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In memory of Robert Steinberg, whose elegant mathematics continues to inspire us.

For G a simple algebraic group over an algebraically closed field of charac-
teristic 0, we determine the irreducible representations ρ :G→ I (V ), where
I (V ) denotes one of the classical groups SL(V ), Sp(V ), SO(V ), such that ρ
sends some distinguished unipotent element of G to a distinguished element
of I (V ). We also settle a base case of the general problem of determining
when the restriction of ρ to a simple subgroup of G is multiplicity-free.

1. Introduction

Let G be a simple algebraic group of rank at least 2 defined over an algebraically
closed field of characteristic 0 and let ρ :G→ I(V ) be an irreducible representation,
where I(V ) denotes one of the classical groups SL(V ),Sp(V ), or SO(V ). In this
paper we consider two closely related problems. We determine those representations
for which some distinguished unipotent element of G is sent to a distinguished
element of I(V ). Also we settle a base case of the general problem of determining
when the restriction of ρ to a simple subgroup of G is multiplicity-free.

A unipotent element of a simple algebraic group is said to be distinguished if
it is not centralized by a nontrivial torus. Let u ∈ G be a unipotent element. If
ρ(u) is distinguished in I(V ) then u must be distinguished in G. The distinguished
unipotent elements of I(V ) can be decomposed into Jordan blocks of distinct sizes.
Indeed they are a single Jordan block, the sum of blocks of distinct even sizes, or
the sum of blocks of distinct odd sizes, according to whether I(V ) is SL(V ),Sp(V ),
or SO(V ), respectively; see [Liebeck and Seitz 2012, Proposition 3.5].

Now u can be embedded in a subgroup A of G of type A1 by the Jacobson–
Morozov theorem; given u, the subgroup A is unique up to conjugacy in G. If
ρ(u) is distinguished, then ρ(A) acts on V with irreducible summands of the
same dimensions as the Jordan blocks of u, and hence the restriction V ↓ ρ(A) is
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multiplicity-free — that is, each irreducible summand appears with multiplicity 1.
Indeed, V ↓ ρ(A) is either irreducible, or the sum of irreducibles of distinct even
dimensions or of distinct odd dimensions.

Our main result determines those situations where V ↓ ρ(A) is multiplicity-free.
In order to state it, we recall that a subgroup of G is said to be G-irreducible if
it is contained in no proper parabolic subgroup of G. It follows directly from the
definition that an A1 subgroup of G is G-irreducible if and only if its nonidentity
unipotent elements are distinguished in G. If these unipotent elements are regular
in G, we call the subgroup a regular A1 in G.

Theorem 1. Let G be a simple algebraic group of rank at least 2 over an alge-
braically closed field K of characteristic zero, let A ∼= A1 be a G-irreducible
subgroup of G, let u ∈ A be a nonidentity unipotent element, and let V be an
irreducible KG-module of highest weight λ. Then V ↓ A is multiplicity-free if and
only if λ and u are as in Tables 1 or 2, where λ is given up to graph automorphisms
of G. Table 1 lists the examples where u is regular in G, and Table 2 lists those
where u is nonregular.

Theorem 1 is the base case of a general project in progress, which aims to
determine all irreducible KG-modules V and G-irreducible subgroups X of G for
which V ↓ X is multiplicity-free.

The answer to the original question on distinguished unipotent elements is as
follows.

Corollary 2. Let G be as in the theorem, and let ρ : G→ I(V ) be an irreducible
representation with highest weight λ, where I(V ) is SL(V ), Sp(V ), or SO(V ). Let
u ∈ G be a nonidentity unipotent element, and suppose that ρ(u) is a distinguished
element of I(V ).

(i) If I (V )= SL(V ), then G = An , Bn , Cn , or G2, and λ= ω1 (or ωn if G = An);
moreover, u is regular in G.

(ii) If I(V ) = Sp(V ) or I(V ) = SO(V ), then λ and u are as in one of the cases
in Tables 1 or 2, for which V = VG(λ) is a self-dual module (equivalently,
λ = −w0(λ), where w0 is the longest element of the Weyl group of G). Con-
versely, for each such case in the tables, ρ(u) is distinguished in I(V ).

The layout of the paper is as follows. Section 2 consists of notation and prelim-
inary lemmas. This is followed by Sections 3, 4, 5, where we prove Theorem 1
in the special case where A is a regular A1 subgroup of G. Then in Section 6 we
consider the remaining cases where A is nonregular. There are far fewer examples
in that situation. Finally, Section 7 contains the proof of the corollary.
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G λ

An ω1, ω2, 2ω1, ω1+ωn,

ω3 (5≤ n ≤ 7),
3ω1 (n ≤ 5), 4ω1 (n ≤ 3), 5ω1 (n ≤ 3)

A3 110
A2 c1, c0

Bn ω1, ω2, 2ω1,

ωn (n ≤ 8)
B3 101, 002, 300
B2 b0, 0b (1≤ b ≤ 5), 11, 12, 21

Cn ω1, ω2, 2ω1,

ω3 (3≤ n ≤ 5),
ωn (n = 4, 5)

C3 300
C2 b0, 0b (1≤ b ≤ 5), 11, 12, 21

Dn (n ≥ 4) ω1, ω2 (n = 2k+ 1), 2ω1 (n = 2k),
ωn (n ≤ 9)

E6 ω1, ω2

E7 ω1, ω7

E8 ω8

F4 ω1, ω4

G2 10, 01, 11, 20, 02, 30

Table 1. V ↓ A multiplicity-free, u ∈ G regular in G.

G λ class of u in G

Bn, Cn, Dn ω1 any
Dn (5≤ n ≤ 7) ωn regular in Bn−2 B1

F4 ω4 F4(a1)

E6 ω1 E6(a1)

E7 ω7 E7(a1) or E7(a2)

E8 ω8 E8(a1)

Table 2. V ↓ A multiplicity-free, u ∈ G distinguished but not regular.

For many of the proofs we need to calculate dimensions of weight spaces in
various G-modules. When the rank of G is small, such dimensions can be computed
using Magma [Bosma et al. 1997], and we make occasional use of this facility.
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2. Preliminary lemmas

Continue to let G be a simple algebraic group over an algebraically closed field
K of characteristic zero. Let A ∼= A1 be a G-irreducible subgroup of G, let u be
a nonidentity unipotent element of A, and let T < A be a 1-dimensional torus
such that the conjugates of u under T form the nonidentity elements of a maximal
unipotent group of A.

We fix some notation that will be used throughout the paper. Let T ≤ TG , where
TG is a maximal torus of G and let5G ={α1, . . . , αn} denote a fundamental system
of roots. We label the nodes of the Dynkin diagram of G with these roots as in
[Bourbaki 1968, p. 250]. Write si for the reflection in αi , an element of the Weyl
group W (G). When G = Dn we assume that n≥ 4 (and regard D3 as the group A3).

The torus T determines a labelling of the Dynkin diagram by 0s and 2s (see
[Liebeck and Seitz 2012, Theorem 3.18 and Table 13.2]), which gives the weights
of T on fundamental roots. When u is regular in G these labels are all 2s.

Denote by ω1, . . . , ωn the fundamental dominant weights of G. For a dominant
weight λ=

∑
ciωi , let VG(λ) be the irreducible KG-module of highest weight λ.

For A ∼= A1 and a nonnegative integer r , we abbreviate the irreducible module
VA(r) by Vr or just r . More generally we frequently denote the module VG(λ) by
just the weight λ, or the string c1 · · · cl (where l is the rank).

Let V = VG(λ) and let λ afford weight r when restricted to T. Since all weights
of V can be obtained by subtracting roots from the highest weight, the restriction of
each weight to T has the form r − 2k for some nonnegative integer k. If V ↓ A is
multiplicity-free, then V ↓ A= Vr1+Vr2+Vr3+· · · , where r = r1 > r2 > r3 > · · · .
Then the T-weights on V are

(r1, r1− 2, . . . ,−r1), (r2, r2− 2, . . . ,−r2), (r3, r3− 2, . . . ,−r3), . . . .

Note that weight r , respectively r − 2, arises as the restriction of λ−αi for those i
having label 0, resp. 2, and with ci > 0. Therefore, if ci > 0 then αi has label 2,
and there can be at most two values of i with ci > 0.

We often use the following short hand notation. We simply write λ− i x j ykz
· · ·

rather than λ− xαi − yαj − zαk − · · · .

Lemma 2.1. If V ↓ A is multiplicity-free, then dim V ≤
( r

2 + 1
)2 or

( r+1
2

)( r+3
2

)
,

according as r is even or odd, respectively.

Proof. If V ↓ A is multiplicity-free, then V ↓ A is a direct summand of the module
r + (r − 2)+ (r − 4)+ · · · . The assertion follows by taking dimensions. �

Lemma 2.2. Assume V ↓ A is multiplicity-free.

