=Ti for i D 1; 2.
Let � denote the class of the NG.T1/-torsor TransptG.T1; T2/ in H 1.k;NG.T1//

and N� be the image of � in H 1.k;W1/. We have a canonical isomorphism

TransptG.T1; T2/^ Isomintv.‰0; ‰.G; T1// �!� Isomintv.‰0; ‰.G; T2//:
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Since typev.T; i1/D typev.T; i2/, we have

Isomintv.‰0; ‰.G; T1//' Isomintv.‰0; ‰.G; T2//:

Hence N� is the trivial class inH 1.k;W1/. Thus theNG.T1/-torsor TransptG.T1; T2/
admits a reduction to T1. More precisely, there exist a T1-torsor E1 and an isomor-
phism E1 ^

T1 NG.T1/ �!
� TransptG.T1; T2/ of NG.T1/-torsors. We take a point

e1 2E1.ks/ and consider its image g in G.ks/ under the mapping

E1 ^
T1 NG.T1/ �!

� TransptG.T1; T2/ ,!G:

Then hD g�1 �g is a ks-point of the centralizer CG.T1/D T1 for all � 2 �k . We
define a k-embedding j W T ! G as j.t/ D .Int.g�1/ ı i2/.t/. To see that j is
indeed defined over k, we check as follows:

j.�t /D .Int.g�1/ ı i2/.�t /

D Int.g�1/.�i2.t//

D h � �..Int.g�1/ ı i2/.t// � h�1

D
�.j.t//:

By our construction, we have j.T / D i1.T / and i2, j are conjugated. Let f D
.j jT1

/�1 ı i1. Then f is an automorphism of T and i1 D j ıf . Hence the images
of i1;� and j� coincide. By Lemma 2.5.2, the images of j and i2;� coincide. �

This applies to the quasisplit case and enables us to slightly refine Theorem 2.4.1.

Corollary 2.5.4. With the notations of Theorem 2.4.1, for each class  2H 1.k;W 0/,
choose (by Theorem 2.3.1) a k-embedding i./ W E./! G0 of oriented type  .
Then the map G

2H1.k;W 0/

H 1.k; E.//
ti./�
���!H 1.k;G0/

is onto.

2.6. Varieties of embedding k-tori. Let T be a k-torus and ‰ be a twisted root
datum of ‰0 attached to T ; i.e., the character group of T is isomorphic to the
character group encoded in ‰. In this section, we will define a k-variety X such
that the existence of a k-point of X is equivalent to the existence of a k-embedding
of T into G with respect to ‰.

We start with a functor. The embedding functor E.G;‰/ is defined as follows:
for any k-algebra C , E.G;‰/.C / is the set of all f W TC ,! GC such that f
is both a closed immersion and a group homomorphism which induces an iso-
morphism f ‰ W‰C �!

� ‰.GC ; f .TC // such that f ‰.˛/D ˛ ı f �1jf .TC 0 /
is in

‰.GC 0 ; f .TC 0// for allC 0-roots ˛ for allC -algebraC 0. In fact, the functor E.‰;G/
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is representable by a k-scheme [Lee 2014, Theorem 1.1]. Define the Galois set
Isomext.‰;G/ by Isomext.‰;G/D Isomext.‰;‰.G;E//, where E stands for an
arbitrary maximal k-torus of G. Given an orientation v 2 Isomext.‰;G/.k/, we
define the oriented embedding functor as follows: for any k-algebra C ,

E.G;‰; v/.C /D
˚
f W TC ,!GC j f 2 E.G;‰/.C / and

the image of f ‰ in Isomext.‰;G/.C / is v
	
:

We have the following result:

Theorem 2.6.1. In the sense of the étale topology, E.G;‰; v/ is a left homogeneous
space under the adjoint action of G and a torsor over the variety of the maximal
tori of G under the right W.‰/-action. Moreover, E.G;‰; v/ is representable by
an affine k-scheme.

Proof. We refer to [Lee 2014, Theorem 1.6]. �

Remark 2.6.2. The definition of varieties of embeddings is quite abstract but is
simplified a lot if there is a k-embedding i W T !G of oriented type isomorphic
to .‰; v/. Indeed in this case, the k-variety E.G;‰; v/ is G-isomorphic to the
homogeneous spaceG=i.T /, and we observe that the mapG=i.T /!G=NG.i.T //

is a WG.i.T //-torsor over the variety of maximal tori of G.

Remark 2.6.3. We sketch another way to prove Theorem 2.4.1. With the notations
of that result, let z 2Z1.k;G0/ and put GD zG

0. Let T be a maximal k-torus of G
and consider the twisted root data‰D‰.G; T / attached to T . Let v be the canonical
element in Isomext.‰;G/.k/ and let v0 D c ı v, where c 2 Isomext.G;G0/.k/
corresponds to the canonical orientation Dyn.G/ Š Dyn.G0/. We denote by X
(resp. X 0) the k-variety of oriented embeddings of T in G (resp. G0) with respect
to ‰ and v (resp. v0). Note that G0 acts on X 0 and we have a natural isomorphism
X �!� zX

0. Theorem 2.3.1(2) shows that X 0.k/ 6D∅ and the choice of a k-point
x0 of X 0 defines a G0-equivariant isomorphism G0=T �!� X 0. In the other hand,
the embedding i defines a k-point x 2 X.k/. Since X Š zX

0, we have that
z.G

0=T /.k/ 6D∅; hence the class Œz�2H 1.k;G/ admits a reduction to i 0 WT ,!G0

such that typecan.T; i/D typeid.T; i
0/ 2H 1.k;W 0/.

3. Generalities on octonion algebras

Let C be an octonion algebra. We denote by G the automorphism group of C ; it is
a semisimple k-group of type G2. We denote by NC the norm of C ; it is a 3-fold
Pfister form. In particular, NC is hyperbolic (equivalently isotropic) if and only if
G is split (equivalently isotropic).
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3.1. Behavior under field extensions. If l=k is a field extension of odd degree,
the Springer odd extension theorem [Elman et al. 2008, 18.5] implies that C is split
if and only if Cl is split. More generally, we have the following criterion.

Lemma 3.1.1. Let .kj /jD1;:::;n be a family of finite field extensions such that
g:c:d:.Œkj W k�/ is odd. Then C is split if and only if Ckj

is split for jD1; : : : ;n. �

Proof. The left implication is obvious. Conversely, assume that Ckj
is split for j D

1; : : : ; n. Then there exists an index j such that Œkj W k� is odd, hence C splits. �

Remark 3.1.2. This is a special case of the following more general result by
Garibaldi and Hoffmann [2006, Theorem 0.3] answering positively Totaro’s question.
Let .kj /jD1;:::;n be a family of finite field extensions and put dDg:c:d:.Œkj Wk�/. Let
C , C 0 be Cayley k-algebras such that Ckj

and C 0
kj

are isomorphic for j D 1; : : : ; n.
Then there exists a separable finite field extension K=k of degree dividing d such
that CK is isomorphic to C 0K . This is the case of groups of type G2 in that theorem
which includes also the case of certain groups of type F4 and E6.

We recall also the behavior with respect to quadratic étale algebras.

Lemma 3.1.3. Let k0=k be a quadratic étale algebra. Then the following are
equivalent:

(i) C ˝k k0 splits.

(ii) There is an isometry .k0; nk0=k/! .C;NC /, where nk0=k W k0! k stands for
the norm map.

(iii) There exists an embedding of unital composition k-algebras k0! C .

Proof. If C is split, all three facts hold so that we can assume that C is not split.

.i/) .ii/: Since C is not split, it follows that k0 is a field. Since NC is split over
k0, there exists a nontrivial and nondegenerate symmetric bilinear form B such that
B˝nk0=k is a subform ofNC [Elman et al. 2008, 34.8]. SinceNC is multiplicative,
there is an isometry .k0; nk0=k/! .C;NC /.

.ii/) .iii/: Since the orthogonal group O.NC /.k/ acts transitively on the sphere
fx 2 C j NC .x/ D 1g, we can assume that our isometry .k0; nk0=k/! .C;NC /

maps 1k0 to 1C . It is then a map of unital composition k-algebras.

