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ON THE EQUATIONS DEFINING
AFFINE ALGEBRAIC GROUPS

VLADIMIR L. POPOV

In memory of Robert Steinberg

For the coordinate algebras of connected affine algebraic groups, we explore
the problem of finding a presentation by generators and relations canonically
determined by the group structure.

1. Introduction

Connected algebraic groups constitute a remarkable class of irreducible quasipro-
jective algebraic varieties. It contains the subclasses of abelian varieties and affine
algebraic groups. These subclasses are basic: by Chevalley’s theorem, every con-
nected algebraic groupG has a unique connected normal affine algebraic subgroupL
such that G=L is an abelian variety, whence the variety G is an L-torsor over the
abelian variety G=L. The varieties from these subclasses can be embedded in
many ways as closed subvarieties in, respectively, projective and affine spaces. A
natural question then arises as to whether there are distinguished embeddings and
equations of their images, which are canonically determined by the group structure.
For abelian varieties, this is the existence problem for canonically defined bases
in linear systems and that of presenting homogeneous coordinate rings of ample
invertible sheafs by generators and relations. These problems were explored and
solved by D. Mumford [1966]. For affine algebraic groups, it is the existence
problem of the canonically defined presentations of the coordinate algebras of such
groups by generators and relations. We explore this problem in the present paper.

We fix as the base field an algebraically closed field k of arbitrary characteristic.
In this paper, as in [Borel 1991], “variety” means “algebraic variety” in the sense
of Serre [1955, Subsection 34]; every variety is taken over k.

Let G be a connected affine algebraic group and let Ru.G/ be its unipotent
radical. In view of [Grothendieck 1958, Propositions 1, 2] and [Rosenlicht 1956,
Theorem 10], the underlying variety of G is isomorphic to the product of that of
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G=Ru.G/ and Ru.G/, and the latter is isomorphic to an affine space. Therefore,
the problem under consideration is reduced to the case of reductive groups. Given
this, henceforth G stands for a connected reductive algebraic group.

The simplest case of SL2 is the guiding example. Take the polynomial k-algebra
kŒx1; x2; x3; x4� in four variables xi . The usual presentation of kŒSL2� is given by
the surjective homomorphism

(1) �W kŒx1; x2; x3; x4�! kŒSL2�; �.xi /

��
a1 a2
a3 a4

��
D ai ;

whose kernel is the ideal .x1x4� x2x3� 1/. After rewriting, this presentation can
be interpreted in terms of the group structure of SL2 as follows.

We have kŒx1; x2; x3; x4� D kŒx1; x3� ˝k kŒx2; x4� and the restriction of �
to the subalgebra kŒx1; x3� (respectively, kŒx2; x4�) is an isomorphism with the
subalgebra SC (respectively, S�) of kŒSL2� consisting of all regular functions
invariant with respect to the subgroup UC (respectively, U�) of all unipotent upper
(respectively, lower) triangular matrices acting by right translations. Hence (1)
yields the following presentation of kŒSL2� by generators and relations:

(2)

kŒSL2�Š .SC˝k S�/=I;

SC D kŒ�.x1/; �.x3/�Š kŒx1; x3�;

S� D kŒ�.x2/; �.x4/�Š kŒx2; x4�;

I D
�
�.x1/˝�.x4/��.x2/˝�.x3/� 1

�
:

The subgroups UC, U� are opposite maximal unipotent subgroups of SL2. The
subalgebras SC, S� are stable with respect to SL2 acting by left translations, and
f WD�.x1/˝�.x4/��.x2/˝�.x3/�1 is the unique element of .SC˝k S�/SL2

determined by the conditions f .e; e/D 1, kŒf �D .SC˝k S�/SL2 .
We show that there is an analogue of (2) for every connected reductive algebraic

group G. Namely, we endow kŒG� with the G-module structure determined by left
translations and fix in G a pair of opposite Borel subgroups BC and B�. Let U˙

be the unipotent radical of B˙. Consider the G-stable subalgebras

(3)
SC WD ff 2 kŒG� j f .gu/D f .g/ for all g 2G; u 2 UCg;

S� WD ff 2 kŒG� j f .gu/D f .g/ for all g 2G; u 2 U�g

of kŒG� and the natural multiplication homomorphism of k-algebras

(4) �WSC˝k S�! kŒG�; f1˝f2 7! f1f2:

For k D C, the following were put forward in [Flath and Towber 1992]:

Conjectures (D. E. Flath and J. Towber [1992]).

(S) The homomorphism � is surjective.

(K) The ideal ker� in SC˝k S� is generated by .ker�/G .
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If these conjectures are true, then the problem under consideration is reduced to
the following:

(a) Find the canonically defined generators of the k-algebra .ker�/G .

(b) Find the canonically defined presentations of S˙ by generators and relations.

In [Flath and Towber 1992], Conjectures (S) and (K) were proved for k D C and
GDSLn, GLn, SOn, Spn by means of lengthy direct computations of some Laplace
decompositions, minors, and algebraic identities between them. In Theorems 3
and 9 below, we prove Conjectures (S) and (K) in full generality, with no restrictions
on k and G.

