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Dedicated to the memory of Professor Robert Steinberg

In this paper we construct free resolutions of a certain class of closed subva-
rieties of affine space of symmetric matrices (of a given size). Our class cov-
ers the symmetric determinantal varieties (i.e., determinantal varieties in
the space of symmetric matrices), whose resolutions were first constructed
by Józefiak, Pragacz and Weyman (1981). Our approach follows the tech-
niques developed by Kummini, Lakshmibai, Pramathanath and Seshadri
(2015), and uses the geometry of Schubert varieties.

1. Introduction

This paper is a sequel to [Kummini et al. 2015]. Lascoux [1978] constructed a min-
imal free resolution of the coordinate ring of the determinantal varieties (consisting
of m × n matrices (over C) of rank at most k, considered as a closed subvariety
of the mn-dimensional affine space of all m × n matrices), as a module over the
mn-dimensional polynomial ring (the coordinate ring of the mn-dimensional affine
space).

In [Kummini et al. 2015], the authors construct free resolutions for a larger
class of singularities, viz., Schubert singularities, i.e., the intersection of a singular
Schubert variety and the “opposite big cell” inside a Grassmannian.

Józefiak, Pragacz and Weyman [1981] constructed a minimal free resolution of the
coordinate ring of the determinantal varieties (in the space of symmetric matrices) as
a module over the coordinate ring of the space of symmetric matrices. In this paper
we construct free resolutions for a certain class of closed subvarieties of the affine
space of symmetric matrices, which includes the symmetric determinantal varieties.
The technique adopted in [Kummini et al. 2015] is algebraic group-theoretic, and
we follow this approach.
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We now describe the results of this paper. Let n be a positive integer. Let
V =C2n and let ( · , · ) be a nondegenerate skew-symmetric bilinear form on V . Let
H = SL(V ) and G = SP(V ) = {Z ∈ SL(V ) | Z leaves the form ( · , · ) invariant}.
We take the matrix of the form, with respect to the standard basis of V , to be

F =
[

0 J
−J 0

]
where J is the antidiagonal (1, . . . , 1), in this case of size n. To simplify our notation
we will normally omit specifying the size of J as it will be obvious from the context.
We may realize SP(V ) as the fixed point set of the involution σ : H → H given
by σ(Z)= F(Z T )−1 F−1 (cf. [Steinberg 1968]).

Denoting by TH and BH the maximal torus in H consisting of diagonal matrices
and the Borel subgroup in H consisting of upper triangular matrices, respectively,
we have that TH and BH are stable under σ and we set TG = T σ

H , BG = BσH . It is
easily checked that TG is a maximal torus in G and BG is a Borel subgroup in G.

Thus we obtain
WG ↪→WH

where WG,WH denote the Weyl groups of G, H respectively (with respect to
TG, TH respectively). Further, σ induces an involution on WH :

w = (a1, · · · , a2n) ∈WH , σ (w)= (c1, · · · , c2n), ci = 2n+ 1− a2n+1−i

and
WG =W σ

H .

Thus we obtain

WG = {(a1 · · · a2n) ∈ S2n | ai = 2n+ 1− a2n+1−i , 1≤ i ≤ 2n}.

(here, S2n is the symmetric group on 2n letters). Thus w = (a1 · · · a2n) ∈ WG is
known once (a1 · · · an) is known. We shall denote an element (a1 · · · a2n) in WG by
just (a1 · · · an). Further, for w ∈WG , denoting by XG(w) (resp. X H (w)), the asso-
ciated Schubert variety in G/BG (resp. H/BH ), we have that under the canonical
inclusion G/BG ↪→ H/BH , XG(w)= X H (w)∩G/BG , scheme-theoretically.

Let P = Pn̂ , the maximal parabolic subgroup of G corresponding to omitting the
simple root αn , the set of simple roots of G being indexed as in [Bourbaki 1968].
Let 1 ≤ k < r ≤ n be positive integers, and let w ∈Wk,r (cf. Notation 3.2). Our
main result (cf. Theorem 3.22) is a description of the minimal free resolution of
the coordinate ring of YP(w) := X P(w)∩ O−G/P , the opposite cell of X P(w), as a
module over the coordinate ring of O−G/P . For this, as in [Kummini et al. 2015], we
use the Kempf–Lascoux–Weyman “geometric technique” of constructing minimal
free resolutions; in fact we use the same notation and description of this technique
as in [Kummini et al. 2015].
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Suppose that we have a commutative diagram of varieties

(1.1)
Z �
�
//

q ′
��

A× V
q
��

// V

Y �
�

// A

where A is an affine space, Y a closed subvariety of A and V a projective variety. The
map q is first projection, q ′ is proper and birational, and the inclusion Z ↪→ A× V
is a subbundle (over V ) of the trivial bundle A × V . Let ξ be the dual of the
quotient bundle on V corresponding to Z . Then the derived direct image Rq ′

∗
OZ is

quasi-isomorphic to a minimal complex F• with

Fi =
⊕
j≥0

H j(V,∧i+ j
ξ
)
⊗C R(−i − j).

Here R is the coordinate ring of A; it is a polynomial ring and R(k) refers to
twisting with respect to its natural grading. If q ′ is such that the natural map
OY −→ Rq ′

∗
OZ is a quasi-isomorphism (for example, if q ′ is a desingularization

of Y and Y has rational singularities) then F• is a minimal free resolution of C[Y ]
over the polynomial ring R.

In applying this technique in any given situation, there are two main steps
involved: one must find a suitable Z and a suitable morphism q ′ : Z −→ Y such
that the map OY −→ Rq ′

∗
OZ is a quasi-isomorphism and such that Z is a vector

bundle over a projective variety V ; and, one must be able to compute the necessary
cohomology groups. We carry this out for opposite cells YP(w),w ∈Wk,r .

As the first step, we establish the existence of a diagram as above, using the
geometry of Schubert varieties. We now describe this briefly.

We take A = O−G/P and Y = YP(w). Let P̃ be the two-step parabolic subgroup
P̂r−k,n̂ of G, and let w̃ be the minimal representative ofw P̃ in W P̃ (that is, the set of
minimal coset representatives in W , under the Bruhat order, of W/W P̃ , where W P̃ is
the Weyl group of P̃). Letw′ := (k+1, . . . , r, n, . . . , r+1, k, . . . , 1)∈ Sn , the Weyl
group of GLn . Let Z P̃(w̃) := YP(w)×X P (w) X P̃(w) (= (O−G/P × P/P̃)∩ X P̃(w) ).
Then it turns out that Z P̃(w̃) is smooth (cf. Definition 3.20), and is a desingulariza-
tion of YP(w). Write p for the composite map Z P̃(w̃) ↪→ O−G/P × P/P̃→ P/P̃
where the first map is the inclusion and the second map is the projection. We have
(cf. Theorem 3.22) that p identifies Z P̃(w̃) as a subbundle of the trivial bundle
O−G/P × X P ′

r̂−k
(w′) over X P ′

r̂−k
(w′), which arises as the restriction (to X P ′

r̂−k
(w′)) of

a certain homogeneous vector bundle on GLn /P ′
r̂−k

. With V := X P ′
r̂−k
(w′), we get:

(1.2)

Z P̃(w̃)

q ′
��

� � // O−G/P × V

q
��

// V

YP(w)
� � // O−G/P
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In this diagram, q ′ is a desingularization of YP(w). Since it is known that
Schubert varieties have rational singularities, we have that the map OY −→ Rq ′

∗
OZ

is a quasi-isomorphism, so F• is a minimal resolution.
At the second step, we need to determine the cohomology of the bundles

∧t
ξ

over V . In the above situation, V = XP ′
r̂−k
(w′) ↪→GLn /P ′

r̂−k
. As can be easily seen,

XP ′
r̂−k
(w′) is a Grassmannian, namely, GLr /P ′′

r̂−k
; the bundles

∧t
ξ (on GLr /P ′′

r̂−k
)

are also homogeneous, but are not of Bott type: they are not completely reducible
(so one can not apply the Bott algorithm for computing the cohomology). This
can be resolved in two ways. In [Ottaviani and Rubei 2006] the authors determine
the cohomology of general homogeneous bundles on Hermitian symmetric spaces,
and thus their results can be used to determine H •(V,

∧t
ξ). Alternatively, using

a technique from [Weyman 2003], we may compute the resolution of a related
space (whose associated homogeneous vector bundle is of Bott type) from which
we retrieve the resolution of the coordinate ring of YP(w) as a subcomplex.

We hope to extend the results of this paper to Schubert varieties in the orthogonal
Grassmannian. Details will appear in a subsequent paper.

