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This paper is dedicated to the memory of Robert Steinberg.

This paper contains an algorithm for the structure constants of the Hecke
algebra of a Gelfand–Graev representation of a finite Chevalley group.

1. Introduction

Let G be a Chevalley group over a finite field k = Fq of characteristic p (as in
[Chevalley 1955] or [Steinberg 1968]). Let B be a Borel subgroup of G with
U = Op(B) (the unipotent radical of B), and let T be a maximal torus such that
B =U T . Let W be the Weyl group of G. Then W is a finite Coxeter group with
distinguished generators S = {s1, . . . , sn}.

Let 8 be the root system associated with W , with {α1, . . . , αn} the set of simple
roots corresponding to the generators si ∈ S, and 8± the set of positive roots
(respectively, negative roots) associated with them. For each root α, let Uα be the
root subgroup of G corresponding to it. The subgroup U is generated by the root
subgroups Uα, α > 0.

From [Steinberg 1968, §3], the Chevalley group G has a B,N -pair, with Borel
subgroup B, N the subgroup generated by all elements wα(t), and B ∩ N equal
to T , the subgroup generated by all elements hα(t) (see the definitions of wα(t)
and hα(t) in Section 2). Then N/T ∼=W . (If the field k contains more than three
elements, then N is the normalizer N = NG(T ); see [Steinberg 1968, p. 36]).

By the Bruhat decomposition, the (U,U )-double cosets are parametrized by the
elements of N , while the (B, B)-double cosets are parametrized by the elements
of W .

We consider induced representations γ of the formψG , for a linear representation
ψ of U . Let

e = |U |−1
∑
u∈U

ψ(u−1)u
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be the primitive idempotent affording ψ in the group algebra CU of U over the
field of complex numbers. Then γ = ψG is afforded by the left CG-module CGe.
The Hecke algebra of γ is the subalgebra H = eCGe of CG, and is isomorphic
to (EndCG CGe)◦. These representations and their Hecke algebras were first in-
vestigated by Gelfand and Graev [1962a; 1962b]. In particular, they introduced
the important class of Gelfand–Graev representations of G, which are the induced
representation ψG , for a linear representation ψ of U in general position, that is,
ψ |Uαi 6= 1 for each simple root subgroup Uαi , 1 ≤ i ≤ n, and ψ |Uα = 1 for each
positive and not simple root α.

It is known (see [Gelfand and Graev 1962b] for the case of G = SLn(k) for a
finite field k, and [Steinberg 1968, Theorem 49] for the general case) that the Hecke
algebra H of a Gelfand–Graev representation is a commutative algebra, so that a
Gelfand–Graev representation is multiplicity-free.

A basis for the Hecke algebra H of a Gelfand–Graev representation ψG is given
by the nonzero elements of the form ene with n∈N . The standard basis elements are
the nonzero elements of the form cn = ind(n) ene, where ind(n)= |U : nUn−1

∩U |.
The structure constants for the standard basis elements, defined by the formulas

c`cm =
∑

n

[c`cm : cn]cn,

with `,m, n ∈ N ∗, are algebraic integers (here N ∗ is the set of elements n ∈ N such
that ene 6= 0).

The structure constants of H are given by the formula

[c`cm : cn] =
∑

u`u1=nvm−1∈U`U∩nUm−1 m−1

ψ((uu1)
−1v),

by [Curtis and Reiner 1981, Proposition 11.30], and the fact that U`U ∩nUm−1m−1

is a set of representatives of the left U -cosets in U`U ∩nUm−1m−1U . As in [Curtis
1988; 2009], Un =U ∩ nU−n−1 for n ∈ N . The structure constants are exponential
sums involving the linear character ψ of U and combinatorial information about
multiplication and intersections patterns of (U,U )-double cosets. The latter infor-
mation is also given at least partially for the algebraic group G(k̄) over the algebraic
closure k̄ of k corresponding to G, with some questions about the geometry not
completely settled at this time. A main result in the paper is an algorithm given in
Section 4 for the solutions (u, u1, v) of the equation u`u1 = nvm−1 in the formula
above, so that in some sense the structure constants are computable. The approach
taken here is based on the theory of cells Uτ developed in [Curtis 1988; 2009]. The
algorithm for the solutions of the equations is a refined version of an algorithm for
them given in [Curtis 2009, Theorem 2.1]. At the end of Section 4, some problems
for further research are mentioned.
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In case ψG is a Gelfand–Graev representation, the values of the irreducible repre-
sentations of the commutative semisimple algebra H on standard basis elements are
obtained as eigenvalues of matrices giving the regular representation of H and whose
entries are the structure constants [c`cm : cn]; see [Curtis 2009, Proposition 1.1].

Formulas for the structure constants based on different algorithms and a different
set of representatives of the cosets of U were obtained by Simion [2015].

The irreducible representations of H were obtained in [Curtis 1993] using the
results of Deligne and Lusztig [1976] on representations of G defined on the
`-adic cohomology of locally closed subsets of the algebraic group G(k̄) with
Frobenius endomorphism F on which the finite group G acts. The formulas for
the irreducible representations of H in [Curtis 1993] involve a homomorphism of
algebras fT : H → CT for each F-stable maximal torus T of G, proved using the
character formula of Deligne and Lusztig [1976] for the virtual representations RT,θ .
The homomorphisms fT provide an approach to the representations of H , and are
of independent interest (see [Bonnafé and Kessar 2008]).

A combinatorial approach to the representations of H based on the structure
constants of the Hecke algebra H and the internal structure of the finite Chevalley
group G is a main objective of this paper.

Two final sections contain examples in which a combinatorial construction of
the homomorphisms fT is obtained. These include the Bessel functions over finite
fields of Gelfand and Graev [1962a], for the groups SL2(k) and k a finite field of
odd characteristic, and a construction of the homomorphisms fT : H→ CT for the
split torus T in a general Chevalley group.

2. Background and preliminary results

For each root α, there is a homomorphism (see [Steinberg 1968, page 46]) ϕ = ϕα :
SL2(k)→ G such that ϕ takes(1 t

0 1

)
→xα(t),

(1 0
t 1

)
→x−α(t),

( 0 t
−t−1 0

)
→wα(t)∈ N ,

( t 0
0 t−1

)
→hα(t)∈ T

for all t ∈ k. The elements wα(t) and hα(t) are given by

wα(t)= xα(t)x−α(−t−1)xα(t), hα(t)= wα(t)wα(1)−1,

by [Steinberg 1968, p. 30]. If w = sk · · · s1 is a reduced expression of an element
w∈W then ẇ= ṡk · · · ṡ1, with ṡi =wαi (ti ) for some fixed choice of ti ∈ k∗= k−{0},
is a representative in N of w which is independent of the choice of the reduced
expression chosen, by [Steinberg 1968, Lemma 83, p. 242]. In what follows we
assume that representatives ẋ ∈ N of all elements x ∈W have been chosen in this
way, for a fixed choice of representatives ṡi of the generators si ∈ S.



184 CHARLES W. CURTIS

We may assume that

ṡk = ϕαk

(( 0 1
−1 0

))
for a simple root αk, 1≤ k ≤ n.