(i) If c ≥ 1 then the T-weight r − 2c occurs with multiplicity at most one more
than the multiplicity of the T-weight r − 2(c− 1).
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(ii) For c ≥ 1, the T-weight r − 2c occurs with multiplicity at most c+ 1.

(iii) If the T-weight r − 2 occurs with multiplicity 1, e.g., if all labels are 2 and
λ=bωi , and if c≥1, then the T-weight r−2c occurs with multiplicity at most c.

Proof. Suppose i is maximal with r − 2c in the weight string ri , . . . ,−ri . Then
T-weight r−2c occurs with the same multiplicity as does T-weight ri . And weight ri

occurs with multiplicity at most one more than weight ri−1 as otherwise there would
be two direct summands of highest weight ri . Now (i) follows as does (ii). Part (iii)
also follows, since the assumption rules out a summand of highest weight r − 2. �

Lemma 2.3. Assume V ↓ A is multiplicity-free and that λ= bωi with b > 1.

(i) Then αi is an end-node of the Dynkin diagram.

(ii) If G has rank at least 3, then the node adjacent to αi has label 2.

Proof. (i) Suppose that αj 6= αk both adjoin αi in the Dynkin diagram. If both
these roots have label 0, then T-weight r − 2 is afforded by each of λ− i , λ− i j ,
λ− ik, λ− i jk, contradicting Lemma 2.2(ii). Next assume αj has label 2 and αk

has label 0. Here we consider r − 4 which is afforded by λ− i2, λ− i2k, λ− i2k2,
λ− i j , again contradicting Lemma 2.2(ii). If both labels are 2, then r−4 is afforded
by λ− i2, λ− i j , λ− ik. But here r−2 only occurs from λ−αi , so this contradicts
Lemma 2.2(iii).

(ii) Assume G has rank at least 3. By (i) αi is an end-node. Let αj be the
adjoining node. We must show αj has label 2. Suppose the label is 0 and let αk

be another node adjoining αj . If αk has label 0, then r − 2 is afforded by each of
λ− i, λ− i j, λ− i jk, a contradiction. Therefore αk has label 2. But then r − 4 is
afforded by each of λ− i2, λ− i2 j , λ− i2 j2, λ− i jk, a contradiction. �

The next lemma will be frequently used, often implicitly, in what follows.

Lemma 2.4. If c≥ d ≥ 0 are integers, then the tensor product c⊗d of A1-modules
decomposes as c⊗ d = (c+ d)⊕ (c+ d − 2)⊕ · · ·⊕ (c− d).

Proof. This follows from a consideration of weights in the tensor product. �

Lemma 2.5. Suppose that λ = ωi +ωj with j > i and that the subdiagram with
base {αi , . . . , αj } is of type A, or is of rank at most 3, or is of type F4. Then the
TG-weight λ− i(i + 1) · · · j occurs with multiplicity j − i + 1.

Proof. Since the weight space lies entirely within the corresponding irreducible for
the Levi factor with base {αi , . . . , αj }, we may assume that G is equal to this Levi
factor; that is, i = 1 and j = n. Then the hypothesis of the lemma implies that G is
An , B2, B3, C2, C3, G2 or F4. For all but the first case the conclusion follows by
computation using Magma.

Now suppose G = An . Then ω1 ⊗ ωn = λ⊕ 0. In the tensor product we see
precisely n+ 1 times the weight λ−α1− · · ·−αn by taking weights of the form
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(ω1− 1 · · · j)⊗ (ωn − ( j + 1) · · · n) for 1 ≤ j ≤ n− 1, together with the weights
ω1⊗ (ωn−1 · · · n) and (ω1−1 · · · n)⊗ωn . Each occurs with multiplicity 1, so the
conclusion follows, as λ−α1− · · ·−αn = 0. �

Lemma 2.6. Assume that there exist i < j with ci 6= 0 6= cj and that V ↓ A is
multiplicity-free.

(i) Then ck = 0 for k 6= i, j .

(ii) Nodes adjoining αi and αj have label 2.

(iii) Either ci = 1 or cj = 1. Moreover, ci = cj = 1 unless αi and αj are adjacent.

(iv) Either αi or αj is an end-node.

(v) If either ci > 1 or cj > 1, then G has rank 2.

(vi) If αi , αj are nonadjacent and if all nodes have label 2, then both αi and αj are
end-nodes.

Proof. (i) This is immediate, as otherwise λ− i , λ− j , λ− k all afford T-weight
r − 2, contradicting Lemma 2.2(ii).

(ii) Suppose (ii) is false. By symmetry we can assume αk adjoins αi and has label 0.
Then λ− i , λ− j , λ− ik all afford r − 2, a contradiction.

(iii) By (ii), nodes adjacent to αi and αj have label 2. Consider T-weight r − 4
which has multiplicity at most 3 by Lemma 2.2. Suppose ck > 1 for k= i or j . Then
λ− k2 and λ− i j both afford weight r − 4. Assume αi and αj are not adjacent. We
give the argument when the diagram has no triality node. The other cases require
only a slight change of notation. With this assumption we also get r − 4 from
λ− i(i + 1) and λ− ( j − 1) j , a contradiction. So ck > 1 implies that αi , αj are
adjacent. If both ci > 1 and cj > 1, then we again have a contradiction, since r − 4
is afforded by λ− i2, λ− j2, and λ− i j , and the latter appears with multiplicity 2
by [Testerman 1988, §1.35].

(iv) Suppose neither αi nor αj is an end-node. We give details assuming there is no
triality node. The remaining cases just require a slight change of notation. Consider
weight r − 4. This is afforded by λ− i j , λ− (i − 1)i , and λ− j ( j + 1). If ci > 1
then λ− i2 also affords r − 4. This forces ci = 1, and similarly cj = 1. If j = i + 1,
then λ− i j has multiplicity 2 by Lemma 2.5, again a contradiction. And if j > i+1,
then λ− i(i + 1) and λ− ( j − 1) j afford weight r − 4. In either case r − 4 appears
with multiplicity at least 4, contradicting Lemma 2.2.

(v) Suppose ck > 1 for k = i or j . By (iv) we can assume αi is an end-node. If
G has rank at least 3, let αl adjoin αj , where l 6= i . Then (ii) implies that r − 4 is
afforded by λ− i j , λ−k2, λ− jl. If αj is adjacent to αi then the first weight occurs
with multiplicity 2 by [loc. cit.]. Otherwise there is another node αm adjacent to αi

and λ− im affords r − 4. In either case we contradict Lemma 2.2.



DISTINGUISHED UNIPOTENT ELEMENTS AND MULTIPLICITY-FREE SUBGROUPS 363

(vi) As above we treat the case where the Dynkin diagram has no triality node. By
(iv) and symmetry we can assume αi is an end-node. Suppose j < n. Then r − 4 is
afforded by each of λ− i(i + 1), λ− ( j − 1) j , λ− j ( j + 1), λ− i j , contradicting
Lemma 2.2. Therefore, j = n. �

Lemma 2.7. Suppose λ= ωi and the Dynkin diagram has a string αi−3, . . . , αi+3

for which each node has T-label 2. Then r −8 occurs with multiplicity at least 5. In
particular V ↓ A is not multiplicity-free.

Proof. The T-weight r − 8 arises from each of the following weights:

λ−i(i+1)(i+2)(i+3), λ−(i−1)i(i+1)(i+2), λ−(i−2)(i−1)i(i+1),

λ−(i−3)(i−2)(i−1)i, λ−(i−1)i2(i+1);

the last is a weight as it is equal to (λ− (i − 1)i(i + 1))si. This proves the first
assertion and the second assertion follows from Lemma 2.2(iii). �

The final lemma is an inductive tool. Let L be a Levi subgroup of G in our
fixed system of roots, and let µ be the corresponding highest weight of L ′, namely,
µ=

∑
cjω j , where the sum runs just over those fundamental weights corresponding

to simple roots in the subsystem determined by L .

Lemma 2.8. Fix c ≥ 1 and let s denote the sum of the dimensions of all weight
spaces of VL ′(µ) for all weights of form µ−

∑
djαj such that

∑
dj = c and each αj

such that dj 6= 0 has label 2.

(i) If s > c+ 1, then V ↓ A is not multiplicity-free.

(ii) If T-weight r−2 occurs with multiplicity 1 (e.g., if all labels are 2 and λ= bωi )
and s > c, then V ↓ A is not multiplicity-free.

Proof. This is immediate from Lemma 2.2, since T ≤ L and the weight µ−
∑

djαj

corresponds to a weight λ−
∑

djαj which affords T-weight r − 2c. �

3. The case where A is regular and λ 6= cωi

As in the hypothesis of Theorem 1, let G be a simple algebraic group of rank
at least 2, let A ∼= A1 be a G-irreducible subgroup, and let V = VG(λ), where
λ=

∑
ciλi . This section and the next two concern the case of Theorem 1 where A

is a regular A1 of G (recall that this means that unipotent elements of A are regular
in G). In this case all the T-labels of the Dynkin diagram of G are equal to 2. In
this section we handle situations where ci > 0 for at least two values of i .