In Theorems 11 and 20 below, we describe ker� as a vector space over k. In
Theorem 21, we solve the above part (a) of the problem, finding the canonically
defined generators of the k-algebra .ker�/G . We call them SL2-type relations of
the sought-for canonical presentation of kŒG� because for G D SL2, the element
�.x1/˝�.x4/��.x2/˝�.x3/� 1 is just such a generator of I (see (2)). All of
them are inhomogeneous of degree 2. If G is semisimple, they are indexed by the
elements of the Hilbert basis H of the monoid of dominant weights of G. Note that
the cardinality jHj of H is at least rankG with equality for simply connected G,
but in the general case it may be much bigger. For instance, if G D PGLr , then
jHj > p.r/C '.r/ � 1, where p and ' are, respectively, the classical partition
function and the Euler function (see [Popov 2011, Example 3.15]). Note that the
problem of determining a full set of generators of the ideal ker� was formulated in
[Flath 1994, Section 4] and, for k D C, G D SLn, GLn, SOn, Spn, solved in [Flath
and Towber 1992] by lengthy direct computations.

For a semisimple group G whose monoid of dominant weights is freely gener-
ated (i.e., with jHj D rankG), a solution to the above part (b) of the problem in
characteristic 0 was obtained (but not published) by B. Kostant; his proof appeared
in [Lancaster and Towber 1979, Theorem 1.1]. In arbitrary characteristic, such a
solution is given by Theorems 1, 2, 22 below, which are heavily based on the main
results of [Ramanan and Ramanathan 1985] and [Kempf and Ramanathan 1987].
All relations in this case are homogeneous of degree 2. We call them Plücker-type
relations of the sought-for canonical presentation of kŒG� because the k-algebra S˙

for G D SLn is the coordinate algebra of the affine multicone over the flag variety,
and if char kD0, these relations are generated by the classical Plücker-type relations,
obtained by Hodge [1942; 1943], that determine this multicone (see Section 6).
The set of these relations is a union of finite-dimensional vector spaces canonically
determined by the group structure of G; these spaces are indexed by the elements
of H�H and different spaces have zero intersection (see Theorem 22). Thus in
this case, we obtain a canonical presentation of kŒG�, in which all relations are
quadratic and divided into two families: homogeneous relations of Plücker type and
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inhomogeneous relations of SL2-type. As a parallel, we recall that any abelian vari-
ety is canonically presented as an intersection of quadrics in a projective space given
by the Riemann equations; see [Kempf 1989] and [Lange and Birkenhake 1992].

For an arbitrary reductive group G, let � W yG ! G be the universal covering.
Then yG DZ �C , where Z is a torus, C is a simply connected semisimple group,
G D zG= ker � , and ker � is a finite central subgroup. The algebra S˙ for yG is then
the tensor product of kŒZ� and the algebra S˙ for C . Since the presentation of
kŒZ� is clear, and that of S˙ for C are given by Theorems 1, 2, and 22, the above
part (b) of the problem is reduced to finding a presentation for the invariant algebra
of the finite abelian group ker � .

As an illustration, in Section 6 we consider the example of G D SLn, char kD 0,
and describe explicitly how the ingredients of our construction and the canonical
presentation of kŒG� look in this case.

The preprints [Popov 1995; 2000] of these results in characteristic 0 have been
disseminated long ago. The validity of the results in arbitrary characteristic was
announced in [Popov 2000]. The author is happy to finally present the complete
proofs in the volume dedicated to the memory of Robert Steinberg who made a
great contribution to the theory of algebraic groups.

Notation and conventions. Below we use freely the standard notation and conven-
tions of [Borel 1991; Jantzen 1987; Popov and Vinberg 1994; Shafarevich 2013].
In particular, the algebra of functions regular on a variety X is denoted by kŒX�,
the field of rational functions on an irreducible X is denoted by k.X/, and the local
ring of X at a point x is denoted by Ox;X . For a morphism 'WX ! Y of varieties,
'�W kŒY �! kŒX� denotes its comorphism.

All topological terms refer to the Zariski topology; the closure of Z in X is
denoted by Z (each time it is clear from the context what is X ).

The fixed point set of an action of a group P on a set S is denoted by SP. Every
action ˛WH�X!X of an algebraic groupH on a varietyX is always assumed to be
regular (the latter means that ˛ is a morphism). For every h2H , x2X , we write g �x
in place of ˛.g; x/. TheH-orbit and theH-stabilizer of x are denoted respectively by
H �x andHx . Every homomorphism of algebraic groups is assumed to be algebraic.

The additively written group of characters (i.e., homomorphisms to the multi-
plicative group of k) of an algebraic group H is denoted by X.H/. The value of a
character �2X.H/ at an element h2H is denoted by h�. Given a kH -module M ,
its weight space with weight � 2X.H/ is denoted by M�.

We fix in G the maximal torus

T WD BC\B�

and identify X.B˙/ with X.T / by means of the restriction isomorphisms X.B˙/!
X.T /, � 7! �jT :
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By X.T /C we denote the monoid of dominant weights of T determined by BC.
Below the highest weight of every simple G-module is assumed to be the highest
weight with respect to T and BC.