.iii/) .i/: If k0 D k � k, then NC is isotropic and C is split. Hence k0 is a field
and NC is k0-isotropic so that Ck0 is split. �

3.2. The Cayley–Dickson process. We know that C , up to k-isomorphism, can be
obtained by the Cayley–Dickson doubling process; that is, C ŠC.Q; c/DQ˚Qa,
whereQ is a k-quaternion algebra and c 2 k� [Springer and Veldkamp 2000, § 1.5].
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We denote by �QD trdQ � idQ the canonical involution ofQ and recall that the mul-
tiplicativity rule on C , the norm NC , and the canonical involution �C are given by

.xCya/.uC va/D .xuC c�Q.v/y/C .vxCy�Q.u//a .x; y; u; v 2Q/;

NC .xCya/DN.x/� cN.y/;

�C .xCya/D �Q.x/�ya:

Then NC is isometric to the 3-Pfister form nQ˝h1;�ci and that form determines
the octonion algebra [ibid., Corollary 1.7.3]. Also it provides an embedding j of the
k-groupH.Q/D .SL1.Q/�kSL1.Q//=�2 in Aut.C.Q; c//. This map is given by
.g1; g2/:.q1; q2/D .g1q1g

�1
1 ; g2q2g

�1
1 /. Another corollary of the determination

of an octonion algebra by its norm is the following well-known fact.

Corollary 3.2.1. Let C be a octonion k-algebra and letQ be a quaternion algebra.
Then the following are equivalent:

(i) There exists c 2 k� such that C Š C.Q; c/.

(ii) There exists an isometry .Q;NQ/! .C;NC /.

Proof. .i/) .ii/ is obvious. Assume that there exists an isometry .Q;NQ/!
.C;NC /. By the linkage property of Pfister forms [Elman et al. 2008, 24.1(1)], there
exists a bilinear 1-Pfister form � such that NC ŠNQ˝�. Since NC represents 1,
we can assume that � represents 1 so that � Š h1;�ci. Therefore C and C.Q; c/
have isometric norms and are isomorphic. �
Remark 3.2.2. In odd characteristic, Hooda provided an alternative proof, see
[Hooda 2014, Theorem 4.3] and also a nice generalization [ibid., Proposition 4.2].

Lemma 3.2.3. Let C be a nonsplit octonion k-algebra. If D � C is a unital
composition subalgebra and u 2 C nD then D ˚Du is a unital composition
subalgebra as well.

Proof. Since C is nonsplit, the corresponding norm map NC is anisotropic. Let bC
be the polar map of NC . Since the map x 7! bC .u; x/ is linear and the restriction
of bC on D �D is regular, there is v 2D such that bC .v; x/D bC .u; x/ for all
x 2 D. Let u0 D u � v. We have bC .u0; x/ D bC .v; x/ � bC .u; x/ D 0 for all
x 2D, so u0 2D?. Since v 2D and u …D, we have u0 ¤ 0, so NC .u0/¤ 0. By
the doubling process [Springer and Veldkamp 2000, Proposition 1.5.1], we have
that D˚Du0 is a unital composition subalgebra of C . But u0 D u� v and v 2D,
so D˚Du0 DD˚Du. �

3.3. On the dihedral group, I. In this case, W0 D Aut.‰0/ and W0 D D6 D

Z=6ZÌZ=2ZDC2�S3 is the dihedral group of order 12. More precisely, C2Dhci
stands for its center. The right way to see it is by its action on the root system
‰.G0; T0/� yT0 D Z˛1˚Z˛2 D Z2, as provided by the following picture:
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where ˛1; ˛2 stand for a base of the root system G2 and Q̨ D 3˛1C 2˛2.
Let f�ig3iD1 be an orthonormal basis of Q3. We can view the root space of G2

as the hyperplane in Q3 defined by
˚P3

iD1�i�i j
P3
iD1 �i D 0

	
, and identify ˛1,

˛2 with �1� �2 and �2�1C �2C �3 respectively [Bourbaki 1981, planche IX]. For
a root ˛, let s˛ be the reflection orthogonal to ˛. Under the above identification,
the element c D s2˛1C˛2

s˛2
acts on the roots by � id and S3 D hs˛1

; s2˛1C˛2
i

acts by permuting the �i . Note that although s2˛1C˛2
s˛2

acts on the subspace˚P3
iD1 �i�i j

P3
iD1 �i D 0

	
by � id, s2˛1C˛2

s˛2
does not act as � id on f�ig3iD1.

Remarks 3.3.1. (a) In the G2 root system, for any long root ˇ and any short root ˛
orthogonal to ˇ, we have s˛ ısˇ D c. Also observe that yT0 is a sublattice of index 2
of the lattice Z˛

2
˚Z

ˇ
2

. This is related to the fact that the morphism SL2 �SL2!G0
defined by the coroots ˛_ and ˇ_ has kernel equal to the diagonal subgroup �2.
(b) The roots ˛1, Q̨ generate a closed symmetric subsystem of type A1 �A1 of G2.
Any subroot system (not necessarily closed ) of G2 which is of type A1 �A1 is
a W0-conjugate of the previous one.

3.4. Subgroups of type A1�A1. Given an octonion k-algebraC , we relate Cayley–
Dickson decomposition to subgroups of G D Aut.C /.

Lemma 3.4.1. Let H be a semisimple k-subgroup of G of type A1 �A1. Then
there exists a quaternion algebra Q, c 2 k�, an isomorphism C Š C.Q; c/ and an
isomorphism H �!� H.Q/ such that the following diagram commutes:

H

o

��

� � // G

o

��

H.Q/
� � j

// Aut.C.Q; c//

Proof. We start with a few observations on the split case G D G0 D Aut.C0/,
where we have the k-subgroup H0 D .SL2 �SL2/=�2 acting on C0. The root
subsystem ˆ.H0; T0/ is Z˛1˚Z Q̨ so that the first (resp. the second) factor SL2 of
H0 corresponds to a short (resp. long) root. We denote byH0;<Š SL2 (resp.H0;>)
the “short” subgroup (resp. the “long” one) of H0. Taking the decomposition
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C0 D M2.k/˚M2.k/], the point is that we have M2.k/ D .C0/
H0;> . In other

words, we can recover the composition subalgebra M2.k/ of C0 from H0.
We come now to our problem. We are given a k-subgroup H of G DAut.C / of

type A1�A1. Let T be a maximal k-torus ofH . Then the root systemˆ.Hks
; Tks

/

is a subsystem of ˆ.Gks
; Tks

/Š‰0 of type A1 �A1; hence W0-conjugated to the
standard one (Remarks 3.3.1(b)). Since the Galois action preserves the length of a
root, it follows that we can define by Galois descent the k-subgroups H< and H>
of H . We define then QD .C /H> . By Galois descent, it is a quaternion subalgebra
of C which is normalized by H . It leads to a Cayley–Dickson decomposition
C DQ˚L, where L is the orthogonal complement of Q in C . Then L is a right
Q-module and we choose a 2 L such that L D Qa. The k-subgroup H.Q/ of
Aut.C / is nothing but Aut.C;Q/ [Springer and Veldkamp 2000, §2.1], so we have
H �H.Q/. For dimension reasons, we conclude that H DH.Q/ as desired. �

4. Embedding a torus in a group of type G2

We assume that G is a semisimple k-group of type G2. As in Section 2, we denote
its split form by G0, and T0, W0, etc. are defined as before.

4.1. On the dihedral group, II. We continue to discuss the action of the dihedral
group W0 (of order 12) on the root system of type G2 started in Section 3.3. Let
˚3iD1Z�i be a W0-lattice, where the S3-component of W0 acts by permuting the �i
and the center acts by � id. Note that G0 is of type G2, so G0 is both adjoint and
simply connected and the dual group of G0 is isomorphic to G0 itself. Hence we
have the following exact sequence of W0-lattices, where W0 acts on Z through its
center Z=2Z by � id:

0! yT0
f
�!˚

3
iD1Z�i

deg
��!Z! 0;

where f .˛1/ D �1 � �2 and f .˛2/ D �2�1C �2C �3. We also consider its dual
sequence

0! Z!˚3iD1Z�_i !
yT _0 '

yT0! 0:

4.2. Subtori. Keep the notations in Section 3.3. Let us fix an isomorphism

� W Z=2Z�S3! hci � hs˛1
; s2˛1C˛2

i DW0;

where �..�1; 1//D c, �..1; .12///D s˛1
and �..1; .23///D s2˛1C˛2

.
We identify Z=2Z � S3 with W0 by � in the rest of this paper. Under this

identification, we have

H 1.k;W0/DH
1.k;Z=2Z/�H 1.k; S3/:
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Hence a class of H 1.k;W0/ is represented uniquely (up to k-isomorphism) by a
couple .k0; l/, where k0 is a quadratic étale algebra of k and l=k is a cubic étale
algebra of k.

Given such a couple .k0; l/, we denote by‰.k0;l/D Œ.k0; l/�^W0‰0 the associated
twisted root datum. Let l 0 D l ˝k k0 and define the k-torus

T .k
0;l/
D Ker

�
Rk0=k.R

1
l 0=k0.Gm;l 0//

Nk0=k
���!R1l=k.Gm;l/

�
:

In the following, we prove that the torus encoded in ‰.k0;l/ is indeed T .k
0;l/.