If V ↓ A is multiplicity-free, λ 6= cωi , and G has rank at least 3, then Lemma 2.6
implies that λ = ωi + ωj , where either αi , αj are both end-nodes, or one is an
end-node and the other is adjacent to it.
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Proposition 3.1. Assume V ↓ A is multiplicity-free. Then there exist at least two
values of i for which ci > 0 if and only if G and λ are in the following table, up to
graph automorphisms.

G λ

A2 c1
A3 110
B2, C2 11, 12, 21
G2 11
B3 101
An 10 · · · 01

The proof will be in a series of lemmas.

Lemma 3.2. Suppose G = A2 and λ= c1 for c≥ 1. Then V ↓ A is multiplicity-free.

Proof. Assume G= A2. The weight c1−α1−α2= (c−1)0 occurs with multiplicity 2
in the module c1 and multiplicity 3 in c0⊗ 01. A dimension comparison shows
that c0⊗ 01= c1+ (c− 1)0.

Now c0= Sc(10), so weight considerations show that for c even, Sc(10) ↓ A =
2c⊕ (2c− 4)⊕ (2c− 8)⊕ · · · ⊕ 0 and Sc−1(10) = (2c− 2)⊕ (2c− 6)⊕ · · · ⊕ 2.
Therefore, Lemma 2.4 implies that

(c0⊗ 01) ↓ A = ((2c+ 2)+ 2c+ (2c− 2))+ ((2c− 2)+ (2c− 4)+ (2c− 6))

+ · · ·+ (6+ 4+ 2)+ 2,

and it follows from the first paragraph that V ↓ A is multiplicity free. A similar
argument applies for c odd. �

Lemma 3.3. (i) If G =C2 and V = VG(λ) with λ= c1 or 1c for c≥ 1, then V ↓ A
is multiplicity-free if and only if λ= 11, 21, or 12.

(ii) If G=G2 and V = VG(λ) with λ= c1 or 1c for c≥ 1, then V ↓ A is multiplicity-
free if and only if λ= 11.

Proof. (i) Let G = C2. We first settle the cases which are multiplicity-free. A
Magma computation shows that 10⊗ 01= 11+ 10, and hence 11 ↓ A = 7+ 5+ 1,
which is multiplicity-free. Next consider λ= 12. First note that 10⊗ 02= 12+ 11
and 02= S2(01)− 00. It follows that

12 ↓ A = 3⊗ (S2(4)− 0)− (7+ 5+ 1)= 3⊗ (8+ 4)− (7+ 5+ 1)

= (11+ 9+ 7+ 5)+ (7+ 5+ 3+ 1)− (7+ 5+ 1)= 11+ 9+ 7+ 5+ 3

and V ↓ A is multiplicity-free. Finally, consider λ = 21. In this case 20⊗ 01 =
21+ 20+ 01. Now 20 ↓ A= S2(3)= 6+ 2, so that (20⊗ 01) ↓ A= (6+ 2)⊗ 4=
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(10+ 8+ 6+ 4+ 2)+ (6+ 4+ 2). It follows that 21 ↓ A = 10+ 8+ 6+ 4+ 2 and
V ↓ A is multiplicity-free.

If λ = 1b for b ≥ 3, then r = 3+ 4b and dim V = 1
3(b + 1)(b + 3)(2b + 4).

Similarly, if λ= b1 for b≥ 3, then r = 3b+4 and dim V = 1
3(b+1)(b+3)(b+5),

Now Lemma 2.1 shows that V ↓ A cannot be multiplicity-free.
(ii) Let G = G2. First consider λ= 11. A Magma computation yields 10⊗01=

11 + 20 + 10. Also, 10 ↓ A = 6 and 01 ↓ A = 10 + 2. Using the fact that
S2(10) = 20 + 00, we find that V ↓ A = 16 + 14 + 10 + 8 + 6 + 4, which is
multiplicity-free.

If λ= c1 with c > 1, then dim V = 1
60(c+ 1)(c+ 3)(c+ 5)(c+ 7)(2c+ 8) and

r = 6c + 10. Similarly, if λ = 1c with c > 1, then r = 10c + 6 and dim V =
1
60(c+ 1)(c+ 3)(2c+ 4)(3c+ 5)(3c+ 7). In either case, Lemma 2.1 shows that
V ↓ A is not multiplicity-free. �

Lemma 3.4. Suppose G has rank at least 3 and λ = ωi + ωj , where αi , αj are
adjacent and one of them is an end-node. Then V ↓ A is multiplicity-free if and
only if G = A3.

Proof. First assume that G = An , Bn , Cn or Dn and λ= ω1+ω2. If n ≥ 4, then the
weights λ−123= (λ−12)s3, λ−234, λ−122= (λ−2)s1, λ−122

= (λ−1)s2 occur
with multiplicities 2, 1, 1, 1 and all afford T weight r−6. Hence this weight occurs
with multiplicity at least 5, and Lemma 2.2 shows that V ↓ A is not multiplicity-free.
If G= B3 or C3, then of the above weights only λ−234 does not occur; however the
weight λ−232

= (λ−2)s3 or λ−223= (λ−23)s2 occurs, respectively, affording T
weight r−6, which again gives the conclusion by Lemma 2.2. And if G = A3, then
100⊗010= 110+001, and restricting to A we have 3⊗(4+0)= (7+5+3+1)+3.
Therefore, 110 ↓ A = 7+ 5+ 3+ 1 which is multiplicity-free, as in the conclusion.

Next consider G = Bn or Cn with λ= ωn−1+ωn . For Bn , the weight r − 6 is
afforded by λ−(n−2)(n−1)n, λ−(n−1)n2

= (λ−(n−1)n)sn, and (λ−(n−1)2n)=
(λ− n)sn−1. Moreover the first two weights occur with multiplicity 2, and so r − 6
appears with multiplicity 5, so that V ↓ A is not multiplicity-free. A similar
argument applies for Cn .

For G = F4, the conclusion follows by using Lemma 2.8, applied to a Levi
subgroup B3 or C3. Likewise, for Dn (n ≥ 5) with λ= ωn +ωn−2 or ωn−1+ωn−2,
or for G = En , we use a Levi subgroup Ar with r ≥ 4. Finally, for D4 the result
follows from the first paragraph using a triality automorphism. �

Lemma 3.5. Assume n ≥ 3 and G = An , Bn , Cn , or Dn and λ = ωi +ωj , where
αi , αj are end-nodes. Then V ↓ A is multiplicity-free if and only if λ= ω1+ωn and
G = An or B3.

Proof. First consider G = An , Bn , Cn . By Lemma 2.6(vi) we have λ = ω1+ωn .
If G = Bn with n ≥ 4, then λ− 123, λ− (n− 2)(n− 1)n, λ− 1(n− 1)n, λ− 12n,
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and λ − (n − 1)n2
= (λ − (n − 1)n)sn all restrict to r − 6 on T , so V ↓ A is

not multiplicity-free by Lemma 2.2. We argue similarly for G = Cn with n ≥ 4,
replacing the last weight by λ− (n− 1)2n = (λ− (n− 1)n)sn−1. And if G = An ,
then V ↓ A is just (n⊗ n)− 0 and hence is multiplicity-free.

Now suppose n = 3 and λ= 101. If G = B3, then Magma gives 100⊗ 001=
101+ 001. Restricting to A, the left side is 6⊗ (6+ 0) and we find that 101 ↓ A =
12+ 10+ 8+ 6+ 4+ 2, which is multiplicity-free. For G = C3, Magma yields
100⊗001= 101+010,

∧2
(100)= 010+000, and

∧3
(100)= 001+100. Restricting

to A and considering weights we have 101 ↓ A = 14+ 12+ 10+ 8+ 62
+ 4+ 2,

which is not multiplicity-free.
Finally, consider G= Dn with n≥ 4. First consider λ=ω1+ωn−1. The T-weight

r − 2(n− 1) is afforded by λ− 1 · · · (n− 1), λ− 2 · · · n, λ− 1 · · · (n− 2)n, which,
using Lemma 2.5, occur with multiplicities n − 1, 1, 1 respectively, giving the
conclusion by Lemma 2.2. A similar argument applies if λ = ω1 + ωn . Finally
assume λ= ωn−1+ωn . Here, T-weight r − 6 is afforded by λ− (n− 2)(n− 1)n,
λ− (n− 3)(n− 2)(n− 1), λ− (n− 3)(n− 2)n, with multiplicities 3, 1, 1, so again
Lemma 2.2 applies. �

Lemma 3.6. Assume G = E6, E7, E8, or F4 and λ = ωi + ωj , where αi , αj are
end-nodes. Then V ↓ A is not multiplicity-free.

Proof. First assume G = F4. Then λ= 1001 and we consider T-weight r−8 which
is afforded by weights λ− 1234, λ− 1232

= (λ− 12)s3, λ− 2324 = (λ− 234)s3,
occurring with multiplicities 4, 1, 1, respectively, giving the result by Lemma 2.2.