We denote by w0 the longest element of the Weyl group of T and fix in the
normalizer of T a representative Pw0 of w0. We then have Pw0B˙ Pw�10 D B

� and
Pw0U

˙ Pw�10 D U
�. For every � 2 X.T /C, we put �� WD �w0.�/ 2 X.T /C.

The set of all nonnegative rational numbers is denoted by Q>0 and we put
N WD Z\Q>0.

If m 2 Z, m> 0, we put Œm� WD fa 2 Z j 16 a 6mg.
For d 2 N, we denote by Œm�d the set of all increasing sequences of d elements

of Œm� (if d … Œm�, then Œm�d D¿).

2. Proof of Conjecture (S)

For every � 2 X.T /, the spaces

(5)
SC.�/ WD ff 2 SC j f .gt/D t�f .g/ for all g 2G; t 2 T g;

S�.�/ WD ff 2 S� j f .gt/D tw0.�/f .g/ for all g 2G; t 2 T g

are the finite-dimensional (see, e.g., [Jantzen 1987, I.5.12.c)]) G-submodules of
the G-modules SC and S� respectively. Since S�.�/ is the right translation of
SC.�/ by Pw0, these G-submodules are isomorphic. In the notation of [Jantzen
1987, II.2.2], we have

(6) S�.�/DH 0.��/;

so by (6) and [Jantzen 1987, II.2.6, 2.2, 2.3], the following properties hold:

(7)
(i) S˙.�/¤ 0() � 2 X.T /C:

(ii) socG S˙.�/ is a simple G-module with the highest weight ��.

)
If char k D 0, then the G-module SC.�/ is semisimple and hence SC.�/ D

socG SC.�/ by (7)(ii). If char k > 0, then, in general, this equality does not hold.
From (3), (5), and (7)(i) we infer that

(8)

SC D
M

�2X.T /C

SC.�/; SC.�/SC.�/� SC.�C�/;

S� D
M

�2X.T /C

S�.�/; S�.�/S�.�/� S�.�C�/I

i.e., the decompositions (8) are the X.T /C-gradings of the algebras SC and S�.
They are obtained from each other by the right translation by Pw0.

Theorem 1. The linear span of S˙.�/S˙.�/ over k is S˙.�C�/.
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Proof. This statement is the main result of [Ramanan and Ramanathan 1985]. Note
that the difficulty lies in the case of positive characteristic: since S˙ is an integral
domain, if char k D 0, then the claim immediately follows from (7)(i) and the
inclusions in (8) because then S˙.�C�/ is a simple G-module. �

Theorem 2. (i) If G is a generating set of the semigroup X.T /C, then the k-algebra
S˙ is generated by the subspace

L
�2G S˙.�/.

(ii) The k-algebras SC and S� are finitely generated.

Proof. Part (i) follows from (8) and Theorem 1. Being the intersection of the lattice
X.T /with a convex cone in X.T /˝ZQ generated by finitely many vectors, the semi-
group X.T /C is finitely generated. This, (i), and the inequality dimk S˙.�/ <1
imply (ii). �

Now we are ready to turn to the proof of Conjecture (S).

Theorem 3. The homomorphism � is surjective.

Our proof of Theorem 3 is based on two general results. The first is the following
well-known surjectivity criterion:

Lemma 4. The following properties of a morphism 'WX ! Y of affine algebraic
varieties are equivalent:

(a) ' is a closed embedding.

(b) '�W kŒY �! kŒX� is surjective.

Proof. See, e.g., [Steinberg 1974, Section 1.5]. �

The second is the closedness criterion for orbits of connected solvable affine
algebraic groups that generalizes Rosenlicht’s classical theorem [1961, Theorem 2]
on the closedness of orbits of unipotent groups.

Theorem 5. Let a connected solvable affine algebraic group S act on an affine
algebraic variety Z. Let x be a point of Z. Consider the orbit morphism � W S!Z,
s 7! s � z. Then the following properties are equivalent:

(a) The orbit S � z is closed in Z.

(b) The semigroup f� 2 X.S/ j the function S ! k, s 7! s�, lies in ��.kŒZ�/g is
a group.

Proof. This is proved in [Popov 1989, Theorem 4] �

Remark 6. Since X.S/ in Theorem 5 is a finitely generated free abelian group, it
can be naturally regarded as a lattice in X.S/˝Z Q. Hence the following general
criterion is applicable for verifying condition (b).

Let M be a nonempty subset of a finite-dimensional vector space V over Q. Let
Q>0M , convM , and QM be, respectively, the convex cone generated by M , the
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convex hull of M , and the linear span of M in V . Then the following properties
are equivalent (see [Popov 1989, p. 386]):

(i) 0 is an interior point of convM .

(ii) Q>0M DQM .

If M is a subsemigroup of V , then (i) and (ii) are equivalent to

(iii) M is a group.