The paper is organized as follows. Section 2 contains notations and conventions
and the necessary background material on Schubert varieties in the flag variety
(Section 2.1) and Schubert varieties in the symplectic flag variety (Sections 2.2
and 2.3) and homogeneous bundles (Section 2.4). In Section 3, we discuss properties
of Schubert desingularization, including the construction of Diagram 1.2. Section 4
is devoted to a review of the Kempf–Lascoux–Weyman technique and completes
step one of the two part process of the geometric technique. Section 5 explains how
the cohomology groups of the homogeneous bundles constructed in step one may
be calculated.

2. Preliminaries

In this section we collect various results about Schubert varieties in the flag variety
and symplectic flag variety, homogeneous vector bundles, and the Bott algorithm.

2.1. Notation and conventions in type A. We collect the symbols used and the
conventions adopted in the rest of the paper here. For details on algebraic groups
and Schubert varieties, the reader may refer to [Borel 1991; Jantzen 2003; Billey
and Lakshmibai 2000; Seshadri 2007].

Let N be positive integer. We denote by GLN (respectively, BN , B−N ) the group
of all (respectively, upper triangular, lower triangular) invertible N × N matrices
over C. The Weyl group W of GLN is isomorphic to the group SN of permutations
of N symbols and is generated by the simple reflections si , which correspond to the
transpositions (i, i + 1), for 1 ≤ i ≤ N − 1. For w ∈ W , its length is the smallest
integer l such that w = si1 · · · sil as a product of simple reflections. For every
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1≤ i ≤ N−1, there is a minimal parabolic subgroup Pi containing si (thought of as
an element of GLN ) and a maximal parabolic subgroup Pî not containing si . Any
parabolic subgroup can be written as PÂ :=

⋂
i∈A Pî for some A ⊂ {1, . . . , N − 1}.

On the other hand, for A ⊆ {1, . . . , N − 1} write PA for the subgroup of GLN

generated by Pi for i ∈ A. Then PA is a parabolic subgroup and P{1,...,N−1}\A = PÂ.
We write the elements of W in one-line notation: (a1, . . . , aN ) is the permutation

i 7→ ai . For any A⊆ {1, . . . , N−1}, define WPA to be the subgroup of W generated
by {si : i ∈ A}. By W PA we mean the subset of W consisting of the minimal
representatives (under the Bruhat order) in W of the elements of W/WPA . For
1 ≤ i ≤ N , we represent the elements of W Pî by sequences (a1, . . . , ai ) with
1≤ a1 < · · ·< ai ≤ N since under the action of the group WPî

, every element of
W can be represented minimally by such a sequence.

We identify GLN = GL(V ) for some N -dimensional vector-space V . Let A :=
{i1 < i2 < · · · < ir } ⊆ {1, . . . , N − 1}. Then GLN /PÂ is the set of all flags
0= V0 ( V1 ( V2 ( · · ·( Vr ( V of subspaces V j of dimension i j inside V . We
call GLN /PÂ a flag variety. If A= {1, . . . , N−1} (i.e., PÂ = BN ), then we call the
flag variety a full flag variety; otherwise, a partial flag variety. The Grassmannian
Grassi,N of i-dimensional subspaces of V is GLN /Pî .

Let P̃ be any parabolic subgroup containing BN and τ ∈ W . The Schubert
variety X P̃(τ ) is the closure inside GLN /P̃ of BN · ew where ew is the coset τ P̃ ,
endowed with the canonical reduced scheme structure. Hereafter, when we write
X P̃(τ ), we mean that τ is the representative in W P̃ of its coset. The opposite
big cell O−

GLN /P̃
in GLN /P̃ is the B−N -orbit of the coset (id · P̃) in GLN /P̃ . Let

YP̃(τ ) := X P̃(τ )∩ O−
GLN /P̃

; we refer to YP̃(τ ) as the opposite cell of X P̃(τ ).
We will write R+, R−, R+

P̃
, R−

P̃
, to denote respectively, positive and negative

roots for GLN and for P̃ . We denote by εi the character that sends the invertible
diagonal matrix with t1, . . . , tn on the diagonal to ti .

2.2. Notation and conventions in type C. Below we review the properties of sym-
plectic Schubert varieties relevant to this paper. For a more in-depth introduction
the reader may refer to [Lakshmibai and Raghavan 2008, Chapter 6].

Let n be a positive integer. Let V = C2n and let ( · , · ) be a nondegener-
ate skew-symmetric bilinear form on V . Let H = SL(V ) and G = SP(V ) =
{Z ∈ SL(V ) | Z leaves the form ( · , · ) invariant}. We take the matrix of the form,
with respect to the standard basis of V , to be

F =
[

0 J
−J 0

]
where J is the antidiagonal (1, . . . , 1), in this case of size n. To simplify our notation
we will normally omit specifying the size of J as it will be obvious from the context.
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We may realize SP(V ) as the fixed point set of the involution σ : H → H given
by σ(Z)= F(Z T )−1 F−1 (cf. [Steinberg 1968]). That is,

G = {Z ∈ SL(V ) | Z T F Z = F}

= {Z ∈ SL(V ) | F−1(Z T )−1 F = Z}

= {Z ∈ SL(V ) | F(Z T )−1 F−1
= Z}

= Hσ .

Denote by TH and BH the maximal torus in H consisting of diagonal matrices
and the Borel subgroup in H consisting of upper triangular matrices, respectively.
It is easily seen that TH and BH are stable under σ and we set TG = T σ

H , BG = BσH .
It is easily checked that TG is a maximal torus in G and BG is a Borel subgroup
in G.

Thus we obtain
WG ↪→WH

where WG,WH denote the Weyl groups of G, H , respectively (with respect to
TG, TH , respectively). Further, σ induces an involution on WH :

w = (a1, · · · , a2n) ∈WH , σ (w)= (c1, · · · , c2n), ci = 2n+ 1− a2n+1−i

and
WG =W σ

H .

Thus we obtain

WG = {(a1 · · · a2n) ∈ S2n | ai = 2n+ 1− a2n+1−i , 1≤ i ≤ 2n}.

(here, S2n is the symmetric group on 2n letters). Thus w = (a1 · · · a2n) ∈ WG is
known once (a1 · · · an) is known. We shall denote an element (a1 · · · a2n) in WG

by just (a1 · · · an). For example, (4231) ∈ S4 represents (42) ∈WG,G = SP(4).
The involution σ induces an involution on X (TH ), the character group of TH :

χ ∈ X (TH ), σ (χ)(D)= χ(σ(D)), D ∈ TH .

Let εi , for 1 ≤ i ≤ 2n, be the character in X (TH ), εi (D) = di , the i-th entry in
D ∈ TH . We have

σ(εi )=−ε2n+1−i

Now it is easily seen that the under the canonical surjective map

ϕ : X (TH )→ X (TG)

we have
ϕ(εi )=−ϕ(ε2n+1−i ), 1≤ i ≤ 2n.
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Let RH := {εi − ε j , 1 ≤ i, j ≤ 2n} be the root system of H (relative to TH ), and
R+H := {εi − ε j , 1≤ i < j ≤ 2n} the set of positive roots (relative to BH ). We have
the following:

(a) σ leaves RH (resp. R+H ) stable.

(b) For α, β ∈ RH , ϕ(α)= ϕ(β)⇔ α = σ(β).

(c) ϕ is equivariant for the canonical action of WG on X (TH ), X (TG).

(d) RσH = {±(εi − ε2n+1−i ), 1≤ i ≤ n}.

Let RG (resp. R+G ) be the set of roots of G with respect to TG (resp. the set of
positive roots with respect to BG ). Using the above facts and the explicit nature of
the adjoint representation of G on Lie G, we deduce that

RG = ϕ(RH ), R+G = ϕ(R
+

H ).

In particular, RG (resp. R+G ) gets identified with the orbit space of RH (resp. R+H )
modulo the action of σ . Thus we obtain the following identification:

RG = {±(εi ± ε j ), 1≤ i < j ≤ n} ∪ {±2εi , i = 1, . . . , n},

R+G = {(εi ± ε j ), 1≤ i < j ≤ n} ∪ {2εi , i = 1, . . . , n}.

The set SG of simple roots in R+G is given by

SG := {αi = εi − εi+1, 1≤ i ≤ n− 1} ∪ {αn = 2εn}.

Let us denote the simple reflections in WG by {si , 1≤ i ≤ n}, namely, si = reflection
with respect to εi − εi+1 for 1≤ i ≤ n− 1, and sn = reflection with respect to 2εn.