So now assume G = En . If λ = ω1 + ωn then the weights λ − 134 · · · n,
λ− 1234 · · · (n− 1), λ−23 · · · n all afford T-weight r−2(n−1) and, by Lemma 2.5,
occur with multiplicities n− 1, 1, 1 respectively, and now we apply Lemma 2.2. If
λ= ω1+ω2, we argue similarly using weights λ− 1234, λ− 1345, λ− 2345. And
if λ= ω2+ωn , we use weights λ− 245 · · · n, λ− 345 · · · n, λ− 23 · · · (n− 1). �

This completes the proof of Proposition 3.1.

4. The case where A is regular and λ= bωi , b≥ 2

Continue to assume that G is a simple algebraic group, A is a regular A1 in G,
and V = VG(λ). In this section we prove Theorem 1 in the case where λ = bωi

for some i and some b ≥ 2. In this case, the T-weight r − 2 appears in V with
multiplicity 1 and Lemma 2.2(iii) applies. Also Lemma 2.3 implies that if V ↓ A is
multiplicity-free then αi is an end-node.

Proposition 4.1. Assume λ = bωi with b > 1. Then V ↓ A is multiplicity-free if
and only if G and λ are as in the following table, up to graph automorphisms of An

or D4.
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λ G

2ω1 An, Bn, Cn, Dn (n = 2k), G2

3ω1 An (n ≤ 5), Bn (n = 2, 3), Cn(n = 2, 3), G2

4ω1, 5ω1 An (n = 2, 3), B2, C2

bω1 (b ≥ 6) A2

bω1 (b ≤ 5) C2

2ω3 B3

2ω2 G2

The proof is carried out in a series of lemmas.

Lemma 4.2. Assume that λ= 2ω1. If G= An, Bn , or Cn , then V ↓ A is multiplicity-
free. If G = Dn , then V ↓ A is multiplicity-free if and only if n is even.

Proof. If G = An , then V ↓ A is just S2(n) and a consideration of weights shows
that this is 2n+ (2n− 4)+ (2n− 8)+ · · · , hence is multiplicity-free. If G = Bn or
Cn we can embed G in A2n or A2n−1, respectively. In each case A acts irreducibly
on the natural module with highest weight 2n or 2n − 1, respectively, and the
conclusion follows from the first sentence.

Now consider G = Dn . In this case A acts on the natural module ω1 for G, as
(2n− 2)+ 0. Now S2(ω1)= V + 0 and hence V ↓ A = S2(2n− 2)+ (2n− 2)=
((4n− 4)+ (4n− 8)+ · · · )+ (2n− 2). If n is odd, we find that 2n− 2 appears
with multiplicity 2, while if n is even, V ↓ A is multiplicity-free. �

Lemma 4.3. Assume that G = Bn (n ≥ 3), Cn (n ≥ 3), or Dn (n ≥ 4) and that
λ= bωi with b> 1 and i > 1. Then V ↓ A is multiplicity-free if and only if G = B3

and λ= 2ω3 or G = D4 and λ= 2ωi for i = 3 or 4.

Proof. By Lemma 2.3 we can assume that αi is an end-node, so we may take i = n.
First consider Cn . If b ≥ 3, then the weight r − 6 occurs with multiplicity at least 4
(from λ− (n − 2)(n − 1)n, λ− (n − 1)n2, λ− n3, λ− (n − 1)2n = (λ− n)sn−1)

and so V ↓ A is not multiplicity-free. For b = 2 first consider G = C3. We have
S2(001)= V + 200. As 001 ↓ A = 9+ 3, it follows that V ↓ A contains 62. Next
suppose that G = Cn with n ≥ 4 and b = 2. This case essentially follows from the
C3 result. We need only show that there are at least two more weights r − 12 than
weights r − 10. For n = 4 the only weights r − 10 that do not arise from the C3

Levi are λ− 12324, λ− 12342. Correspondingly, there are new r − 12 weights,
λ− 122324, λ− 123242. Similar reasoning applies for C5, where λ− 12345 is the
only weight r−10 not appearing for C4 and we conjugate by s4 to get a new weight
r − 12. And for n ≥ 6 there are no r − 10 weights that were not present in a C5

Levi factor.
Now let G = Bn . If b ≥ 3 we find that T weight r − 6 appears with multiplicity

at least 4. Indeed, for the B2 Levi the module 0b = Sb(01) and this yields weights
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λ−n3, λ−(n−1)n2, the latter with multiplicity 2. Also λ−(n−2)(n−1)n affords
T-weight r − 6, which yields the assertion.

Now assume b = 2. First consider G = B3, so that λ = 002. The module 001
for B3 is the spin module where A acts as 6+ 0. We have S2(001) = 002+ 000,
and it follows that V ↓ A = 12+ 8+ 6+ 4+ 0, which is multiplicity-free. Now
assume n > 3. Here we show that T-weight r − 8 occurs with multiplicity 5. The
above shows that r − 8 occurs with multiplicity 4 just working in the B3 Levi. As
λ− (n− 3)(n− 2)(n− 1)n affords r − 8 the assertion follows.

Finally, consider G = Dn . If b≥ 3 then T-weight r−6 occurs with multiplicity 4
(from λ− n3, λ− (n− 2)n2, λ− (n− 1)(n− 2)n, λ− (n− 3)(n− 2)(n)), and so
V ↓ A is not multiplicity-free by Lemma 2.2(iii). Now assume b = 2. Applying
a graph automorphism if necessary, we can assume n ≥ 5 (the conclusion allows
for D4 using Lemma 4.2). Then T-weight r − 8 occurs with multiplicity at least 5
(from λ− (n−4)(n−3)(n−2)n, λ− (n−3)(n−2)(n−1)n, λ− (n−3)(n−2)n2,
λ− (n−1)(n−2)n2, λ− (n−2)2n2). Therefore, V ↓ A is not multiplicity-free. �

Lemma 4.4. Assume that G = An , Bn (n ≥ 3), Cn (n ≥ 3) or Dn (n ≥ 4), and that
λ= bω1 with b≥ 3. Then V ↓ A is multiplicity-free only for the cases listed in rows
2 to 4 of the table in Proposition 4.1.

Proof. First let G = An , so V = VG(bω1)= Sb(ω1). First consider b = 3, so that
r = 3n. If n ≥ 6, then T-weight 3n − 12 occurs with multiplicity at least 7 and
V ↓ A cannot be multiplicity-free. Indeed, independent vectors of weight 3n− 12
occur as tensor symmetric powers of vectors of weights (i, j, k), where (i, j, k)
is one of (n, n, n − 12), (n, n − 2, n − 10), (n, n − 4, n − 8), (n, n − 6, n − 6),
(n− 2, n− 2, n− 8), (n− 2, n− 4, n− 6), or (n− 4, n− 4, n− 4). On the other
hand, for n ≤ 5 the restriction is multiplicity-free.

Next consider b= 4, so that r = 4n. If n≥ 4, then 4n−8 appears with multiplicity
at least 5 and hence V ↓ A is not multiplicity-free. Indeed, independent vectors arise
from symmetric powers of vectors of weights (n, n, n, n− 8), (n, n, n− 2, n− 6),
(n, n, n − 4, n − 4), (n, n − 2, n − 2, n − 4), (n − 2, n − 2, n − 2, n − 2). And
for n ≤ 3 a direct check shows that Sb(ω1) ↓ A is multiplicity-free. If b ≥ 5,
n ≥ 3, and (b, n) 6= (5, 3) then a similar argument shows that the weight bn− 12
occurs with multiplicity at least two more than does bn− 10; hence V ↓ A is not
multiplicity-free in these cases. And if (b, n) = (5, 3) one checks that V ↓ A =
S5(3)= 15+ 11+ 9+ 7+ 5+ 3, which is multiplicity-free.

The final case for G = An is when n = 2. We first note that the multiplicity of
weight 2 j in Sb(2) is precisely the multiplicity of weight 0 in Sb− j (2). Indeed, if
we write 2c0d(−2)e to denote a symmetric tensor of c vectors of weight 2, d vectors
of weight 0 and e vectors of weight−2, then a basis for the 2 j -weight space is given
by vectors 2 j 0b− j (−2)0, 2 j+10b− j−2(−2)1, 2 j+20b− j−4(−2)2, . . . and ignoring the



DISTINGUISHED UNIPOTENT ELEMENTS AND MULTIPLICITY-FREE SUBGROUPS 369

first j terms in each tensor we obtain the assertion. The multiplicity of weight 0 in
Sb− j (2) is easily seen to be (b− j +1)/2 if b− j is odd and (b− j +2)/2 if b− j
is even. From this information we see that Sb(2)= 2b+ (2b− 4)+ (2b− 8)+ · · ·
and hence V ↓ A is multiplicity-free.

Now consider G = Bn,Cn , or Dn . The Cn case follows from the A2n−1 case
since V = Sb(ω1); see [Seitz 1987]. If G = Dn with n ≥ 4, then A ≤ Bn−1 < G. If
the corresponding module for this subgroup is not multiplicity-free, then the same
holds for G since it appears as a direct summand of V.