Proof of Theorem 3. 1. We consider the action of G on its underlying algebraic
variety by left translations. By Theorem 2, there is an irreducible affine algebraic
variety X endowed with an action of G and a G-equivariant dominant morphism

(9) ˛WG!X such that ˛� is an isomorphism kŒX� Š�!SC.

Let x WD ˛.e/. Since ˛ is G-equivariant, we have

(10) ˛.g/D g � x for every g 2G;

and since ˛ is dominant, the orbit G � x is open and dense in X . Consider the
canonical projection � WG ! G=UC. It is the geometric quotient for the action
of UC on G by right translations. Therefore, (3) yields the isomorphism

(11) ��W kŒG=UC� Š�!SC;

and, since ˛ is constant on the fibers � , there exists a G-equivariant morphism
�WG=UC!X such that

(12) ˛ D � ı�:

From (12) we infer that the image of � is G �x. Since the group UC is unipotent,
the algebraic variety G=UC is quasiaffine (see [Rosenlicht 1961, Theorem 3]).
Therefore, k.G=UC/ is the field of fractions of kŒG=UC�. On the other hand,
k.X/ is the field of fractions of kŒX� inasmuch as X is affine. Using that (12) and
isomorphisms (9), (11) yield the isomorphism ��W kŒX� Š�!kŒG=UC�, we conclude
that � is a birational isomorphism. Therefore, for a point z in general position
in G � x, the fiber ��1.z/ is a single point. Being G-equivariant, � is then injective.
Finally, since G is smooth, kŒG� is integrally closed; therefore, S˙ is integrally
closed as well in view of (3) (see, e.g., [Popov and Vinberg 1994, Theorem 3.16]).
Thus X is normal, and hence by Zariski’s Main Theorem, �WG=UC!G � x is an
isomorphism. Using that � is separable (see, e.g., [Borel 1991, II.6.5]), from this
we infer that the following properties hold:

(i1) Gx D UC.

(ii1) G!G � x, g 7! ˛.g/D g � x, is a separable morphism.
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2. Let y WD Pw0 � x. Consider the G-equivariant morphism

(13) ˇWG!X; g 7! g �y:

From (10), (13), .i1/, and .ii1/, we infer that the following properties hold:

(i2) Gy D U�.

(ii2) G!G �y, g 7! ˇ.g/D g �y, is a separable morphism.

(iii2) ˇ� is an isomorphism kŒX� Š�!S�.

3. Now consider the G-equivariant morphism

(14)  WD ˛�ˇWG!X �X; g 7! g � z; where z WD .x; y/.

From (14), .i1/, and .i2/, we obtain

(15) Gz DGx \Gy D U
C
\U� D feg;

and hence  is injective. We claim that  is a closed embedding, i.e.,

(a) G!G � z, g 7! g � z, is an isomorphism;

(b) G � z is closed in X �X .

If this claim is proved, then the proof of Theorem 3 is completed as follows.
Consider the isomorphism

(16) kŒX�˝k kŒX�! kŒX �X�; f ˝ h 7! f h:

Then (4), (9), .iii2/, (14), (16) imply that� is the composition of the homomorphisms

(17) SC˝k S�
Š

.˛�/�1˝.ˇ�/�1

���������! kŒX�˝k kŒX�
Š

(16)
��! kŒX �X�

�
�! kŒG�:

Hence the surjectivity of � is equivalent to the surjectivity of �. By Lemma 4, the
latter is equivalent to the property that  is a closed embedding, i.e., that properties
(a) and (b) hold.

Thus the proof of Theorem 3 is reduced to proving properties (a) and (b).

4. First, we shall prove property (a). Since  is injective, this is reduced to proving
the separability of  . In turn, in view of (14), the latter is reduced to proving
that ker de is contained in LieGz , i.e., that ker de D f0g because of (15) (see
[Borel 1991, II.6.7]). Using [loc. cit.], from (10), (13), .i1/, .ii1/, .i2/, .ii2/ we
infer that ker de˛ � LieUC, ker deˇ � LieU�. In view of (14), we then have
ker de D ker de˛\ ker deˇ � LieUC\LieU� D f0g. This proves property (a).

5. Now we shall prove property (b). Actually, we shall prove the stronger property
that the orbitBC�z is closed inX�X : since the algebraic varietyG=BC is complete,
this stronger property implies property (b) (see [Steinberg 1974, Section 2.13,
Lemma 2]). Using that BC is connected solvable, to this end we shall apply
Theorem 5.
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Namely, consider the morphism � WBC! X �X , b 7! b � z and the following
subsemigroup M in X.BC/:

M WD f� 2 X.BC/ j the function BC! k, b 7! b� lies in ��.kŒX �X�/g:

We identify X.BC/ with the lattice in L WD X.BC/˝Z Q. In view of Theorem 5
and Remark 6, the orbit BC � z is closed if and only if

(18) Q>0M DQM:

Given this, the problem is reduced to proving that property (18) holds. This is done
below.

6. Since � D  j
BC

, the algebra ��.kŒX �X�/ is the image of the homomorphism
�.kŒX�X�/!kŒBC�, f 7!f j

BC
. From (17) we see that �.kŒX�X�/ contains

SC and S�. Hence the restrictions of SC and S� to BC lie in ��.kŒX �X�/. We
shall exhibit some characters of BC lying in these restrictions.