Using the homomorphisms ϕα, we obtain the so-called SL2-IDENTITY:

ṡ−1
k xαk (t)ṡk = xαk (−t−1)ṡkhαk (t)xαk (−t−1),

for a simple root αk and t ∈ k∗ (cf. [Curtis 2009, Lemma 2.1]).
As in [Deodhar 1985], a subexpression τ of a fixed reduced expression w =

sk · · · s1 is a sequence τ = (τk, . . . , τ1, τ0) of elements of W such that τiτ
−1
i−1∈{1, si }

for i = 1, . . . , k and τ0 = 1. Then the set of terminal elements τk of subexpressions
of w = sk · · · s1 coincides with the set of elements x ∈ W such that x ≤ w in the
Chevalley–Bruhat order. In what follows, the length of an element w ∈W in terms
of the generators si ∈ S is denoted by `(w). A subexpression τ = (τk, . . . , τ1, τ0)

is called a K -sequence relative to the triple w = sk · · · s1, x, y of elements of W if
it satisfies conditions (2.10)(a-c) of [Kawanaka 1975]. It is understood that a K -
sequence for the triple (w, x, y) is always given with reference to a fixed reduced
expression w = sk · · · s1. Let Jτ = { j : τ jτ

−1
j−1 = s j } ∪ {0}. Then the defining

conditions for a K -sequence state that τk x = y and

`(spτ j x) < `(τ j x)

for each j ∈ Jτ and p in the interval between j and the next element in Jτ (or
simply all p > j if j is the maximal element of Jτ ). For each K -sequence τ , set

J−τ = { j ∈ Jτ : `(s jτ j ′x) < `(τ j ′x)}

where j ′ ∈ Jτ is the predecessor of j , and define a pair of nonnegative integers by

a(τ )= |J−τ |, b(τ )= k− |Jτ | + 1= card{ j > 0 : τ jτ
−1
j−1 = 1}.

For each element w ∈ W , let Uw = U ∩w U− where U− =w0 U and w0 is the
element of maximal length in W . Then U =UwUww0 and BwB =UwẇB, in both
cases with uniqueness of expression. Let w = sk . . . s1 be a reduced expression of
w ∈W . Then Uw =Uαk ṡkUsk−1...s1 ṡ−1

k with uniqueness of expression. An element
of Uw expressed in this way, for a fixed reduced expression of w, is said to be in
standard form (see [Deodhar 1985, Lemma 2.2]), and can be assigned coordinates
in the field k.

Let w, x, y be elements of W , and ẇ, ẋ, ẏ corresponding elements of N . Let

U (w, x, y)=
{
u ∈Uw : uẇB ∩ ẏUx−1 ẋ−1

6=∅
}
.

Then U (w, x, y) is independent of the choice of representatives ẇ, ẋ, ẏ of w, x, y
in N . Moreover, UwẇB ∩ ẏUx−1 ẋ−1 is a set of representatives of the left B-cosets



STRUCTURE CONSTANTS OF HECKE ALGEBRAS OF REPRESENTATIONS 185

in BwB ∩ y(Bx B)−1, and its cardinality is the structure constant [ewex : ey] of the
standard basis elements ew, ex , ey , for w, x, y ∈W , in the Iwahori Hecke algebra.

The K -sequences were first applied by Kawanaka to prove the following result
[Kawanaka 1975, Lemma 2.14b]. For a finite Chevalley group G over k = Fq the
nonzero structure constants of the Iwahori Hecke algebra are given by the formula

[ewex : ey] = |BẇB ∩ ẏUx−1 ẋ−1
| = |U (w, x, y)| =

∑
τ

qa(τ )(q − 1)b(τ )

where the sum is taken over all K -sequences τ for w, x, y, and a(τ ) and b(τ ) are
the nonnegative integers defined above.

As a consequence, it follows that U (w, x, y) 6= ∅ if and only if there exist
K -sequences for w, x, y (see also [Borel and Tits 1972, Remark 3.19], where the
conditions are stated in a different way).

In [Curtis 1988] a geometric version of Kawanaka’s formula was proved. It states
that U (w, x .y), viewed as a subset of the algebraic group G(k̄), is a disjoint union of
subsets Uτ , which we shall call (in this paper) cells. The cells Uτ are subsets of G(k̄)
parametrized by K -sequences τ for w, x, y relative to a fixed reduced expression of
the element w, with corresponding subsets Uτ , also called cells (defined in [Curtis
1988]), in the finite Chevalley group G = G(k) (see Lemma 3.3 below for a review
of the definition of cells). The result extends Deodhar’s decomposition ([Deodhar
1985], and [Curtis 2009, §4]) of the intersection By B ∩ B−x B, viewed as subsets
of the flag variety G/B in the algebraic group G(k̄), with B− the Borel subgroup
opposite to B. Each cell Uτ is isomorphic (in bijective correspondence as a set, or
isomorphic as a variety in G(k̄)) to a product,

Uτ
∼=

∏
α

Uα ×

∏
β

U∗β

for certain subsets {α} and {β} of cardinalities a(τ ) and b(τ ) of the positive root
subgroups determined by τ and where U∗β is the set of nonidentity elements in
Uβ . From the decomposition of U (w, x, y) as a union of cells Uτ , it follows that
UwẇB ∩ ẏUx−1 ẋ−1 can be identified with the set of triples (u, b, v) with u ∈ Uτ

for some τ , b ∈ B, and v ∈Ux−1 satisfying the equation uẇb = ẏv ẋ−1 with b and
v uniquely determined by u by [Curtis 2009, Lemma 2.4].

3. Relations between cells

Let `,m, n in N ∗ correspond to elements w, x, y in W . Then `,m, n are multiples
by elements of T of representatives ẇ, ẋ, ẏ in N determined as above. The set
U``U ∩ nUm−1m−1 will be obtained by an algorithm based on a fixed reduced
expression w = sk · · · s1 of the element w ∈ W in terms of the generators si ∈ S,
and the theory of cells Uτ associated with K -sequences τ for w, x, y.



186 CHARLES W. CURTIS

As the cells Uτ are contained in the set U (w, x, y) each element u ∈Uτ satisfies
a structure equation

uẇb = ẏv ẋ−1

with b ∈ B and v ∈ Ux−1 . The subgroup B is a semidirect product B = U T , so
one has b = u1s with u1 ∈U, s ∈ T , and it will be important to keep track of these
factors in the discussion to follow.

In this section, it will be shown how elements u ∈ Uτ ⊆ U (w, x, y), with
τ = (τk, . . . , τ1, τ0) a K -sequence for w, x, y, are related to elements u′ in cells
Uτ ′ with τ ′ = (τk−1, . . . , τ1, τ0) a K -sequence for sk−1 · · · s1, x ′, y′, and how the
structure equations for u and u′ are related. We keep in mind that U (w, x, y) 6=∅
if and only if there exist K -sequences for w, x, y.

Lemma 3.1. Let τ = (τk, . . . , τ1, τ0) be a K -sequence for w, x, y for k ≥ 1, and
consider τ ′ = (τk−1, . . . , τ0).

(i) τ ′ is a K -sequence for s−1
k w, x, s−1

k y if τkτ
−1
k−1 = sk and `(sk y) < `(y).

(ii) τ ′ is a K -sequence for s−1
k w, x, y if τkτ

−1
k−1 = 1 and `(sk y) < `(y).