However, we should keep in mind that two nonisomorphic root data ‰ may encode
the same torus (Remark 4.2.2).

Lemma 4.2.1. Let T be a k-torus of rank 2 and let i W T !G be a k-embedding
such that type.T; i/D Œ.k0; l/�. Then:

(1) The k-torus T is k-isomorphic to T .k
0;l/.

(2) If there exists a quadratic étale algebra l2 such that l D k � l2, then there is a
k-isomorphism

T Š
�
R1k1=k

.Gm/�k R
1
k2=k

.Gm/
�
=�2;

where k1; k2 are quadratic étale algebras such that k2 D k0 and Œk1� D
Œk2�C Œl2� 2H

1.k;Z=2Z/.

Proof. (1) We haveW0DZ=2Z�S3 and from Section 4.1, we have aW0-resolution

0! Z!˚3iD1Z�_i !
yT0! 0:

It follows that yT0 is isomorphic to the W0-module ˚3iD1Z�_i =h.1; 1; 1/i.
Let N be the W0-lattice ˚3iD1Zei=h.1; 1; 1/i, where S3 acts by permuting the

indices and Z=2Z acts trivially. Note that as Z-lattices, we can identify N with yT0.
Let M D N ˚N and equip M with a W0-action: S3 acts on N diagonally and
Z=2Z acts on M by exchanging the two copies of N . Embed N diagonally into
M and we get the exact sequence of W0-modules

0!N
f
�!M DN ˚N

g
�! yT0! 0;

where f .x/D .x; x/ and g.x; y/D x�y. After twisting the above exact sequence
by the W0-torsor attached to .k0; l/ and taking the corresponding tori, we have

1! T !Rk0=k
�
R1l 0=k0.Gm;l 0/

� nk0=k
���!R1l=k.Gm;l/! 1:

Hence T is the k-torus T .k
0;l/.

(2) If l D k � l2, then there is an injective homomorphism � W Z=2Z! S3 and a
class Œz� 2 im.�� WH 1.k;Z=2Z/!H 1.k; S3// such that l corresponds to Œz�. Let
˛ be a short root such that the corresponding reflection s˛ is �.�1/, and let ˇ be a
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long root orthogonal to ˛. As we mentioned in Remarks 3.3.1(a), the center of W0
is generated by s˛ ı sˇ . Therefore, the image of the map

Id�� W Z=2Z�Z=2Z ,! Z=2Z�S3 DW0

is generated by fs˛; sˇ g. Let us call it W .k0;l2/. Let H0 ' .SL2 �k SL2/=�2 be
the subgroup of G0 generated by T0 and the root groups associated to ˙˛ and
˙ˇ. Then H0 is of type A1 �A1 and the Weyl group of H0 with respect to T0 is
exactlyW .k0;l2/. Hence there is Œx�2 im.H 1.k;NH0

.T0//!H 1.k;G0// such that
.G; i.T // is isomorphic to x.G0; T0/. Moreover, the embedding i factorizes through
H D x.H0/. Let the first (resp. second) copy of SL2 of H0 correspond to the root
group ˙ˇ (resp. ˙˛). Let � be the projection from NH0

.T0/ to NH0
.T0/=T0 D

W .k0;l2/. Since

.Œk0�; Œl2�/ 2H
1.k; hsˇ ı s˛i/�H

1.k; hs˛i/DH
1.k;W .k0;l2//

is equivalent to

.Œk0�; Œk0�C Œl2�/ 2H
1.k; hsˇ i/�H

1.k; hs˛i/DH
1.k;W .k0;l2//;

we have

��.Œx�/D
�
Œk0�C Œl2�; Œk

0�
�
2H 1.k; hs˛i/�H

1.k; hsˇ i/:

Therefore,
T ' x.T0/Š

�
R1k1=k

.Gm/�k R
1
k2=k

.Gm/
�
=�2;

where Œk2�D k0 and Œk1�D Œk2�C Œl2�. �

Remark 4.2.2. A natural question is whether the class of Œ.k0; l/� is determined
by the isomorphism class of the torus T .k

0;l/ as a k-torus. It is not the case; there
are indeed examples of nonequivalent pairs .k0; l/ and .k0

]
; l]/ such that the k-tori

T .k
0;l/ and T .k

0
]
;l]/ are isomorphic whenever the field k admits a biquadratic field

extension k1˝k k2. We put then k1;] D k2 and k2;] D k1. With the notations of
the proof of Lemma 4.2.1(2), we consider the k-tori

T D
�
R1k1=k

.Gm/�k R
1
k2=k

.Gm/
�
=�2;

T] D
�
R1k1;]=k

.Gm/�k R
1
k2;]=k

.Gm/
�
=�2:

Then the k-tori T and T] are obviously k-isomorphic. However, the root data
‰.k0;l/ and ‰.k0

]
;l]/

are not isomorphic as k2 6Š k2;] D k1.

Since the pointed set H 1.k;GL2.Z// classifies two-dimensional k-tori, the map
H 1.k;W0/!H 1.k;GL2.Z// is in this case not injective. It is due to the fact that
the normalizer of C2 � .1�Z=2Z/ in GL2.Z/ is larger than the normalizer in W0.

We deal now with the Galois cohomology of those tori.
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Lemma 4.2.3. (1) We have an exact sequence

0! Ker.l�! k�/=Nl 0=l
�
Ker

�
.l 0/�

nl0=k0
���! .k0/�

��
!H 1.k; T .k

0;l//

! .k0/�=Nl 0=k0..l
0/�/

nk0=k
���! k�=Nl=k.l

�/! 0;

and the map nk0=k admits a section.

(2) Assume that k0 and l are fields. Then H 1.k; .
1
T .k

0;l//0/D 0.

Proof. We put T D T .k
0;l/.

(1) The Hilbert theorem 90 produces an isomorphism

k�=Nl=k.l
�/ �!� H 1.k; R1l=k.Gm;l//:

Combined with the Shapiro isomorphism, we get an isomorphism

.k0/�=Nl 0=k0.l
0�/ �!� H 1

�
k0; R1l 0=k0.Gm;l 0/

�
�!� H 1

�
k;Rk0=k

�
R1l 0=k0.Gm;l 0/

��
:

Putting these two facts together, the long exact sequence of Galois cohomology is

� � � ! Ker
�
.l 0/�! .k0/�

� Nl0=l
���!Ker.l�! k�/!H 1.k; T /

! .k0/�=Nl 0=k0..l
0/�/

nk0=k
���! k�=Nl=k.l

�/! � � � :

Since k�=Nl=k.l�/ is of 3-torsion, half of the “diagonal map” k�=Nl=k.l�/!
.k0/�=Nl 0=k0..l

0/�/ provides a section of .k0/�=Nl 0=k0..l 0/�/
nk0=k
���!k�=Nl=k.l

�/.

(2) We have an exact sequence

0! yT 0! Coindk
0

k .Il 0=k0/
nk0=k
���! Il=k! 0

of Galois modules, where Il=k D Ker
�
Coindlk.Z/! Z

�
. It gives rise to the long

exact sequence of groups

0!H 0.k; yT 0/!H 0.k;Coindk
0

k .Il 0=k0//!H 0.k; Il=k/! � � �

!H 1.k; yT 0/!H 1.k;Coindk
0

k .Il 0=k0//!H 1.k; Il=k/! � � � :

We consider the exact sequence 0! Il=k ! Coindlk.Z/! Z! 0 and the corre-
sponding sequence

0!H 0.k; Il=k/!H 0.k;Coindlk.Z//!H 0.k;Z/! � � �

!H 1.k; Il=k/!H 1.k;Coindlk.Z//!H 1.k;Z/:

The group Z D H 0.k;Coindlk.Z// embeds in Z by multiplication by 3; also
we have H 1.k;Coindlk.Z// �!

� H 1.l;Z/ D 0 by Shapiro’s isomorphism. The
above sequence induces an isomorphism Z=3Z �!� H 1.k; Il=k/. On the other
hand, we have H 1.k; Indk

0

k .Il 0=k0// �!
� H 1.k0; Il 0=k0/ �

� Z=3Z. The norm map
nk0=k WH

1.Coindk
0

k .Il 0=k0//!H 1.k; Il=k/ is multiplication by 2 on Z=3Z. Hence
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it is injective. By using the starting exact sequence, we conclude thatH 1.k; yT 0/D 0

as desired. �

4.3. A necessary condition. There is a basic restriction on the types of maximal
tori of G.

Proposition 4.3.1. (1) Let T be a k-torus of rank two and let i W T ! G be a
k-embedding such that type.T; i/D Œ.k0; l/�. Then G �k k0 is split.

