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Dedicated to the memory of Professor Robert Steinberg.

In this paper we construct free resolutions of a class of closed subvarieties of
affine spaces (the so-called “opposite big cells” of Grassmannians). Our class
covers the determinantal varieties, whose resolutions were first constructed
by A. Lascoux (Adv. in Math. 30:3 (1978), 202–237). Our approach uses
the geometry of Schubert varieties. An interesting aspect of our work is its
connection to the computation of the cohomology of homogeneous bundles
(that are not necessarily completely reducible) on partial flag varieties.

1. Introduction

A classical problem in commutative algebra and algebraic geometry is to describe
the syzygies of the defining ideals of interesting varieties. Let k ≤ n≤m be positive
integers. The space Dk of m × n matrices (over a field k) of rank at most k is a
closed subvariety of the mn-dimensional affine space of all m× n matrices. When
k = C, a minimal free resolution of the coordinate ring k[Dk] as a module over
the coordinate ring of the mn-dimensional affine space (i.e., the mn-dimensional
polynomial ring) was constructed by A. Lascoux [1978]; see also [Weyman 2003,
Chapter 6].

In this paper, we construct free resolutions for a larger class of singularities, viz.,
Schubert singularities, i.e., the intersection of a singular Schubert variety and the
“opposite big cell” inside a Grassmannian. The advantage of our method is that it is
algebraic group-theoretic, and is likely to work for Schubert singularities in more
general flag varieties. In this process, we have come up with a method to compute
the cohomology of certain homogeneous vector bundles (which are not completely
reducible) on flag varieties. We will work over k= C.

Let N =m+ n. Let GLN =GLN (C) be the group of N × N invertible matrices.
Let BN be the Borel subgroup of all upper-triangular matrices and B−N the opposite
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Borel subgroup of all lower-triangular matrices in GLN . Let P be the maximal
parabolic subgroup corresponding to omitting the simple root αn , i.e., the subgroup
of GLN comprising the matrices in which the (i, j)-th entry (i.e., in row i and
column j) is zero, if n+ 1≤ i ≤ N and 1≤ j ≤ n; in other words,

P =
{[

An×n Cn×m

0m×n Em×m

]
∈ GLN

}
.

We have a canonical identification of the Grassmannian of n-dimensional subspaces
of kN with GLN /P. Let W and WP be the Weyl groups of GLN and of P, respec-
tively; note that W = SN (the symmetric group) and WP = Sn×Sm . For w ∈W/WP ,
let XP(w)⊆ GLN /P be the Schubert variety corresponding to w (i.e., the closure
of the BN -orbit of the coset wP ∈ GLN /P, equipped with the canonical reduced
scheme structure). The B−N -orbit of the coset (id ·P) in GLN /P is denoted by
O−GLN /P , and is usually called the opposite big cell in GLN /P; it can be identified
with the mn-dimensional affine space. (See Section 2.2.)

Write W P for the set of minimal representatives (under the Bruhat order) in W
for the elements of W/WP . For 1≤ r ≤ n− 1, we consider certain subsets Wr of
W P (Definition 3.3); there is w ∈Wn−k such that Dk = XP(w)∩ O−GLN /P . Note
that for any w ∈ W P, XP(w) ∩ O−GLN /P is a closed subvariety of O−GLN /P . Our
main result is a description of the minimal free resolution of the coordinate ring
of XP(w) ∩ O−GLN /P as a module over the coordinate ring of O−GLN /P for every
w ∈Wr . This latter ring is a polynomial ring. We now outline our approach.

First we recall the Kempf–Lascoux–Weyman “geometric technique” of construct-
ing minimal free resolutions. Suppose that we have a commutative diagram of
varieties

(1-1)

Z �
� //

q ′

��

A× V

q
��

// V

Y �
� // A

where A is an affine space, Y a closed subvariety of A and V a projective variety
and q is the projection to the first factor. Suppose further that the (necessarily
proper) map q ′ is birational, and that the inclusion Z ↪→ A× V is a subbundle
(over V ) of the trivial bundle A× V. Let ξ be the dual of the quotient bundle on V
corresponding to Z . Then the derived direct image Rq ′

∗
OZ is quasi-isomorphic to a

minimal complex F• with

Fi =
⊕
j≥0

H j (V,
∧i+ j

ξ)⊗C R(−i − j).

Here R is the coordinate ring of A; it is a polynomial ring and R(k) refers to
twisting with respect to its natural grading. If q ′ is such that the natural map
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OY → Rq ′
∗
OZ is a quasi-isomorphism, (for example, if q ′ is a desingularization of

Y and Y has rational singularities), then F• is a minimal free resolution of C[Y ]
over the polynomial ring R.

The difficulty in applying this technique in any given situation is two-fold: one
must find a suitable morphism q ′ : Z → Y such that the map OY → Rq ′

∗
OZ is a

quasi-isomorphism and such that Z is a vector bundle over a projective variety V ;
and, one must be able to compute the necessary cohomology groups. We overcome
this for opposite cells in a certain class (which includes the determinantal varieties)
of Schubert varieties in a Grassmannian, in two steps.

As the first step, we need to establish the existence of a diagram as above. This
is done using the geometry of Schubert varieties. We take A = O−GLN /P and

Y = YP(w) := XP(w)∩ O−GLN /P .

Let P̃ be a parabolic subgroup with BN ⊆ P̃ ( P. The inverse image of O−GLN /P
under the natural map GLN /P̃→ GLN /P is O−GLN /P × P/P̃. Let w̃ be the repre-
sentative of the coset w P̃ in W P̃. Then XP̃(w̃)⊆ GLN /P̃ (the Schubert subvariety
of GLN /P̃ associated to w̃) maps properly and birationally onto XP(w). We may
choose P̃ to ensure that XP̃(w̃) is smooth. Let ZP̃(w̃) be the preimage of YP(w) in
XP̃(w̃). We take Z = ZP̃(w̃). Then V, which is the image of Z under the second
projection, is a smooth Schubert subvariety of P/P̃. The vector bundle ξ on V that
we obtain is the restriction of a homogeneous bundle on P/P̃. Thus we get:

(1-2)

ZP̃(w̃)

q ′

��

� � // O−GLN /P × V

q
��

// V

YP(w)
� � // O−

See Theorem 3.7 and Corollary 3.9. In this diagram, q ′ is a desingularization of
YP(w). Since it is known that Schubert varieties have rational singularities, we have
that the map OY → Rq ′

∗
OZ is a quasi-isomorphism, so F• is a minimal resolution.

As the second step, we need to determine the cohomology of the homogeneous
bundles

∧t
ξ over V. There are two ensuing issues: computing cohomology of

homogeneous vector bundles over Schubert subvarieties of flag varieties is dif-
ficult, and furthermore, these bundles are not usually completely reducible, so
one cannot apply the Borel–Weil–Bott theorem directly. We address the former
issue by restricting our class; if w ∈ Wr (for some r) then V will equal P/P̃.
Regarding the latter issue, we inductively replace P̃ by larger parabolic subgroups
(still inside P), such that at each stage, the computation reduces to that of the
cohomology of completely reducible bundles on Grassmannians; using various
spectral sequences, we are able to determine the cohomology groups that determine
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the minimal free resolution. See Proposition 5.5 for the key inductive step. In
contrast, in Lascoux’s construction of the resolution of determinantal ideals, one
comes across only completely reducible bundles; therefore, one may use the Borel–
Weil–Bott theorem to compute the cohomology of the bundles

∧t
ξ . The idea of

using P1-fibrations for the computation of cohomology on flag varieties and their
Schubert varieties goes back to M. Demazure [1968; 1974]; see also the related
“one-step construction” of Kempf [1976].

Computing cohomology of homogeneous bundles, in general, is difficult, and is
of independent interest; we hope that our approach would be useful in this regard.
The best results, as far as we know, are due to G. Ottaviani and E. Rubei [2006],
which deal with general homogeneous bundles on Hermitian symmetric spaces.
The only Hermitian symmetric spaces in Type A are the Grassmannians, so their
results do not apply to our situation.

Since the opposite big cell O−GLN /P intersects every BN -orbit of GLN /P, the
variety YP(w) captures all the singularities of XP(w) for every w ∈ W. In this
paper, we describe a construction of a minimal free resolution of C[YP(w)] over
C[O−GLN /P ]. We hope that our methods could shed some light on the problem of
construction of a locally free resolution of OXP (w) as an OGLN /P -module.

The paper is organized as follows. Section 2 contains notations and conven-
tions (Section 2.1) and the necessary background material on Schubert varieties
(Section 2.2) and homogeneous bundles (Section 2.3). In Section 3, we discuss prop-
erties of Schubert desingularization, including the construction of Diagram (1-2).
Section 4 is devoted to a review of the Kempf–Lascoux–Weyman technique and
its application to our problem. Section 5 explains how the cohomology of the
homogeneous bundles on certain partial flag varieties can be computed; Section 6
gives some examples. Finally, in Section 7, we describe Lascoux’s resolution in
terms of our approach and describe the multiplicity and Castelnuovo–Mumford
regularity of C[YP(w)].

2. Preliminaries

In this section, we collect various results about Schubert varieties, homogeneous
bundles, and the Kempf–Lascoux–Weyman geometric technique.

2.1. Notation and conventions. We collect the symbols used and the conventions
adopted in the rest of the paper here. For details on algebraic groups and Schubert
varieties, the reader may refer to [Borel 1991; Jantzen 2003; Billey and Lakshmibai
2000; Seshadri 2007].