(iii) τ ′ is a K –sequence for s−1
k w, x, s−1

k y if `(sk y) > `(y) and τkτ
−1
k−1 = sk .

It is understood that τ0= 1 is a K -sequence for (1, x, x) and that a(τ0)= b(τ0)= 0.
These sets of conditions are the only possibilities for τ ′ to be a K -sequence, and
one of them must occur.

We first note that either `(sk y)<`(y) or `(sk y)>`(y), since either y−1(αk) ∈8+

or y−1(αk) ∈ 8−. The proof then follows immediately from the definition of
K -sequence (see the proof of Lemma 2.14 of [Kawanaka 1975]). For example, we
verify that the condition `(sk y) > `(y) implies τk 6= τk−1, and hence τkτ

−1
k−1 = sk .

Otherwise τk=τk−1, τk−1x= y, and k /∈ Jτ . This implies that `(skτk−1x)<`(τk−1x)
by a defining property of K -sequences, and hence `(sk y) < `(y), contrary to
assumption.

The next result is background for the relation between cells Uτ and Uτ ′ , with τ
and τ ′ as in the preceding lemma. It is a version of Lemma 2.3 of [Curtis 2009].
(Parts (i) and (ii) were misstated in that article and are corrected here. We also take
the opportunity to correct the statement on page 220 of [Curtis 2009] that the cells
Uτ are invariant under conjugation by elements of T ; this was not shown there.)

Lemma 3.2. Let w = sk · · · s1 be a reduced expression with k ≥ 1 and let x, y ∈W .
Then U (w, x, y) is either empty or is related to sets U (s−1

k w, x ′, y′), with x ′ and y′

depending on the K -sequence τ associated with w, x, y as follows.

(i) Let `(sk y) < `(y) and assume τkτ
−1
k−1 = sk . Then ṡkUs−1

k w ṡ−1
k ∩U (w, x, y) is

either empty or

ṡkUs−1
k w ṡ−1

k ∩U (w, x, y)= ṡkU (s−1
k w, x, s−1

k y)ṡ−1
k .
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(ii) Let `(sk y) < `(y) and assume τkτ
−1
k−1 = 1. Then the part U (w, x, y)[ of

U (w, x, y) not in ṡkUs−1
k w ṡ−1

k consists of the elements u = xαk (t)ṡk ũṡ−1
k , with

xαk (t) ∈ U∗αk
and ũ ∈ Us−1

k w such that π(xαk (−t−1)ũ) ∈ U (s−1
k w, x, y), and

t ∈k∗; here π is the projection π :U→Us−1
k w accompanying the decomposition

U =Us−1
k wUs−1

k ww0
. The map

u = xαk (t)ṡk ũṡ−1
k → π(xαk (−t−1)ũ)

from U (w, x, y)[ to U (s−1
k w, x, y) is surjective. There is a bijection of sets

U (w, x, y)[ ∼=U∗αk
×U (s−1

k w, x, y).

(iii) Let `(sk y) > `(y) and τkτ
−1
k−1 = sk . Then

U (w, x, y)=Uαk ṡkU (s−1
k w, x, s−1

k y)ṡ−1
k

and there is a bijection of sets U (w, x, y)∼=Uαk ×U (s−1
k w, x, s−1

k y).

The proof is included in the proof of Lemma 2.3 of [Curtis 2009].

Lemma 3.3. Let w, x, y be elements of W and let w = sk · · · s1 be a reduced
expression for w. Let τ = (τk, . . . τ1, τ0) be a K -sequence for w, x, y with τ0 = 1,
and let Uτ be the corresponding cell, viewed as a subset of U (w, x, y)⊆Uw. Let
τ ′ = (τk−1, . . . , τ1, τ0) be a K -sequence for sk−1 · · · s1, x ′, y′ as in one of the cases
in Lemma 3.1, and let Uτ ′ be the corresponding cell in U (sk−1 · · · s1, x ′, y′). The
construction of the cell Uτ from Uτ ′ , reviewed below, defines a surjective map of
sets λ :Uτ →Uτ ′ . Let Uτ (k̄) and Uτ ′(k̄) be the corresponding cells in the algebraic
group G(k̄) over the algebraic closure k̄ of k. Then the map λ : Uτ (k̄)→ Uτ ′(k̄),
defined as in part (i), is a surjective morphism of algebraic sets, defined over k.

The construction of Uτ (k̄) from Uτ ′(k̄) was given in the three cases of Lemma 3.1
in the proof of Theorem 1.6 of [Curtis 1988] and in [Curtis 2009, page 220], and
will be reviewed here in the case of the algebraic group G(k̄). We abbreviate Uτ (k̄)
to Uτ , etc.

(i) τkτ
−1
k−1 = sk and `(sk y) < `(y). In this case, we have Uτ ⊆ ṡkUs−1

k w ṡ−1
k and

Uτ ′ ⊆ U (s−1
k w, x, s−1

k y), and one has Uτ ′ = ṡ−1
k Uτ ṡk . The map λ : u→ ṡ−1

k uṡk

is clearly a surjective morphism from Uτ to Uτ ′ and is defined over k because ṡk

belongs to the finite Chevalley group G(k).

(ii) τkτ
−1
k−1 = 1 and `(sk y) < `(y). This time Uτ is in the part of U (w, x, y) which

is not contained in ṡkUs−1
k w ṡ−1

k and consists of the elements xαk (tk)ṡk ũṡ−1
k such that

tk 6= 0, ũ ∈Us−1
k w and π(xαk (−t−1

k )ũ) ∈Uτ ′ , where π is the projection U→Us−1
k w

associated with the factorization U =Us−1
k wUs−1

k ww0
. The map

λ : xαk (tk)ṡk ũṡ−1
k → π(xαk (−t−1

k )ũ)

is a surjective morphism defined over k from Uτ to Uτ ′ .
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(iii) τkτ
−1
k−1 = sk and `(sk y) > `(y). In this situation, we have Uτ =Uαk ṡkUτ ′ ṡ−1

k ,
in terms of the factorization: Uw =Uαk ṡkUsk−1···s1 ṡ−1

k , and Uτ ′ ⊆U (s−1
k w, x, sk y).

Then the map
λ : xαk (tk)ṡk ũṡ−1

→ ũ

is a surjective morphism defined over k from Uτ to Uτ ′ (as the projection from Uw to
ṡkUsk−1···s1 ṡ−1

k in the factorization given above, followed by the inner automorphism
by an element of G(k)). This completes our discussion of the proof of the lemma.

We now have a reduction process for cells, Uτ → Uτ ′ , as in the preceding
lemma. Let u ∈ Uτ correspond to u′ ∈ Uτ ′ as in the lemma. Then the structure
equation uẇu1s = ẏv ẋ−1 satisfied by u corresponds to the structure equation
u′ṡ−1

k ẇu′1s ′= ẏ′v ẋ ′−1 satisfied by u′, with uniquely determined factors {u, u1, s, v}
and {u′, u′1, s ′, v′}. The next lemma shows how the elements u′, u′1, v

′ in U and
s ′ ∈ T are related to u, u1, v in U and s ∈ T , using the standard form and facts
about the multiplicative structure of the Chevalley group such as the decomposition
U = UxUxw0 for elements x ∈ W . It is also shown that the process is reversible,
assuming u ∈Uτ is known.