So assume G = Bn . If b ≥ 4, then T-weight r − 8 occurs with multiplicity at
least 5. Indeed, if n ≥ 4 this weight arises from λ− 1234, λ− 1223, λ− 1222,
λ− 132, λ− 14; whereas, if n = 3 replace the first of these weights by λ− 1232

=

(λ− 12)s3. Now consider b = 3. If n = 4, then S3(λ1) = 3000+ 1000 and one
checks that T-weight r − 12= 12 occurs with multiplicity 7, and so V ↓ A is not
multiplicity-free. And for n > 4 we apply Lemma 2.8 to get the same conclusion.
Finally, if n = 3 then S3(λ1) = V + 100, and a direct check of weights shows
that S3(λ1) ↓ A = 18+ 14+ 12+ 10+ 8+ 62

+ 2, which implies that V ↓ A is
multiplicity-free.

The only remaining case is when G = D4 and b = 3, since here the module
300 ↓ A for B3 is multiplicity-free. As a module for G we have S3(ω1)= 3ω1⊕ω1,
so that V ↓ A = S3(6+ 0)− (6+ 0), which one easily checks is not multiplicity-
free. �

Lemma 4.5. Assume that G= B2,C2, or G2 and λ= bωi (with b≥ 2). Then V ↓ A
is multiplicity-free if and only if one of the following holds:

(i) G = B2 or C2 and λ= b0, 0b (b ≤ 5).

(ii) G = G2 and λ= 20, 30, or 02.

Proof. (i) Let G = B2. Then 0b= Sb(01), which restricts to A as Sb(3). Therefore,
the assertion follows from the A3 result which has already been established.

Now assume λ= b0. Here dim(b0)= (b+ 1)(b+ 2)(2b+ 3)/6 and the highest
weight of V ↓ A is 4b. If the restriction were multiplicity-free, then weight 4b− 2
would only occur with multiplicity 1, and the restriction with largest possible
dimension would have composition factors 4b+ (4b− 4)+ (4b− 6)+ · · ·+ 2+ 0
which totals 4b2

+ 2. For b ≥ 7, this is less than the above dimension of b0 and
so the restriction cannot be multiplicity-free. And for b ≤ 3, V is a summand of
Sb(4) which we have already seen to be multiplicity-free. This leaves the cases
b = 4, 5, 6.
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A computation gives the following decompositions of symmetric powers of the
G-module 10:

S6(10)= 60+ 40+ 20+ 00,

S5(10)= 50+ 30+ 10,

S4(10)= 40+ 20+ 00,

S3(10)= 30+ 10,

S2(10)= 20+ 00.

It follows that 40↓ A=16+12+10+8+4 and 50↓ A=20+16+14+12+10+8+4,
so these are both multiplicity-free. Also S6(4)= 24+20+18+162

+14+123
+· · · .

This and the above imply that 60 ↓ A is not multiplicity-free. This completes the
proof of (i).

(ii) It follows from [Seitz 1987] that VB3(b00) is irreducible upon restriction to G2,
with highest weight b0, and also a regular A in B3 lies in a subgroup G2. So for
i = 1 the assertion follows from our results for B3. Now assume i = 2. Then

dim(0b)= 1
120

(b+ 1)(b+ 2)(2b+ 3)(3b+ 4)(3b+ 5),

and the highest T-weight is 10b. First let b = 2. Then V ↓ A is a direct summand
of S2(01) ↓ A= 20+16+122

+10+82
+42
+02. We have S2(01)= V ⊕20⊕00

and hence V ↓ A= 20+16+12+10+8+4+0, which is multiplicity-free. On the
other hand if b ≥ 3, then Lemma 2.1 implies that V ↓ A is not multiplicity-free. �

Lemma 4.6. If G = En and λ= bωi with b> 1, then V ↓ A is not multiplicity-free.

Proof. By Lemma 2.3, we can take αi to be an end-node. First assume i = 1. If b= 2
one checks that r − 6 is only afforded by λ− 134, λ− 123, while r − 8 is afforded
by λ−1234, λ−1345, λ−1234, λ−1232, so that V ↓ A is not multiplicity-free by
Lemma 2.2(ii). Similarly for b ≥ 3 as T-weight r − 6 appears with multiplicity 3
(from λ−134, λ−123, λ−13), but r −8 appears with multiplicity at least 5 (from
λ− 1345, λ− 1234, λ− 1234, λ− 1222, λ− 133).

If i = 2, we see that weight r − 8 appears with multiplicity at least 5, since it is
afforded by each of λ− 2345, λ− 1234, λ− 2456, λ− 2234, λ− 2245. So V ↓ A
is not multiplicity-free by Lemma 2.2(iii).

Finally, assume that i = n. For n = 6, V is just the dual of VG(λ1), so suppose
G = E7 or E8. If b ≥ 4 it is easy to list weights and verify that T-weight r − 8
appears with multiplicity at least 5, so Lemma 2.2(iii) shows that V ↓ A is not
multiplicity-free. And if b = 2 or 3, we see that T-weight r − 12 appears with
multiplicity at least 2 more than T-weight r − 10. �
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Lemma 4.7. If G = F4 and λ= bωi with b> 1, then V ↓ A is not multiplicity-free.

Proof. As usual we can take αi to be an end-node. First assume i = 1. If b = 2,
then T weight r − 6 occurs with multiplicity 2 (from λ− 123, λ− 122); whereas,
r − 8 occurs with multiplicity 4 (from λ− 1234, λ− 1232

= (λ− 12)s3, λ− 1223,
λ− 1222). If b ≥ 3, then the weight r − 6 appears with multiplicity 3 due to the
additional weight λ− 13. But we also get an additional weight r − 8 from λ− 132.
In either case, Lemma 2.2 implies that V ↓ A is not multiplicity-free.

Now assume i = 4. First assume b = 2. Then S2(0001) = V + 0001+ 0000.
Moreover, a consideration of weights shows that 0001 ↓ A = 16 + 8, and we
conclude that V ↓ A is not multiplicity-free as there is a summand 202.

Finally, assume b ≥ 3. The T-weight r − 6 occurs with multiplicity 3 (from
λ−234, λ−342, λ−43), whereas T-weight r−8 occurs with multiplicity at least 5
(from λ− 1234, λ− 2324= (l − 234)s3, λ− 2342, λ− 3242, λ− 343). �

This completes the proof of Proposition 4.1.

5. The case where A is regular and λ= ωi

Continue to assume that G is a simple algebraic group, A is a regular A1 in G, and
V = VG(λ). In this section we prove Theorem 1 in the case where λ=ωi for some i .

Proposition 5.1. Assume that λ= ωi for some i . Then V ↓ A is multiplicity-free if
and only if G and λ are as in the following table, up to graph automorphisms.

λ G

ω1, ω2 An, Bn, Cn, Dn (n = 2k+ 1), G2

ω3 An (n ≤ 7), Cn (n ≤ 5)
ωn C4, C5

ωn Bn (n ≤ 8), Dn (n ≤ 9)
ω1, ω2 E6

ω1, ω7 E7

ω8 E8

ω1, ω4 F4

The proof is carried out in a series of lemmas.

Lemma 5.2. Assume that λ= ωi .

(i) Then V ↓ A is not multiplicity-free if G = An , Bn , Cn or Dn and 4≤ i ≤ n−3.

(ii) If G = An , i = 3, and n ≥ 5, then V ↓ A is multiplicity-free if and only if n ≤ 7.

(iii) If G = An , Bn , Cn , Dn , or G2 and i = 1 or 2, then V ↓ A is multiplicity-free
except when G = Dn , i = 2, and n even.
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Proof. (i) This follows from Lemma 2.7.

(ii) Assume G = An and i = 3 with n ≥ 5. Then V =
∧3
(ω1) and a computation

using Magma shows that V ↓ A is multiplicity-free for n = 5, 6, 7. If n ≥ 8
one checks that T-weight r − 12 occurs with multiplicity at least 7. Indeed, here
r = 3n− 6, and r − 12 = 3n− 18 is afforded by the wedge of tensors of weight
vectors for each of the following weights:

n(n−2)(n−16), n(n−4)(n−14),

n(n−6)(n−12), n(n−8)(n−10), (n−2)(n−4)(n−12),

(n−2)(n−6)(n−10), (n−4)(n−6)(n−8).

Hence V ↓ A is not multiplicity-free for n ≥ 8 by Lemma 2.2(iii).