Let m ≥ n be positive integers and N =m+n. We denote by GLN (respectively,
BN , B−N ) the group of all (respectively, upper-triangular, lower-triangular) invertible
N × N matrices over C. The Weyl group W of GLN is isomorphic to the group
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SN of permutations of N symbols and is generated by the simple reflections si ,
for 1 ≤ i ≤ N − 1, which correspond to the transpositions (i, i + 1). For w ∈ W,
its length is the smallest integer l such that w = si1 · · · sil as a product of simple
reflections. For every 1 ≤ i ≤ N − 1, there is a minimal parabolic subgroup Pi

containing si (thought of as an element of GLN ) and a maximal parabolic subgroup
Pı̂ not containing si . Any parabolic subgroup can be written as PÂ :=

⋂
i∈A Pı̂ for

some A ⊂ {1, . . . , N − 1}. On the other hand, for A ⊆ {1, . . . , N − 1} write PA for
the subgroup of GLN generated by Pi , i ∈ A. Then PA is a parabolic subgroup and
P{1,...,N−1}\A = PÂ.

The following is fixed for the rest of this paper:

(a) P is the maximal parabolic subgroup Pn̂ of GLN ;

(b) for 1≤ s ≤ n− 1, P̃s is the parabolic subgroup P{1,...,s−1,n+1,...,N−1} = ∩
n
i=s Pı̂

of GLN ;

(c) for 1≤ s ≤ n− 1, Qs is the parabolic subgroup P{1,...,s−1} = ∩
n−1
i=s Pı̂ of GLn .

We write the elements of W in one-line notation: (a1, . . . , aN ) is the permutation
i 7→ ai . For any A⊆ {1, . . . , N−1}, define WPA to be the subgroup of W generated
by {si : i ∈ A}. By W PA we mean the subset of W consisting of the minimal
representatives (under the Bruhat order) in W of the elements of W/WPA . For
1 ≤ i ≤ N , we represent the elements of W Pı̂ by sequences (a1, . . . , ai ) with
1≤ a1 < · · ·< ai ≤ N since under the action of the group WPı̂ , every element of
W can be represented minimally by such a sequence.

For w= (a1, a2, . . . , an)∈W P, let r(w) be the integer r such that ar ≤ n< ar+1.
We identify GLN = GL(V ) for some N -dimensional vector-space V. Let A :=
{i1 < i2 < · · ·< ir } ⊆ {1, . . . , N − 1}. Then GLN /PÂ is the set of all flags

0= V0 ( V1 ( V2 ( · · ·( Vr ( V

of subspaces Vj of dimension i j inside V. We call GLN /PÂ a flag variety. If
A = {1, . . . , N − 1} (i.e., PÂ = BN ), then we call the flag variety a full flag
variety; otherwise, a partial flag variety. The Grassmannian Gri,N of i-dimensional
subspaces of V is GLN /Pı̂ .

Let P̃ be any parabolic subgroup containing BN and τ ∈ W. The Schubert
variety X P̃(τ ) is the closure inside GLN /P̃ of BN · eτ where eτ is the coset τ P̃,
endowed with the canonical reduced scheme structure. Hereafter, when we write
XP̃(τ ), we mean that τ is the representative in W P̃ of its coset. The opposite
big cell O−GLN /P̃ in GLN /P̃ is the B−N -orbit of the coset (id ·P̃) in GLN /P̃. Let
YP̃(τ ) := XP̃(τ )∩ O−GLN /P̃ ; we refer to YP̃(τ ) as the opposite cell of XP̃(τ ).

We will write R+, R−, R+P̃ , R−P̃, to denote, respectively, positive and negative
roots for GLN and for P̃. We denote by εi the character that sends the invertible
diagonal matrix with t1, . . . , tn on the diagonal to ti .
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2.2. Précis on GLn and Schubert varieties. Let P̃ be a parabolic subgroup of
GLN with BN ⊆ P̃ ⊆ P. We will use the following proposition extensively in the
sequel.

Proposition 2.2.1. Write U−P̃ for the negative unipotent radical of P̃.

(a) O−GLN /P̃ can be naturally identified with U−P̃ P̃/P̃.

(b) For

z =
[

An×n Cn×m

Dm×n Em×m

]
∈ GLN ,

z P ∈ O−GLN /P if and only if A is invertible.

(c) For 1 ≤ s ≤ n − 1, the inverse image of O−GLN /P under the natural map
GLN /P̃s → GLN /P is isomorphic to O−GLN /P × P/P̃s as schemes. Every
element of O−GLN /P × P/P̃s is of the form[

An×n 0n×m

Dm×n Im

]
mod P̃s ∈ GLN /P̃s .

Moreover, two matrices[
An×n 0n×m

Dm×n Im

]
and

[
A′n×n 0n×m

D′m×n Im

]
in GLN represent the same element modulo P̃s if and only if there exists a matrix
q ∈ Qs such that A′ = Aq and D′ = Dq.

(d) For 1≤ s ≤ n−1, P/P̃s is isomorphic to GLn/Qs . In particular, the projection
map O−GLN /P × P/P̃→ P/P̃s is given by[

An×n 0n×m

Dm×n Im

]
mod P̃s 7−→ A mod Q̃ ∈ GLn/Q ' P/P̃s .

Proof. (a) Note that U−P̃ is the subgroup of GLN generated by the (one-dimensional)
root subgroups Uα, α ∈ R− \ R−P̃ and that U−

P̃
P̃/P̃ = B−N P̃/P̃. Hence under the

canonical projection GLN → GLN /P, g 7→ g P, the subgroup U−P is mapped onto
O−GLN /P̃ . It is easy to check that this is an isomorphism.

(b) Suppose that z P ∈ O−GLN /P . By (a), we see that there exist matrices A′n×n , C ′n×m ,
D′m×n , and E ′m×m such that

z1 :=

[
In 0n×m

D′m×n Im

]
∈U−P , z2 :=

[
A′n×n C ′n×m
0m×n E ′m×m

]
∈ P

and z =
[

An×n Cn×m

Dm×n Em×m

]
= z1z2.
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Hence A = A′ is invertible. Conversely, if A is invertible, then we may write
z = z1z2 where

z1 :=

[
In 0

D A−1 Im

]
∈U−P and z2 :=

[
A C
0 E − D A−1C

]
.

Since z ∈ GLN , z2 ∈ P.

(c) Let z ∈U−P P ⊆ GLN . Then we can write z = z1z2 uniquely with z1 ∈U−P and
z2 ∈ P. For, if[

In 0n×m

Dm×n Im

] [
An×n Cn×m

0m×n Em×m

]
=

[
In 0n×m

D′m×n Im

] [
A′n×n C ′n×m
0m×n E ′m×m

]
,

then A = A′, C = C ′, D A = D′A′, and DC + E = D′C ′+ E ′, which yields that
D′ = D (since A = A′ is invertible, by (b)) and E = E ′. Hence U−P ×C P =U−P P .
Therefore, for any parabolic subgroup P ′ ⊆ P, U−P ×C P/P ′ = U−P P/P ′. The
asserted isomorphism now follows by taking P ′ = P̃s .

For the next statement, let[
An×n Cn×m

Dm×n Em×m

]
∈ GLN

with A invertible (which we may assume by (b)). Then we have a decomposition
(in GLN ) [

A C
D E

]
=

[
A 0n×m

D Im

] [
In A−1C

0m×n E − D A−1C

]
.

Hence [
A C
D E

]
≡

[
A 0n×m

D Im

]
mod P̃s .

Finally, [
An×n 0n×m

Dm×n Im

]
≡

[
A′n×n 0n×m

D′m×n Im

]
mod P̃s

if and only if there exist matrices q ∈ Qs , q ′n×m , and q̃n×n in GLm such that[
A′ 0
D′ I

]
=

[
A 0
D I

] [
q q ′

0m×n q̃

]
,

which holds if and only if q ′ = 0, q̃ = Im , A′ = Aq , and D′ = Dq (since A and A′

are invertible).

(d) There is a surjective morphism of C-group schemes P→ GLn ,[
An×n Cn×m

0m×n Em×m

]
7−→ A.
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This induces the required isomorphism. Notice that the element[
An×n Cn×m

Dm×n Em×m

]
mod P̃s ∈ O−GLN /P × P/P̃s

decomposes (uniquely) as[
In 0

D A−1 Im

]([
A C
0 E

]
mod P̃s

)
Hence it is mapped to A mod Qs ∈ GLn/Qs . Now use (c). �

Discussion 2.2.2. Let P̃ = P ̂{i1,...,it } with 1 ≤ i1 < · · · < it ≤ N − 1. Then using
Proposition 2.2.1(a) and its proof, O−GLN /P̃ can be identified with the affine space of
lower-triangular matrices with possible nonzero entries xi j at row i and column j
where (i, j) is such that there exists l ∈ {i1, . . . , it } such that j ≤ l < i ≤ N . To see
this, note (from the proof of Proposition 2.2.1(a)) that we are interested in those
(i, j) such that the root εi −ε j belongs to R− \ R−P̃ . Since R−P̃ =

⋂t
k=1 R−Pîk

, we see
that we are looking for (i, j) such that εi − ε j ∈ R− \ R−Pl̂

for some l ∈ {i1, . . . , it }.
For the maximal parabolic group Pl̂ , we have R−\R−Pl̂

={εi−ε j | 1≤ j ≤ l< i ≤ N }.
Hence dim O−GLN /P̃ = |R

−
\ R−P̃ |.