First consider the restriction of SC.�/ to BC for � 2 X.T /C. Note that SC.�/
contains a function f such that f .e/¤ 0. Indeed, in view of (7)(i) and Borel’s fixed
point theorem, SC.�/ contains aB�-stable line `. The groupB� acts on ` by means
of a character �2X.B�/. Take a nonzero function f 2`. For every b2B�, u2UC,
we then have f .b�1u/D b�f .u/

(3)
Db�f .e/, whence f .e/¤ 0 because B�UC is

dense in G. This proves the existence of f . Multiplying f by 1=f .e/, we may
assume that f .e/D 1. Then for every b 2BC, we deduce from (3), (5) that f .b/D
b�f .e/Db�, i.e., f j

BC
is the characterBC!k, b 7!b�. This proves the inclusion

(19) X.BC/C �M:

Now consider the restriction of S�.�/ to BC for � 2 X.T /C. In view of (7)(ii),
there is aBC-stable line ` in S�.�/, on whichBC acts by the character ��2X.BC/.
Take a nonzero function f 2 `. We may assume that f .e/D 1: this is proved as
above with � D �, replacing B� by BC, and UC by U�. For every b 2 BC, we
then have f .b�1/D b�

�

, i.e., f j
BC

is the character BC! k, b 7! b��
�

D bw0.�/.
This proves the inclusion

(20) �X.BC/C �M:

Since Q
>0.X.B

C/
C
/�Q

>0.X.B
C/
C
/DL, the inclusions (19), (20) imply the

equality Q
>0M DL, whence a fortiori the equality (18) holds. This completes the

proof of Theorem 3. �

3. Proof of Conjecture (K)

We now intend to describe the ideal ker� in SC˝k S�. This is done in Sections 3
and 4 in several steps: first in Theorem 9 we prove that ker� is generated by
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.ker�/G , then in Theorem 11 we describe ker� as a vector space, and finally in
Theorem 21 we find a standard finite generating set of ker�.

The first step is based on the following general statement:

Theorem 7. Let Z be an affine algebraic variety endowed with an action of a
reductive algebraic group H . Let a 2Z be a point such that the orbit morphism

'WH !Z; h 7! h � a;

is a closed embedding. Then the ideal ker'� in kŒZ� is generated by .ker'�/H .

For the proof of Theorem 7, we need the following:

Lemma 8. Let  WY !Z be a morphism of irreducible affine algebraic varieties
and let z 2  .Y / be a smooth point of Z. Assume that for each point y 2  �1.z/,
the following hold:

(i) y is a smooth point of Y .

(ii) The differential dy is surjective.

Then the ideal ff 2 kŒY � j f j �1.z/ D 0g of kŒY � is generated by  �.m/, where
m WD fh 2 kŒZ� j h.z/D 0g.

Proof. Given a nonzero function f 2 kŒY �, below we denote by Yf the principal
open subset fy 2 Y j f .y/¤ 0g of Y ; it is affine and kŒYf �D kŒY �f .

1. Let s1; : : : ; sd be a system of generators of the ideal m of kŒZ�. Put ti WD �.si /.
Then we have

(21) fy 2 Y j t1.y/D � � � D td .y/D 0g D  
�1.z/:

We claim that, for every point a 2 Y , there is a function ha 2 kŒY � such that the
principal open subset U D Yha

is a neighborhood of a and

IU WD ff 2 kŒU � j f j �1.z/\U D 0g

is the ideal of kŒU � generated by t1jU ; : : : ; td jU .
Proving this, we consider two cases.
First, consider the case where a… �1.z/. Then any principal open neighborhood

of a not intersecting  �1.z/may be taken as U because in this case IU DkŒU � and,
in view of (21) and Hilbert’s Nullstellensatz, kŒU �D kŒU �t1jU C � � �C kŒU �td jU .

Second, consider the case where a2 �1.z/. Let nDdimY;mDdimZ. Since a
and z are the smooth points, the assumption (ii) yields the equality

(22) dim ker da D n�m:

The functions s1; : : : ; sd generate the maximal ideal of Oz;Z . Therefore, renum-
bering them if necessary, we may (and shall) assume that s1; : : : ; sm is a system
of local parameters of Z at z, i.e.,

Tm
iD1 ker dzsi D f0g. Since dati D da ı dzsi ,
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we then infer from (ii) that
Tm
iD1 ker dati D ker da . In view of (22), the lat-

ter equality implies the existence of functions f1; : : : ; fn�m 2 Oa;Y such that
t1; : : : ; tm; f1; : : : ; fn�m is a system of local parameters of Y at a. Let

(23) F WD fy 2 Y j t1.y/D � � � D tm.y/D 0g:

By [Shafarevich 2013, Chapter II, Section 3.2, Theorem 2.13], there is a prin-
cipal open neighborhood U of a such that F \ U is an irreducible smooth
.n�m/-dimensional closed subvariety of U whose ideal in kŒU � is generated
by t1jU ; : : : ; tmjU . On the other hand, (21) and (23) yield  �1.z/ � F and,
by the fiber dimension theorem, every irreducible component of  �1.z/ has
dimension > n�m. Hence U \F D  �1.z/\U . This and (21) prove the claim.