(2) Assume that l D k � k � k. Then the following are equivalent:

(i) There exists a k-embedding i W T ! G of a rank-2 torus T such that
type.T; i/D Œ.k0; k3/�.

(ii) Gk0 splits.
(iii) There is an isometry .k0; nk0=k/ ,! .C;NC /.

Proof. (1) Since G is of type G2, it is equivalent to show that G �k k0 is isotropic.
We may assume that T D T .k

0;l/. We consider first the case when l D k � l2,
where l2 is a quadratic étale k-algebra. Then we have

T �k k
0
�!� R1l 0=k0.Gm;l 0/ �

� Rl2˝k0=k0.Gm;l2˝k0/:

Hence T �k k0 is isotropic.
It remains to consider the case when the cubic k-algebra l is a field. From the

first case, we see that Gl 0 is split. In other words, the k0-group Gk0 is split by the
cubic field algebra l D l ˝k k0 of k0. Hence Ck0 is split, and hence C splits.

(2) .i/) .ii/ follows from (1).

.ii/) .i/: If G is split, (i) holds according to Theorem 2.3.1. We may assume that
G is not split, and hence is anisotropic. In particular, k is infinite. Since Gk0 splits,
k0 is a field and we denote by � W k0! k0 the conjugacy automorphism. We use now
a classical trick. Since G.k0/ is Zariski dense in the Weil restriction Rk0=k.Gk0/,
there exists a Borel k-subgroup B of Rk0=k.Gk0/ such that its conjugate �.B/ is
opposite to B . The k-group T D B \ �.B/\G of G is then a rank-2 torus. If we
write B DRk0=k.B 0/, with B 0 a Borel k0-subgroup of Gk0 , then Tk0 is a maximal
torus of B 0. We denote the natural embedding of the maximal torus T by i W T !G.
By seeing i.Tk0/ as a maximal k0-torus of B 0, it follows that the action of � on the
root system ‰.Gk0 ; T

0/ is by �1. Thus type.T; i/D .k0; k3/ as desired.
For the equivalence .ii/() .iii/, see Lemma 3.1.3. �

Remark 4.3.2. Another proof of (2) is provided by the next Proposition 4.4.1; it is
the case k1 D k2.
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4.4. The biquadratic case. In the dihedral group D6�GL2.Z/, it is convenient to
change coordinates by considering the diagonal subgroup .Z=2Z/2 D hc1; c2i. The
map .Z=2Z/2 �!� C2 � .1�Z=2Z/� C2 �S3 is given by .c1; c2/ 7! .c1; c1c2/.

We are interested in the case when the class of .k0; l/ belongs to the image
of H 1.k;Z=2Z/�H 1.k;Z=2Z/!H 1.k;Z=2Z/�H 1.k; S3/. In terms of étale
algebras, it rephrases by saying that there are quadratic étale k-algebras k1=k, k2=k
such that k0 D k2 and l D k � l2, where Œk2�D Œk1�C Œl2�. We call that case the
biquadratic case. In that case, T .k

0;l/ is k-isomorphic to�
R1k1=k

.Gm/�R
1
k2=k

.Gm/
�
=�2:

Proposition 4.4.1. Let k1; k2 be quadratic étale k-algebras and denote by �1; �2 2
H 1.k;Z=2Z/ their classes. We consider the couple .k0; l/ D .k2; k � l2/, where
Œl2� D Œk1� C Œk2�. We denote by ‰ D ‰.k0;l/, defined in Section 4.2, and by
X D E.G;‰/ the K-variety of embeddings defined in Section 2.6.

(a) The following are equivalent:
(1) X.k/ 6D∅; that is, G admits a maximal k-torus of type Œ.k0; l/�.
(2) C ˝k kj is split for j D 1; 2.
(3) C admits a quaternion subalgebraQ such that there exists c2k� satisfying

ŒQ�D �1[ .c/D �2[ .c/ 2 2Br.k/:

(b) If the k-variety X has a zero-cycle of odd degree then it has a k-point.

Proof. (a) If C is split, the statement is trivial since the three assertions hold.
We can then assume that C is nonsplit. We choose scalars a1; a2 2 k such that
kj Š kŒt �=t

2�aj for j D 1; 2 if k is of odd characteristic and kj Š kŒt �=t2CtCaj
in the characteristic-two case.

.1/) .2/: We assume that T D T k
0;l Š

�
R1
k1=k

.Gm/�R
1
k2=k

.Gm/
�
=�2 embeds

in G. Then Tkj
is isotropic so that Gkj

is isotropic, and hence split for j D 1; 2.
We conclude that Ckj

is split for j D 1; 2.

.2/) .3/: We shall construct a quaternion subalgebra Q of C which contains k1
and k2. Since Ckj

splits for j D 1; 2, we know that kj embeds in C as a unital
composition subalgebra (Lemma 3.1.3). If k1 D k2 then Q can be obtained from
k1 by the doubling process from [Springer and Veldkamp 2000, Proposition 1.2.3].
So we can assume that k1 6D k2. Let x 2 k2 n k1. Then Lemma 3.2.3 shows that
Q D k1˚ k1x is a unital composition subalgebra of C . It is of dimension 4, so
it is a quaternion subalgebra which contains k1 and k2. The common slot lemma
yields that there exists c 2 k� such that ŒQ� D �1 [ .c/ D �2 [ .c/ 2 Br.k/. In
odd characteristic, a reference for the common slot lemma is [Lam 2005, Chapter
III, Theorem 4.13]. A characteristic-free version is a consequence of a fact on
Pfister forms pointed out by Garibaldi and Petersson [2011, Proposition 3.12]. The
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1-Pfister quadratic forms nk1=k and nk2=k are subforms of the Pfister quadratic
form NQ, so there exists a bilinear quadratic Pfister form h D h1; ci such that
NQ Š h˝ nk1=k Š NQ D h˝ nk2=k . Thus ŒQ� D �1 [ .c/ D �2 [ .c/ 2 Br.k/
according to the characterization of quaternion algebras by their norm forms.

.3/) .1/: We have that C Š C.Q; c/, so we get an embedding

.SL1.Q/�SL1.Q//=�2! Aut.C.Q; c// �!� G:

By embedding k1 in Q (resp. k2 in Q), we get an embedding

R1k1=k
.Gm/�R

1
k2=k

.Gm/! SL1.Q/�SL1.Q/;

so that

i W .R1k1=k
.Gm/�R

1
k2=k

.Gm//=�2! .SL1.Q/�SL1.Q//=�2!G

is an embedding. By the computations of the proof of Lemma 4.2.1(2), it indeed
has type Œ.k0; l/�.

(b) Assume that X has a 0-cycle of odd degree; i.e., there are finite field extensions
K1; : : : ;Kr of k such thatX.Ki/ 6D∅ for iD1; : : : ; r and g:c:d:.ŒK1 WK�; : : : ; ŒKr WK�/
is odd. By (a), it follows that CKi˝kk1

and CKi˝kk2
are split for i D 1; : : : ; r . Then

there exists an index i such that ŒKi W k� is odd. If k1D k�k, then C splits overKi ;
it follows that C is split by Lemma 3.1.1, whence X.k/ 6D ∅ by Theorem 2.3.1.
We can then assume that k1 is a field. Then Ki ˝k k1 is a field extension of Kj
so that CKj˝kk1

splits; since ŒKi ˝k k1 W k1� is odd, Lemma 3.1.1 shows then that
Ck1

is split. Similarly Ck2
is split, and by (a), we conclude that X.k/ 6D∅. �

In the following, we consider a special case where k0 and l have the same
discriminant.

Corollary 4.4.2. Let k0=k be a quadratic étale algebra and let l be a cubic étale
k-algebra of discriminant k0. If C admits a maximal k-torus of type Œ.k0; l/�, then
C splits.

Proof. First, assume that l is not a field, so that l Š k � k0. Then Proposition 4.4.1
yields that C is split by the quadratic étale k-algebra k1 which satisfies Œk1� D
Œk0�C Œl2�D 0, whence C is split.

If l is a field, the octonion l-algebra Cl admits a maximal l-torus of type
Œ.k0˝k l; l ˝k l/�. Since l ˝k l �!� l � .l ˝k k

0/, the first case shows that Cl is
split. We conclude that C is split by Lemma 3.1.1. �

Remark 4.4.3. Take k D R and let C be the “anisotropic” Cayley algebra (or we
simply call it a Cayley algebra). We consider the case where .k0; l/D .C;R�C/.
By Corollary 4.4.2, there is no R-embedding of a maximal torus of type .k0; l/.
However, Gk0 splits and this example shows that only the direct implication holds
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in Proposition 4.3.1(1). The only possible type is then Œ.C;R3/�, which is realized
according to Proposition 4.3.1(2).