Let α = εi − ε j ∈ R− \ R−P̃ and l ∈ {i1, . . . , it }. Then the Plücker coordinate
p(l)sα on the Grassmannian GLN /Pl̂ lifts to a regular function on GLN /P̃ , which we
denote by the same symbol. Its restriction to O−G/P̃ is the l × l-minor with column
indices {1, 2, . . . , l} and row indices {1, . . . , j − 1, j + 1, . . . , l, i}. In particular,

(2.2.3) xi j = p( j)
sα |O−G/P̃

for every α = εi − ε j ∈ R− \ R−P̃ .

Example 2.2.4. Figure 1 shows the shape of O−GLN /P̃s
for some 1≤ s ≤ n−1. The

rectangular region labelled with a circled D is O−GLN /P . The trapezoidal region
labelled with a circled A is O−P/P̃s

. In this case, the xi j appearing in (2.2.3) are
exactly those in the regions labelled A and B.

Remark 2.2.5. XP̃(w) is an irreducible (and reduced) variety of dimension equal
to the length of w. (Here we use that w is the representative in W P̃.) It can be
seen easily that under the natural projection GLN /BN → GLN /P̃, X BN (w) maps
birationally onto XP̃(w) for every w ∈ W P̃. It is known that Schubert varieties
are normal, Cohen–Macaulay and have rational singularities; see, e.g., [Brion and
Kumar 2005, Section 3.4].

2.3. Homogeneous bundles and representations. Let Q be a parabolic subgroup
of GLn . We collect here some results about homogeneous vector bundles on GLn/Q.
Most of these results are well known, but for some of them, we could not find a
reference, so we give a proof here for the sake of completeness. Online notes of
Ottaviani [1995] and of D. Snow [1994] discuss the details of many of these results.
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�
��
A

�
��
D

Figure 1. Shape of O−GLN /P̃s
.

Let L Q and UQ be respectively the Levi subgroup and the unipotent radical
of Q. Let E be a finite-dimensional vector-space on which Q acts on the right; the
vector-spaces that we will encounter have natural right action.

Definition 2.3.1. Define GLn ×
Q E := (GLn ×E)/∼, where ∼ is the equivalence

relation (g, e) ∼ (gq, eq) for every g ∈ GLn , q ∈ Q, and e ∈ E . Then πE :

GLn ×
Q E → GLn/Q, (g, e) 7→ gQ, is a vector bundle called the vector bundle

associated to E (and the principal Q-bundle GLn→GLn/Q). For g ∈GLn, e ∈ E ,
we write [g, e] ∈ GLn ×

Q E for the equivalence class of (g, e) ∈ GLn ×E under ∼.
We say that a vector bundle π : E→GLn/Q is homogeneous if E has a GLn-action
and π is GLn-equivariant, i.e., for every y ∈ E, π(g · y)= g ·π(y).

In this section, we abbreviate GLn ×
Q E as Ẽ . It is known that E is homogeneous

if and only if E ' Ẽ for some Q-module E . (If this is the case, then E is the fibre
of E over the coset Q.) A homogeneous bundle Ẽ is said to be irreducible (respec-
tively, indecomposable, completely reducible) if E is an irreducible (respectively
indecomposable, completely reducible) Q-module. It is known that E is completely
reducible if and only if UQ acts trivially and that E is irreducible if and only if
additionally it is irreducible as a representation of L Q . See [Snow 1994, Section 5]
or [Ottaviani 1995, Section 10] for the details.

Let σ : GLn/Q→ Ẽ be a section of πE . Let g ∈ GLn; write [h, f ] = σ(gQ).
There exists a unique q ∈ Q such that h = gq . Let e = f q−1. Then [g, e] = [h, f ].
If [h, f ′] = [h, f ], then f ′ = f , so the assignment g 7→ e defines a function
φ : GLn→ E . This is Q-equivariant in the following sense:

(2.3.2) φ(gq)= φ(g)q, for every q ∈ Q and g ∈ GLn .
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Conversely, any such map defines a section of πE . The set of sections H0(GLn/Q, Ẽ)
of πE is a finite-dimensional vector-space with (αφ)(g)= α(φ(g)) for every α ∈C,
φ a section of πE , and g ∈ GLn .

Note that GLn acts on GLn/Q by multiplication on the left; setting h · [g, e] =
[hg, e] for g, h ∈GLn and e ∈ E , we extend this to Ẽ . We can also define a natural
GLn-action on H0(GLn/Q, Ẽ) as follows. For any map φ : GLn→ E , set h ◦φ to
be the map g 7→ φ(h−1g). If φ satisfies (2.3.2), then for every q ∈ Q and g ∈ GLn ,
(h ◦ φ)(gq) = φ(h−1gq) = (φ(h−1g))q = ((h ◦ φ)(g))q, so h ◦ φ also satisfies
(2.3.2). The action of GLn on the sections is on the left:

(h2h1) ◦φ = [g 7→ φ(h−1
1 h−1

2 g)] = [g 7→ (h1 ◦φ)(h−1
2 g)] = h2 ◦ (h1 ◦φ).

In fact, Hi (GLn/Q, Ẽ) is a GLn-module for every i .
Suppose now that E is one-dimensional. Then Q acts on E by a character λ; we

denote the associated line bundle on GLn/Q by Lλ.

Discussion 2.3.3. Let Q = P̂i1,...,it
, with 1 ≤ i1 < · · · < it ≤ n − 1. A weight

λ is said to be Q-dominant if when we write λ =
∑n

i=1 aiωi in terms of the
fundamental weights ωi , we have, ai ≥ 0 for all i 6∈ {i1, . . . , it }, or equivalently,
the associated line bundle (defined above) Lλ on Q/Bn has global sections. If we
express λ as

∑n
i=1 λiεi , then λ is Q-dominant if and only if for every 0 ≤ j ≤ t ,

λi j+1 ≥ λi j+2 ≥ · · · ≥ λi j+1 where we set i0 = 0 and ir+1 = n. We will write
λ= (λ1, . . . , λn) to mean that λ=

∑n
i=1 λiεi . Every finite-dimensional irreducible

Q-module is of the form H0(Q/Bn, Lλ) for a Q-dominant weight λ. Hence the
irreducible homogeneous vector bundles on GLn/Q are in correspondence with
Q-dominant weights. We describe them now. If Q = Pn̂−i , then GLn/Q = Gri,n .
(Recall that, for us, the GLn-action on Cn is on the right.) On Gri,n , we have the
tautological sequence

(2.3.4) 0→Ri → Cn
⊗OGri,n →Qn−i → 0

of homogeneous vector bundles. The bundle Ri is called the tautological subbundle
(of the trivial bundle Cn) and Qn−i is called the tautological quotient bundle.
Every irreducible homogeneous bundle on Gri,n is of the form S(λ1,...,λn−i )Q∗n−i ⊗

S(λn−i+1,...,λn)R∗i for some Pn̂−i -dominant weight λ. Here Sµ denotes the Schur
functor associated to the partition µ. Now suppose that Q = P̂i1,...,it

with 1 ≤
i1 < · · ·< it ≤ n− 1. Since the action is on the right, GLn/Q projects to Grn−i,n

precisely when i = i j for some 1 ≤ j ≤ t . For each 1 ≤ j ≤ t , we can take the
pullback of the tautological bundles Rn−i j and Qi j to GLn/Q from GLn /Pı̂ j . The
irreducible homogeneous bundle corresponding to a Q-dominant weight λ is

S(λ1,...,λi1 )
Ui1 ⊗S(λi1+1,...,λi2 )

(Rn−i1/Rn−i2)
∗
⊗

· · ·⊗S(λit−1+1,...,λit )
(Rn−it−1/Rn−it )

∗
⊗S(λit+1,...,λin )

(Rn−it )
∗.
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See [Weyman 2003, Section 4.1]. Hereafter, we will write Ui = Q∗i . Moreover,
abusing notation, we will use Ri , Qi , Ui etc. for these vector bundles on any (partial)
flag variety on which they would make sense.

A Q-dominant weight is called (i1, . . . , ir )-dominant in [op. cit., p. 114]. Al-
though our definition looks like Weyman’s definition, we should keep in mind
that our action is on the right. We only have to be careful when we apply the
Borel–Weil–Bott theorem (more specifically, Bott’s algorithm). In this paper, our
computations are done only on Grassmannians. If µ and ν are partitions, then
(µ, ν) will be Q-dominant (for a suitable Q), and will give us the vector bundle
SµQ∗⊗Sν R∗ (this is where the right-action of Q becomes relevant) and to compute
its cohomology, we will have to apply Bott’s algorithm to the Q-dominant weight
(ν, µ). (In [op. cit.], one would get SµR∗⊗Sν Q∗ and would apply Bott’s algorithm
to (µ, ν).) See, for example, the proof of Proposition 5.4 or the examples that
follow it.

Proposition 2.3.5. Let Q1 ⊆ Q2 be parabolic subgroups and E a Q1-module. Let
f : GLn/Q1→ GLn/Q2 be the natural map. Then for every i ≥ 0,

Ri f∗(GLn ×
Q1 E)= GLn ×

Q2 Hi (Q2/Q1,GLn ×
Q1 E).