Lemma 3.4. Suppose that the cell Uτ ⊆ U (w, x, y) maps onto the cell Uτ ′ ⊆

U (sk−1 · · · s1, x ′, y′) as in cases (i)–(iii) of Lemma 3.1, and let the structure equation
satisfied by u ∈ Uτ be uẇu1s = ẏv ẋ−1 with factors u ∈ Uτ , u1 ∈ U, s ∈ T , and
v ∈ Ux−1 uniquely determined by u ∈ Uτ . Let u → u′ = λ(u) with u′ ∈ Uτ ′ as
in Lemma 3.3, and consider the structure equation satisfied by u′ with factors
u′ ∈U, s ′ ∈ T, u′1 ∈U , and v′ ∈Ux−1 in each of the cases. Then the factors u′, u′1, s ′

and v′ are given as in the proof of the lemma. Conversely, assuming u ∈ Uτ is
known, u1, s and v are obtained from u′, s ′, u′1, and v′, as shown in the proof of the
lemma.

In case (i), we have τkτ
−1
k−1 = sk , `(sk y) < `(y) and Uτ ′ = ṡ−1

k Uτ ṡk . Then the
equation satisfied by u ∈Uτ is uẇu1s = ẏv ẋ−1 with u = ṡku′ṡ−1

k and u′ ∈Uτ ′ . It
becomes the equation for u′ ∈ Uτ ′ after multiplication by ṡ−1

k , and the lemma is
proved in this case.

For the proof in case (ii) recall that τkτ
−1
k−1 = 1 and `(sk y) < `(y). Then, using

the standard form for u, the structure equation satisfied by u= xαk (t)ṡk ũṡ−1
k ∈Uτ is

xαk (t)ṡk ũṡ−1
k ẇu1s = ẏv ẋ−1,

with xαk (t)∈U∗αk
, ũ ∈Us−1

k w, s ∈ T, u1 ∈U, v∈Ux−1 . We want to derive an equation
of the form

u′s−1
k wu′1s ′ = ẏv′ ẋ−1

with u′ = π(xαk (−t−1)ũ) ∈ Uτ ′ , s ′ ∈ T , u′1 ∈ U and v′ ∈ Ux−1 , where π is the
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projection U →Us−1
k w as in the proof of Lemma 3.3. As

ṡk xαk (−t−1)ṡ−1
k = ṡ−1

k xαk (−t−1)ṡk,

we can multiply the equation for xαk (t)ṡk ũṡ−1
k ∈Uτ by ṡk ṡk

−1 and apply the SL2-
IDENTITY from Section 2 to obtain

ṡk xαk (−t−1)ṡkhαk (t)xαk (−t−1)ũṡ−1
k ẇu1s = ẏv ẋ−1.

One has xαk (−t−1)ũ=π(xαk (−t−1)ũ)u∗ for u∗ ∈Us−1
k ww0

so the equation becomes

π
(
xαk(−t−1)ũ

)
ṡ−1

k ẇ(ṡ−1
k ẇ)−1u∗ṡ−1

k ẇu1s=ẏ ẏ−1(ṡk xαk(−t−1)ṡ−1
k ṡ2

k hαk(t)
)−1 ẏv ẋ−1

where (ṡ−1
k ẇ)−1u∗ṡ−1

k ẇ ∈ U because u∗ ∈ Us−1
k ww0

. Note also that ṡ2
k hαk (t) =

hαk (−t), and that the right side of the equation is

ẏ ẏ−1(hαk (−t)
)−1 ẏ ẏ−1ṡk

(
xαk (−t−1)−1)ṡ−1

k ẏv ẋ−1.

Because `(sk y) < `(y), one has ẏ−1ṡk xαk (−t−1)ṡ−1
k ẏ ∈ U , and we consider first

the case where ẏ−1ṡk xαk (−t−1)ṡ−1
k ẏ ∈Ux−1 . Then the equation above becomes the

structure equation for u′ ∈Uτ ′ with u′= π(xαk (−t−1)ũ), u′1= (ṡ
−1
k ẇ)−1u∗ṡ−1

k ẇu1,

s ′ = s
(
ẋ ẏ−1(hαk (−t))−1 ẏ ẋ−1)−1

,

and v′ is
ẏ−1ṡk

(
xαk (−t−1)

)−1ṡ−1
k ẏv ∈Ux−1

conjugated by ẏ−1hαk (−t)−1 ẏ. Note that ẏ−1hαk (−t)−1 ẏ ∈ T , and that we have
conjugated this element past ẏv ẋ−1 and brought the result to the left-hand side as a
factor of s ′. We have also used the fact that Ux−1 is invariant under conjugation by
elements of T .

For the reversibility, consider u′, u′1, s ′, v′ and u = xαk (t)ṡk ũṡ−1
k in Uτ . Then

xαk (−t−1)ũ = u′u∗, so u∗ = (u′)−1
(
xαk (−t−1)ũ

)
. Then s = s ′(ẋ ẏ−1hαk (−t)ẏ ẋ−1),

u1 =
(
(ṡ−1

k ẇ)−1u∗ṡ−1
k ẇ

)−1u′1 and

v =
(
ẏ−1ṡk xαk (−t−1)ṡ−1

k ẏ
)−1 ẏ−1hαk (−t)−1 ẏv′ ẏ−1hαk (−t)ẏ ∈Ux−1,

completing the proof of reversibility in this case, using the fact again that Ux−1 is
invariant under conjugation by elements of T .

Now we have to discuss the case ẏ−1ṡk xαk (−t−1)
˙s−1
k ẏ /∈Ux−1 . Then we obtain

a new formula for v′ as follows. We have

ẏ−1ṡk xαk (−t−1)−1 ˙s−1
k ẏv = v′v′′,

with uniquely determined factors v′ ∈ Ux−1 and v′′ ∈ Ux−1w0 . Then v′′ ẋ−1
=

ẋ−1 ẋv′′ ẋ−1 with ẋv′′ ẋ−1
∈ U . Then the structure equation in this case for u′ =
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π(xαk (−t−1)ũ) has as factors u′1 = (ṡ
−1
k ẇ)−1u∗ṡ−1

k ẇu1s ′(ẋv′′ ẋ−1)−1(s ′)−1, s ′ as
in the first case, and v′ as defined at the beginning of this paragraph, conjugated by
ẏ−1hαk (−t)−1 ẏ.

For the reversibility in this case, suppose we have u = xαk (t)ṡk ũṡ−1
k ∈ Uτ ,

u′ = π(xαk (−t−1)ũ), and u′1, s ′, and v′ as above. We have to solve for u1, s, and v.
Then, after reversing the conjugation by ẏ−1hαk (−t)−1 ẏ, we obtain(

ẏ−1ṡk xαk (−t−1)
˙s−1
k ẏ

)−1
v′ = v(v′′)−1.