2. Using this claim, the proof of Lemma 8 is completed as follows. Since Y DS
a2Y Yha

and Y is quasicompact, there exists a finite set of points a1; : : : ; ar 2 Y
such that

(24) Y D

r[
iD1

Yhi
; where hi WD hai

.

Now, let f 2 kŒY � be a function such that f j �1.z/ D 0. Then, in view of the
definition of ha, for every i D 1; : : : ; r , we have

(25) f h
bi

i D ci;1t1C � � �C ci;d td for some ci;j 2 kŒY � and bi 2 N:

From (24) and Hilbert’s Nullstellensatz, we infer that there are functions q1; : : : ; qr 2
kŒY � such that

(26) 1D q1h
b1

1 C � � �C qsh
br
s :

From (25) and (26), we then deduce that

f D

� rX
iD1

qici;1

�
t1C � � �C

� rX
iD1

qici;d

�
td 2 kŒY �t1C � � �C kŒY �td : �

Proof of Theorem 7. There is a closed equivariant embedding of Z in an affine
space on which H operates linearly (see [Rosenlicht 1961, Lemma 2] and [Popov
and Vinberg 1994, Theorem 1.5]). Hence we may (and shall) assume that Z is an
irreducible smooth affine algebraic variety.

SinceG is reductive, kŒZ�G is a finitely generated k-algebra (see, e.g., [Mumford
and Fogarty 1982, Theorem A.1.0] and the references therein). Denote by Z==H
the affine algebraic variety Specm.kŒZ�G/ and by � WZ ! Z==H the morphism
corresponding to the inclusion homomorphism kŒZ�G ,! kŒZ�.

The condition on the point a implies that its H -stabilizer is trivial,

(27) Ha D feg:
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Hence H �a is a closed H -orbit of maximal dimension. Taking into account that in
every fiber of � there is a unique closed orbit lying in the closure of every orbit
contained in this fiber (see [Mumford and Fogarty 1982, Corollaries 1.2, A.1.0]),
from this we deduce the equality

(28) ��1.�.a//DH � a:

Since the group feg is linearly reductive, from (27) and the separability of ', we
infer by [Bardsley and Richardson 1985, Proposition 7.6] that there is a smooth
affine subvariety S of the H -variety Z, which is an étale slice at a 2 S . In view
of (27), this means the following:

(i) The morphisms

�jS WS !Z==H and  WH �S !Z; .h; s/ 7! h � s

are étale.

(ii) The diagram

H �S
 //

pr2

��

Z

�
��

S
�jS // Z==H

is a Cartesian square; i.e., it is commutative and the morphism

H �S ! S �Z==H Z

determined by  and pr2 is an isomorphism.

From (i) and (ii), we deduce that �.a/ is a smooth point of Z==H and the dif-
ferentials d.e;a/ , da.�jS / are isomorphisms. Since d.e;a/pr2 is clearly surjective,
(ii) then implies that da� is surjective, too.

Now, in view of (28) and transitivity of the action of H on H � a, we conclude
that dz� is surjective for every point z 2 ��1.�.a//. In view of Lemma 8, this
implies the claim of Theorem 7. �

Theorem 9. The ideal ker� in SC˝k S� is generated by .ker�/G .

Proof. In the proof of Theorem 3, we have shown that

— the homomorphism � is the composition of the homomorphisms (17);

— the morphism  is a closed embedding.

In view of these facts, Theorem 9 is equivalent to the claim that the ideal ker � in
kŒX �X� is generated by .ker �/G . This claim follows from Theorem 7. �
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4. Structure of .ker�/G

We shall use the following lemma for describing .ker�/G as a vector space.

Lemma 10.

dim.SC.�/˝k S�.�//G D
�
1 if � D ��;
0 if � ¤ ��

for every �; � 2 X.T /C;(29)

.SC˝k S�/G D
M

�2X.T /C

.SC.�/˝k S�.��//G :(30)

Proof. In view of (8), the equality (30) follows from (29). To prove (29), we note
that

.SC.�/˝k S�.�//G Š HomG.SC.�/�;S�.�//

and, in view of (6), the G-module SC.�/� is the universal highest weight module
of weight � (the Weyl module); in particular, for each G-module M , there is an
isomorphism

(31) HomG.SC.�/�;M/ Š�! .MUC/�;

where the right-hand side of (31) is the weight space of T (see [Jantzen 1987,
II.2.13, Lemma]). Since S�.�/UC is a line on which BC acts by means of �� (see
[Jantzen 1987, II.2.2, Proposition]), this proves (29). �

We identify kŒG�˝k kŒG� with kŒG �G� by the isomorphism

(32) kŒG�˝k kŒG�! kŒG �G�; f1˝f2 7! ..a; b/ 7! f1.a/f2.b//:

Thus SC˝k S� is regarded as a subalgebra of kŒG �G�, and (4), (32) yield the
equality

(33) f .a; a/D �.f /.a/ for every f 2 SC˝k S� and a 2G.