We can now provide a description of such maximal tori.

Proposition 4.4.4. Let k1; k2 be quadratic étale k-algebras. We consider the couple
.k0; l/D .k2; k � l2/, where Œl2�D Œk1�C Œk2�, and we assume that C is split by k1
and k2. We put T D .R1

k1=k
.Gm/�R

1
k2=k

.Gm//=�2 and consider a k-embedding
i W T ! G of type Œ.k0; l/�. Then there exists a quaternion subalgebra Q of C
containing k1 and k2 and a Cayley–Dickson decomposition C Š C.Q; c/ such that
i W T !G Š Aut.C.Q; c// factorizes by the k-subgroup .SL1.Q/�SL1.Q//=�2
of Aut.C.Q; c//.

Proof. Consider the case where k1˝k k2 is a field. We denote by �DZ=2Z�Z=2Z

the Galois group of the biquadratic field extension k1˝k k2. This group acts on
the root system ˆ.Gks

; i.Tks
// through a W0-conjugate of the standard subgroup

Z=2Z�Z=2Z of W0 generated by the central symmetry and the symmetry with the
horizontal axis (see the figure in Section 3.3). It follows that � stabilizes a subroot
system ˆ1 of type A1 �A1 of ˆ.Gks

; Tks
/. By Galois descent, the ks-subgroup

generated by the root subgroups of ˆ1 descends to a k-subgroup H of G which is
semisimple of type A1 �A1. Lemma 3.4.1 shows that there is a Cayley–Dickson
decomposition C DQ˚Q:a such that H DH.Q/. We have then a factorization
of i W T !G by H.Q/ �!� .SL1.Q/�SL1.Q//=�2.

The other cases (k1 or k2 split, k1 D k2) are simpler, of the same flavor, and left
to the reader. �

4.5. The cubic field case: a first example. Beyond the previous “equal discrimi-
nant case”, the embedding problem for a given octonion algebra C and a couple
.k0; l/ whenever l is a cubic field is much more complicated. The property to carry
a maximal torus of “cubic type” encodes information on the relevant k-group, and
we shall first investigate specific examples over Laurent series fields. The next fact
is inspired by similar considerations on central simple algebras by Chernousov,
Rapinchuk and Rapinchuk [Chernousov et al. 2013, §2].

Let us start with a more general setting. Let G0 be a semisimple Chevalley group
defined over Z, equipped with a maximal split subtorus T0. Denote by ‰0 the root
datum attached to .G0; T0/. Let G0=k be a quasisplit form of G0 and denote by T 0

a maximal k-torus of G0 which is the centralizer of a maximal k-split torus of G0.
We denote by W 0 DNG0.T 0/=T 0 the Weyl group of T 0.

Lemma 4.5.1. Let K D k..t//. Let E be a W 0-torsor defined over k and put T D
E^W

0

T 0. Assume thatH 1.k; yT 0/D 0, where yT 0 is the Galois lattice of cocharac-
ters of T . Let z W Gal.Ks=K/!G0.Ks/ be a Galois cocycle and put G D zG

0=K.
Assume there is an embedding i W TK ! G satisfying typecan.i; TK/ D ŒE�K 2
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H 1.K;W 0/. Then Œz� is “unramified”; i.e., Œz� 2 Im.H 1.k;G0/!H 1.K;G0//. In
particular, there exists a semisimple k-group H such that G ŠH �k K.

Proof. By our form of Steinberg’s theorem, Theorem 2.4.1, there is a k-embedding
i 0 W TK ! G0K such that the class Œz� 2 H 1.K;G0K/ belongs to the image of
i 0� WH

1.K; T /!H 1.K;G0K/, and furthermore typecan.TK ; i/D typeid.TK ; i
0/D

ŒE�K 2H
1.K;W 0/.

On the other hand, we know by Theorem 2.3.1 that there exists a k-embedding
j W T !G0 such that typeid.T; j /D ŒE�. By Proposition 2.5.3, the images of .i 0/�
and .jK/� W H 1.K; T /! H 1.K;G0/ coincide. It follows that Œz� 2 H 1.K;G0/

belongs to the image of .jK/� WH 1.K; T /!H 1.K;G0/. We appeal now to the
localization sequence 0!H 1.k; T /!H 1.K; T /!H 1.k; yT 0/! 0 provided
by the Appendix (Lemma A.1). Using our vanishing hypothesis H 1.k; yT 0/D 0

and the commutative diagram

H 1.k; T / //

j�;k

��

H 1.K; T /

j�;K

��

// 0

H 1.k;G0/ // H 1.K;G0/

we conclude that Œz� comes from H 1.k;G0/. �

Since every semisimple K-group of type G2 is an inner form of its split form,
the following corollary follows readily.

Corollary 4.5.2. Let K D k..t// and let G=K be a semisimple k-group of type G2.
Consider a couple .k0; l/ such that k0=k is a quadratic étale algebra and l=k is a
cubic field separable extension. Denote by E=k the W0-torsor associated to .k0; l/
and put T=kDE^W0 T0. If theK-torus T �kK admits an embedding i in G such
that typecan.TK ; i/D Œ.k

0; l/�, then there exists a semisimple k-groupH of type G2
such that G ŠH �k K.

Proof. We can assume that G D z.G0/=K, where z W Gal.Ks=K/! G.Ks/ is a
Galois cocycle. By Lemma 4.2.3(2), we have H 1.k; yT 0/D 0. The corollary then
follows from Lemma 4.5.1 applied to G0 DG0=k and T 0 D T0. �

Theorem 4.5.3. LetQ be a quaternion division algebra over k, k0 a quadratic étale
subalgebra of Q and l=k a Galois cubic field extension. As before, let K D k..t//,
K 0 D k0..t//, L D l..t//. Let C=K D C.QK ; t / be the octonion algebra built out
from the Cayley–Dickson doubling process.

Let ‰ D ‰.K0;L/ be as defined in Section 4.2, and let X D E.G;‰/ be the
K-variety of embeddings defined in Section 2.6. Then X.K/D∅, X.K 0/ 6D∅ and
X.L/ 6D∅.
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Proof. We have NC DNQ;K ˝h1; ti. Since NQ is an anisotropic k-form, the qua-
dratic form NC is anisotropic and cannot be defined over k according to Springer’s
decomposition theorem [Elman et al. 2008, §19]. It follows that the k-group
G D Aut.C / cannot be defined over k; Lemma 4.5.1 shows there is no embedding
of a k-torus with type Œ.K 0; L/�, and therefore X.K/D∅.

SinceK 0 splits C , G�KK 0 is split so that we haveX.K 0/ 6D∅ by Theorem 2.3.1.
It remains to show thatX.L/ is not empty. We have Œ.K 0; L/�˝KLŠ ŒK 0˝KL;L3�.
Since K 0 splits C , K 0˝KL splits C and Proposition 4.3.1(2) yields X.L/ 6D∅. �

Remarks 4.5.4. (a) The requirements on the field k are mild and are satisfied by
any local or global field.

(b) Geometrically speaking, the variety X=K is a homogeneous space under a
k-group of type G2 whose geometric stabilizer is a maximal K-torus. As far as we
know, it is the simplest example of homogeneous space under a semisimple simply
connected group with a 0-cycle of degree one and no rational points; compare with
[Florence 2004], where stabilizers are finite and noncommutative, and [Parimala
2005], where stabilizers are parabolic subgroups.

5. Étale cubic algebras and hermitian forms

Our goal is to further investigate the cubic case by using results of Haile, Knus,
Rost and Tignol [Haile et al. 1996] on hermitian 3-forms.

Let C be an octonion algebra over k and put G D Aut.C /. Let i W T !G be a
k-embedding of a rank-2 torus, and we denote by Œ.k0; l/� its type.

We denote byR>0 the subset of long roots of the root systemRDˆ.Gks
; i.Tks

//.
Then R> is a root system of type A2 and is �k-stable, and hence defines a twisted
datum. We consider the ks-subgroup of Gks

generated by Tks
and the root groups

attached to elements of R>; it is semisimple simply connected of type A2 and de-
scends to a semisimple k-group J.T; i/ of G. Our goal is to study such embeddings
.T; i/ by means of the subgroup J.T; i/.

We shall see in the sequel that such a k-group J.T; i/ is a special unitary group
for some hermitian 3-form for k0=k.