Then we have

(2.2.1) si =

{
rir2n−i , if 1≤ i ≤ n− 1,
rn, if i = n,

where ri denotes the transposition (i, i + 1) in S2n for 1≤ i ≤ 2n− 1.
For w ∈WG , let us denote by l(w,WH ) (resp. l(w,WG)) the length of w as an

element of WH (resp. WG). For w = (a1, · · · , a2n) ∈WH , denote

(2.2.2) m(w) := #{i ≤ n | ai > n}.

Then for w = (a1, · · · , a2n) ∈WG , we have l(w,WG)=
1
2

(
l(w,WH )+m(w)

)
.

Proposition 2.2.3 [Lakshmibai and Raghavan 2008, Proposition 6.2.5.1]. Let
w ∈WG ; let XG(w) (resp. X H (w)) be the associated Schubert variety in G/BG

(resp. H/BH ). Under the canonical inclusion G/BG ↪→ H/BH , we have XG(w)=

X H (w)∩G/BG . Further, the intersection is scheme-theoretic.
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Notation 2.2.4. For the remainder of the paper we fix the following notation. Let
1≤ k < r ≤ n be positive integers. Let Q = Q n̂ to be the parabolic subgroup of H
corresponding to omitting the root αn and P = Pn̂ to be the parabolic subgroup of
G corresponding to omitting the root αn . Let P̃ be the two-step parabolic subgroup
P̂r−k,n̂ of G. Let Q̃ be the three step parabolic subgroup Qr̂−k,n̂, ̂2n−(r−k) in H .
Note that P = Qσ and P̃ = Q̃σ . Finally, we identify P/P̃ with GLn /P ′

r̂−k
where

P ′
r̂−k

is the parabolic subgroup of GLn corresponding to omitting the root αr−k .

Definition 2.2.5. A square m ×m matrix X is persymmetric if J X = X T J . Or,
equivalently, if J X is symmetric.

Remark 2.2.6. We denote by Matn the space of n × n matrices. Let K be the
subgroup of H consisting of matrices of the form[

Idn 0
Y Idn

]
, Y ∈Matn .

The canonical morphism H → H/Q induces a morphism ψH : K → H/Q. We
have that ψH is an open immersion, and ψH (K ) gets identified with the opposite
big cell O−H/Q in H/Q.

The cell O−H/Q is σ -stable and by [Lakshmibai and Raghavan 2008, Corollary
6.2.4.3], we can identify the opposite big cell O−G/P as

O−G/P = (O
−

H/Q)
σ
= {z ∈ K | JY T J = Y }.

So O−G/P is the subspace of K with Y persymmetric. Thus we can identify O−G/P

with the space of symmetric n×n matrices, Symn , under the map O−G/P −→ Symn
given by [

Idn 0
Y Idn

]
7→ JY.

2.3. Opposite cells in Schubert varieties in the symplectic flag variety. A matrix
z ∈ SL(V ) with n× n block form[

An×n Cn×n

Dn×n En×n

]
is an element of G if and only if zT Fz = F , i.e., if and only if the following
conditions hold on the n× n blocks:

AT J D = DT J A,(2.3.1)

CT J E = ET JC,(2.3.2)

J = (AT J E − DT JC)= (ET J A−CT J D).(2.3.3)

The following proposition will prove useful throughout the rest of the paper.
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Proposition 2.3.4. Write U−P for the negative unipotent radical of P.

(a) O−G/P can be naturally identified with U−P P/P

(b) For

z =
[

An×n Cn×n

Dn×n En×n

]
∈ G,

z P ∈ O−G/P if and only if A is invertible.

(c) The inverse image of O−G/P under the natural map G/P̃→G/P is isomorphic
to O−G/P × P/P̃ as schemes. Every element of O−G/P × P/P̃ is of the form[

An×n 0
Dn×n J (AT )−1 J

]
mod P̃ ∈ G/P̃.

Moreover, two matrices[
An×n 0n×n

Dn×n J (AT )−1 J

]
and

[
A′n×n 0n×n

D′n×n J (A′T )−1 J

]
in G represent the same element modulo P̃ if and only if there exists a matrix
q ∈ P ′

r̂−k
(as defined in Notation 2.2.4) such that A′ = Aq and D′ = Dq.

(d) P/P̃ is isomorphic to GLn /P ′
r̂−k

. In particular, the projection map O−G/P ×

P/P̃→ P/P̃ is given by[
An×n 0
Dn×n J (AT )−1 J

]
mod P̃ 7−→ A mod P ′

r̂−k
∈ GLn /P ′

r̂−k
∼= P/P̃.

Proof. (a): Note that U−P is the subgroup of G generated by the root subgroups
U−α for α ∈ R+\R+P . Under the canonical projection G→ G/P , g 7→ g P , U−P
is mapped isomorphically onto its image O−G/P (cf. [Billey and Lakshmibai 2000,
Section 4.4.4]). Thus we obtain the identification of O−G/P with U−P P/P .

(b): Suppose that z P ∈ O−G/P . By (a) this means that ∃ n×n matrices A′,C ′, D′, E ′

such that

z1 =

[
Idn 0
D′ Idn

]
∈U−P and z2 =

[
A′ C ′

0 E ′

]
∈ P with z =

[
A C
D E

]
= z1z2.

Hence A = A′, and A′ invertible implies A invertible.
Conversely, suppose A is invertible. Let

z =
[

A C
D E

]
∈ G.
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Then A,C, D, E satisfy properties (2.3.1)–(2.3.2). Since A is invertible we may
write

z = z1z2 where z1 =

[
Idn 0

D A−1 Idn

]
, z2 =

[
A C
0 E − D A−1C

]
We shall now show that z1, z2 ∈ G. First, we note that (2.3.1) implies that

(2.3.5) J (D A−1)= (D A−1)T J.

Then (2.3.5) shows that z1 ∈U−P , and hence z1 ∈ G.
Now z1 ∈ G implies z−1

1 ∈ G, and z ∈ G by assumption. Hence z2 = zz−1
1 ∈ G.

Further, since A is invertible, z2 ∈ P . Hence the coset z P = z1 P , which in view of
the fact that z1 ∈U−P , implies by part (a) that z P ∈ O−G/P .

(c): Let z ∈U−P P ⊂ G. Then we can write z = z1z2 uniquely with z1 ∈U−P , z2 ∈ P .
Suppose that[

Idn 0
Dn×n Idn

][
An×n Cn×n

0n×n En×n

]
=

[
Idn 0

D′n×n Idn

][
A′n×n C ′n×n
0n×n E ′n×n

]
then A = A′, C = C ′, D A = D′A′ and DC + E = D′C ′ + E ′, which yields that
D′ = D (since A = A′ is invertible), and then E = E ′. Hence U−P ×C P = U−P P .
Thus for any parabolic subgroup P ′ ⊆ P , U−P ×C P/P ′ =U−P P/P ′. The asserted
isomorphism follows by part (a) from taking P ′ = P̃ .

To see the second assertion consider

z =
[

An×n Cn×n

Dn×n En×n

]
∈ G

with z P ∈O−G/P . Note that the n×n block matrices satisfy properties (2.3.1)–(2.3.3)
and by (b), A is invertible.

We have by the first part of (c) that the coset z P is an element of O−G/P × P/P̃ ,
since z P ∈ O−G/P .

Claim. We have a decomposition of z in G,[
A C
D E

]
= y1 y2 where y1 =

[
A 0
D J (AT )−1 J

]
∈ G, y2 =

[
Idn A−1C
0 Idn

]
∈ P̃.

We first check that z = y1 y2. We need the following identity

(2.3.6) J AT J (E − D A−1C)= Idn,

which follows from
J AT J (E − D A−1C) = J (AT J E − AT J D A−1C)

= J (AT J E − DT J AA−1C) (2.3.1)
= J J (2.3.3)
= Idn .
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So that
D A−1C + J (AT )−1 J = D A−1C + J (AT )−1 J J AT J (E − D A−1C) (2.3.6)

= D A−1C + E − D A−1C
= E .

With this it is easily verified that z = y1 y2.
It is clear that y1∈G. To show y2∈G we need to check that J (A−1C)T J = A−1C .

(A−1C)T J = (A−1C)T J J AT J (E − D A−1C) (2.3.6)
= CT J (E − D A−1C)
= ET JC −CT J D A−1C (2.3.2)
= (E − D A−1C)T JC (2.3.5)
= (E − D A−1C)T J AJ J A−1C
= (J AT J (E − D A−1C))T J (A−1C)
= J (A−1C) (2.3.6)

Thus y2 ∈ G. It is clear additionally that y2 ∈ P̃ (in fact y2 ∈ BG).
Hence our claim follows and we have[

A C
D E

]
=

[
A 0
D J (AT )−1 J

]
mod P̃.