Then v is the projection of the left-hand side in Ux−1 . Then from

u′1 = (ṡ
−1
k ẇ)−1u∗ṡ−1

k ẇu1s ′(ẋv′′ ẋ−1)−1(s ′)−1,

we can express u∗ as the projection of xαk (−t−1)ũ in Us−1
k ww0

and (ẋv′′ ẋ−1)−1

from xαk (−t−1) and v′, so we recover u1. Finally the element s is computed as in
the first case. Therefore we have obtained u1, s, and v, completing the proof of
reversibility in this case.

In case (iii), the structure equation satisfied by u = xαk (t)ṡk ũṡ−1
k ∈Uτ is

xαk (t)ṡk ũṡ−1
k ẇu1s = ẏv ẋ−1

as in case (ii). This time `(sk y) > `(y), so ẏ−1xαk (t)ẏ ∈ U and the structure
equation for ũ ∈Uτ ′ becomes

ũṡ−1
k ẇu1s = ṡ−1

k ẏ ẏ−1xαk (t)
−1 ẏv ẋ−1,

and the rest of the proof is handled as in case (ii), depending on whether ẏ−1xαk (t)ẏ∈
Ux−1 or not. This completes the proof of the lemma.

4. Solution of the structure equation

Let `,m, n ∈ N ∗ be representatives of w, x, y in W , and let w= sk · · · s1 be a fixed
reduced expression of w. From the Introduction, the structure constants of standard
basis elements c`, cm, cn of the Hecke algebra H of an induced representation
γ = ψG of G are given by the formula

[c`cm : cn] =
∑

u`u1=nvm−1∈U`U∩nUm−1 m−1

ψ((uu1)
−1v),

where U`U ∩ nUm−1m−1 is the set of elements u ∈U, u1 ∈U, v ∈Um−1 satisfying
the equation

u`u1 = nvm−1.

The elements `,m, n are multiples of ẇ, ẋ, ẏ by elements of T , `= ẇs,m = ẋs ′,
etc. for elements s, s ′, s ′′ in T . The equations u`u1 = nvm−1 as above can be
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rewritten in the form uẇû1ŝ = ẏv̂ ẋ−1 for u ∈U, ŝ = s(ẋs ′′(s ′)−1 ẋ−1)−1
∈ T, û1 =

su1s−1
∈U, v̂ = s ′′v(s ′′)−1

∈Ux−1 , using the fact that the subsets Ux , for x ∈ W ,
are invariant under conjugation by elements of T . Each element u ∈U satisfying
the equation above belongs to the set U (w, x, y), and consequently u ∈Uτ for a
cell Uτ defined by a K -sequence τ for the elements {w, x, y} in W . An algorithm
for the solutions u, û1, v̂ of these equations is the main result of this section.

As u ∈Uτ is known in terms of the root subgroups from the main result of [Curtis
1988], the problem is to calculate û1 and v̂ in terms of a given expression of u.

The following remarks may throw some light on these problems. Let τ be a
K -sequence for w, x, y in W , and let Uτ be the corresponding cell in U (w, x, y).
Each element u ∈Uτ satisfies a structure equation

uẇb = ẏv ẋ−1

with b ∈ B and v ∈ Ux−1 . It is known that the elements b and v in the structure
equation are uniquely determined by u [Curtis 2009, Lemma 2.4]. A main theorem
in [Curtis 2009] was an inductive construction of the solutions of the structure
equation. Theorem 4.1 below gives more information, and in a sense, calculates b
and v from an expression of u in standard form using a fixed reduced expression
of w. In particular, this result determines, for each element u ∈Uτ , the solutions
(u1, v), of the equations u`u1 = nvm−1 with u ∈Uτ , u1 ∈U , and v ∈Ux−1 , needed
for the structure constants of H .

Theorem 4.1. Let w, x, y be elements of W , and let Uτ be a cell associated with a
K -sequence τ for w, x, y, and a fixed reduced expression w = sk · · · s1 for w. The
algorithm given below determines the set of elements s ∈ T, u1 ∈U and v ∈Ux−1

satisfying the equation uẇu1s = ẏv ẋ−1, for a given element u ∈Uτ . The possibility
that the set of solutions is empty is not excluded.

Let w, x, y, the cell Uτ , and w = sk · · · s1 be as in the hypothesis of the theorem.
Let u be a fixed element of Uτ . With these as a starting point, the algorithm gives the
elements s ∈ T, u1 ∈U and v ∈Ux−1 satisfying the equation stated in the theorem.
It is proved by induction on `(w).

We begin with the case `(w)= 1, so ẇ= ṡ1 and let τ = (τ1, τ0) be a K -sequence
for (s1, x, y) corresponding to one of the three cases in Lemma 3.1.

Case (i). τ1 = s1, `(s1 y) < `(y). Then Uτ0 = 1,Uτ = ṡ1Uτ0 ṡ−1
1 = 1, s1x = y and

it is easily proved using Lemma 83 of [Steinberg 1968] that ṡ1 ẋ = ẏ. Then there is
a unique solution, namely (1, 1, 1), of the structure equation uṡ1b = ṡ1 ẋv(ẋ)−1.

Case (ii). τ1 = τ0, and `(s1 y) < `(y). In this case the definition of K -sequence
implies x = y. We also have (by part (ii) of the proof of Lemma 3.3) Uτ =U∗α1

. First
assume `(x)= 1. Then the assumptions imply that x = s1, ẋ = ẏ = ṡ1, and for each
element u ∈U∗α1

there is a unique solution of the structure equation uṡ1b = ṡ1vṡ−1
1
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by the SL2-IDENTITY, so that quadruples (u, s, u1, v) with u ∈Uτ , b = u1s ∈ B,
and v ∈Ux−1 satisfying the equation exist, and are known. Now let `(x) > 1; then
`(s1x) < `(x) implies ẋ = ṡ1 ẋ1 with `(s1x1) > `(x1). For each v ∈ U∗α1

one has
ẋ−1

1 v ẋ1 ∈U because `(s1x1) > `(x1). Moreover

ṡ1 ẋ1(ẋ−1
1 v ẋ1)ẋ−1

1 ṡ−1
1 = ṡ1vṡ−1

1 ∈U−

so ẋ−1
1 v ẋ1 ∈ Ux−1 . The unique solution of the structure equation uṡ1b = ṡ1vṡ−1

1
with u ∈U∗α1

from the case `(x)= 1 now yields the unique solution (u, b, ẋ−1
1 v ẋ1)

of the structure equation for (s1, x, y), namely

uṡ1b = ẏ ẋ−1
1 v ẋ1 ẋ−1

as ẏ ẋ−1
1 = ṡ1 and ẋ1 ẋ−1

= ṡ−1
1 . Note that in case (ii) there is no solution of the

structure equation uṡ1b= ẏv ẋ−1 in case u=1 and x = y as this would contradict the
fact that B ẏ−1ṡ1 B 6= Bẋ−1 B by the uniqueness part of the Bruhat decomposition.

Case (iii). τ1 = s1, and `(s1 y) > `(y). In this case Uτ = Uα1 and the unique
solution of the structure equation uṡ1b = ẏv ẋ−1 for u ∈Uα1 is

(u, hα1(−1), ẏ−1u ẏ),

for each u ∈ Uα1 , noting that ẏ−1u ẏ ∈ Ux−1 , and ẏ ẋ−1
= ṡ−1

1 = ṡ1hα1(−1) by
[Steinberg 1968, Lemma 83] again. This completes the discussion of the solutions
of the structure equation for the case `(w)= 1.