Proof. For Q2 (respectively, Q1), the category of homogeneous vector bundles on
GLn/Q2 (respectively, GLn/Q1) is equivalent to the category of finite-dimensional
Q2-modules (respectively, finite-dimensional Q1-modules). Now, the functor f ∗

from the category of homogeneous vector bundles over GLn/Q2 to that over
GLn/Q1 is equivalent to the restriction functor ResQ2

Q1
. Hence their correspond-

ing right-adjoint functors f∗ and the induction functor IndQ2
Q1

are equivalent; one
may refer to [Hartshorne 1977, II.5, p. 110] and [Jantzen 2003, I.3.4, “Frobenius
Reciprocity”] to see that these are indeed adjoint pairs. Hence, for homogeneous
bundles on GLn/Q1, Ri f∗ can be computed using Ri IndQ2

Q1
. On the other hand,

note that IndQ2
Q1
(−) is the functor H0(Q2/Q1,GLn ×

Q1−) on Q1-modules, which
follows from [op. cit., I.3.3, Equation (2)]. The proposition now follows. �

3. Properties of Schubert desingularization

This section is devoted to proving some results on smooth Schubert varieties in
partial flag varieties. In Theorem 3.5, we show that opposite cells of certain smooth
Schubert varieties in GLN /P̃ are linear subvarieties of the affine variety O−GLN /P̃ ,
where P̃ = P̃s for some 1≤ s ≤ n− 1. Using this, we show in Theorem 3.7 that if
XP(w) ∈ GLN /P is such that there exists a parabolic subgroup P̃ ( P such that
the birational model XP̃(w̃) ⊆ GLN /P̃ of XP(w) is smooth (we say that XP(w)

has a Schubert desingularization if this happens) then the inverse image of YP(w)
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inside XP̃(w̃) is a vector bundle over a Schubert variety in P/P̃. This will give us
a realisation of Diagram (1-2).

Recall the following result about the tangent space of a Schubert variety; see
[Billey and Lakshmibai 2000, Chapter 4] for details.

Proposition 3.1. Let τ ∈ W P̃. Then the dimension of the tangent space of XP̃(τ )

at eid is
#{sα | α ∈ R− \ R−P̃ and τ ≥ sα in W/WP̃}.

In particular, XP̃(τ ) is smooth if and only if

dim XP̃(τ )= #{sα | α ∈ R− \ R−P̃ and τ ≥ sα in W/WP̃}.

Notation 3.2. We adopt the following notation: Letw= (a1, a2, . . . , an)∈W P. Let
r = r(w), i.e., the index r such that ar ≤ n < ar+1. Let 1≤ s ≤ r . We write P̃ = P̃s .
Let w̃ be the minimal representative of w in W P̃. Let cr+1 > · · ·> cn be such that
{cr+1, . . . , cn}= {1, . . . , n}\{a1, . . . , ar }; let w′ := (a1, . . . , ar , cr+1, . . . , cn)∈ Sn ,
the Weyl group of GLn .

Our concrete descriptions of free resolutions will be for the following class of
Schubert varieties.

Definition 3.3. Let 1≤ r ≤ n− 1. Let

Wr = {(n− r +1, . . . , n, ar+1, . . . , an−1, N ) ∈W P
: n < ar+1 < · · ·< an−1 < N }.

The determinantal variety of (m×n)matrices of rank at most k can be realised as
YP(w), w = (k+ 1, . . . , n, N − k+ 1, . . . N ) ∈Wn−k [Seshadri 2007, Section 1.6].

Proposition 3.4. XP̃s (w̃) is smooth in the following situations:

(a) w ∈W P arbitrary and s = 1 [Kempf 1971].

(b) w ∈Wr for some 1≤ r ≤ n− 1 and s = r .

Proof. For both (a) and (b): Let wmax ∈ W (= SN ) be the maximal representative
of w̃. We claim that

wmax = (as, as−1, . . . , a1, as+1, as+2, . . . , an, bn+1, . . . , bN ) ∈W.

Assume the claim. Then wmax is a 4231- and 3412-avoiding element of W ; hence
XBN (wmax) is smooth; see [Lakshmibai and Sandhya 1990; Billey and Lakshmibai
2000, 8.1.1]. Since wmax is the maximal representative (in W ) of w̃ P̃s , we see that
XBN (wmax) is a fibration over XP̃s

(w̃) with smooth fibres P̃s/BN ; therefore XP̃s
(w̃)

is smooth.
To prove the claim, we need to show that XPı̂ (wmax)= XPı̂ (w̃) for every s≤ i ≤n

and that wmax is the maximal element of W with this property. This follows, since
for every τ := (c1, . . . , cN ) ∈W and for every 1≤ i ≤ N , XPı̂ (τ )= XPı̂ (τ

′) where
τ ′ ∈W Pı̂ is the element with c1, . . . , ci written in the increasing order. �
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Theorem 3.5. Identify O−G/P̃ with O−G/P×O−P/P̃ as in Figure 1, with O−G/P thought
of as Mm,n , the space of all m× n matrices. If w ∈W P is arbitrary and s = 1 (see
Proposition 3.4(a)) then we have an identification of YP̃(w̃) with Vw ×V ′w, where
Vw is the linear subspace of O−G/P given by

xi j = 0 if
{

1≤ j ≤ r(w), or
r(w)+ 1≤ j ≤ n− 1 and a j − n < i ≤ m.

and V ′w is the linear subspace of O−P/P̃ given by

xi j = 0 for every 1≤ j ≤ r(w) and for every i ≥max{a j + 1, s+ 1}.

On the other hand, ifw∈Wr for some 1≤r≤n−1 and s=r (see Proposition 3.4(b))
then we have an identification of YP̃(w̃) with Vw × O−P/P̃ , where Vw is the linear
subspace of O−G/P given by

xi j = 0 if
{

1≤ j ≤ r, or
r + 1≤ j ≤ n− 1 and a j − n < i ≤ m.

Proof. Consider the first case: w arbitrary and s = 1. Since a1 < · · · < an , we
see that for every j ≤ n and for every i ≥max{a j + 1, s+ 1}, the reflection (i, j)
equals (1, 2, . . . , j − 1, i) in W/WP̂ , while w̃ equals (a1, . . . , a j ). Hence (i, j) is
not smaller than w̃ in W/WP̂ , so the Plücker coordinate p( j)

(i, j) vanishes on XP̃(w̃).
Therefore for such (i, j), xi j ≡ 0 on YP̃(w̃), by (2.2.3).

On the other hand, note that the reflections (i, j) with j ≤ n and i ≥max{a j +1,
s + 1} are precisely the reflections sα with α ∈ R− \ R−P̃ and w̃ 6≥ sα in W/WP̃ .
Since XP̃(w̃) is smooth, this implies (see Proposition 3.1) that the codimension of
YP̃(w̃) in O−GLN /P̃ equals

#
{
(i, j) | j ≤ n and i ≥max{a j + 1, s+ 1}

}
so YP̃(w̃) is the linear subspace of O−GLN /P̃ defined by the vanishing of{

xi j | j ≤ n and i ≥max{a j + 1, s+ 1}
}
.

This gives the asserted identification of YP̃(w̃).
Now the second case: w ∈Wr for some 1 ≤ r ≤ n − 1 and s = r . Note that

XQs (w
′) = GLn /Bn , because of the choice of w and s. Therefore, an argument

similar to the one above, along with counting dimensions, shows that YP̃(w̃) is
defined inside O−G/P̃ by

xi j = 0 if
{

1≤ j ≤ r, or
r + 1≤ j ≤ n− 1 and a j − n < i ≤ m.

This gives the asserted identification of YP̃(w̃). �
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Let ZP̃(w̃) := YP(w)×XP (w) XP̃(w̃)= (O
−

GLN /P × P/P̃)∩ X P̃(w̃). Write p for
the composite map

ZP̃(w̃)→ O−GLN /P × P/P̃→ P/P̃,

where the first map is the inclusion (as a closed subvariety) and the second map is
projection. Using Proposition 2.2.1(c) and (d), we see that

p
([

An×n 0n×m

Dm×n Im

]
mod P̃

)
= A mod Qs .

(A is invertible by Proposition 2.2.1(b).) Using the injective map

Bn −→ BN , A 7→
[

A 0n×m

0m×n Im

]
,

Bn can be thought of as a subgroup of BN . With this identification, we have the
following Proposition:

Proposition 3.6. ZP̃(w̃) is Bn-stable (for the action on the left by multiplication).
Further, p is Bn-equivariant.

Proof. Let

z :=
[

An×n 0n×m

Dm×n Im

]
∈ GLN

be such that z P̃ ∈ ZP̃(w̃). Since X BN (w̃)→ XP̃(w̃) is surjective, we may assume
that z (mod BN ) ∈ X BN (w̃), i.e., z ∈ BN w̃BN . Then for every A′ ∈ Bn ,[

A′ 0n×m

0m×n Im

]
z =

[
A′A 0
D Im

]
=: z′.

Then z′∈ BN w̃BN , so z′ (mod P̃)∈ XP̃(w̃). By Proposition 2.2.1(b), we have that A
is invertible, and hence AA′ is invertible; this implies (again by Proposition 2.2.1(b))
that z′ (mod P̃)∈ ZP̃(w̃). Thus ZP̃(w̃) is Bn-stable. Also, p(A′z)= p(z′)= A′A=
A′ p(z). Hence p is Bn-equivariant. �

Theorem 3.7. With notation as above,

(a) The natural map XP̃(w̃)→ XP(w) is proper and birational. In particular, the
map ZP̃(w̃)→ YP(w) is proper and birational.