Remarks 5.0.5. (a) J.-P. Serre explained another way to construct the k-subgroup
J.T; i/. Define the finite k-group of multiplicative type

�T;ks
D Ker

�
Tks

Q
˛

���!

Y
˛2R>

Gm;ks

�
I

it descends to a k-subgroup �T of T . We claim that

J.T; i/DZG.�T /:
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For checking that fact, it is harmless to assume that k is algebraically closed. For
simplicity, we put J D J.T; i/; it is isomorphic to SL3. Since ˆ.J; i.T ///DR>,
we have that �T D Z.J / [Demazure and Grothendieck 1970c, XIX, 1.10.3]; it
follows that �T Š �3 and that J � ZG.�T /. Since J is a semisimple subgroup
of maximal rank of G, Borel and de Siebenthal’s theorem provides a k-subgroup
�n of T such that J D ZG.�n/ [Pépin Le Halleur 2012, Proposition 6.6]. Then
�n �Z.J /Š �3 so that �n DZ.J /D �T . Thus J DZG.�T /.

(b) If k is of characteristic 3, we can associate to T another k-subgroup J<.T; i/ of
type A2. Let R< be the subset of short roots of the root system RDˆ.Gks

; i.Tks
//.

It is a 3-closed symmetric subset [Pépin Le Halleur 2012, Lemma 2.4], so the ks-
subgroup of Gks

generated by Tks
and the root groups attached to elements of

R< define a semisimple ks-subgroup J< of Gks
[ibid., Theorem 3.1]; furthermore,

we have ˆ.J; i.Tks
//DR<. The ks-group J< descends to a semisimple k-group

J<.T; i/. It is semisimple of type A2 and adjoint since R< spans yT .ks/.

5.1. Rank-3 hermitian forms and octonions. Let k0=k be a quadratic étale algebra.
From a construction of Jacobson [1958, §5] (see [Knus et al. 1994, §6] for the
generalization to an arbitrary base field), we recall that we can attach to a rank-3
hermitian form .E; h/ (for k0=k/ with trivial (hermitian) discriminant an octonion
k-algebra C.k0; E; h/D k0˚E. Furthermore, the k-group SU.k0; E; h/ embeds in
Aut.C.k0; E; h// by g:.x; e/D .x; g:e/. We denote by J.k0; E; h/ this k-subgroup
and we observe that k0 is the k-vector subspace of C.k0; E; h/ of fixed points for
the action of J.k0; E; h/ on C.k0; E; h/. Also J.k0; E; h/ is the k-subgroup of
Aut.C.k0; E; h// acting trivially on k0.

In a converse way (see [Knus et al. 1998, Exercise 6(b), page 508]), if we are
given an embedding of a unital composition k-algebra k0! C , we denote by E
the orthogonal subspace of k0 for NC . For any x; y 2 k0 and z 2E, we have

0D hxy; ziC D hy; �C .x/ziC

by using the identity [Springer and Veldkamp 2000, Lemma 1.3.2], so that the
multiplication C �C ! C induces a bilinear k-map k0 �E! E. Then E has a
natural k0-structure and the restriction of NC to E defines a hermitian form h (of
trivial discriminant) such that C D C.k0; E; h/.

Furthermore, if we have two subfields k01; k
0
2 of C isomorphic to k0, the “Skolem–

Noether” property [Knus et al. 1998, 33.21] shows that there exists g 2 G.k/
mapping k01 to k02. Hence the hermitian forms .E1; h1/, .E2; h2/ are isometric.

Remark 5.1.1. Of course, in such a situation, h can be diagonalized as h�b;�c; bci
and we have nC.k0;E;h/D nk0=k˝hhb; cii. If we take h�1;�1; 1i, we get one form
of the split octonion algebra C0 and then a k-subgroup J0 D SL3 of Aut.C0/.
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Lemma 5.1.2. In the above setting, we putGDAut.C.k0;E;h// and JDJ.k0;E;h/.

(1) There is a natural exact sequence of algebraic k-groups 1! J !NG.J /!

Z=2Z! 1.

(2) The map NG.J /.k/! Z=2Z is onto and the induced action of Z=2Z on k0 is
the Galois action.

Proof. (1) We consider the commutative exact diagram of k-groups

1

��

1 // Z.J /

��

// J

��

// J=Z.J / //

��

1

1 // ZG.J / // NG.J / // Aut.J / //

��

1

Autext.J /D Z=2Z

��

1

Let T be a maximal k-torus of J ; it is still maximal in G. Then we have ZG.J /�
ZG.T / D T , and hence ZG.J / � Z.J /, so that Z.J / D ZG.J /. The diagram
provides then an exact sequence 1! J ! NG.J /! Z=2Z. We postpone the
surjectivity.

(2) Now by the “Skolem–Noether property” [Knus et al. 1998, 33.21], the Galois
action � W k0! k0 extends to an element g 2G.k/. Given u 2 J.k/, gug�1 is an
element of G.k/ which acts trivially on k0, so it belongs to J.k/. Since it holds
for any field extension of k, we have that g 2 NG.J /.k/. We conclude that the
map NG.J /! Z=2Z is surjective and that the induced action of Z=2Z on k0 is the
Galois action. �

Let C be an octonion algebra, put G D Aut.C / and let J be a semisimple
k-subgroup of type A2 of G. Then J is of maximal rank and we can appeal again
to the Borel and de Siebenthal classification theorem [Pépin Le Halleur 2012, Theo-
rem 3.1]. If the characteristic of k is not 3, then J is geometrically conjugated to the
standard SL3 in G2 and is then simply connected. If the characteristic k is 3, then J
may arise as in Remarks 5.0.5(b) from the short roots associated to a maximal k-torus
of J ; in that case, J is adjoint. We can make a similar statement to Lemma 3.4.1.

Lemma 5.1.3. Let J be a semisimple simply connected k-subgroup of type A2 of
G D Aut.C / and we denote by k0=k the quadratic étale algebra attached to the
quasisplit form of J . Then there exists a rank-3 hermitian form .E; h/ for k0=k, an
isomorphism C ŠC.k0; E; h/, and an isomorphism J �!� J.k0; E; h/ such that the
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following diagram commutes

J

o

��

� � // G

o

��

J.E; h/
� � j

// Aut.C.k0; E; h//:

Proof. Given a k-maximal torus T of G, we consider the root system ‰.Gks
; Tks

/.
There are exactly 6 long roots in ‰.Gks

; Tks
/ which form an A2-subsystem of

‰.Gks
; Tks

/. Let H be the subgroup of Gks
which is generated by Tks

and the
root groups of long roots. Since the Galois action preserves the length of a root,
the group H is defined over k. Hence given a k-maximal torus T , there is exactly
one subgroup H of G which is a twisted form of SL3 and contains T . Since all
maximal k-split tori are conjugated over k, the split group G0 of type G2 has one
single conjugacy G0.k/-class of k-subgroups isomorphic to SL3. It follows that
the couple .G; J / is isomorphic over ks to the couple .G0; J0/. In particular, by
Galois descent, the subspace of fixed points of J on C is an étale subalgebra l of
rank 2 which is a unital composition subalgebra of C . We define then the orthogonal
subspaceE of l in C . ThenE has a natural structure of an l-vector space and carries
a hermitian form h of trivial (hermitian) discriminant such that C.l; E; h/ D C
(see [Knus et al. 1998, Exercise 6(b), page 508]). But J acts trivially on l , so that
J � J.l; E; h/. For dimension reasons, we conclude that J D J.l; E; h/. Then
l=k is the discriminant étale algebra of J , and hence k0 D l . �

Remark 5.1.4. Note that in the above proof, we didn’t put any assumption on the
characteristic of k. However, in characteristic 6D 2; 3, Hooda [2014, Theorem 4.4]
proved the above lemma in a quite different way.

5.2. Embedding maximal tori. From now on, we assume for simplicity that the
characteristic exponent of k is not 2.

Lemma 5.2.1. LetGDAut.C / be a semisimple k-group of typeG2. Let k0 (resp. l)
be a quadratic (resp. cubic) étale algebra of k. Let i W T ! G be a k-embedding
of a maximal k-torus such that type.T; i/ D Œ.k0; l/� and denote by J.T; i/ the
associated k-subgroup of G.

(1) The discriminant algebra of J.T; i/ is k0=k.

(2) By Lemma 5.1.3, we can write C D C.k0; E; h/ and identify J.T; i/ with
J.k0; E; h/. Then there is a k0-embedding f W k0˝k l !M3.k

0/ such that
f ı.�˝ id/D �h ıf on k0˝k l , where �h is the involution onM3.k

0/ induced
by h.