Finally, [
An×n 0n×n

Dn×n J (AT )−1 J

]
=

[
A′n×n 0n×n

D′n×n J (A′T )−1 J

]
mod P̃

if and only if there exist matrices q ∈ P ′
r̂−k

, and q ′ ∈Matn such that[
A′ 0n×n

D′ J (AT )−1 J

]
=

[
A 0n×n

D J (A′T )−1 J

] [
q q ′

0n×n J (qT )−1 J

]
,

which holds if and only if q ′ = 0, A′ = Aq and D′ = Dq (since A and A′ are
invertible).

(d): There is a surjective morphism of C-group schemes P→ GLn:[
A C
0 E

]
→ A.

This induces the required isomorphism. The element[
A C
D E

]
mod P̃ ∈ O−G/P × P/P̃

decomposes uniquely as[
Idn 0

D A−1 Idn

]([
A C
0 E − D A−1C

]
mod P̃

)
and hence it is mapped to A mod P ′

r̂−k
. �
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2.4. Homogeneous bundles and representations. Let Q be a parabolic subgroup
of GLn . We collect here some results about homogeneous vector bundles on GLn /Q.
Most of these results are well-known, but for some of them, we could not find a
reference, so we give a proof here for the sake of completeness. Online notes of
G. Ottaviani [1995] and of D. Snow [1994] discuss the details of many of these
results.

Let L Q and UQ be respectively the Levi subgroup and the unipotent radical of Q.
Let E be a finite-dimensional vector-space on which Q acts on the right.

Definition 2.4.1. Define GLn ×
Q E := (GLn ×E)/∼ where ∼ is the equivalence

relation (g, e) ∼ (gq, eq) for every g ∈ GLn , q ∈ Q and e ∈ E . Then πE :

GLn ×
Q E −→ GLn /Q, (g, e) 7→ gQ, is a vector bundle called the vector bundle

associated to E (and the principal Q-bundle GLn−→GLn /Q). For g∈GLn, e∈ E ,
we write [g, e] ∈ GLn ×

Q E for the equivalence class of (g, e) ∈ GLn ×E under ∼.
We say that a vector bundle π :E−→GLn /Q is homogeneous if E has a GLn-action
and π is GLn-equivariant, i.e, for every y ∈ E, π(g · y)= g ·π(y).

Remark 2.4.2. There is a similar construction in the case when E is a left Q-
module.

In this section, we abbreviate GLn ×
Q E as Ẽ . It is known that E is homogeneous

if and only if E' Ẽ for some Q-module E . (If this is the case, then E is the fiber
of E over the coset Q.) A homogeneous bundle Ẽ is said to be irreducible (respec-
tively indecomposable, completely reducible) if E is an irreducible (respectively
indecomposable, completely reducible) Q-module. It is known that E is completely
reducible if and only if UQ acts trivially and that E is irreducible if and only if
additionally it is irreducible as a representation of L Q . See [Snow 1994, Section 5]
or [Ottaviani 1995, Section 10] for the details.

Discussion 2.4.3. For the cohomology group computations in this paper, we will
primarily be interested in the case when GLn /Q is a Grassmannian. Thus let Q =
Pm̂ , with 1≤m≤ n−1. A weight λ is said to be Q-dominant if and only if when we
express λ as

∑n
i=1 λiεi (where εi , for 1≤ i ≤n, is the character that sends a diagonal

matrix in T to its i-th entry), then λ1≥ . . .≥ λm and λm+1≥ . . .≥ λn . We will write
λ= (λ1, . . . , λn) to mean that λ=

∑n
i=1 λiεi . Every finite-dimensional irreducible

Q-module is of the form H 0(Q/Bn, Lλ) for a Q-dominant weight λ. Hence the
irreducible homogeneous vector bundles on GLn /Q are in correspondence with
Q-dominant weights. We describe them now. If Q= P̂n−i , then GLn /Q=Grassi,n .
(Recall that, for us, the GLn-action on Cn is on the right.) On Grassi,n , we have the
tautological sequence

(2.4.4) 0−→Ri −→ Cn
⊗OGrassi,n −→Qn−i −→ 0
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of homogeneous vector bundles. The bundle Ri is called the tautological subbundle
(of the trivial bundle Cn) and Qn−i is called the tautological quotient bundle. Every
irreducible homogeneous bundle on Grassi,n is of the form S(λ1,··· ,λn−i )Q∗n−i ⊗

S(λn−i+1,··· ,λn)R∗i for some P̂n−i -dominant weight λ. Here Sµ denotes the Schur
functor associated to the partition µ (cf. [Fulton and Harris 1991, §6.1]).

A Q-dominant weight is called (m)-dominant in [Weyman 2003, p. 114]. Al-
though our definition looks like Weyman’s definition, we should keep in mind
that our action is on the right. We only have to be careful when we apply the
Borel–Weil–Bott theorem (more specifically, the Bott algorithm). In this paper,
our computations are done only on Grassmannians. If µ and ν are partitions,
then (µ, ν) will be Q-dominant (for a suitable Q), and will give us the vector
bundle SµQ∗⊗ SνR∗ (this is where the right-action of Q becomes relevant) and
to compute its cohomology, we will have to apply the Bott algorithm to the Q-
dominant weight (ν, µ). (In [Weyman 2003], one would get SµR∗ ⊗ SνQ∗ and
would apply the Bott algorithm to (µ, ν).) �

We now give a brief description of the Bott algorithm for computing the coho-
mology of irreducible homogeneous vector bundles on GLn /Q [Weyman 2003,
Remark 4.1.5].

Let α = (α1, . . . , αn) be a weight. As in [Weyman 2003, Remark 4.1.5] we
define an action of the permutation νi = (i, i + 1) on the set of weights in the
following way:

(2.4.5) νiα = (α1, . . . , αi−1, αi+1− 1, αi + 1, αi+2, . . . , αn).

The Bott algorithm may be applied to our case as follows. Let Q = Pm̂ , with
1 ≤ m ≤ n− 1 and let λ= (λ1, . . . , λn) be a Q-dominant weight with associated
homogeneous vector bundle V (λ) := S(λ1,...,λm)Q∗⊗ S(λm+1,...,λn)R∗. We will apply
the Bott algorithm to λ′ = (λm+1, . . . , λn, λ1, . . . , λm) in keeping with the last
paragraph of Discussion 2.4.3.

If λ′ is nonincreasing, then H 0(GLn/Q,V(λ))= Sλ′Cn and H i(GLn/Q,V(λ))=0
for i > 0. Otherwise we start to apply the exchanges of type (2.4.5) to λ′, trying to
move smaller numbers on the left to the right. Two possibilities can occur:

(1) We apply an exchange of type (2.4.5) and it leaves the sequence unchanged.
In this case H i (GLn /Q, V (λ))= 0 for i ≥ 0.

(2) After applying j exchanges, we transform λ′ into a nonincreasing sequence β.
Then we have H i (GLn/Q,V (λ))=0 for i 6= j and H j (GLn/Q,V (λ))= SβCn .

3. Properties of Schubert desingularization in type C

Recall the following result about the tangent space of a Schubert variety, see [Billey
and Lakshmibai 2000, Chapter 4] for details.
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Proposition 3.1. Let Q be a parabolic subgroup of SL2n . Let τ ∈ W Q . Then the
dimension of the tangent space of X Q(τ ) at eid is

#{sα | α ∈ R−\R−Q and τ ≥ sα in W/WQ}.

In particular, X Q(τ ) is smooth if and only if

dim X Q(τ )= #{sα | α ∈ R−\R−Q and τ ≥ sα in W/WQ}.

Notation 3.2. For an integer i with 1 ≤ i ≤ n we define i ′ = 2n + 1 − i . Let
1≤ k < r ≤ n. Then

Wk,r =

{
(k+ 1, . . . , r, n′, . . . , (r + 1)′, k ′, . . . , 1′) ∈W P , if r < n,
(k+ 1, . . . , r, k ′, . . . , 1′) ∈W P , if r = n.

Let 1≤k<r ≤n be integers. Letw∈Wk,r with w̃ its minimal representative in W P̃ .

Proposition 3.3. The Schubert variety X Q̃(w̃) in H/Q̃ is smooth.

Proof. Let wmax ∈WH (= S2n) be the maximal representative of w̃. Then

wmax =

{(
[r, k+ 1][1′, k ′][(r + 1)′, n′][n, (r + 1)][k, 1][(k+ 1)′, r ′]

)
, if r < n,(

[r, k+ 1][1′, k ′][k, 1][(k+ 1)′, r ′]
)
, if r = n.