We now proceed to the general case, with `(w) > 1. Let τ be a K -sequence for
w, x, y and let u ∈Uτ . Let u correspond to u′ = λ(u) ∈Uτ ′ (as in Lemma 3.3) for
the K -sequence τ ′ for sk−1 . . . s1, x ′, y′ in one of the three cases of Lemma 3.1,
and let

u′sk−1 . . . s1u′1s ′ = ẏ′v′ ẋ ′

be the structure equation satisfied by u′. By the induction hypothesis, the factors
u′1, s ′, and v′ of the structure equation for u′ are determined by u′. As u′= λ(u), the
elements u1, s, and v satisfying the equation uẇb= uẇu1s= ẏv ẋ−1 are determined
by u, using Lemma 3.4. This completes the proof of the theorem.

At the beginning of the section, it was explained how the solutions u ∈U, u1 ∈U ,
and v ∈ Ux−1 of the equations u`u1 = nvm−1, for `,m, n ∈ N ∗, required for the
formulas for the structure constants are obtained from the solutions u ∈ Uτ , u1 ∈ U ,
s ∈ T, v ∈ Ux−1 of the equations uẇu1s = ẏv ẋ−1 solved by the algorithm in
Theorem 4.1. For this step, it is necessary to determine the elements t, t ′, t ′′ in T
such that `= ẇt,m = ẋ t ′, n = ẏt ′′, in order to transform the first set of equations
to the second by the algorithms for multiplication the Chevalley group. This
information can be obtained from Steinberg’s proof of Theorem 49 in [Steinberg
1968, §14], in case ψG is a Gelfand–Graev representation. The theorem states that
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the Hecke algebra H of a Gelfand–Graev representation is a commutative algebra,
and the proof is obtained by constructing a certain antiautomorphism f of the
Chevalley group G whose extension to the group algebra is at the same time an
antiautomorphism of the group algebra and whose restriction to the Hecke algebra
H is the identity. As shown in [Steinberg 1968], the representatives ` ∈ N ∗ of the
basis elements of H have the form tẇ for elements w ∈ W such that w = w0wπ ,
where w0 is the element of maximal length in W and wπ is the element of maximal
length in the subgroup of the Weyl group generated by the reflections taken from a
subset π of the set of simple roots, and t is an element of T such that tẇ is fixed
by the antiautomorphism f . From the discussion on page 262 of [Steinberg 1968],
it follows directly that ẇt , with w = w0wπ as above, represents a basis element
of H , fixed by the antiautomorphism f , whenever t commutes with wπ .

We recall the connection between the solutions of the equation u`u1 = nvm−1

and the solutions of the equation uẇû1ŝ = ẏv̂ ẋ−1 with `= ẇs,m = ẋs ′, n = ẏs ′′,
s, s ′, s ′′ ∈ T and û1 = su1s−1

∈U, v̂ = s ′′v(s ′′)−1
∈Ux−1 , for u ∈U . For a solution

u ∈U , we have u ∈U (w, x, y) so u ∈Uτ for a K -sequence τ for w, x, y. We can
now state a formula for the structure constants [c`cm : cn] based on Theorem 4.1.

Corollary 4.2. The structure constants are given by the formula

[c`cm : cn] =
∑
τ

∑
u∈Uτ

ψ((uu1)
−1v)

where for each K -sequence τ forw, x, y, the sum is taken over solutions of the equa-
tion uẇû1ŝ= ẏv̂ ẋ−1 obtained by Theorem 4.1, with u∈Uτ and û1, v̂, ŝ satisfying the
conditions û1= su1s−1

∈U , v̂= s ′′v(s ′′)−1
∈Ux−1 and ŝ= s(ẋs ′′(s ′)−1 ẋ−1)−1

∈ T .
If there are no solutions satisfying these conditions, then the structure constant
is zero.

We end this section with two problems for further research.

1. The first problem is to apply the algorithm obtained in Theorem 4.1 and
Corollary 4.2 to obtain formulas for the structure constants [c`cm : cn] which can
be used to give a combinatorial proof of the existence of the homomorphisms fT

mentioned in the Introduction.
2. The second problem is to develop a theory of cells for Chevalley groups over

a p-adic field K , using the Bruhat decomposition for these groups obtained by
Iwahori and Matsumoto [1965].

5. Example: application to SL2(k)

Let G be the Chevalley group SL2(k) for a finite field k of odd characteristic, and
let H be the Hecke algebra of a Gelfand–Graev representation of G. Gelfand and
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Graev [1962a] stated formulas for the structure constants of the standard basis of H ,
and calculated the irreducible representations of H .

As an application of the ideas in Section 4, we shall calculate the structure
constants of H relative to the standard basis of the Hecke algebra, and apply them
to give a self-contained proof, different from the one obtained by Gelfand and
Graev, of formulas for the irreducible representations of H (for another approach,
using the Deligne-Lusztig character formula, see [Curtis 1993, §5]).

We begin with a Gelfand–Graev character ψG of G = SL2(k), for a linear
character ψ of U in general position. Then we may assume that

ψ
(1 α

0 1

)
= χ(α),

(1 α

0 1

)
∈U, α ∈ k

for a nontrivial additive character χ on k. The standard basis elements of the Hecke
algebra H of ψG are the elements

cλ = qeψnλeψ , nλ =
(

0 λ

−λ−1 0

)
, λ 6= 0, q = |k|

together with the identity element eψ and one other basis element e−1=eψ
(
−1

0
0
−1

)
eψ ,

where
eψ = |U |−1

∑
u∈U

ψ(u−1)u

as in the Introduction.

Lemma 5.1. The algebra H is commutative with identity element eψ . One has
e2
−1 = eψ , and e−1cλ = c−λ for each λ 6= 0. The other nonzero structure constants

of H for the standard basis elements are as follows. For cλ, cµ, cν as above one has

[cλcµ : cν] = χ(λµν−1
+ λµ−1ν+ λ−1µν),

and
[cλcλ : e−1] = q, [cλc−λ : eψ ] = q,

for λ,µ, ν 6= 0 in k, and q = |k|.

The structure constants are computed using the formula at the beginning of §4
and the solutions of the structure equation

u`u1 = nv(m)−1

with `,m, n ∈ N (see [Curtis 2009, §3] for more details).
The group G = SL2(k) can be viewed as the group of fixed points by the usual

Frobenius endomorphism F of the semisimple algebraic group SL2(k̄), over the
algebraic closure k̄ of k. There are two conjugacy classes of F-stable maximal
tori in SL2(k̄) with representatives in the finite group G given by the split torus
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T0 consisting of the matrices
(
µ
0

0
µ−1

)
with µ 6= 0 in k, and the Coxeter torus T1,

isomorphic to the set C of elements ξ of norm 1 in the quadratic extension of k, that
is, ξq+1

= 1. The main theorem on the representations of the Hecke algebra H of a
Gelfand–Graev representation of G states that the irreducible representations of H
factor through the group algebra of one of the maximal tori of G. More precisely,
one has:

Theorem 5.2. Each irreducible representation f of the Hecke algebra H of a
Gelfand–Graev representation of G can be factored as

f = θ ◦ fT ,

where fT is a homomorphism, independent of θ , of H into the group algebra of a
maximal torus T of G, and θ is an irreducible representation of the group algebra
of the maximal torus. The homomorphisms from H into the group algebras of the
two types of maximal tori are given as follows. For the split torus T0, consisting of
diagonal matrices with entries in k∗, the homomorphism fT0 : H→ CT0 is given by

fT0(cλ)=
∑

t

χ(λ(t + t−1))
( t 0

0 t−1

)
, t ∈ k∗, and fT0(e−1)=

(
−1 0

0 −1

)
,

where cλ is a standard basis element of H as above. For the Coxeter torus, the
homomorphism fT1 : H → CC is given by

fT1(cλ)(ξ)=−χ(λ(ξ + ξ
−1)), ξ ∈ C, and fT1(e−1)= ξ−1,

where ξ−1 is the unique element in C of order two.