(iii) If G = An then A is irreducible on the natural module (i.e., ω1) for G with
highest weight n. And if i = 2, then V ↓ A =

∧2
(n) is a direct summand of

n⊗ n = 2n+ (2n− 2)+ (2n− 4)+ · · ·+ 0, and hence V ↓ A is multiplicity-free.
Now consider G = Bn,Cn, Dn embedded in X = A2n, A2n−1, A2n−1. In the first
two cases A acts irreducibly on the natural module, VX (ω1), and in the third case
A acts as (2n − 2)+ 0. So V ↓ A is obviously multiplicity-free for i = 1. Now
consider i = 2. Then VX (ω2) ↓ G = V if G = Bn or Dn [Seitz 1987] and equals
V +0 if G=Cn (the fixed space corresponds to a fixed alternating form). Therefore,
V ↓ A =

∧2
(2n),

∧2
((2n− 2)+ 0), or

∧2
(2n− 1)− 0, respectively. So V ↓ A is

multiplicity-free if G = Bn or Cn . But if G = Dn , then

V ↓ A =
∧2
((2n− 2)+ 0)= (2n− 2)+ (4n− 6)+ (4n− 10)+ · · ·

and this is multiplicity-free only if n is odd. Finally consider G = G2 viewed as a
subgroup of A6. Then A is irreducible on the natural 7-dimensional module VG(ω1).
Also VG(ω2) is a direct summand of

∧2
(VG(ω1)). So V ↓ A is multiplicity-free in

both cases. �

Lemma 5.3. Suppose that G = Bn , Cn or Dn , that λ= ωi for i ≥ 3 and that V is
not a spin module for Bn or Dn . Then V ↓ A is multiplicity-free if and only if one
of the following holds:

(i) i = n and G = C4 or C5.

(ii) i = 3 and G = Cn for n = 3, 4, 5.

Proof. If G = Bn or Dn , then V =
∧i
(ω1) and the result follows from the A2n or

A2n−1 part of Lemma 5.2. Indeed, if G = Bn , then A is regular in A2n while if
G = Dn , A< Bn−1 < Dn . Therefore, we may assume that G =Cn . If 4≤ i ≤ n−3
then V ↓ A is not multiplicity-free by Lemma 5.2.
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Suppose i ≥ 4. By the previous paragraph we can assume that i > n − 3. If
i = n−2, then T-weight r−8 occurs with multiplicity at least 5 as it is afforded by

λ−(i−3)(i−2)(i−1)i, λ−(i−2)(i−1)i(i+1),

λ−(i−1)i(i+1)(i+2), λ−(i−1)i2(i+1),

λ−i(i+1)2(i+2)= (λ−i(i+1)(i+2))si+1,

so V ↓ A is not multiplicity-free by Lemma 2.2(iii).
Next assume i = n−1. First consider n = 5, where

∧4
(ω1)= ω4+ω2+0. Here

r = 24 and a computation shows that r − 12 = 12 occurs with multiplicity 9 in∧4
(ω1) but it only occurs twice in

∧2
(ω1)= ω2+ 0. Therefore, this weight occurs

with multiplicity 7 in V and hence V ↓ A is not multiplicity-free by Lemma 2.2(iii).
Now return to the general case with i = n−1. Then an application of Lemma 2.8(ii)
to a C5 Levi subgroup shows that T-weight r − 12 appears with multiplicity at
least 7, against Lemma 2.2.

A similar argument settles the case where n = i . If n = 4 or 5, then a Magma
computation shows that V ↓ A is multiplicity-free. If n = 6, weights 24= r − 12
and 26= r −10 occur with multiplicities 6 and 4 respectively, and so Lemma 2.2(i)
implies that V ↓ A is not multiplicity-free. For n > 6 we also compare weights
r − 10 and r − 12. These must already be weights of the C6 Levi subgroups, so
again this contradicts Lemma 2.2(i).

Now assume i = 3 with G = Cn . Then
∧3
(ω1)= V +ω1. Also A is irreducible

on the natural module for A2n−1. In the proof of Lemma 5.2(ii) we saw that for
n ≥ 5 the weight r − 12 = 6n− 21 occurs in

∧3
(ω1) with multiplicity at least 7.

If n ≥ 6, then all these weights occur within V, so V ↓ A is not multiplicity-free.
This leaves n = 3, 4, 5. In these cases, a simple check of weights shows that V ↓ A
is multiplicity-free. �

Lemma 5.4. Assume V is a spin module for Bn or Dn . Then V ↓ A is multiplicity-
free if and only if n ≤ 8 for Bn and n ≤ 9 for Dn .

Proof. If G= Dn , then A≤ Bn−1<G and Bn−1 is irreducible on V, so it will suffice
to settle the G = Bn case. In terms of roots, ωn =

∑
(iαi )/2, so that r = n(n+1)/2.

As dim V = 2n, Lemma 2.1 shows that V ↓ A is not multiplicity-free if n ≥ 10. If
n= 9 then dim V = 29

= 512, while the sum in Lemma 2.1 is 552. However, V ↓ A
does not contain a summand of highest weight r−2=43, so dim V≤552−44=508.
So here too, V ↓ A fails to be multiplicity-free. This leaves the case n ≤ 8.

Consider the restriction V ↓ L , where L = GLn is a Levi subgroup. One checks
(see [Liebeck and Seitz 2012, Lemma 11.15]) that the restriction to SLn consists of
the natural module and all its wedge powers together with two trivial modules. For
example, when n=8 the restriction to A of the weights λ, λ−8, λ−782

= (λ−8)s7s8,
λ− 67283

= (λ− 782)s6s7s8, . . . afford the modules 0, ω7, ω6, ω5, . . . for the A7
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factor. However, the T-weights are shifted in accordance with the number of
fundamental roots subtracted. In the above example, the T-weight of 0 is just that
of λ, namely 36 and the T-weights of ω7 are 34, 32, . . . , 20, etc.

Here we indicate some of the decompositions for V ↓ A for later use.

n decomposition

8 36+ 30+ 26+ 24+ 22+ 20+ 18+ 16+ 14+ 12+ 10+ 8+ 6+ 0
7 28+ 22+ 18+ 16+ 14+ 10+ 8+ 4
6 21+ 15+ 11+ 9+ 3
5 15+ 9+ 5
4 10+ 4
3 6+ 0

Carrying out the above we obtain the conclusion. �

Lemma 5.5. Assume that G = En or F4. Then V ↓ A is multiplicity-free if and
only if λ is as in the following table.

G λ

E6 ω1, ω2, ω6

E7 ω1, ω7

E8 ω8

F4 ω1, ω4

Proof. First assume G = F4 and λ = ω4. It is straightforward to list the first few
weights and see that V ↓ A = 16+ 8. [Liebeck and Seitz 1996, Propositions 2.4
and 2.5] show that V ↓ A is multiplicity-free for each of the remaining cases listed
in the table.

It remains to show that all other possibilities fail to be multiplicity-free. To do
this, we use Lemma 2.1 along with the dimensions of V = V (ωi ), which can be
found using Magma; the values of r can be calculated using the expressions for ωi

in terms of roots, given in [Bourbaki 1968, p. 250]. �

This completes the proof of Proposition 5.1

6. The case where A is nonregular

Assume that G is a simple algebraic group, and A∼= A1 is a G-irreducible subgroup
of G. Recall from the introduction that this means that a nonidentity unipotent
element u of A is distinguished in G. In this section we prove Theorem 1, classifying
G-modules V = VG(λ) such that V ↓ A is multiplicity-free, in the case where u is
distinguished, but not a regular element of G. Such elements exist for G of type
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Bn , (n ≥ 4), Cn , (n ≥ 3), Dn , (n ≥ 4), E6, E7, E8, F4 or G2. We shall see that
there are relatively few examples; they are listed in Table 2 of Theorem 1.

We begin with the analysis of the classical groups.

Proposition 6.1. Assume that G = Bn , Cn or Dn and u is distinguished but not
regular. Then up to graph automorphisms of Dn , VG(λ) ↓ A is multiplicity-free if
and only if one of the following holds:

(i) λ= ω1.

(ii) G = Dn with 5≤ n ≤ 7, λ= ωn , and A < Bn−2 B1, projecting to a regular A1

in each factor.

For the next four lemmas assume the hypotheses of Proposition 6.1. The nat-
ural G-module, when restricted to A, is a direct sum of irreducible modules of
distinct highest weights, and we first discuss the corresponding T-labelling of the
Dynkin diagram of G. A full description can be found in [Liebeck and Seitz 2012,
Theorem 3.18]. As an example, consider G = C15 with A acting as 15+ 9+ 3.
The T-weights are 15, 13, 11, 92, 72, 52, 33, 13 plus negatives. The corresponding
labelling of the Dynkin diagram is 222020202002002. So the labelling begins with
an initial string of 2s, then a number of terms 20, several of type 200, and so on.
For Cn , the end-node αn has label 2, and for Bn it has label 0. For Dn both of
αn−1, αn have the same label; it is 2 or 0, according to whether there are just two
summands for A or more than two, respectively.

As in previous sections, let V = VG(λ), of highest weight λ=
∑

ciωi affording
T-weight r .

Lemma 6.2. Assume V ↓ A is multiplicity-free. Then the following hold:

(i) ci = 0 if αi has label 0.

(ii) ci = 0 if αi has label 2 and αi is adjacent to two nodes having label 0.