To see this we need to show that X Pî
(wmax)= X Pî

(w̃) for i=r−k, n, 2n−(r−k) and
thatwmax is the maximal element of WH with this property. But this follows from the
fact that for τ = (c1, . . . , c2n) ∈WH and 1≤ i ≤ 2n we have that X Pî

(τ )= X Pî
(τ ′)

where τ ′ ∈W Pî is the element with c1, . . . , ci written in increasing order.
Thus X BH (wmax) is the inverse image of X Q̃(w̃) under the natural morphism

H/BH → H/Q̃. As wmax is a 4231 and 3142 avoiding element of WH we have
that X BH (wmax) is nonsingular (see [Billey and Lakshmibai 2000, 8.1.1]). Since the
morphism H/BH → H/Q̃ has nonsingular fibers (namely Q̃/BH ), X Q̃(w̃) must
be smooth. �

Proposition 3.4. The Schubert variety X P̃(w̃) in G/P̃ is smooth .

Proof. Let wmax be as in the proof of Proposition 3.3. Then clearly wmax is in
WG and X BG (wmax) is the inverse image of X P̃(w̃) under the natural morphism
G/BG→ G/P̃ .

Claim. X BG (wmax) is smooth.

Note that the claim implies the required result (since the canonical morphism
G/BG→G/P̃ is a fibration with nonsingular fibers (namely, P̃/BG)). To prove the
claim, as seen in the proof of Proposition 3.3, we have that X BH (wmax) is smooth.
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We conclude the smoothness of X BG (wmax) using the following two formulas
[Lakshmibai 1987, §3(VI), Remark 5.8]:

(1) lG(θ)=
1
2 [lH (θ)+m(θ)],

where we let θ ∈WG , say, θ = (a1, · · · an). With m(θ)= #{i, 1≤ i ≤ m | ai > m}
(cf. (2.2.2)), we have

(2) dim Tid(θ,G)= 1
2 [dim Tid(θ, H)+ c(θ)],

where c(θ) = #{1 ≤ i ≤ m | θ ≥ sε2i }, and Tid(θ,G) (resp Tid(θ, H)) denotes
the Zariski tangent space of X BG (θ) (resp X BH (θ)) at eid. Note that sε2i is just the
transposition (i, i ′) (cf. (2.2.1)). Now taking θ=wmax, we have, c(wmax)=m(wmax).
Hence we obtain from (1), (2) that dim Tid(wmax,G) = lG(wmax), proving that
X BG (wmax) is smooth at eid, and hence is nonsingular (note that for a Schubert
variety X , the singular locus of X , Sing(X), is B-stable implying eid ∈ Sing(X) if
Sing(X) 6=∅). Thus the claim (and hence the required result) follows. �

Remark 3.5. We have that X P̃(w̃) is the fixed point set under an automorphism of
order two of the Schubert variety X Q̃(w̃) and thus is smooth, provided char K 6= 2
([Edixhoven 1992, Proposition 3.4]).

Discussion 3.6. To give a characterization of YQ̃(w̃) we first need a review of the
structure of O−

H/Q̃
and its Plücker coordinates.

Recall that for the Plücker embedding of the Grassmannian Grassd,n , the Plücker
coordinate pi (U ), U ∈ Grassd,n and i = (i1, . . . , id) with 1 ≤ i1 < . . . < id < n,
is just the d × d minor of the matrix An×d with row indices (i1, . . . , id) (here the
matrix An×d represents the d-dimensional subspace U with respect to the standard
basis).

The cell O−
H/Q̃

can be identified with the affine space of lower-triangular matrices
with possible nonzero entries xi j at row i and column j where (i, j) is such that
there exists an l ∈ {r−k, n, 2n− (r−k)} such that j ≤ l < i ≤ N . To see this, note
that we are interested in those (i, j) such that the root εi − ε j belongs to R− \ R−

Q̃
.

Since R−
Q̃
= R−Qr̂−k

∩ RQn̂ ∩ RQ ̂2n−(r−k)
, we see that we are looking for (i, j) such

that εi − ε j ∈ R− \ R−Q l̂
, for some l ∈ {r − k, n, 2n − (r − k)}. For the maximal

parabolic subgroup Pl̂ , we have, R− \ R−Q l̂
= {εi − ε j | 1 ≤ j ≤ l < i ≤ N }. We

have dim O−
H/Q̃
= |R− \ R−

Q̃
|.

Thus we have the following identification

(3.7) O−
H/Q̃
=


Idr−k 0 0 0

A′ Idn−(r−k) 0 0
D1 D2 Idn−(r−k) 0
D3 D4 E ′ Idr−k


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where the block matrices have possible nonzero entries xi j given by

A′=


x(r−k)+1 1 . . . x(r−k)+1 r−k

...
...

xn 1 . . . xn r−k

, E ′=


x2n−(r−k)+1 n+1 . . . x2n−(r−k)+1 2n−(r−k)

...
...

x2n n+1 . . . x2n 2n−(r−k)

,

D1=


xn+1 1 . . . xn+1 r−k

...
...

x2n−(r−k) 1 . . . x2n−(r−k) r−k

, D2=


xn+1 (r−k)+1 . . . xn+1 n

...
...

x2n−(r−k) (r−k)+1 . . . x2n−(r−k) n

,

D3=


x2n−(r−k)+1 1 . . . x2n−(r−k)+1 r−k

...
...

x2n 1 . . . x2n r−k

, D4=


x2n−(r−k)+1 (r−k)+1 . . . x2n−(r−k)+1 n

...
...

x2n (r−k)+1 . . . x2n n

.
We may break the Plücker coordinates we want to understand into several cases.

Case 1: For i > r , j ≤ r − k the Plücker coordinate p(r−k)
(i, j) on the Grassmannian

H/Qr̂−k lifts to a regular function on H/Q̃. Its restriction to O−
H/Q̃

is the r −
k × r − k minor of (3.7) with column indices {1, 2, . . . , r − k} and row indices
{1, . . . , j−1, j+1, . . . , r−k, i}. This minor is the determinant of an r−k×r−k
matrix with the top (r − k)− 1 rows equal to Idr−k omitting the j-th row, and the
bottom row equal to the first r − k entries of the i-th row of (3.7). The determinant
of this matrix is thus (−1)(r−k)− j xi j . Thus for i > r , j ≤ r − k:

(3.8) p(r−k)
(i, j)

∣∣
O−

H/Q̃
= (−1)(r−k)− j xi j .

Case 2: For i > 2n−(r−k), n< j ≤ 2n−(r−k) the Plücker coordinate p(2n−(r−k))
(i, j)

on the Grassmannian H/Q ̂2n−(r−k) lifts to a regular function on H/Q̃. Its restriction
to O−

H/Q̃
is the 2n − (r − k)× 2n − (r − k) minor of (3.7) with column indices

{1, 2, . . . , 2n− (r − k)} and row indices {1, . . . , j − 1, j + 1, . . . , 2n− (r − k), i}.
This minor is the determinant of

(3.9)


Idr−k 0 0

A′ Idn−(r−k) 0
D̂1 D̂2 Î1

[xi 1 . . . xi r−k] [xi (r−k)+1 . . . xi n] [xi n+1 . . . xi 2n−(r−k)]


where D̂1, D̂2, and Î1 are equal to, respectively, D1,D2, and Idn−(r−k) with their
( j − n)-th rows omitted. The determinant of (3.9) is equal to the determinant of[

Î1

[xi n+1 . . . xi 2n−(r−k)]

]
.

As above this is just an identity matrix with a single row replaced and so its
determinant is just (−1)2n−(r−k)− j xi j . Thus for i >2n−(r−k), n< j ≤2n−(r−k):

(3.10) p(2n−(r−k))
(i, j)

∣∣
O−

H/Q̃
= (−1)2n−(r−k)− j xi j .
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Case 3: For i > 2n− (r − k), r − k < j ≤ n the Plücker coordinate p(2n−(r−k))
(i, j) on

the Grassmannian H/Q ̂2n−(r−k) lifts to a regular function on H/Q̃. Its restriction
to O−

H/Q̃
is the 2n − (r − k)× 2n − (r − k) minor of (3.7) with column indices

{1, 2, . . . , 2n− (r − k)} and row indices {1, . . . , j − 1, j + 1, . . . , 2n− (r − k), i}.
This minor is the determinant of

(3.11)


Idr−k 0 0

Â′ Î2 0
D1 D2 Idn−(r−k)

[xi 1 . . . xi r−k] [xi (r−k)+1 . . . xi n] [xi n+1 . . . xi 2n−(r−k)]


where Â′ and Î2 are equal to, respectively, A′ and Idn−(r−k) with their j−(r−k)-th
rows omitted. The determinant of (3.11) is equal to the determinant of

(3.12)

 Î2 0
D2 Idn−(r−k)

[xi (r−k)+1 . . . xi n] [xi n+1 . . . xi 2n−(r−k)]

 .
To calculate this, shift the bottom row so that it becomes the j − (r − k)-th row
of Î2. Let M = 2n− (r − k)− j . Then the determinant of (3.12) will be (−1)M

times the determinant of

(3.13)
[

I3 Z
D2 Idn−(r−k)

]
,

where I3 is Idn−(r−k) with the j−(r−k)-th row replaced by [xi (r−k)+1 . . . xi n] and
Z is the zero matrix with the j − (r − k)-th row replaced by [xi n+1 . . . xi 2n−(r−k)].
Since the lower right block matrix of (3.13) commutes with its lower left block
matrix we have that the determinant of (3.13) is equal to the determinant of I3−ZD2.
We have that ZD2 is equal to the zero matrix with its j− (r−k)-th row replaced by

[xi (r−k)+1 . . . xi n]D2.