Proof. (1) We put J D J.T; i/. We consider the Galois action on the root system
‰.Gks

; i.T /ks
/ and its subroot system ‰.Jks

; i.T /ks
/D ‰.Gks

; i.T /ks
/>. It is
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given by a map f W �k ! Z=2Z� S3 defining Œ.k0; l/�. Since the Weyl group of
‰.Jks

; i.T /ks
/ is S3, it follows that the ?-action of �k on the Dynkin diagram A2

is the projection �k!Z=2Z. Therefore the discriminant algebra of J.T; i/ is k0=k.

(2) We have then a k-embedding i W T ! J D SU.k0; E; h/. Its type (absolute with
respect to J ) is Œ.k0; l/� 2 H 1.k;Z=2Z� S3/. By [Lee 2014, Theorem 1.15(2)],
there is a k0-embedding k0˝k l!M3.k

0/ with respect to the conjugacy involution
� ˝ id on k0˝k l and the involution �h attached to h. �

Proposition 5.2.2. Let G D Aut.C / be a semisimple k-group of type G2. Let k0

(resp. l) be a quadratic (resp. cubic) étale k-algebra. We denote by X the variety
of k-embeddings of maximal tori in G attached to the twist of ‰0 by .k0; l/ (seen as
a W0-torsor). The following are equivalent:

(i) X.k/ 6D∅; that is, there exists an embedding i W T !G of a maximal k-torus
of type Œ.k0; l/�.

(ii) There exists a rank-3 hermitian form .E; h/ for k0=k of trivial (hermitian) dis-
criminant such that C ŠC.k0; E; h/ and such that there exists a k0-embedding
of k0˝k l! Endk0.E/ with respect to the conjugacy involution on k0 and the
involution �h attached to h.

(iii) There exists a rank-3 hermitian form .E; h/ for k0=k of trivial (hermitian)
discriminant such that C Š C.k0; E; h/ and an element � 2 l� such that
.l ˝k k

0; t0
�
/' .E; h/, where t0

�
.x; y/D trl˝k0=k0.�x�.y//.

Proof. The implication .i/) .ii/ follows from Lemma 5.2.1(2). Conversely, we
assume (ii). Then G Š Aut.C.k0; E; h// admits the k-subgroup J.k0; E; h/ �!�

SU.k0; E; k/. By [Lee 2014, Theorem 1.15(2)], there is a k-embedding i W T !
SU.k0; E; k/ of a maximal torus whose absolute type (with respect to J ) is Œ.k0; l/�.
The k-embedding i W T ! SU.k0; E; k/!G also has absolute type Œ.k0; l/�.

The equivalence .ii/() .iii/ follows from the embedding criterion of k0˝k l!
Endk0.E/ given by [Bayer-Fluckiger et al. 2015, Proposition 1.3.1]. �

Let k0, l be as in Proposition 5.2.2. Let ı 2 k�=k�
2

be the discriminant of l
and d 2 k�=k�

2

be the discriminant of k0. Let B be a central simple algebra over
k0 with an involution � of the second kind. Let Trd be the reduced trace on B .
Let .B; �/C be the k-vector space of �-symmetric elements of B . Let Q� be the
quadratic form on .B; �/C defined by

Q� .x; y/D Trd.xy/:

Let us recall some results in [Haile et al. 1996].

Lemma 5.2.3. Assume that k is not of characteristic 2. Let B be a central simple
K-algebra of odd degree nD 2m� 1 with involution � of the second kind. There
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is a quadratic form q� of dimension n.n� 1/=2 and trivial discriminant over k
such that

Q� ' h1i ? h2i � hh˛ii˝ q� :

Proof. We refer to [ibid., Proposition 4]. �

Theorem 5.2.4. Assume that k is not of characteristic 2 or 3. Let � , � be involutions
of the second kind on a central simple algebra B of degree 3. Then � and � are
isomorphic if and only if Q� and Q� are isometric.

Proof. We refer to [ibid., Theorem 15]. �

Let .B; �/ be as in Lemma 5.2.3 with degreeBD3 and assume that 6 is invertible
in k. Let b0, c0 2 k� such that q� ' h�b0;�c0; b0c0i: Define �.B; �/ to be the
Pfister form hhd; b0; c0ii. An involution � of the second kind is called distinguished
if �.B; �/ is hyperbolic. Let .E; h/ be a rank-3 hermitian form over k0 with trivial
(hermitian) discriminant. We can find b, c 2 k� such that h' h�b;�c; bcik0 :

Now consider the special case where .B; �/D .Endk0.E/; �h/. Then we have
q�h
D h�b;�c; bci and �.Endk0.E/; �h/D hhd; b; cii, which is the norm form of

the octonion C.k0; E; h/. It is then possible to recover with that method at least the
two following facts.

Remarks 5.2.5. (a) Theorem 2.3.1 for G2, i.e., all possible types of tori occur in
the split case: Given a couple .k0; l/, we can write the split octonion algebra C as
C.k0; E; h/ for E D .k0/3 hD h�1;�1; 1i. First we note that l can be embedded
into Endk0.E/ since Endk0.E/ is split. As NC is isotropic, we have that �h is
distinguished. By [Haile et al. 1996, Corollary 18], every cubic étale algebra l can
be embedded as a subalgebra in Endk0.E/ with its image in .Endk0.E/; �h/C. By
Proposition 5.2.2(2), there is an embedding i WT !G of type Œ.k0; l/�2H 1.k;W0/.

(b) Corollary 4.4.2 for the “equal discriminant case”, i.e., the discriminant algebra
of l is k0: In this case, there is an embedding i W T ! G of type Œ.k0; l/� if and
only if NC is isotropic. For a proof in the present setting, we assume there is an
embedding i W T ! G of type Œ.k0; l/�. According to Proposition 5.2.2(2), there
exists a 3-hermitian form .E; h/ of trivial determinant such that C Š C.k0; E; h/
and an embedding l ˝k k0! Endk0.E/ with respect to the conjugacy involution
on k0 and the involution �h attached to h. Then .Endk0.E/; �h/C contains a cubic
étale algebra isomorphic to l whose discriminant is d . By [ibid., Theorem 16(e)],
we have �.Endk0.E/; �h/DNC is isotropic. Thus C is split.

Proposition 5.2.6. Assume that k is not of characteristic 2; 3. Let G D Aut.C / be
a semisimple k-group of type G2. Let k0 (resp. l) be a quadratic (resp. cubic) étale
k-algebra. Then there is a k-embedding i W T !G of type Œ.k0; l/� 2H 1.k;W0/ if
and only if the following two conditions both hold:
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(i) There is a rank-3 k0=k-hermitian form .E; h/ of trivial (hermitian) discrimi-
nant such that C ' C.k0; E; h/.

(ii) Let b; c 2 k� such that h�b;�c; bcik0 is isometric to the form h in (i).
Then there is � 2 l� such that Nl=k.�/ 2 k�

2

and the k-quadratic form
hhd ii˝ hıi � tl=k.h�i/ is isometric to hhd ii˝ h�b;�c; bci, where tl=k denotes
the Scharlau transfer with respect to the trace map tr W l! k.

Proof. Suppose that there is a k-embedding i WT !G of type Œ.k0; l/�2H 1.k;W0/.
By Proposition 5.2.2(2), there is a rank-3 .k0=k/-hermitian form .E; h/ such that
C 'C.k0; E; h/, and there exists an embedding � Wk0˝k l!Endk0.E/ with respect
to the conjugacy involution on k0 and the involution �h attached to h. By [Haile
et al. 1996, Corollary 12], we can find � 2 l� such that Nl=k.�/ 2 k�

2

and the q�h

in Lemma 5.2.3 is the k-quadratic form hıi � tl=k.h�i/. Since

Q�h
D 3h1i ? h2i � hhd ii˝ h�b;�c; bci;

condition (ii) follows from the Witt cancellation.
Conversely, suppose that (i) and (ii) hold. By Proposition 5.2.2(2), it suffices

to prove that there is a k-embedding of l into .M3.k
0/; �h/C. Note that every

cubic étale k-algebra l can be embedded into M3.k
0/ as a k-algebra. By [ibid.,

Corollary 14], for every � 2 l� such that Nl=k.�/ 2 k�
2

, there is an involution �
of the second kind on M3.k

0/ leaving l elementwise invariant such that

Q� D h1; 1; 1i ? h2i � hhd ii˝ hıi � tl=k.h�i/:

Condition (ii) implies that we can choose � so that Q� and Q�h
are isometric.

By Theorem 5.2.4, the involutions � and �h are isomorphic, and hence there is a
k-embedding of l into .M3.k

0/; �h/C. �

6. Hasse principle

We assume that the base field k is a number field.