(b) XQs(w
′) is the fibre of the natural map ZP̃(w̃)→ YP(w) at eid ∈ YP(w) (with w′

as in Notation 3.2).

(c) Suppose that w and s satisfy the conditions of Proposition 3.4. Then XQs(w
′) is

the image of p. Further, p is a fibration with fibre isomorphic to Vw.
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(d) Suppose that w and s satisfy the conditions of Proposition 3.4. Then p identifies
ZP̃(w̃) as a subbundle of the trivial bundle O−GLN /P × XQs(w

′), which arises as
the restriction of the vector bundle on GLn/Qs associated to the Qs-module Vw
(which, in turn, is a Qs-submodule of O−GLN /P ).

We believe that all the assertions above hold without the hypothesis that XP̃(w̃)

is smooth.

Proof. (a) The map XP̃(w̃) ↪→ GLN /P̃ → GLN /P is proper and its (scheme-
theoretic) image is XP(w); hence XP̃(w̃)→ XP(w) is proper. Birationality fol-
lows from the fact that w̃ is the minimal representative of the coset w P̃ (see
Remark 2.2.5).

(b) The fibre at eid ∈ YP(w) of the map YP̃(w̃)→ YP(w) is {0}×V ′w (contained in
Vw × V ′w = YP̃(w̃)). Since ZP̃(w̃) is the closure of YP̃(w̃) inside O−GLN /P × P/P̃
and X Qs(w

′) is the closure of V ′w inside P/P̃ (note that, as a subvariety of O−P/P̃ ,
YQs(w

′) is identified with V ′w), we see that fibre of ZP̃(w̃)→ YP(w) at eid ∈ YP(w)

is XQs(w
′).

(c) From Theorem 3.5 it follows that

YP̃(w̃)=

{[
An×n 0n×m

Dm×n Im

]
mod P̃

∣∣∣ A ∈ V ′w and D ∈ Vw
}
.

Hence p(YP̃(w̃))=V ′w⊆ XQs(w
′). Since YP̃(w̃) is dense inside ZP̃(w̃) and XQs(w

′)

is closed in GLn/Qs , we see that p(Z P̃r(w̃)) ⊆ XQs(w
′). The other inclusion

XQs (w
′)⊆ p(Z P̃r(w̃)) follows from (b). Hence, p(Z P̃r(w̃)) equals XQs(w

′).
Next, to prove the second assertion in (c), we shall show that for every A ∈ GLn

with A mod Qs ∈ XQs(w
′),

(3.8) p−1(A mod Qs)=

{[
A 0n×m

D Im

]
mod P̃

∣∣∣ D ∈ Vw
}
.

Towards proving this, we first observe that p−1(eid) equals Vw (in view of
Theorem 3.5). Next, we observe that every Bn-orbit inside XQs(w

′) meets V ′w
(which equals YQs(w

′)); further, p is Bn-equivariant (see Proposition 3.6). The
assertion (3.8) now follows.

(d) First observe that for the action of right multiplication by GLn on O−G/P (being
identified with Mm,n , the space of m× n matrices), Vw is stable; we thus get the
homogeneous bundle GLn ×

QsVw → GLn/Qs (Definition 2.3.1). Now to prove
the assertion about Z P̃s(w̃)) being a vector bundle over XQs(w

′), we will show that
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there is a commutative diagram given as below, with ψ an isomorphism:

ZP̃s(w̃)

φ

,,
p

$$

ψ **
(GLn ×

QsVw)|XQs(w
′)

��

// GLn ×
QsVw

α

��
XQs(w

′)
β // GLn/Qs

The map α is the homogeneous bundle map and β is the inclusion. Define φ by

φ :

[
A 0n×m

D Im

]
mod P̃ 7−→ (A, D)/∼ .

Using Proposition 2.2.1(c) and (3.8), we conclude the following: φ is well defined
and injective; β · p = α ·φ; hence, by the universal property of products, the map
ψ exists; and, finally, the injective map ψ is in fact an isomorphism (by dimension
considerations). �

Corollary 3.9. If XP̃(w̃) is smooth, then we have the following realisation of the
diagram in (1-2):

ZP̃(w̃)

q ′

��

� � // O−GLN /P × XQs(w
′)

q
��

// XQs(w
′)

YP(w)
� � // O−GLN /P

.

Example 3.10. This example shows that even with r = s, XQs(w
′) need not be

smooth for arbitrary w ∈W P. Let n =m = 4 and w= (2, 4, 7, 8). Then r = 2; take
s = 2. Then we obtain wmax = (4, 2, 7, 8, 5, 6, 3, 1), which has a 4231 pattern.

4. Free resolutions

The Kempf–Lascoux–Weyman geometric technique. We now summarise the geo-
metric technique of computing free resolutions, following [Weyman 2003, Chap-
ter 5]. Consider (1-1). There is a natural map f : V → Grr,d (where r = rkV Z and
d = dim A) such that the inclusion Z ⊆ A× V is the pullback of the tautological
sequence (2.3.4); here rkV Z denotes the rank of Z as a vector bundle over V,
i.e., rkV Z = dim Z − dim V . Let ξ = ( f ∗Q)∗. Write R for the polynomial ring
C[A] and m for its homogeneous maximal ideal. (The grading on R arises as
follows. In (1-1), A is thought of as the fibre of a trivial vector bundle, so it has
a distinguished point, its origin. Now, being a subbundle, Z is defined by linear
equations in each fibre; i.e., for each v ∈ V, there exist s := (dim A− rkV Z) linearly
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independent linear polynomials `v,1, . . . , `v,s that vanish along Z and define it. Now
Y = {y ∈ A | there exists v ∈ V such that `v,1(y)= · · · = `v,s(y)= 0}. Hence Y is
defined by homogeneous polynomials. This explains why the resolution obtained
below is graded.) Let m be the homogeneous maximal ideal, i.e., the ideal defining
the origin in A.

Theorem 4.1 [Weyman 2003, basic theorem 5.1.2]. With notation as above, there
is a finite complex (F•, ∂•) of finitely generated graded free R-modules that is
quasi-isomorphic to Rq ′

∗
OZ , with

Fi =
⊕
j≥0

H j (V,
∧i+ j

ξ)⊗C R(−i − j),

and ∂i (Fi )⊆mFi−1. Furthermore, the following are equivalent:

(a) Y has rational singularities; i.e., Rq ′
∗
OZ is quasi-isomorphic to OY ;

(b) F• is a minimal R-free resolution of C[Y ], i.e., F0' R and F−i = 0 for all i > 0.

We give a sketch of the proof because one direction of the equivalence is only
implicit in the proof of [op. cit., 5.1.3].

Sketch of the proof. One constructs a suitable q∗-acyclic resolution I• of the Koszul
complex that resolves OZ as an OA×V -module so that the terms in q∗I• are finitely
generated free graded R-modules. One places the Koszul complex on the negative
horizontal axis and thinks of I• as a second-quadrant double complex, thus to
obtain a complex G• of finitely generated free R-modules whose homology at
the i-th position is R−i q∗OZ . Then, using standard homological considerations,
one constructs a subcomplex (F•, ∂•) of G• that is quasi-isomorphic to G• with
∂i (Fi )⊆mFi−1 (we say that F• is minimal if this happens), and since Hi (G•)= 0
for every |i | � 0, Fi = 0 for every |i | � 0. Now using the minimality of F•, we see
that Ri q∗OZ = 0 for every i ≥ 1 if and only if F−i = 0 for every i ≥ 1. When one of
these conditions holds, then F• becomes a minimal free resolution of q∗OZ which
is a finitely generated OY -module, and therefore q∗OZ = OY if and only if q∗OZ is
generated by one element as an OY -module if and only if q∗OZ is a generated by
one element as an R-module if and only if F0 is a free R-module of rank one if
and only if F0 = R(0) since H0(V,

∧0
ξ)⊗ R is a summand of F0. �

Our situation. We now apply Theorem 4.1 to our situation. We keep the notation
of Theorem 3.7. Theorem 4.1 and Corollary 3.9 yield the following result:

Theorem 4.2. Suppose that XP̃s(w̃) is smooth. Write Uw for the restriction to
XQs(w

′) of the vector bundle on GLn/Qs associated to the Qs-module (O−GLN/P/Vw)
∗.

(This is the dual of the quotient of O−GLN /P × XQs(w
′) by ZP̃s(w̃).) Then we have a
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minimal R-free resolution (F•, ∂•) of C[YP(w)] with

Fi =
⊕
j≥0

H j (XQs(w
′),
∧i+ jUw)⊗C R(−i − j).

In the first case, Qs = Bn , so p makes ZP̃1
(w̃) a vector bundle on a smooth

Schubert subvariety XB1
(w′) of GLn /Bn . In the second case, w′ is the maximal

word in Sn , so XQr
(w′)= GLn/Qr ; see Discussion 4.3 for further details.

Computing the cohomology groups required in Theorem 4.2 in the general
situation of Kempf’s desingularization (Proposition 3.4(a)) is a difficult problem,
even though the relevant Schubert variety XBn

(w′) is smooth. Hence we are forced
to restrict our attention to the subset of W P considered in Proposition 3.4(b).

The stipulation that, for w ∈Wr , w sends n to N is not very restrictive. This
can be seen in two (related) ways. Suppose that w does not send n to N . Then,
firstly, XP(w) can be thought of as a Schubert subvariety of a smaller Grass-
mannian. Or, secondly, Uw will contain the trivial bundle Un as a summand, so
H0(GLn/Qr , ξ) 6= 0, i.e., R(−1) is a summand of F1. In other words, the defining
ideal of YP(w) contains a linear form.