(iii) λ= bωi for some i .

(iv) If λ= bωi with b > 1, then i = 1.

(v) λ 6= ωn if G = Bn or Cn .

Proof. (i) Assume αi has label 0 but ci 6= 0. Then λ− αi is a weight affording
T-weight r , which implies that r2 is a summand of V ↓ A, a contradiction.

(ii) Next suppose that αi has label 2 but nodes on either side have label 0. If we
label these nodes αi , αj , αk , then λ− i , λ− i j , λ− ik all afford T-weight r − 2,
contradicting Lemma 2.2.

(iii) Assume ci 6= 0 6= cj . Then λ− i and λ− j afford the only T-weights r−2. This
implies that neither αi nor αj can be adjacent to a node with 0 label, as otherwise
r − 2 would occur with multiplicity at least 3. Therefore, both occur in the initial



376 MARTIN W. LIEBECK, GARY M. SEITZ AND DONNA M. TESTERMAN

string of 2s, and within this string we can argue exactly as in the regular case.
Indeed, the argument of parts (iv), (v), and (vi) of Lemma 2.6 implies that i = 1,
j = 2, and ci = cj = 1. Then the first paragraph of the proof of Lemma 3.4 implies
that the initial string of 2s has length 3. But then T-weight r − 4 is afforded by
λ− 12 (multiplicity 2), λ− 23, and λ− 234, contradicting Lemma 2.2.

(iv) Assume λ = bωi with b > 1. By Lemma 2.3(i), αi is an end-node. Suppose
i = n. Then G 6= Bn , as otherwise αn has label 0, against (i). If G =Cn , then λ−n,
λ−n(n−1), λ−n(n−1)2 = (λ−n(n−1))sn−1 all afford r−2. And for Dn , r−4
is afforded by λ− n2, λ− n2(n− 2), λ− n2(n− 2)2, λ− n(n− 2)(n− 1). This is a
contradiction. A similar argument applies if G = Dn and i = n− 1.

(v) Suppose λ= ωn . The last argument of the previous paragraph also shows that
V ↓ A is not multiplicity-free if G = Cn . And if G = Bn then αn has label 0,
contradicting (i). �

Lemma 6.3. Suppose G = Dn with n ≥ 5, and λ= ωn . Then V ↓ A is multiplicity-
free if and only if n ≤ 7 and A < Bn−2 B1, projecting to a regular A1 in each factor.

Proof. Assume G = Dn and λ=ωn . Then the labels of αn−1 and αn are both 2, and
A has two irreducible summands on the natural G-module. The label of αn−2 is 0.

Suppose that V ↓ A is multiplicity-free. If αn−3 also has label 0, then λ− n,
λ− (n− 2)n, λ− (n− 3)(n− 2)n all afford r − 2, a contradiction. Therefore, αn−3

has label 2. Next consider αn−4. If αn−4 has label 0, then n ≥ 6 and αn−5 must
have label 2. Hence r − 6 is afforded by each of

λ−(n−3)(n−2)(n−1)n, λ−(n−4)(n−3)(n−2)(n−1)n,

λ−(n−3)(n−2)2(n−1)n, λ−(n−4)(n−3)(n−2)2(n−1)n,

λ−(n−5)(n−4)(n−3)(n−2)n,

again a contradiction. Therefore, αn−4 has label 2. This forces the full labelling to
be 22 · · · 22022.

Hence A acts on the natural G-module as (2n− 4)+ 2 and so lies in a subgroup
Bn−2 B1, which acts on V as the tensor product of spin modules for the factors.
That is, V ↓ A = X ⊗ 1 where X is the restriction of the spin module of Bn−2

to a regular A1. As we are assuming V ↓ A to be multiplicity-free, this forces X
to be multiplicity-free. Applying Lemma 5.4 we see that this implies n− 2 ≤ 8.
Moreover, at the end of the proof of Lemma 5.4 we listed the decompositions of X
when this occurs. Tensoring these with 1 it is immediate from Lemma 2.4 that the
V is multiplicity-free if and only if n ≤ 7. �

Lemma 6.4. (i) Assume λ= bω1 with b > 1. Then V ↓ A is not multiplicity-free.

(ii) Assume λ= ω2. Then V ↓ A is not multiplicity-free.
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Proof. (i) First suppose b=2. Note that S2(ω1)=V if G=Cn , while S2(ω1)=V+0
if G = Bn or Dn . Let A act on the natural module for G as c+ d + · · · , where
c > d > · · · . Note that if d = 0, then u is a regular element of Bn−1 and is hence
regular in G = Dn , which we are assuming is not the case. Hence d > 0.

Now S2(ω1) ↓ A contains direct summands S2(c) = 2c+ (2c− 4)+ · · · and
c⊗d = (c+d)+ (c+d−2)+· · · . If c−d = 4k, then 2c−4k = c+d is common
to both summands. And if c− d = 4k− 2, then 2c− 4k = c+ d − 2 is common to
both summands. In either case we see that V ↓ A is not multiplicity-free.

Now assume that b ≥ 3 and that V ↓ A is multiplicity-free. We first settle some
special cases. If the T- labelling is 202 . . . , then r−4 is afforded by λ−12, λ−122,
λ− 1222, λ− 123, a contradiction. Similarly, if the labelling is 2202 . . . , then r − 4
is afforded by λ−12, λ−123, λ−12, which contradicts Lemma 2.2(iii). And if the
labelling is 22202 . . . , then r − 8 is afforded by λ− 12345, λ− 1223, λ− 12234,
λ− 1222, λ− 132, again contradicting Lemma 2.2(iii).

Now suppose that the initial string of 2s has length at least 4. If b≥ 4, the weights
λ−1234, λ−1223, λ−1222, λ−132, λ−14 all afford r−8, against Lemma 2.2(iii).
So assume b= 3. Then S3(ω1)= V or V +ω1 according to whether or not G =Cn .
One checks S3(ω1) to see that r − 12 occurs with multiplicity at least 7 in V ↓ A,
and hence V ↓ A is not multiplicity-free.

(ii) The argument is similar to the b = 2 case in (i). Assume A acts on the natural
module as c+d+· · · , where c>d> · · · . Note that d>0, as otherwise u would be a
regular element of G = Dn . Then

∧2
(ω1)= V or V +0 according to whether or not

G is an orthogonal group. So
∧2
(ω1)↓ A contains

∧2
(c)= (2c−2)+(2c−6)+· · · ,

as well as c⊗d = (c+d)+(c+d−2)+· · · , as direct summands. If c−d = 4k+2,
then 2c− 2− 4k = c+ d and if c− d = 4k, then 2c− 2− 4k = c+ d− 2. In either
case V ↓ A is not multiplicity-free. �

Lemma 6.5. Assume λ=ωi for 3≤ i < n and V is not a spin module for Dn . Then
V ↓ A is not multiplicity-free.

Proof. Assume V ↓ A is multiplicity-free. By Lemma 6.2(ii) we know that αi is in
the initial string of 2s. Suppose the end of this string is at αj . First assume i ≥ 4. If
in addition, i ≤ j−3, then the result follows from Lemma 2.7. So we now consider
situations where i > j − 3 (still with i ≥ 4).

Suppose i = j . Then αi+1 has label 0. If n = i + 1, then G = Bn and each of
λ− i , λ− i(i + 1), λ− i(i + 1)2 = (λ− i(i + 1))si+1 afford r − 2, a contradiction.
Therefore n > i + 1. If αi+2 has label 0 we obtain the same contradiction from
λ− i , λ− i(i + 1), λ− i(i + 1)(i + 2). So suppose αi+2 has label 2. Then r − 4
is afforded by each of λ− (i − 1)i , λ− (i − 1)i(i + 1), λ− i(i + 1)(i + 2), which
is not yet a contradiction. If n = i + 2, then G = Cn and we also get r − 4 from
λ− i(i + 1)2(i + 2) = (λ− i(i + 1)(i + 2))si+2. And if n > i + 2, either αi+3 has
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label 0 or else G = Di+3. In either case we get an extra weight affording r − 4,
which does contradict Lemma 2.2.