And thus I3− ZD2 is equal to Idn−(r−k) with the j − (r − k)-th row replaced by

[xi (r−k)+1 . . . xi n] − [xi (r−k)+1 . . . xi n]D2.

And so the determinant of I3− ZD2 is merely equal to the j − (r − k)-th entry of
I3− ZD2 which is

xi j − [xi (r−k)+1 . . . xi n][xn+1 j . . . x2n−(r−k) j ]
T .

Combining all our steps, we finally have that for i > 2n− (r − k), r − k < j ≤ n:

(3.14) p(2n−(r−k))
(i, j)

∣∣
O−

H/Q̃
=(−1)M(xi j−[xi (r−k)+1...xi n][xn+1 j ...x2n−(r−k) j ]

T ). �
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Theorem 3.15. The opposite cell YQ̃(w̃) can be identified with the subspace of
O−

H/Q̃
given by matrices of the form

Idr−k 0 0 0
A′ Idn−(r−k) 0 0
0 D2 Idn−(r−k) 0
0 E ′D2 E ′ Idr−k


with D2 ∈Matn−(r−k), A′ ∈Matn−(r−k)×r−k with the bottom n − r rows of A′ all
zero, and E ′ ∈Matr−k×n−(r−k) with the left n− r columns of E ′ all zero.

Proof. For j ≤ r−k < i the reflection (i, j) equals (1, 2, . . . , j−1, j+1, . . . , r−
k, i) and w̃ equals (k + 1, . . . , r) in W/WQr̂−k

. Thus for i > r and j ≤ r − k,
the reflection (i, j) is not smaller than w̃ in W/WQr̂−k

so the Plücker coordinate
p(r−k)
(i, j) vanishes on X Q̃(w̃). We saw in (3.8) that for such (i, j) we have p(r−k)

(i, j) =

(−1)(r−k)− j xi j and thus xi j ≡ 0 on YQ̃(w̃).
For j ≤ n < i the reflection (i, j) equals (1, 2, . . . , j − 1, j + 1, . . . , n, i) and

w̃ is equal to (k + 1, . . . , r, n′, . . . , (r + 1)′, k ′, . . . , 1′) in W/WQn̂ . Thus there is
no choice of (i, j) such that (i, j) is not smaller than w̃ in W/WQn̂ .

For j≤2n−(r−k)< i the reflection (i, j) equals (1, 2, . . . , j−1, j+1, . . . , 2n−
(r − k), i) and w̃ equals (1, . . . , n, n′, . . . , (r + 1)′, k ′, . . . , 1′) in W/WQ ̂2n−(r−k)

.
Thus for i > 2n− (r − k), and j ≤ 2n− r the reflection (i, j) is not smaller than w̃
in W/WQ ̂2n−(r−k)

. We break these into two cases, ignoring those j ≤ r − k as we
have already shown above that for j ≤ r − k and i > 2n− (r − k) we have xi j ≡ 0
on YQ̃(w̃).

The first case is for (i, j) with i > 2n− (r − k), and n < j ≤ 2n− r . The fact
that (i, j) is not smaller than w̃ in W/WQ ̂2n−(r−k)

implies that the Plücker coordinate
p(2n−(r−k))
(i, j) vanishes on X Q̃(w̃). We saw in (3.10) that for such (i, j) we have

p(2n−(r−k))
(i, j) = (−1)2n−(r−k)− j xi j and thus xi j ≡ 0 on YQ̃(w̃).
The second case is for (i, j)with i >2n−(r−k) and r−k< j ≤n. The reflection

(i, j) is not smaller than w̃ in W/WQ ̂2n−(r−k)
implies that the Plücker coordinate

p(2n−(r−k))
(i, j) vanishes on X Q̃(w̃). We saw in (3.14) that for such (i, j) we have

p(2n−(r−k))
(i, j) = (−1)M

(
xi j−[xi (r−k)+1 . . . xi n][xn+1 j . . . x2n−(r−k) j ]

T
)
. Combining

these two facts we get xi j = [xi (r−k)+1 . . . xi n][xn+1 j . . . x2n−(r−k) j ]
T .

As [xi (r−k)+1 . . .xi n] is the (2n−(r−k)−i)-th row of E ′and [xn+1 j . . . x2n−(r−k) j]
T

is the (2n − (r − k) − j)-th column of D2 it is clear that on YQ̃(w̃) we have
xi j = (E ′X)(2n−(r−k)−i) (2n−(r−k)− j).

On the other hand note that the reflections (i, j) with i > r and j ≤ r − k,
and i > 2n − (r − k) and r − k < j ≤ 2n − r are precisely the reflections
sα with α ∈ R−\R−

Q̃
and w̃ � sα in W/WQ̃ . Since X Q̃(w̃) is smooth this im-

plies by Proposition 3.1 that the codimension of YQ̃(w̃) in O−
H/Q̃

is equal to
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#
{
(i, j) | i > r and j ≤ r − k, or i > 2n− (r − k) and r − k < j ≤ 2n− r

}
.Above

we have shown that for each such (i, j), xi j either vanishes, or is completely
dependent on the entries of E ′X . Thus YQ̃(w̃) is the subspace of O−

H/Q̃
defined by

the vanishing of {xi j | i > r and j ≤ r − k, or i > 2n− (r − k) and n < j ≤ 2n− r}
and xi j = (E ′X)(2n−(r−k)−i) (2n−(r−k)− j) for i > 2n− (r−k) and r−k < j ≤ n. �

Example 3.16. Let k = 2, r = 4, and n = 5. Then Q̃ = Q 2̂,5̂,8̂, w= (3, 4, 6, 9, 10),
and w̃ = (3, 4, 6, 9, 10, 1, 2, 5). Then

O−
H/Q̃
=



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0

x31 x32 1 0 0 0 0 0 0 0
x41 x42 0 1 0 0 0 0 0 0
x51 x52 0 0 1 0 0 0 0 0
x61 x62 x63 x64 x65 1 0 0 0 0
x71 x72 x73 x74 x75 0 1 0 0 0
x81 x82 x83 x84 x85 0 0 1 0 0
x91 x92 x93 x94 x95 x96 x97 x98 1 0
x101 x102 x103 x104 x105 x106 x107 x108 0 1


.

And YP̃(w̃) will be the subspace of O−
H/Q̃

given by

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0

x31 x32 1 0 0 0 0 0 0 0
x41 x42 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 x63 x64 x65 1 0 0 0 0
0 0 x73 x74 x75 0 1 0 0 0
0 0 x83 x84 x85 0 0 1 0 0
0 0 x97x73+ x98x83 x97x74+ x98x84 x97x75+ x98x85 0 x97 x98 1 0
0 0 x107x73+ x108x83 x107x74+ x108x84 x107x75+ x108 0 x107 x108 0 1



.

Corollary 3.17. The opposite cell YP̃(w̃) can be identified with the subspace of
O−

G/P̃
given by matrices of the form

Idr−k 0 0 0
A′ Idn−(r−k) 0 0
0 D2 Idn−(r−k) 0
0 −J (A′)T JD2 −J (A′)T J Idr−k


with JD2 ∈ Symn−(r−k) and A′ ∈Matn−(r−k)×r−k with the bottom n− r rows of A′

all zero.
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Proof. Let y ∈ YP̃(w̃)= (YQ̃(w̃))
σ
⊂ YQ̃(w̃). So y is just an element of YQ̃(w̃) that

is fixed under the involution σ . That is, an element which satisfies (2.3.1)–(2.3.3).
Theorem 3.15 gives us that y is of the form

Idr−k 0 0 0
A′ Idn−(r−k) 0 0
0 D2 Idn−(r−k) 0
0 E ′D2 E ′ Idr−k


with D2 ∈Matn−(r−k), A′ ∈Matn−(r−k)×r−k with the bottom n− r rows of A′ all
zero, and E ′ ∈Matr−k×n−(r−k) with the left n− r columns of E ′ all zero. We must
now check what restrictions on y are required for it to satisfy (2.3.1)–(2.3.3). For y
to satisfy (2.3.3) we know that[

Idr−k 0
A′ Idn−(r−k)

]T [
0 J
J 0

] [
Idr−k 0

E ′ Idn−(r−k)

](
=

[
(A′)T J + J E ′ J

J 0

])
must equal [

0 J
J 0

]
which implies that E ′ =−J (A′)T J .