Discussion 4.3. We give some more details of the situation in Proposition 3.4(b)
that will be used in the next section. Let

w = (n− r + 1, n− r + 2, . . . , n, ar+1, . . . , an−1, N ) ∈Wr .

The space of (m× n) matrices is a GLn-module with a right action; the subspace
Vw is Qr -stable under this action. Thus Vw is a Qr -module, and gives an associated
vector bundle (GLn ×

QrVw) on GLn/Qr . The action on the right of GLn on the
space of (m × n) matrices breaks by rows; each row is a natural n-dimensional
representation of GLn . For each 1≤ j ≤m, there is a unique r ≤ i j ≤ n−1 such that
ai j < j + n ≤ ai j+1. (Note that ar = n and an = N .) In row j , Vw has rank n− i j ,
and is a subbundle of the natural representation. Hence the vector bundle associated
to the j -th row of Vw is the pullback of the tautological subbundle (of rank (n− i j ))
on Grn−i j,n . We denote this by Rn−i j . Therefore (GLn ×

QrVw) is the vector bundle
Rw :=

⊕m
j=1 Rn−i j . Let Qw :=

⊕m
j=1 Qi j where Qi j is the tautological quotient

bundle corresponding to Rn−i j . Then the vector bundle Uw on GLn/Qr that was
defined in Theorem 4.2 is Q∗w.

5. Cohomology of homogeneous vector bundles

It is, in general, difficult to compute the cohomology groups H j (GLn/Qr ,
∧tUw) in

Theorem 4.2 for arbitrary w ∈Wr . In this section, we will discuss some approaches.
We believe that this is a problem of independent interest. Our method involves
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replacing Qr inductively by increasingly bigger parabolic subgroups, so we give
the general setup below.

Setup 5.1. Let 1 ≤ r ≤ n − 1. Let mr , . . . ,mn−1 be nonnegative integers such
that mr + · · · + mn−1 = m. Let Q be a parabolic subgroup of GLn such that
Q ⊆ Pı̂ for every r ≤ i ≤ n− 1 such that mi > 0. We consider the homogeneous
vector bundle ξ =

⊕n−1
i=r Umi

i on GLn/Q, We want to compute the vector-spaces
H j (GLn/Qr ,

∧t
ξ).

Lemma 5.2. Let f : X ′→ X be a fibration with fibre some Schubert subvariety Y
of some (partial) flag variety. Then f∗OX ′ = OX and Ri f∗OX ′ = 0 for every i ≥ 1. In
particular, for every locally free coherent sheaf L on X , Hi (X ′, f ∗L)= Hi (X, L)
for every i ≥ 0.

Proof. The first assertion is a consequence of Grauert’s theorem [Hartshorne 1977,
III.12.9] and the fact (see, for example, [Seshadri 2007, Theorem 3.2.1]) that

Hi (Y,OY )=

{
C if i = 0,
0 otherwise.

The second assertion follows from the projection formula and the Leray spectral
sequence. �

Proposition 5.3. Let mi , r ≤ i ≤ n− 1 be as in Setup 5.1. Let

Q′ =
⋂

r≤i≤n−1
mi>0

Pı̂ .

Then H∗(GLn/Q,
∧t
ξ)= H∗(GLn/Q′,

∧t
ξ) for every t.

Proof. The assertion follows from Lemma 5.2, noting that
∧t
ξ on GLn/Q is the

pullback of
∧t
ξ on GLn/Q′, under the natural morphism GLn/Q→ GLn/Q′. �

Proposition 5.4. For all j, H j (GLn/Q, ξ)= 0.

Proof. We want to show that H j (GLn/Q,Ui )= 0 for every r ≤ i ≤ n− 1 and for
every j . By Lemma 5.2 (and keeping Discussion 2.3.3 in mind), it suffices to show
that H j (Grn−i,n,Ui )= 0 for every r ≤ i ≤ n− 1 and for every j . To this end, we
apply the Bott’s algorithm [Weyman 2003, (4.1.5)] to the weight

α := (0, . . . , 0︸ ︷︷ ︸
n−i

, 1, 0, . . . , 0︸ ︷︷ ︸
i−1

).

Note that there is a permutation σ such that σ ·α = α, yielding the proposition. �
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An inductive approach. We are looking for a way to compute H∗(GLn/Q,
∧t
ξ)

for a homogeneous bundle
ξ =

⊕
i∈A

U⊕mi
i

where A ⊆ {r, . . . , n− 1} and mi > 0 for every i ∈ A. Using Proposition 5.3, we
assume that Q = PÂ. (Using Proposition 5.8 below, we may further assume that
mi ≥ 2, but this is not necessary for the inductive argument to work.)

Let j be such that Q ⊆ P̂ and Q j (equivalently Uj ) be of least dimension; in
other words, j is the smallest element of A. If Q= P̂ (i.e., |A| = 1), then the

∧t
ξ is

completely reducible, and we may use the Borel–Weil–Bott theorem to compute the
cohomology groups. Hence suppose that Q 6= P̂ ; write Q = Q′ ∩ P̂ nontrivially,
with Q′ being a parabolic subgroup. Consider the diagram

GLn/Q
p2 //

p1

��

GLn/P̂

GLn/Q′

Note that
∧t
ξ decomposes as a direct sum of bundles of the form (p1)

∗η ⊗

(p2)
∗(
∧t1U⊕m j

j ) where η is a homogeneous bundle on GLn/Q′. We must compute

H∗
(
GLn/Q, (p1)

∗η⊗ (p2)
∗(
∧t1U⊕m j

j )
)
.

Using the Leray spectral sequence and the projection formula, we can compute this
from

H∗
(
GLn/Q′, η⊗ R∗(p1)∗(p2)

∗(
∧t1U⊕m j

j )
)
.

Now
∧t1U⊕m j

j , in turn, decomposes as a direct sum of Sµ Uj , so we must compute

H∗
(
GLn/Q′, η⊗ R∗(p1)∗(p2)

∗ Sµ Uj
)
.

The Leray spectral sequence and the projection formula respect the various direct-
sum decompositions mentioned above. It would follow from Proposition 5.5 below
that for each µ, at most one of the R p(p1)∗(p2)

∗ Sµ Uj is nonzero, so the abutment
of the spectral sequence is, in fact, an equality.

Proposition 5.5. With notation as above, let θ be a homogeneous bundle on
GLn/P̂ . Then Ri p1∗ p2

∗θ is the locally free sheaf associated to the vector bundle
GLn ×

Q′ Hi (Q′/Q, p2
∗θ |Q′/Q) over GLn/Q′.

Proof. This proposition follows from Proposition 2.3.5. �

We hence want to determine the cohomology of the restriction of Sµ Uj on Q′/Q.
It follows from the definition of j that Q′/Q is a Grassmannian whose tautological
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quotient bundle and its dual are, respectively, Q j |Q′/Q and Uj |Q′/Q . We can therefore
compute Hi (Q′/Q,Sµ Uj |Q′/Q) using the Borel–Weil–Bott theorem.

Example 5.6. Suppose that n = 6 and that Q = P̂{2,4}. Then we have the diagram

GL6 /Q
p2 //

p1

��

GL6 /P2̂

GL6 /P4̂

The fibre of p1 is isomorphic to P4̂/Q which is a Grassmannian of two-dimensional
subspaces of a four-dimensional vector-space. Let µ= (µ1, µ2) be a weight. Then
we can compute the cohomology groups H∗(P4̂/Q, Sµ U2|P4̂/Q) applying the Borel–
Weil–Bott theorem [Weyman 2003, (4.1.5)] to the sequence (0, 0, µ1, µ2). Note that
H∗(P4̂/Q, Sµ U2|P4̂/Q) is, if it is nonzero, SλW where W is a four-dimensional
vector-space that is the fibre of the dual of the tautological quotient bundle of
GL4 /P4̂ and λ is a partition with at most four parts. Hence, by Proposition 5.5, we
see that Ri (p1)∗(p2)

∗ Sµ U2 is, if it is nonzero, Sλ U4 on GL6 /P4̂ .

We summarise the above discussion as a theorem:

Theorem 5.7. For w ∈Wr the modules in the free resolution of C[YP(w)] given in
Theorem 4.2 can be computed.

We end this section with some observations.

Proposition 5.8. Suppose that there exists i such that r + 1≤ i ≤ n− 1 and such
that ξ contains exactly one copy of Ui as a direct summand. Let

ξ ′ = Ui−1⊕

m⊕
j=1
i j 6=i

Ui j .

Then H∗(GLn/Q,
∧t
ξ)= H∗(GLn/Q,

∧t
ξ ′) for every t.