Therefore i < j . Then r − 2 appears with multiplicity 1 and Lemma 2.2(iii)
applies. By assumption, α j+1 has label 0. Suppose i = j−1. Then r−4 is afforded
by each of λ− (i−1)i , λ− i j , λ− i j ( j+1) a contradiction. And if i = j−2, then
r − 8 is afforded by each of

λ−(i−3)(i−2)(i−1)i, λ−(i−2)(i−1)i(i+1),

λ−(i−1)i(i+1)(i+2), λ−(i−1)i(i+1)(i+2)(i+3),

λ−(i−1)i2(i+1),

contradicting Lemma 2.2(iii).
Now assume i = 3. Then

∧3
(ω1) equals V or V +ω1 depending on whether

or not G is an orthogonal group. Write ω1 ↓ A = a + b+ · · · with a > b > · · · .
We know that α3 is in the initial string of 2s, and this forces a − b ≥ 6 so that
r = 3a− 6. If G is an orthogonal group, then a, b, . . . are even and so a ≥ 8 (note
that b > 0 as A is not regular). Then V ↓ A contains

∧3
(a) as a direct summand

which is not multiplicity-free by Lemma 5.2(ii). Indeed, there is a direct summand
of highest weight r − 12= 3a− 18 appearing with multiplicity 2. Now consider
G=Cn . The same argument applies provided 3a−18> a. So it remains to consider
a≤ 9. The cases are (a, b)= (7, 1), (9, 3), (9, 1). Then

∧3
(ω1)↓ A contains

∧3
(a)

and
∧2
(a)⊗ b as direct summands. As

∧3
(a) = (3a− 6)+ (3a− 10)+ · · · and∧2

(a)⊗b= (2a−2+b)+ (2a−4+b)+· · · , it follows that in each case, 3a−10
occurs with multiplicity at least 2 and is not present in ω1. �

This completes the proof of Proposition 6.1.

It remains to consider the exceptional groups. Here we label the distinguished
nonregular classes as in [Liebeck and Seitz 2012]. For convenience we reproduce
the list in Table 3.

Proposition 6.6. Assume G is an exceptional group and u is distinguished but not
regular. Then up to graph automorphisms of E6, VG(λ) ↓ A is multiplicity-free if
and only if λ and u are as in the following table.

G u λ

F4 F4(a1) ω4

E6 E6(a1) ω1

E7 E7(a1) or E7(a2) ω7

E8 E8(a1) ω8
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G classes labellings

G2 G2(a1) 02

F4 F4(a1), F4(a2), F4(a3) 2202, 0202, 0200

E6 E6(a1), E6(a3) 222022, 200202

E7 E7(a1), E7(a2), E7(a3), 2220222, 2220202, 2002022,
E7(a4), E7(a5) 2002002, 0002002

E8 E8(a1), E8(a2), E8(a3), 22202222, 22202022, 20020222,
E8(a4), E8(a5), E8(a6), 20020202, 20020020, 00020020,
E8(a7), E8(b4), E8(b5), 00002000, 20020022, 00020022,
E8(b6) 00020002

Table 3. Distinguished nonregular classes in exceptional groups.

Lemma 6.7. Proposition 6.6 holds if G = G2 or F4.

Proof. First consider G = F4. Suppose V ↓ A is multiplicity-free. If there exist
i 6= j with ci 6= 0 6= cj , then either αi or αj is adjacent to a node with label 0,
contradicting Lemma 2.6(ii). Therefore λ = bωi for some i . From the diagrams
in Table 3, and considering the multiplicity of r − 2 using Lemma 6.2(ii), we see
that u cannot be in the class F4(a3), and that if u = F4(a2) then i = 4. But then
λ− 234, λ− 1234, λ− 2324, λ− 12324 all afford r − 4, contradicting Lemma 2.2.

Now consider u in class F4(a1). If i = 2, then λ− 2, λ− 23, λ− 232 all afford
r − 2, a contradiction. If i = 1, then r − 2 appears with multiplicity 1, but λ− 12,
λ− 123, λ− 1232 all afford r − 4, contradicting Lemma 2.2(i). Therefore i = 4.
If b > 1, r − 4 appears with multiplicity 4, which is impossible. And if λ= ω4 it
follows from [Seitz 1991, Table A, p. 65] and the tables at the end of [Liebeck and
Seitz 1996] that A< B4, and ω4 ↓ B4= 1000+0001+0000. Using the information
at the end of the proof of Lemma 5.4, we find that V ↓ A = 8+ (10+ 4)+ 0 and
hence V ↓ A is multiplicity-free.

Finally consider G2 where the only labelling is 02. Hence λ= bω2. Then λ− 2,
λ− 12, λ− 132 all afford r − 2, a contradiction. �

Lemma 6.8. Proposition 6.6 holds if G = En .

Proof. Assume G = En and V ↓ A is multiplicity-free. First suppose that there
exist i > j with ci 6= 0 6= cj . Lemma 2.6 shows these are the only two such nodes,
that neither can adjoin a node with label 0, that at least one must be an end-node,
and that ci = cj = 1. Suppose j = 1. Then α3 must be labelled 2 and from the
list of possible labellings in Table 3 we see that α4 has label 0. This forces i ≥ 6.
But then r − 4 is afforded by λ− 13, λ− 134, λ− 1i , λ− (i − 1)i , a contradiction.
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Therefore, j 6= 1 and hence i = n. If j 6= n− 1, then we must have G = E8, j = 6,
and u = E8(a1). But here we see that r − 4 occurs with multiplicity at least 5, a
contradiction.

Suppose i = n, j = n−1. If αn−3 has label 2, then r−6 occurs with multiplicity
at least 5 from λ− (n− 2)(n− 1)n (multiplicity 2), λ− (n− 1)2n = (λ− n)sn−1,
λ−(n−1)n2

= (λ−(n−1))sn, λ−(n−3)(n−2)(n−1). We get the same contradiction
if αn−3 has label 0, by replacing the last weight with λ− (n− 3)(n− 2)(n− 1)n,
(it even appears with multiplicity 2).

Hence λ= bωi for some i . Suppose b > 1. Then Lemma 2.3 implies that αi is
an end-node with label 2 and that the adjacent node has label 2. Therefore i = 1 or
i = n. If i = 1, then r − 6 is afforded by λ− 1234, λ− 1345, λ− 123, λ− 1234,
contradicting Lemma 2.2(iii).

Next consider i = n where we can assume n = 7 or 8 since the E6 case follows
from the above via a graph automorphism. If αn−2 has label 0, then r−4 is afforded
by λ−(n−1)n, λ−(n−2)(n−1)n, λ−n2, contradicting Lemma 2.2(iii). Therefore,
αn−2 has label 2. The only possibilities satisfying these conditions are u = E7(a1),
E8(a1), E8(a3). If u = E8(a1), then r − 12 arises from

λ− 1345678,
λ− 2345678,
λ− 23425678,
λ− 3456782,

λ− 2456782,

λ− 567282,

λ− 627282,

a contradiction. A similar argument applies to E7(a1) and E8(a3), using the weight
r − 8.

At this point we have λ= ωi . As in the proof of Lemma 5.5, we use Lemma 2.1
to reduce to the cases (G; i)= (E6; 1, 2, 6), (E7; 1, 7), and (E8; 8). The action of
A on L(G) is given in [Seitz 1991, Table A, p. 65 and Table 1, p. 193]. This settles
all but the 27 dimensional modules ω1, ω6 for E6 and the 56 dimensional module
ω7 for E7.

Suppose G = E6. From p. 65 of that reference we see that u is a regular element
in C4 or A1 A5 according to whether u= E6(a1) or E6(a3). Then [Liebeck and Seitz
1996, Propositions 2.3 and 2.5] show that only the first case is multiplicity-free.

Finally assume that G = E7 and λ = ω7. [loc. cit., Proposition 2.5] shows
that V ↓ A is multiplicity-free if u = E7(a1). But if u = E7(a2), then A ≤ A1 F4

by [Seitz 1991, p. 65], and [Liebeck and Seitz 1996, Proposition 2.5] shows that
V ↓ A= (1⊗(16+8))+3, which is multiplicity-free. If u= E7(a4) or E7(a5), then
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both α5 and α6 have label 0 so that r −2 occurs with multiplicity 3, a contradiction.
This leaves u = E7(a3), in which case [Seitz 1991, p. 65] shows that A < A1 B5 <

A1 D6. Then [Liebeck and Seitz 1996, Proposition 2.3] shows that V ↓ A1 D6 =

1⊗ω1+0⊗ω5. Applying the decomposition at the end of the proof of Lemma 5.4,
we see that this is not multiplicity-free. �

This completes the proof of Theorem 1.

7. Proof of Corollary 2

Now we prove Corollary 2. Let G be a simple algebraic group of rank at least 2,
let u ∈ G be a distinguished unipotent element, and let A be an A1 subgroup of
G containing u. Let ρ : G→ I(V ) be an irreducible representation with highest
weight λ.

If I(V )= SL(V ), then ρ(u) is distinguished in I(V ) if and only if V ↓ ρ(A) is
irreducible, so the conclusion goes back to Dynkin [1957], but see also [Seitz 1987,
Theorem 7.1] where the result is given explicitly. Alternatively it is easy to check
in Tables 1 and 2 of Theorem 1, that except for ω1 for An , Bn , Cn , and 10 for G2,
the subgroup acts reducibly on VG(λ).

Now suppose I(V ) = Sp(V ) or SO(V ). If ρ(u) is distinguished in I(V ), then
V ↓ρ(A) is multiplicity-free, and so λ is as in Tables 1 or 2 of Theorem 1. Moreover
V is self-dual, so that λ=−w0(λ). Conversely, for all such λ in the tables, V ↓ρ(A)
is multiplicity-free, and so ρ(u) has Jordan blocks on V of distinct sizes, hence is
distinguished. This completes the proof.
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