Any y clearly satisfies (2.3.2). And finally for y to satisfy (2.3.1),[
0 D2

0 −J (A′)T JD2

]T [
0 J
J 0

] [
Idr−k 0

A′ Idn−(r−k)

](
=

[
0 0
0 DT

2 J

])
must equal[

Idr−k 0
A′ Idn−(r−k)

]T [
0 J
J 0

] [
0 D2

0 −J (A′)T JD2

](
=

[
0 0
0 JD2

])
which implies that JD2 = DT

2 J , or equivalently JD2 ∈ Symn−(r−k). �

Remark 3.18. We may identify O−
P/P̃

with O−GLn /P ′
r̂−k

under the map[
A 0
0 J (AT )−1 J

]
7→A.

Remark 3.19. Let Vw be the linear subspace of Symn given by xi j = 0 if j ≤ r−k
or i < n− (r−k). And let V ′w be the linear subspace of O−GLn /P ′

r̂−k
given by xi j = 0

if i > r and j ≤ r − k.
Consider the map δ : YP̃(w̃) ↪→ O−

G/P̃
= O−G/P × O−

P/P̃
∼= O−G/P × O−GLn /P ′

r̂−k
,

where the first map is inclusion, the second is simply the product decomposition,
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and the final map is from Remark 3.18. This map is given explicitly by
Idr−k 0 0 0

A′ Idn−(r−k) 0 0
0 D2 Idn−(r−k) 0
0 −J (A′)T JD2 −J (A′)T J Idr−k

 7→



Idr−k 0 0 0
0 Idn−(r−k) 0 0

−D2 A′ D2 Idn−(r−k) 0
J (A′)T JD2 A′ −J (A′)T JD2 0 Idr−k

 , [Idr−k 0
A′ Idn−(r−k)

] .
Consider the isomorphism γ :O−G/P×O−GLn/P ′

r̂−k
→Symn×O−GLn/P ′

r̂−k
(cf. Remark 2.2.6)

given by([
Idn 0
L Idn

]
,

[
Idr−k 0

N Idn−(r−k)

])
7→

(
(L N )T J N ,

[
Idr−k 0

N Idn−(r−k)

])
.

We have that under the map γ ◦δ, YP̃(w̃) gets identified with Vw×V ′w. This follows
by a simple computation and Corollary 3.17.

Definition 3.20. Now let Z P̃(w̃) :=YP(w)×X P (w)X P̃(w̃). Then Z P̃(w̃)= (O
−

G/P×

P/P̃)∩ X P̃(w̃). Hence Z P̃(w̃) is smooth, being open in the smooth X P̃(w̃) (cf.
Proposition 3.3).

Write p for the composite map Z P̃(w̃)→ O−G/P× P/P̃→ P/P̃ (∼=GLn /P ′
r̂−k
)

where the first map is the inclusion and the second map is the projection. Using
Proposition 2.3.4(c) and (d) we see that

p
([

A 0
D J (AT )−1 J

]
(mod P̃)

)
= A(mod P ′

r̂−k
).

Note that A is invertible by 2.3.4(b).
Using the injective map

A ∈ Bn 7−→

[
A 0n×n

0n×n J (AT )−1 J

]
∈ BG,

Bn can be thought of as a subgroup of BG . With this identification we have the
following proposition.

Proposition 3.21. Z P̃(w̃) is Bn-stable for the action on the left by multiplication.
Further p is Bn equivariant.

Proof. Let z ∈ SP2n such that z P̃ ∈ Z P̃(w̃). Then by Proposition 2.3.4(c) we may
write

z =
[

A 0
D J (AT )−1 J

]
mod P̃,
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such that z P̃ ∈ Z P̃(w̃). Since X BG (w̃)→ X P̃(w̃) is surjective, we may assume that
z (mod BG) ∈ X BG (w̃), i.e., z ∈ BGw̃BG . Then for every A′ ∈ Bn:[

A′ 0n×n

0n×n J (A′T )−1 J

]
z =

[
A′A 0

J (A′T )−1 J D J (A′T )−1(A′T )−1 J

]
=: z′.

Then z′ ∈ BGw̃BG , so z′ (mod P̃) ∈ X P̃(w̃). By Proposition 2.3.4(b), we have that
A is invertible, and hence AA′. This implies again by Proposition 2.3.4(b) that
z′ (mod P̃) ∈ Z P̃(w̃). Thus Z P̃(w̃) is Bn stable. Also p(A′z) = p(z′) = A′A =
A′ p(z). Hence p is Bn-equivariant. �

Theorem 3.22. With notation as above, letw′ := (k+1,. . ., r, n,. . ., r+1, k,. . ., 1)
be an element of Sn , the Weyl group of GLn . Then:

(a) The natural map X P̃(w̃)−→ X P(w) is proper and birational. In particular,
the map Z P̃(w̃)−→ YP(w) is proper and birational. And therefore, Z P̃(w̃) is
a desingularization of YP(w).

(b) X P ′
r̂−k
(w′) is the fiber of the natural map Z P̃(w̃)−→ YP(w) at eid ∈ YP(w).

(c) XP ′
r̂−k
(w′) is the image of p. Further, p is a fibration with fiber isomorphic to Vw.

(d) p identifies Z P̃(w̃) as a subbundle of the trivial bundle O−G/P × X P ′
r̂−k
(w′),

which arises as the restriction of the vector bundle on GLn /P ′
r̂−k

associated
to the P ′

r̂−k
-module Vw (which, in turn, is a P ′

r̂−k
-submodule of O−G/P ).

Proof. (a): The map X P̃(w̃) ↪→ G/P̃→ G/P is proper and its (scheme-theoretic)
image is X P(w), hence X P̃(w̃)→ X P(w) is proper. Birationality follows from the
fact that w̃ is the minimal representative of the coset w P̃ .

(b): The fiber at eid ∈ YP(w) of the map YP̃(w̃) −→ YP(w) is 0 × V ′w, inside
Vw × V ′w = YP̃(w̃). Since Z P̃(w̃) is the closure of YP̃(w̃) inside O−G/P × P/P̃
and X P ′

r̂−k
(w′) is the closure of V ′w inside P/P̃ (note that as a subvariety of O−

P/P̃
,

YP ′
r̂−k
(w′) is identified with V ′w), we see that the fiber at eid (belonging to YP(w))

of Z P̃(w̃)−→ YP(w) is X P ′
r̂−k
(w′).

(c): From Remark 3.19 we have p(YP̃(w̃)) = V ′w ⊆ X P ′
r̂−k
(w′). Since YP̃(w̃) is

dense inside Z P̃(w̃) and X P ′
r̂−k
(w′) is closed in GLn /P ′

r̂−k
we see that p(Z P̃(w̃))⊆

X P ′
r̂−k
(w′). The other inclusion X P ′

r̂−k
(w′) ⊆ p(Z P̃(w̃)) follows from (b). Hence,

p(Z P̃(w̃)) = X P ′
r̂−k
(w′). To prove the second assertion of (c) we shall show that

for every A ∈ GLn with A mod P ′
r̂−k
∈ X P ′

r̂−k
(w′), we have that p−1(A modP ′

r̂−k
)

is isomorphic to Vw.
To prove this we first observe that p−1(eid) is isomorphic to Vw in view of

Remark 3.19. Next observe that every Bn-orbit inside X P ′
r̂−k
(w′) meets V ′w (which

equals YP ′
r̂−k
(w′)); further p is Bn-equivariant by Proposition 3.21 and hence every

fiber is isomorphic to the fiber at eid, i.e., isomorphic to Vw.
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(d): Define a right action of GLn on O−G/P (identified with Symn as in Remark 2.2.6)
as g ◦ v = gT vg for g ∈ GLn, v ∈ Symn . This induces an action of P ′

r̂−k
on O−G/P

under which Vw is stable. Thus we get the homogeneous bundle

GLn ×
P ′

r̂−k Vw −→ GLn /P ′
r̂−k
.