Lemma 5.3. Let a, b ∈ k. Then:

(i)
∑
t∈k∗

χ(at)=−1+ qδa,0.

(ii)
∑
t∈k∗

χ(at + bt−1)=
∑
t∈k∗

χ(t + abt−1)+ qδa,0δb,0.

(iii) For the Coxeter torus C , we first note that ξ + ξ−1
∈ k because ξq+1

= 1 for
ξ ∈ C implies that ξ + ξ−1

= ξ + ξq
∈ k. Let ξ ∈ C, η ∈ Fq2 . Then∑

ξ∈C

χ(ξη+ ξqηq)=−
∑
t∈k∗

χ(t + ηηq t−1)+ δη,0q.

We refer to [Chang 1976, Lemma 1.2]. Part (iii) is proved using an analysis of
quadratic equations over k. The result, and extensions of it to F-stable maximal tori
in general finite reductive groups, are suggested by the Davenport–Hasse Theorem
on Gauss sums.
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For the proof that fT0 is a homomorphism, let cλ, cµ, cν be standard basis ele-
ments of H as above. Then

cλcµ =
∑
ν

[cλcµ : cν]cν + δλ,µqe−1+ δλ,−µqeψ ,

with the structure constants as in Lemma 5.1. We have

fT0(cλ) fT0(cµ)=
∑
t∈k∗

∑
s∈k∗

χ
(
λ(ts+ t−1s−1)

)
χ
(
µ(s+ s−1)

)( t 0
0 t−1

)
=

∑
t

∑
s

χ
(
(λt +µ)s+ (λt−1

+µ)s−1)( t 0
0 t−1

)
=

∑
t

∑
s′
χ
(
s ′+ (λ2

+µ2
+ λµ(t + t−1)(s ′)−1)

)( t 0
0 t−1

)
by Lemma 5.3(ii), and have to show this is equal to∑

t

∑
ν

[cλcµ : cν] fT0(cν)(t)
( t 0

0 t−1

)
+ δλ,µq

(
−1 0

0 −1

)
+ δλ,−µq

(1 0
0 1

)
=

∑
t

∑
ν

χ
(
λµν−1

+ λµ−1ν+ λ−1µν+ ν(t + t−1)
)( t 0

0 t−1

)
,

etc. The result is clear, by another application of Lemma 5.3(ii), in case λ 6= ±µ.
Now let λ= µ. The expressions to be checked agree except possibly at

(
−1

0
0
−1

)
.

At
(
−1

0
0
−1

)
, the first expression becomes∑

s

χ
(
λ(t + 1)s+ λ(t−1

+ 1)s−1)
with t = −1, which is q − 1 by Lemma 5.3. The second expression at

(
−1

0
0
−1

)
becomes ∑

ν

χ
(
ν+ (2λ2

+ (−2λ2))ν−1)
+ q =−1+ q

by Lemma 5.3 again, completing the proof in this case. The proof in case λ=−µ
is similar and will be omitted.

For the homomorphism from H into the group algebra of C , we first have

fT1(cλ) fT1(cµ)=
∑
ξ∈C

∑
η∈C

χ
(
λ(ξη+ (ξη)−1)+µ(η+ η−1)

)
ξ

=

∑
ξ

∑
η

χ
(
(λξ +µ)η+ (λξ−1

+µ)η−1)ξ
=−

∑
ξ

∑
t∈k∗

χ
(
t + (λξ +µ)(λξq

+µ)t−1)ξ
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by Lemma 5.3(ii). We have to show that this is equal to∑
ξ∈C

∑
ν∈k∗

χ
(
λµν−1

+λµ−1ν+λ−1µν
)

fT1(cν))ξ+δλ,µq fT1(e−1)+δλ,−µq fT1(eψ)

=−

∑
ξ∈C

∑
ν∈k∗

χ
(
ν(ξ+ξ−1

+λµ−1
+λ−1µ)+ν−1λµ

)
ξ+δλ,µq fT1(e−1)+δλ,−µq fT1(eψ)

=−

∑
ξ

∑
ν′

(
χ(ν ′+ν ′−1(ξ+ξq)λµ+λ2

+µ2)
)
ξ+δλ,µq fT1(e−1)+δλ,−µq fT1(eψ),

where we have used Lemma 5.3(ii) and Lemma 5.1 for the structure constant
formula. Together, these formulas prove the multiplication formula in case λ 6= ±µ.

In case λ= µ, it is only necessary to check the expressions at ξ = ξ−1, where
ξ−1 is the unique element of C such that ξ 2

−1 = 1, ξ−1 6= 1, so ξ−1 = −1 in Fq2 .
The contribution from the first expression is∑
η

χ
(
λ(ξ−1+1)η+λ(ξ−1

−1 +1)η−1)
=−

∑
t∈k∗

χ
(
t+ (2λ2

+λ2(ξ−1+ξ
q
−1))t

−1)
+q

by Lemma 5.3(iii). As ξ−1+ ξ
q
−1 =−2 in Fq2 , this expression is equal to 1+ q by

Lemma 5.3. For the second expression at ξ−1 we obtain

−

∑
ν′

χ
(
ν ′+ (ν ′)−1((ξ−1+ ξ

q
−1)λ

2
+ 2λ2)

)
+ q = q + 1,

completing the proof in this case.
For the remaining case λ=−µ it is only necessary to check both expressions at

ξ = 1 and this is immediate.

Corollary 5.4. The formulas for the irreducible representations of the Hecke
algebra H are

f (cλ)= θ ◦ fT (cλ)=
∑
t∈T

χ
(
λ(t + t−1)

)
θ(t), f (e−1)= θ(−1)

for the split torus T , and an irreducible representation θ of T , and

f (cλ)= π ◦ fT1(cλ)=−
∑
ξ∈C

χ
(
λ(ξ + ξ−1)

)
π(ξ), f (e−1)= π(−1)

for the Coxeter torus T1 represented by C , and an irreducible representation π of C.

The fact that all the irreducible representations of H are obtained in this way
follows by a counting argument.

Gelfand and Graev [1962a] obtained these formulas, and pointed out that they
are similar to the integral formulas for Bessel functions over C (see [Whittaker and
Watson 1927, Chapter XVII]). They mentioned that the formulas in Corollary 5.4
can be called Bessel functions over finite fields.
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The group G = SL2(k), for q = |k| odd, has two classes of Gelfand–Graev
representations. For a determination of the irreducible characters of G, and how
they appear in the Gelfand–Graev representations, including for example the subtle
cases of those of degree 1

2(q+ 1) and 1
2(q− 1), see [Gelfand and Graev 1962a, §4]

and [Digne and Michel 1991, §15.9].