Theorem 11. (i) If f 2 .SC˝k S�/G , then f �f .e; e/ 2 .ker�/G .

(ii) Every h 2 .ker�/G can be uniquely written in the form

(34) hD
X

.h�� h�.e; e//; h� 2 .SC.�/˝k S�.��//G ;

where the sum is taken over a finite set of nonzero elements � 2 X.T /C.

Proof. (i) Since � is G-equivariant, its restriction to .SC˝k S�/G is a homomor-
phism to kŒG�G D k. Hence �.f / is a constant. In view of (33), this implies (i).

(ii) If (34) holds, then the decomposition (30) implies that h� is the natural projec-
tion of h to .SC.�/˝k S�.��//G determined by this decomposition, whence the
uniqueness of (34). To prove the existence, let h� be the aforementioned projection
of h to .SC.�/˝k S�.��//G . Then h D

P
�2F h� for a finite set F � X.T /C.
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Hence 0D�.h/D
P
�2F �.h�/. As above, �.h�/Dh�.e; e/; this implies equality

(34), where the sum is taken over all � 2 F . Since h0 is a constant, we may assume
that F does not contain 0. This proves (ii). �

In the next lemma, for brevity, we put (cf. [Jantzen 1987])

(35)
V.�/ WD S�.�/� Š SC.�/�; L.�/ WD V.�/= radG V.�/;

��WV.�/! L.�/ is the canonical projection.

The G-module V.�/ (hence L.�/ as well) is generated by a BC-stable line of
weight � (see [Jantzen 1987, II.2.13, Lemma]), whence V.�/ is also generated by
a B�-stable line of weight ���.

Also, for the G-modules P and Q, we denote by B.P �Q/ the G-module of
all bilinear maps P �Q! k; we then have the isomorphism of G-modules

(36) P �˝kQ
� Š
�!B.P �Q/; f ˝ h 7! f h:

Lemma 12. For all elements �; � 2 X.T /C, the following hold:

(a) dim B.V .�/�V.�//G D

�
1 if � D ��;
0 if � ¤ ��:

(b) dim B.L.�/�L.�//G D

�
1 if � D ��;
0 if � ¤ ��:

(c) Every nonzero element � 2 B.L.�/ �L.��//G is a nondegenerate pairing
L.�/�L.��/! k.

(d) If lC 2 L.�/, l� 2 L.��/ are the nonzero semi-invariants of , respectively,
BC and B�, then �.lC; l�/ ¤ 0 for � from (c). For every nonzero element
� 2 k, there exists a unique � such that �.lC; l�/D �.

(e) Every element # 2B.V .�/�V.��//G vanishes on ker�
�
�ker�

��
. If # ¤ 0,

then # is a nondegenerate pairing V.�/�V.��/! k.

(f) Let vC2V.�/ and v�2V.��/ be, respectively, the nonzeroBC- andB�-semi-
invariants of weights � and �� that generate the G-modules V.�/ and V.��/.
Then #.vC; v�/¤ 0 for every nonzero element # 2B.V .�/�V.��//G .

Proof. Part (a) follows from (29), (36), (35). Part (b) is proved similarly, using that
L.�/ is a simple G-module with highest weight � (see [Jantzen 1987, II.2.4]). The
simplicity of L.�/ implies (c) because the left and right kernels of � are G-stable.

Proving (d), take a basis fp1; : : : ; psg of L.�/ such that p1D lC and every pi is
a weight vector of T . Let fp�1 ; : : : ; p

�
s g be the basis of L.��/ dual to fp1; : : : ; psg

with respect to � . Let L.�/0 be the linear span over k of all pi with i > 1. Then
L.�/0 is B�-stable, and, for every element u 2 U�, we have u � p1 D p1 C p0,
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where p0 2L.�/0 (see, e.g., [Steinberg 1974, Section 3.3, Proposition 2 and p. 84]).
Then, for all elements ˛1; : : : ; ˛s 2 k, we have

.u �p�1 /

� sX
iD1

˛ipi

�
D p�1

� sX
iD1

˛i .u
�1
�pi /

�
D p�1 .˛1p1C an element of L.�/0/

D ˛1 D p
�
1

� sX
iD1

˛ipi

�
;

whence u � p�1 D p�1 . Therefore, l� D �p�1 for a nonzero � 2 k, and hence
�.lC; l�/D �¤ 0. This and (b) prove (d).

It follows from (35), (a), and (b) that the embedding

B.L.�/�L.��//G!B.V .�/�V.��//G ; � 7! � ı .�� ����/;

is an isomorphism. Part (e) follows from this and (c).
Part (f) follows from (d) and (e), because ��.vC/ and ���.v�/ are, in view of

(35), the nonzero semi-invariants of, respectively, BC and B�. �

Lemma 13. Let an algebraic group H act on an algebraic variety Z and let V be
a finite-dimensional submodule of the H -module kŒZ�. Then the morphism

(37) 'WZ! V �; '.a/.f /D f .a/ for every a 2Z; f 2 V;

has the following properties:

(i) ' is H -equivariant.