Proposition 6.1. Let .k0; l/ be a couple where k0 is a quadratic étale k-algebra
and l=k is a cubic étale k-algebra. Let G be a semisimple k-group of type G2 and
let X be the G-homogeneous space of the embeddings of maximal tori with respect
to the type Œ.k0; l/�. Then X satisfies the Hasse principle.

Proof. Since G0 is simply connected, we have H 1.kv; G0/ D 1 for each finite
place v of k. The Hasse principle states that the map

H 1.k;G0/ �!
�

Y
v real place

H 1.kv; G0/

is bijective. IfG is split, X.k/ is not empty (Theorem 2.3.1), so we may assume that
G is not split. By [Lee 2014, Proposition 2.8], X.k/ is not empty if and only if the
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Borovoi obstruction  2X2.k; T .k
0;l// vanishes. There is a real place v such that

Gkv
is not split and then is kv-anisotropic. Since there is a kv-embedding of T .k

0;l/

in Gkv
, the torus T .k

0;l/ is kv-anisotropic. By a lemma due to Kneser [Sansuc 1981,
lemme 1.9.3], we know that X2.k; T .k

0;l//D 0, so that  D 0. Thus X.k/ 6D∅. �
Remark 6.2. Under the hypothesis of Proposition 6.1, the existence of a k-point
on X is controlled by the Borovoi obstruction. It follows from the restriction-
corestriction principle in Galois cohomology that X has a k-point if and only if X
has a 0-cycle of degree one. In other words, examples like those in Theorem 4.5.3
do not occur over number fields.

Corollary 6.3. Let k be a number field and k0 (resp. l) be quadratic (resp. cubic)
étale algebra over k. Let ı 2 k�=k�

2

be the discriminant of l and d 2 k�=k�
2

be the discriminant of k0. Let † be the set of (real) places where G is not split.
Then T .k

0;l/ can be embedded in G with respect to the type Œ.k0; l/� if and only if
d D�1 2 k�v =k

�2
v and ı D 1 2 k�v =k

�2
v for each v 2†.

Proof. According to Proposition 6.1, T .k
0;l/ can be embedded in G with respect

to the type Œ.k0; l/� if and only if this holds everywhere locally or equivalently (by
Theorem 2.3.1) if and only if this holds locally on†. The problem boils down to the
real anisotropic case where the only type is Œ.C;R3/�, according to Remark 4.4.3. �
Examples 6.4. Keep the notations in Corollary 6.3.

(a) Consider the special case where k is the field of rational numbers Q. Suppose
that G is anisotropic over Q. Since there is only one real place of Q, by
Corollary 6.3, the torus T .k

0;l/ can be embedded in G with respect to type
Œ.k0; l/� if and only if k0 is imaginary and the discriminant of l is positive.

(b) Let k be a number field. Suppose that G is anisotropic. Note that in this case,
k is a real extension over Q. Let k0 be an imaginary field extension of k and
let the discriminant of l be Œa� 2 k�=k�

2

for some positive a 2 Q. Then by
Corollary 6.3, the torus T .k

0;l/ can always be embedded in G with respect to
type Œ.k0; l/�.

Appendix: Galois cohomology of tori and semisimple groups
over Laurent series fields

This appendix first provides a reference for a well-known fact on the Galois cohomol-
ogy of tori in the vein of the short exact sequence computing the tame Brauer group
of a Laurent series field. This fact is used in the proof of Lemma 4.5.1. Secondly
we apply our version of Steinberg’s theorem to Bruhat–Tits theory, answering a
question of A. Merkurjev.

We recall that an affine algebraic k-group G is a k-torus if there exists a finite
Galois extension k0=k such thatG�kk0�!� .Gm;k0/

r . If T is a k-torus, we consider
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its Galois lattice of characters yT D Homks�gp.Tks
;Gm;ks

/ and its Galois lattice
of cocharacters yT 0 D Homks�gp.Gm;ks

; Tks
/.

Lemma A.1. We put K D k..t//. Let T=k be an algebraic k-torus. Then we have
a natural split exact sequence

0!H 1.k; T /!H 1.K; T / @
�!H 1.k; yT 0/! 0:

Proof. Let k0 be a Galois extension which splits T . We put � D Gal.k0=k/ and
K 0 D k0..t//. We have the exact sequence [Serre 1994, I.2.6(b)]

0!H 1.�; T .k0//!H 1.k; T /!H 1.k0; T /:

Since Tk0 is split, Hilbert’s theorem 90 shows thatH 1.k0; T /D0, whence there is an
isomorphism H 1.�; T .k0// �!� H 1.k; T /. Similarly, we have H 1.�; T .K 0// �!�

H 1.K; T /. We consider the (�-split) exact sequence

1! .k0ŒŒt ��/�! .K 0/�! Z! 0

induced by the valuation. Tensoring with yT 0, we get a �-split exact sequence

1! T .k0ŒŒt ��/! T .K 0/! yT 0! 1:

It gives rise to a split exact sequence

0!H 1
�
�; T .k0ŒŒt ��/

�
!H 1.�; T .K 0//!H 1.�; yT 0/! 0:

Now we use the filtration argument of [Gille and Szamuely 2006, 6.3.1] by putting

U j D fx 2 k0ŒŒt ��� j vt .x� 1/� j g

for each j �0. The V j D yT 0˝U j filter T .k0ŒŒt ��/ and each V j =V jC1Š yT 0˝kk0

is a k0-vector space equipped with a semilinear action, and hence is �-acyclic.1

According to the limit fact [Gille and Szamuely 2006, 6.3.2], we conclude that
the specialization map H 1

�
�; T .k0ŒŒt ��/

�
!H 1.�; T .k0// is an isomorphism. We

have then a split exact sequence

0!H 1.�; T .k0//!H 1.�; T .K 0//!H 1.�; yT 0/! 0:

Since H 1.k0; yT 0/ D 0, we have H 1.�; yT 0/ �!� H 1.k; yT 0/, whence the desired
exact sequence. �

Now we relate Bruhat–Tits theory and our version of Steinberg’s Theorem 2.4.1.
LetG0 be a quasisplit semisimple k-group equipped with a maximal k-split subtorus
S 0. We denote by W 0 the Weyl group of the maximal torus T 0 D CG0.T 0/ of G0.
Put K D k..t// and denote by Knr the maximal unramified closure of K.

1Speiser’s lemma shows that V j =V jC1 D Ej ˝k k0 for a k-vector space Ej on which � acts
trivially.
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Proposition A.2. Let E be a G0K-torsor. Then the following are equivalent:

(i) E.Knr/ 6D∅.

(ii) There exists a k-torus embedding i0 W T0! G0 such that ŒE� belongs to the
image of i0;� WH 1.K; T0/!H 1.K;G/.

Proof. We denote by G=K D EG0 the inner twist of G0K by E.

.i/) .ii/: Then G is split by the extension Knr=K and the technical condition
(DE) of Bruhat–Tits theory is satisfied [Bruhat and Tits 1984, Proposition 5.1.6]. It
follows that G admits a maximal K-torus j W T !G which is split over Knr [ibid.,
Corollary 5.1.2].

In particular, there exists a k-torus T0 such that T D T0;K . We consider now
the oriented type  D typecan.T; j / 2 H

1.K;W 0/ provided by the action of the
absolute Galois group of K on the root system ˆ.GKs

; j.T /Ks
/. Since T and G

are split by Knr , it is given by the action of Gal.Knr=K/ŠGal.ks=k/ on the root
system ˆ.GKnr

; j.T /Knr
/ and then defines a constant class 0 2H 1.k;W 0/ such

that  D .0/K .
In the other hand, by the Kottwitz embedding (Theorem 2.3.1), there exists a

k-embedding i0 W T0! G0 of oriented type 0. By Theorem 2.4.1, we conclude
that ŒE� belongs to the image of i0;� WH 1.K; T0/!H 1.K;G0/.

.ii/) .i/: We assume there is a k-embedding i0 W T0!G0 such that ŒE� belongs
to the image of i0;� WH 1.K; T0/!H 1.K;G0/. Since T0;K is split by Knr , the
Hilbert theorem 90 shows that H 1.Knr ; T0/D 0, whence E.Knr/ 6D∅. �

Remarks A.3. (a) If k is perfect, we have that cd.Knr/D 1 (by Lang, see [Gille
and Szamuely 2006, Theorem 6.2.11]) so condition (i) is always satisfied
according to Steinberg’s theorem.

(b) If k is not perfect, there exist examples when condition (i) is not satisfied, even
in the semisimple split simply connected case; see [Gille 2002, Proposition 3
and Theorem 1].
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