Now to prove the assertion about Z P̃(w̃)) being a vector bundle over X P ′
r̂−k
(w′),

we will show that there is a commutative diagram given as below, with ψ an
isomorphism:

Z P̃(w̃)

φ

,,

p

##

ψ ))

(GLn ×
P ′

r̂−k Vw)|X P ′
r̂−k

(w′)

��

// GLn ×
P ′

r̂−k Vw

α

��

X P ′
r̂−k
(w′)

β
// GLn /P ′

r̂−k

The map α is the homogeneous bundle map and β is the inclusion map. Define φ by

φ :

[
A 0n×n

D J (AT )−1 J

]
mod P̃ 7−→ (A, DT J A)/∼ .

Using Proposition 2.3.4(c) and Remark 3.19 we conclude the following: φ is well-
defined and injective; β · p = α ·φ; hence, by the universal property of products,
the map ψ exists; and, finally, the injective map ψ is in fact an isomorphism (by
dimension considerations). �

As an immediate consequence of Theorem 3.22 we have

Corollary 3.23. We have the following realization of Diagram 1.2:

Z P̃(w̃)

q ′

��

� � // O−G/P × X P ′
r̂−k
(w′)

q

��

// X P ′
r̂−k
(w′)

YP(w)
� � // O−G/P

Proposition 3.24. (1) The Schubert variety X P ′
r̂−k
(w′) is isomorphic to the Grass-

mannian GLr /P ′′
r̂−k

, where P ′′
r̂−k

is the parabolic subgroup in GLr obtained
by omitting αr−k .

(2) (GLn ×
P ′

r̂−k Vw)|XP ′
r̂−k

(w′)
∼= (GLn ×

P ′
r̂−k Vw)|GLr /P ′′

r̂−k

∼=GLr ×
P ′′

r̂−k Vw as homo-
geneous vector bundles.

Proof. (1): This is clear.
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(2): Consider the embedding i : GLr ↪→ GLn given by

R 7→
[

R 0
0 Idn−r

]
.

Define the action of GLr on Symn as the action induced by this embedding. This
induces an action of P ′′

r̂−k
on Symn . As i(P ′′

r̂−k
)⊂ P ′

r̂−k
, the P ′

r̂−k
stability of Vw

implies the P ′′
r̂−k

stability of Vw. Hence our result follows. �

Corollary 3.25. We have the following realization of Diagram 1.2:

Z P̃(w̃)

q ′

��

� � // O−G/P ×GLr /P ′′
r̂−k

q

��

// GLr /P ′′
r̂−k

YP(w)
� � // O−G/P

4. Free resolutions

Kempf–Lascoux–Weyman geometric technique. We summarize the geometric tech-
nique of computing free resolutions, following [Weyman 2003, Chapter 5].

Consider Diagram 1.1. There is a natural map f : V −→ Grassr,d (where
r = rkV Z and d = dim A) such that the inclusion Z ⊆A×V is the pull-back of the
tautological sequence (2.4.4); here rkV Z denotes the rank of Z as a vector bundle
over V , i.e., rkV Z = dim Z −dim V . Let ξ = ( f ∗Q)∗. Write R for the polynomial
ring C[A] and m for its homogeneous maximal ideal. (The grading on R arises as
follows. In Diagram 1.1, A is thought of as the fiber of a trivial vector bundle, so it
has a distinguished point, its origin. Now, being a subbundle, Z is defined by linear
equations in each fiber; i.e., for each v ∈ V , there exist s := (dim A−rkV Z) linearly
independent linear polynomials `v,1, . . . , `v,s that vanish along Z and define it. Now
Y = {y ∈ A : there exists v ∈ V such that `v,1(y)= · · · = `v,s(y)= 0}. Hence Y is
defined by homogeneous polynomials. This explains why the resolution obtained
below is graded.) Let m be the homogeneous maximal ideal, i.e., the ideal defining
the origin in A. Then:

Theorem 4.1 [Weyman 2003, Basic Theorem 5.1.2]. With notation as above, there
is a finite complex (F•, ∂•) of finitely generated graded free R-modules that is
quasi-isomorphic to Rq ′

∗
OZ , with

Fi =
⊕
j≥0

H j(V,∧i+ j
ξ
)
⊗C R(−i − j),

and ∂i (Fi )⊆mFi−1. Furthermore, the following are equivalent:

(a) Y has rational singularities i.e., Rq ′
∗
OZ is quasi-isomorphic to OY ;

(b) F• is a minimal R-free resolution of C[Y ], i.e., F0 ' R and F−i = 0 for
every i > 0.
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A sketch of the proof is given in [Kummini et al. 2015, Section 4], and [Weyman
2003, 5.1.3] may be consulted for a more comprehensive account.

Our situation. We now apply Theorem 4.1 to our situation. We keep the notation
of Theorem 3.22. Theorem 4.1 and Corollary 3.25 yield the following result:

Theorem 4.2. Write ξ for the homogeneous vector bundle on GLr /P ′′
r̂−k

associ-
ated to the P ′′

r̂−k
-module (O -

G/P/Vw)∗ (this is the dual of the quotient of O -
G/P ×

GLr /P ′′
r̂−k

by Z P̃(w̃)). Then we have a minimal R-free resolution (F•, ∂•) of
C[YP(w)] with

Fi =
⊕
j≥0

H j (GLr /P ′′
r̂−k
,

i+ j∧
ξ)⊗C R(−i − j).

Computing the cohomology groups required in Theorem 4.2 in the general
situation is a difficult problem. Techniques for computing them in our specific case
are discussed in the following section.

5. Cohomology of homogeneous vector bundles

We have shown in Theorem 4.2 that the calculation of a minimal R-free resolu-
tion of C[YP(w)] comes down to the computation of the cohomology of certain
homogeneous bundles over GLr /P ′′

r̂−k
. In particular we need to calculate

(5.1) H •
(
GLr /P ′′

r̂−k
,
∧t
ξ
)

for arbitrary t .
The P ′′

r̂−k
-module (O -

G/P/Vw)∗ is not completely reducible (the unipotent radical
of P ′′

r̂−k
does not act trivially), and thus we can not use the Bott algorithm to

compute its cohomology. In [Ottaviani and Rubei 2006] the authors determine the
cohomology of general homogeneous bundles on Hermitian symmetric spaces. As
GLr /P ′′

r̂−k
is such a space their results could be used to determine (5.1). In practice,

proceeding along these lines is possible though extremely complicated.
Another approach to the calculation of these cohomologies comes from using

a technique employed in [Weyman 2003, Chapter 6.3]. There the minimal R-free
resolution of a related space is computed and the minimal R-free resolution of
C[YP(w)] can be seen as a subresolution. In [Weyman 2003] this method is used for
the case when n = r . That is, the case where YP(w) is the symmetric determinental
variety. In this case the authors assume that k = 2u (the odd case can be reduced to
this even case). They look at the subspace Tw of Symn given by symmetric matrices
of block form [

0n−u×n−u R
RT Su×u

]
.
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Let P ′
n̂−u

be the parabolic subgroup of GLn omitting the root αn−u , then Tw is
a P ′

n̂−u
-module under the same action. If Zw is the homogeneous vector bundle

associated with Tw we have the following diagram

Zw
� � //

q ′

��

Symn ×GLn /P ′
n̂−u

q

��

// GLn /P ′
n̂−u

Y �
�

// Symn

They show that the resolution of C[YP(w)] can be realized as a subresolution of
the resolution of C[Y ]. In this case, the P ′

n̂−u
-module (Symn /Tw)∗ (this is the

dual of the quotient of Symn ×GLn /P ′
n̂−u

by Zw) is completely reducible and thus
the cohomology of the corresponding homogeneous vector bundles

∧t
ξ may be

computed using the Bott algorithm, leading to this:

Theorem 5.2 [Weyman 2003, Theorem 6.3.1(c)]. The i-th term Gi of the minimal
free resolution of C[YP(w)] as an R module is given by the formula

Gi =
⊕

λ∈Qk−1(2t)
rank λ even

i=t−k 1
2 rank λ

Sλ ‹Cn
⊗C R.

Here Qk−1(2t) is the set of partitions λ of 2t which in hook notation can be
written as λ= (a1, . . . , as |b1, . . . , bs), where s is a positive integer, and for each j
we have a j = b j + (k− 1). And λ ‹ is the conjugate (or dual) partition of λ. And
finally, rank λ is defined as being equal to l, where the largest square fitting inside
λ is of size l × l.

Similar methods may be used to compute a closed form formula for the minimal
free resolution of C[YP(w)] as an R module in the case r 6= n.
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