6. Example: the homomorphisms fT associated with principal series
representations of finite Chevalley groups

We return to the set-up described in the Introduction, with G a Chevalley group
over a finite field k, with a Borel subgroup B = U T containing the torus T , and
Weyl group W . Let ψG be a Gelfand–Graev representation of G, and H = eCGe
the Hecke algebra associated with it, with

e = |U |−1
∑
u∈U

ψ(u−1)u

(remember that H is a commutative algebra!). In this section, we give a character the-
oretic construction of a homomorphism fT : H→ CT and the resulting irreducible
representations of H . An open problem is to find a combinatorial construction of ho-
momorphisms fT for twisted tori T . Such a result would define a family of functions
associated with the Hecke algebra H and maximal tori in G, starting from the Bessel
functions over k in the case of SL2(k) and the Coxeter torus C . A proof would
require information about the structure constants, and extensions of Lemma 5.3(iii),
which would be of independent interest. Homomorphisms fT : H → CT from
a Gelfand–Graev Hecke algebra H to the group algebra of a maximal torus are
known to exist, for a connected reductive algebraic group G defined over a finite
field, with Frobenius endomorphism F ([Curtis 1993] and [Bonnafé and Kessar
2008]), and are derived using the trace formula in `-adic cohomology.

We are concerned with the principal series representations of G. These are the
induced representations λG , where λ is a linear character of the Borel subgroup
B with U in its kernel, and the irreducible representations of G which occur as
constituents of λG for some choice of lambda. We require the following result of
Kilmoyer [1978, Proposition 6.1].

Lemma 6.1. Let ψG be a fixed Gelfand–Graev character of G. Each induced
character λG , as above, contains a unique irreducible constituent ξλ which appears
with multiplicity one in both λG and the Gelfand–Graev character ψG .

As in [Curtis 1993], we introduce the notation a for the element of the group
algebra CG given by

a =
∑
g∈G

α(g−1)g
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for a complex valued function α on G. If α is an irreducible character of G, then a
is a multiple of the central primitive idempotent in the group algebra associated
with α.

Theorem 6.2. Let lλ and xλ be the elements of the group algebra corresponding to
the induced character λG and the irreducible character ξλ as in Lemma 6.1. Then

elλ = exλ 6= 0

and affords an irreducible representation fξλ : H → C∗ of H of degree one, such
that

h(exλ)= fξλ(h)exλ, h ∈ H.

The representation fξλ is the restriction to H of the unique irreducible character of
the group algebra CG obtained from the character ξλ of G as in Lemma 6.1.

By Lemma 6.1, the class function lλ = xλ+ y where y is a linear combination of
central primitive idempotents corresponding to irreducible characters of G which do
not appear in the Gelfand–Graev representation ψG . Then e y= 0, so elλ= exλ 6= 0
and exλ is a nonzero multiple of the primitive central idempotent in H affording the
irreducible representation fξλ of H of degree one, as in the statement of the theorem,
by [Curtis and Reiner 1981, Corollary 11.26 and Theorem 11.25]. The last statement
of the theorem also follows from [Curtis and Reiner 1981, Theorem 11.25].

Theorem 6.3. Let λ be an irreducible character of B with U in its kernel. Let ξλ
be the irreducible character of G which appears with multiplicity one in λG and in
the Gelfand–Graev character ψG , and let fξλ : H → C be the irreducible repre-
sentation of the Hecke algebra H of the Gelfand–Graev representation ψG defined
in Theorem 6.2. There exists a unique homomorphism of algebras fT : H → CT ,
independent of λ, such that, for each linear character λ of T , one has

fξλ(h)= λ̃ ◦ fT (h), h ∈ H,

where λ̃ is the extension of λ : T →C to the group algebra CT . The homomorphism
fT is given by the formula fT (cn)=

∑
t∈T fT (cn)(t)t , where

fT (cn)(t)= ind n|B|−1
|U |−1

∑
g∈G,u∈U,gung−1=tu′

ψ(u−1),

for a standard basis element cn of H and gung−1
= tu′, t ∈ T, u′ ∈U , is an element

of B which projects onto the element t ∈ T by the homomorphism B→ T . If there
are no solutions to the equation gung−1

= tu′, then fT (cn)(t)= 0.

By the proof of Theorem 6.2, the representation fξλ of the Hecke algebra H is
the restriction to H of the unique irreducible character (see Lemma 6.1) ξλ extended
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to the group algebra CG. Moreover, the proof of Theorem 6.2 shows that

fξλ(h)= λ
G(h), h ∈ H,

with λG extended to the group algebra, because elλ = exλ and exλ affords the
representation fξλ of H = eCGe ⊆ CG. In more detail, h lies in H , and is viewed
as an element of the group algebra CG. Then λG(h) is the trace of the action of h on
a module M affording the induced character λG . As he = h, the trace is computed
on the module eM , which is one dimensional, and affords the representation fξλ
of H , by Theorem 6.2.

For a standard basis element cn of H , we have

cn = ind n ene = |U |−1
∑

u1nu2∈UnU

ψ(u−1
1 u−1

2 )u1nu2,

by [Curtis and Reiner 1981, Proposition 11.30(i)]. Then, with λG extended to the
group algebra, we obtain

λG(cn)=|U |−1
∑

u1nu2∈UnU

ψ(u−1
1 u−1

2 )λG(u1nu2)= ind n|U |−1
∑
u∈U

ψ(u−1)λG(un).

We have used the fact that the double coset UnU contains ind n one sided cosets.
For the induced character we have, by [Curtis and Reiner 1981, 10.3],

λG(un)= |B|−1
∑
g∈G

λ̇(g−1ung),

where λ̇(x)= 0 if x /∈ B. Then λ̇(g−1ung) 6= 0 only if g−1ung = u′t with u′ ∈U
and t ∈ T , and in that case, λ̇(g−1ung)= λ(t). Therefore

λG(cn)= ind n|B|−1
|U |−1

∑
t∈T

∑
g−1ung=u′t

ψ(u−1)λ(t).

Then, for t ∈ T ,

fT (cn)(t)= ind n|B|−1
|U |−1

∑
g−1ung=u′t

ψ(u−1)

is independent of λ, and we have

fξλ(h)= λ̃ ◦ fT (h), h ∈ H.

The facts that fT : H → CT is a homomorphism of algebras and is a uniquely
determined linear map with the factorization property stated in the theorem both
follow from the orthogonality relations for the linear characters λ of T . This
completes the proof of the theorem.

It is a nice exercise to derive the formula for the homomorphism fT0 : H→ CT0

given in Theorem 5.2 from the statement of the preceding theorem.
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Theorem 6.3, for principal series representations of finite Chevalley groups, is a
special case of Theorem 4.2 in [Curtis 1993] for representations RT,θ of connected
reductive algebraic groups defined over finite fields. The point of including it here
is that in the special case of principal series representations, it is possible to give a
combinatorial proof of the existence of the homomorphisms fT .
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