Proof. Note that ξ ′ is a subbundle of ξ with quotient Ui/Ui−1. We claim that
Ui/Ui−1 ' Lωi−1−ωi , where for 1 ≤ j ≤ n, ω j is the j-th fundamental weight.
Assume the claim. Then we have an exact sequence

0−→
∧t
ξ ′ −→

∧t
ξ −→

∧t−1
ξ ′⊗ Lωi−1−ωi −→ 0

Let
Q′ =

⋂
r≤l≤n−1

l 6=i

Pl̂ ;

then Q = Q′ ∩ Pı̂ . Let p : GLn/Q→ GLn/Q′ be the natural projection; its fibres
are isomorphic to Q′/Q 'GL2 /BN 'P1. Note that

∧t−1
ξ ′⊗ Lωi−1 is the pullback

along p of some vector bundle on GLn/Q′; hence it is constant on the fibres of p.
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On the other hand, Lωi is the ample line bundle on GLn /Pı̂ that generates its
Picard group, so L−ωi restricted to any fibre of p is O(−1). Hence the bundle∧t−1

ξ ′ ⊗ Lωi−1−ωi on any fibre of p is a direct sum of copies of O(−1) and
hence it has no cohomology. By Grauert’s theorem [Hartshorne 1977, III.12.9],
Ri p∗(

∧t−1
ξ ′⊗ Lωi−1−ωi )= 0 for every i , so, using the Leray spectral sequence, we

conclude that H∗(GLn/Q,
∧t−1

ξ ′⊗ Lωi−1−ωi )= 0. This gives the proposition.
Now to prove the claim, note that Ui/Ui−1 ' (Rn−i+1/Rn−i )

∗. Let e1, . . . , en be
a basis for Cn such that the subspace spanned by ei , . . . , en is BN -stable for every
1≤ i ≤ n. (Recall that we take the right action of BN on Cn .) Hence Rn−i+1/Rn−i

is the invertible sheaf on which BN acts through the character ωi −ωi−1, which
implies the claim. �

Remark 5.9 (determinantal case). Recall (see the paragraph after Definition 3.3)
that YP(w)= Dk if w = (k+ 1, . . . , n, N − k+ 1, . . . N ) ∈Wn−k . In this case,

Uw = U⊕(m−k+1)
n−k ⊕

n−1⊕
i=n−k+1

Ui .

Therefore

H∗(GLn/Qn−k,
∧
∗
ξ)= H∗(GLn/Qn−k,

∧
∗U⊕m

n−k)= H∗(GLn /Pn̂−k ,
∧
∗U⊕m

n−k)

where the first equality comes from a repeated application of Proposition 5.8 and
the second one follows by Lemma 5.2, applied to the natural map f : GLn/Q→
GLn /Pn̂−k . Hence our approach recovers Lascoux’s resolution of the determinantal
ideal [Lascoux 1978]; see also [Weyman 2003, Chapter 6].

6. Examples

We illustrate our approach with two examples. Firstly, we compute the resolution
of a determinantal variety using the inductive method from the last section.

Example 6.1 (n×m matrices of rank ≤ k). If k = 1, then w = (2, . . . , n, n+m),
and, hence, ξ = U⊕m

n−1. Since this would not illustrate the inductive argument, let us
take k = 2.

Consider the ideal generated by the 3×3 minors of a 4×3 matrix of indeterminates.
It is generated by four cubics, which have a linear relation. Hence minimal free
resolution of the quotient ring looks like

(6.2) 0−→ R(−4)⊕3
−→ R(−3)⊕4

−→ R −→ 0.

Note that w = (3, 4, 6, 7) and ξ = U⊕2
2
⊕

U3. Write G = GL4 and Q = P ̂{2,3}.
Then j = 2, Q′ = P3̂ and Q′/Q ' GL3 /P2̂ ' P2. Now there is a decomposition∧t

ξ =
⊕
|µ|≤t

Sµ′ C2
⊗Sµ U2⊗

∧t−|µ|U3
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Hence we need to consider only µ= (µ1, µ2)≤ (2, 2). On Q′/Q ' GL3 /P2̂, we
would apply the Borel–Weil–Bott theorem [op. cit., (4.1.5)] to the weight (0, µ1, µ2)

to compute the cohomology of Sµ Uj . Thus we see that we need to consider only
µ= (0, 0), µ= (2, 0) and µ= (2, 1). From this, we conclude that

Ri (p1)∗(p2)
∗(Sµ′ C2

⊗Sµ U2)=


OG/P3̂

if i = 0 and µ= (0, 0),∧2U3 if i = 1 and µ= (2, 0),
(
∧3U3)

⊕2 if i = 1 and µ= (2, 1),
0 otherwise.

We have to compute the cohomology groups of (Ri (p1)∗(p2)
∗(Sµ′ C2

⊗ Sµ U2))⊗∧t−|µ|U3 on G/P3̂. Now, H∗(G/P3̂,
∧iU3)= 0 for every i > 0. Further∧2U3⊗U3 '

∧3U3⊕S2,1 U3 for µ= (2, 0) and t = 3,∧2U3⊗
∧2U3 ' S2,1,1 U3⊕S2,2 U3 for µ= (2, 0) and t = 4,∧2U3⊗
∧3U3 ' S2,2,1 U3 for (µ= (2, 0) or µ= (2, 1)) and t = 5,∧3U3⊗U3 ' S2,1,1 U3 for µ= (2, 1) and t = 4,∧3U3⊗
∧3U3 ' S2,2,2 U3 for µ= (2, 1) and t = 6.

Again, by applying the Borel–Weil–Bott theorem [loc. cit.] for G/P3̂, we see that
S2,2 U3, S2,2,1 U3 and S2,2,2 U3 have no cohomology. Therefore we conclude that

H j (G/Q,
∧t
ξ)=


∧0

C⊕4 if t = 0 and j = 0,∧3
C⊕4 if t = 3 and j = 2,

(
∧4

C⊕4)⊕3 if t = 4 and j = 2,
0 otherwise.

These ranks agree with the expected ranks from (6.2).

Example 6.3. Let n = 6, m = 6, k = 4 and w = (5, 6, 8, 9, 11, 12). For this,
Q = P ̂{2,...,5} and Uw = U⊕2

2 ⊕ U3 ⊕ U⊕2
4 ⊕ U5. After applying Propositions 5.3

and 5.8, we reduce to the situation Q = P̂{2,4} and ξ = U⊕3
2 ⊕ U⊕3

4 . Write ξ =
(C3
⊗C U2)⊕ (C

3
⊕U4). Now we project away from GL6 /P2̂.

GL6 /Q
p2 //

p1

��

GL6 /P2̂

GL6 /P4̂

The fibre of p1 is isomorphic to P4̂/Q which is a Grassmannian of two-dimensional
subspaces of a four-dimensional vector-space. We use the spectral sequence

(6.4) H j (G/P4̂ , Ri p1∗
∧t
ξ) H⇒ Hi+ j (G/Q,

∧t
ξ).
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Observe that
∧t
ξ =

⊕
t1

∧t1(C3
⊗C U2)⊗

∧t−t1(C3
⊗C U4); the above spectral

sequence respects this decomposition. Further, using the projection formula, we
see that we need to compute

H j(G/P4̂ , (R
i p1∗

∧t1(C3
⊗C U2))⊗

∧t−t1(C3
⊗C U4)

)
.

Now, Ri p1∗
∧t1(C3

⊗C U2) is the vector bundle associated to the P4̂ -module

Hi (P4̂/Q,
∧t1(C3

⊗C U2)|P4̂/Q)= Hi (P4̂/Q,
∧t1(C3

⊗C U2|P4̂/Q)).

Note that U2|P4̂/Q is the dual of the tautological quotient bundle of P4̂/Q'GL4 /P2̂;
we denote this also, by abuse of notation, by U2. Note, further, that

∧t1(C3
⊗CU2)=⊕

µ`t1 Sµ′ C3
⊗Sµ U2. We need only considerµ≤ (3, 3). From the Borel–Weil–Bott

theorem [Weyman 2003, (4.1.5)], it follows that

Hi (P4̂/Q, Sµ U2)=


∧0
(C⊕

4
) if i = 0 and µ= (0, 0),∧3

(C⊕
4
) if i = 2 and µ= (3, 0),∧4

(C⊕
4
) if i = 2 and µ= (3, 1),

0, otherwise.

Therefore we conclude that

Ri p1∗
∧t1(C3

⊗C U2)=


OGL4 /P2̂

if i = 0 and t1 = 0,∧3U4 if i = 2 and t1 = 3,
(
∧4U4)

⊕3 if i = 2 and t1 = 4,
0 otherwise.

Therefore for each pair (t, t1) at most one column of the summand of the spectral
sequence (6.4) is nonzero; hence the abutment in (6.4) is in fact an equality.

Fix a pair (t, t1) and an integer l. Then we have

Hl(G/Q,
∧t
ξ)= Hl(G/P4̂ ,

∧t
(C3
⊗U4))

⊕Hl−2(G/P4̂ ,
∧3U4⊗

∧t−3
(C3
⊗U4))

⊕Hl−2(G/P4̂ , (
∧4U4)

⊕3
⊗
∧t−4

(C3
⊗U4)).

Write hi (−)= dimC Hi (−). Note that
∧t
(C3
⊗U4)'

⊕
λ`t Sλ′ C3

⊗Sλ U4, by the
Cauchy formula. Write dµ′ = dimC Sµ′ C⊕3. Thus, from the above equation, we
see, that for every l and for every t ,

(6.5) hl(
∧t
ξ)=

∑
µ`t

dµ′hl(Sµ U4)

+

∑
µ`t−3

dµ′hl−2(
∧3U4⊗Sµ U4)+ 3

∑
µ`t−4

dµ′hl−2(
∧4U4⊗Sµ U4)



FREE RESOLUTIONS OF SOME SCHUBERT SINGULARITIES 323

(Here the cohomology is calculated over GL6 /Q on the left-hand-side and over
GL6 /P4̂ on the right-hand-side.) For any µ, if dµ′ 6= 0, then µ1 ≤ 3. Any µ that
contributes a nonzero integer to the right-hand-side of (6.5) has at most four parts
and m1 ≤ 3. Further, if Sλ U4 is an irreducible summand of a representation on the
right-hand-side of (6.5) with nonzero cohomology, then λ has at most four parts
and is such that λ1 ≤ 4. Therefore for λ≤ (4, 4, 4, 4), we compute the cohomology
using the Borel–Weil–Borel theorem:

Hi (G/P4̂ , Sλ U4)=



∧0
(C⊕6) if i = 0 and λ= 0,

S(λ1−2,1,1,λ2,λ3,λ4)(C
⊕6) if i = 2, λ1 ∈ {3, 4},

and (λ2, λ3, λ4)≤ (1, 1, 1),
S(2,2,2,2,λ3,λ4)(C

⊕6) if i = 4, λ1 = λ2 = 4,
and (λ3, λ4)≤ (2, 2),

0 otherwise.

We put these together to compute hl(
∧t
ξ); the result is listed in Table 1. From this

we get the following resolution:

0 // R(−12)26 // R(−11)108 //
R(−6)10

⊕

R(−10)153
//

R(−5)36

⊕

R(−7)36

⊕

R(−9)70

//
R(−3)45

⊕

R(−5)53
//
R(−2)20

⊕

R(−4)18
// R // 0.

Note, indeed, that dim YQ(w)= dim XQ(w)= 4+ 4+ 5+ 5+ 6+ 6= 30 and that
dim O−GLN /P = 6 · 6 = 36, so the codimension is 6. Since the variety is Cohen–
Macaulay, the length of a minimal free resolution is 6.

7. Further remarks

A realisation of Lascoux’s resolution for determinantal varieties. We already saw
in Remark 5.9 that when YP(w)= Dk , computing H∗(GLn/Qn−k,

∧
∗
ξ) is reduced,

by a repeated application of Proposition 5.8 to computing the cohomology groups
of (completely reducible) vector bundles on the Grassmannian GLn /Pn̂−k . We thus
realise Lascoux’s resolution of the determinantal variety using our approach.

In this section, we give yet another desingularization of Dk (for a suitable choice
of the parabolic subgroup) so that the variety V of (1-2) is in fact a Grassmannian.
Recall (the paragraph after Definition 3.3 or Remark 5.9) that YP(w) = Dk if
w = (k+ 1, . . . , n, N − k+ 1, . . . N ) ∈Wn−k . Let P̃ = P ̂{n−k,n} ⊆GLN . Let w̃ be
the representative of the coset w P̃ in W P̃.

Proposition 7.1. XP̃(w̃) is smooth and the natural map XP̃(w̃)→ XP(w) is proper
and birational, i.e., XP̃(w̃) is a desingularization of XP(w).
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t h0(
∧t
ξ) h1(

∧t
ξ) h2(

∧t
ξ) h3(

∧t
ξ) h4(

∧t
ξ) h5(

∧t
ξ) h6(

∧t
ξ)

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 20 0 0 0 0
4 0 0 45 0 0 0 0
5 0 0 36 0 18 0 0
6 0 0 10 0 53 0 0
7 0 0 0 0 36 0 0
8 0 0 0 0 0 0 0
9 0 0 0 0 0 0 70
10 0 0 0 0 0 0 153
11 0 0 0 0 0 0 90
12 0 0 0 0 0 0 26

Table 1. Ranks of the relevant cohomology groups.

Proof. The proof is similar to that of Proposition 3.4. Let

wmax = (k+ 1, . . . , n, N − k+ 1, . . . N , N − k, . . . , n+ 1, k, . . . , 1) ∈W.

Then XBN (wmax) is the inverse image of XP̃(w̃) under the natural morphism
GLN /BN → GLN /P̃, and that wmax is a 4231 and 3412-avoiding element of
W = SN . �

We have P/P̃ ∼= GLn /Pn̂−k . As in Section 3, we have the following. Denoting
by Z the preimage inside XP̃(w̃) of YP(w) (under the restriction to XP̃(w̃) of
the natural projection G/P̃ → G/P), we have Z ⊂ O− × P/P̃, and the image
of Z under the second projection is V := P/P̃ (∼= GLn /Pn̂−k). The inclusion
Z ↪→ O− × V is a subbundle (over V ) of the trivial bundle O− × V . Denoting
by ξ the dual of the quotient bundle on V corresponding to Z , we have that the
homogeneous bundles

∧i+ j
ξ on GLn /Pn̂−k are completely reducible, and hence

may be computed using Bott’s algorithm.

Multiplicity. We describe how the free resolution obtained in Theorem 4.2 can
be used to get an expression for the multiplicity multid(w) of the local ring of the
Schubert variety XP(w)⊆ GLN /P at the point eid. Notice that YP(w) is an affine
neighbourhood of eid. We noticed in Section 4 that YP(w) is a closed subvariety of
O−GLN /P defined by homogeneous equations. In O−GLN /P , eid is the origin; hence
in YP(w) it is defined by the unique homogeneous maximal ideal of C[YP(w)].
Therefore C[YP(w)] is the associated graded ring of the local ring of C[YP(w)] at
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eid (which is also the local ring of XP(w) at eid). Hence multid(w) is the normalised
leading coefficient of the Hilbert series of C[YP(w)].

Observe that the Hilbert series of C[YP(w)] can be obtained as an alternating
sum of the Hilbert series of the modules Fi in Theorem 4.2. Write h j (−) =

dimC H j (X Qs (w
′),−) for coherent sheaves on XQs (w

′). Then the Hilbert series of
C[YP(w)] is

(7.2)
1

(1− t)mn

mn∑
i=0

dim XQs (w
′)∑

j=0

(−1)i h j (
∧i+ jUw)t i+ j.

We may harmlessly change the range of summation in (7.2) to −∞ < i, j <∞;
this is immediate for j , while for i , we note that the proof of Theorem 4.1 implies
that h j (

∧i+ jUw) = 0 for every i < 0 and for every j . Hence we may write the
summation in (7.2) as (with k = i + j)

(7.3)
∞∑

k=0

(−1)k tk
∞∑
j=0

(−1) j h j (
∧kUw) =

rkUw∑
k=0

(−1)kχ(
∧kUw)tk.

Since
∧kUw is also a Tn-module, where Tn is the subgroup of diagonal matrices

in GLn , one may decompose
∧kUw as a sum of rank-one Tn-modules and use the

Demazure character formula to compute the Euler characteristics above.
It follows from generalities on Hilbert series (see, e.g., [Bruns and Herzog 1993,

Section 4.1]) that the polynomial in (7.3) is divisible by (1− t)c where c is the
codimension of YP(w) in O−GLN /P , and that after we divide it and substitute t = 1
in the quotient, we get multid(w). This gives an expression for eid(w) apart from
those of [Lakshmibai and Weyman 1990; Kreiman and Lakshmibai 2004].

Castelnuovo–Mumford regularity. Since C[YP(w)] is a graded quotient ring of
C[O−GLN /P ], it defines a coherent sheaf over the corresponding projective space
Pmn−1.

Let F be a coherent sheaf on Pn. The Castelnuovo–Mumford regularity of F
(with respect to OPn (1)) is the smallest integer r such that Hi (Pn, F⊗OPn (r−i))=0
for every 1 ≤ i ≤ n; we denote it by reg F. Similarly, if R = k[x0, . . . , xn] is a
polynomial ring over a field k with deg xi = 1 for every i and M is a finitely
generated graded R-module, the Castelnuovo–Mumford regularity of M is the
smallest integer r such that (Hi

(x0,...,xn)
(M))r+1−i = 0 for every 0≤ i ≤ n+ 1; we

denote it by reg M . (Here Hi
(x0,...,xn)

(M) is the i-th local cohomology module of M ,
and is a graded R-module.) It is known that

reg F = reg
(⊕

i∈Z

H0(Pn, F ⊗OPn (i))
)
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for every coherent sheaf F and that if depth M ≥ 2, then reg M = reg M̃ . See
[Eisenbud 2005, Chapter 4] for details.

Proposition 7.4. In the notation of (1-1), reg C[Y ] =max{ j : H j (V,
∧
∗
ξ) 6= 0}.

Proof. Let R = C[A]. It is known that

reg M =max{ j : TorR
i (k,M)i+ j 6= 0 for some i};

see [loc. cit.] for a proof. The proposition now follows from noting that

TorR
i (C,C[Y ])i+ j ' H j (V,

∧i+ j
ξ)

by Theorem 4.2. �

Now let w = (n− r + 1, n− r + 2, . . . , n, ar+1, . . . , an−1, N ) ∈Wr . We would
like to determine reg C[YP(w)] = max{ j : H j (GLn/Qr ,

∧
∗Uw) 6= 0}. Let ar = n

and an = N . For r ≤ i ≤ n − 1, define mi = ai+1 − ai . Note that Ui appears in
Uw with multiplicity mi and that mi > 0. Based on the examples that we have
calculated, we have the following conjecture.

Conjecture 7.5. With notation as above,

reg C[YP(w)] =

n−1∑
i=r

(mi − 1)i.

(Note that since YP(w) is Cohen–Macaulay, reg C[YP(w)] = reg OYP (w).) Consider
the examples in Section 6. In Example 6.1, m2 = 2, m3 = 1, and reg C[YP(w)] =

(2−1)2+0= 2. In Example 6.3, m2=m4= 2 and m3=m5= 1, so reg C[YP(w)]=

(2− 1)2+ 0+ (2− 1)4+ 0= 6, which in deed is the case, as we see from Table 1.
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