(ii) The restriction of '� to .V �/� is an isomorphism .V �/�! V .

(iii) '� exercises an isomorphism between kŒ'.Z/� and the subalgebra of kŒZ�
generated by V .

Proof. Part (i) is proved by direct verification.
Every function f 2 V determines an element lf 2 .V �/� by the formula

lf .s/ D s.f /, s 2 V �. It is immediate that V ! .V �/�, f 7! lf is a vector
space isomorphism and that (37) implies '�.lf /D f . This proves (ii).

Let �W .V �/� ! kŒ'.Z/� be the restriction homomorphism. The k-algebra
kŒ'.Z/� is generated by �..V �/�/. Part (iii) now follows from the fact that '�

exercises an embedding of kŒ'.Z/� in kŒZ� and, in view of (ii), the image of
�..V �/�/ under this embedding is V . �

Corollary 14. In the notation of Lemma 13, let V ¤ f0g and let the orbit H � a be
dense in Z. Then '.a/¤ 0.

We call the morphism (37) the covariant determined by the submodule V .
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Lemma 15. Let � be an element of X.T /C and let

'CWG! SC.�/�; '�WG! S�.��/�

be the covariants determined by the submodules SC.�/ and S�.��/ of theG-module
kŒG�. Then vC WD 'C.e/ and v� WD '�.e/ are, respectively, the nonzero BC- and
B�-semi-invariants of weights � and ��.

Proof. First, we have vC ¤ 0, v� ¤ 0 by Corollary 14. Next, for every f 2 SC.�/,
b 2 BC, we have

.b � vC/.f /D 'C.e/.b�1 �f /
(37)
DD .b�1 �f /.e/

D f .b/
(5)
D b�f .e/

(37)
DD .b�vC/.f /;

whence b � vC D b�vC; i.e., vC is a nonzero BC-semi-invariant of weight �, as
claimed. For v� the proof is similar. �

Theorem 16. The restriction of � to .SC.�/˝k S�.�//G for every � 2 X.T /C is
an isomorphism .SC.�/˝k S�.��//G

Š
�! kŒG�G D k.

Proof. In view of (33) and Lemma 10, the proof is reduced to showing that there is
a function f 2 .SC.�/˝k S�.��//G such that f .e; e/¤ 0.

Consider the covariants 'C and '� from Lemma 15 and the G-equivariant
morphism

' WD 'C �'�WG �G! SC.�/� �S�.��/�:

Lemma 12(a) and (35) imply that B.SC.�/� � S�.��/�/G contains a nonzero
element # . By Lemma 13, the function f WD # ı 'WG �G ! k is contained in
.SC.�/˝k S�.��//G . For this f , using Lemmas 15 and 12(f), we obtain

(38) f .e; e/D #.'.e; e//D #.'C.e/; '�.e//¤ 0:

This completes the proof. �
Corollary 17. For every element � 2 X.T /C, there exists a unique element

(39) s� 2 .SC.�/˝k S�.��//G � kŒG �G� such that s�.e; e/D 1.

If ff1; : : : ; fd g and fh1; : : : ; hd g are the bases of SC.�/ and S�.��/ dual with
respect to a nondegenerate G-invariant pairing SC.�/� S�.��/! k (the latter
exists by (36) and Lemma 12), then " WD

Pd
iD1 fi .e/hi .e/¤ 0 and

s� D "
�1

� dX
iD1

fi ˝ hi

�
:

Proof. First, note that ifP ,Q are the finite-dimensional kG-modules, � 2B.P;Q/G

is a nondegenerate pairing P �Q! k, and fp1; : : : ; pmg and fq1; : : : ; qmg are the
bases of P and Q dual with respect to � , then

Pm
iD1 pi ˝ qi is a nonzero element
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of .P ˝kQ/G (not depending on the choice of these bases). Indeed, � determines
the isomorphism of G-modules

(40)
�WP ˝kQ! Hom.P; P /;

.�.p˝ q//.p0/D �.p0; q/p; where p; p0 2 P; q 2Q:

From (40), we then obtain�
�

� mX
iD1

pi ˝ qi

��
.pj /D

mX
iD1

�.pj ; qi /pi D

mX
iD1

ıijpi D pj I

therefore, �
�Pm

iD1 pi ˝ qi
�
D idP , whence the claim.

For P D SC.�/, QD S�.��/, it yields that
Pd
iD1 fi ˝hi is a nonzero element

of .SC.�/˝k S�.��//G . Theorem 16 and (33) then complete the proof. �
Remark 18. For char k D 0, there is another characterization of s�. Namely, let U

be the universal enveloping algebra of LieG. Every S˙.�/ is endowed with the
natural U-module structure. Let fx1; : : : ; xng and fx�1 ; : : : ; x

�
ng be the bases of

LieG dual with respect to the Killing form ˆ. Identify LieT with its dual space
by means of ˆ. Let � be the sum of all positive roots. For every � 2 X.T /C, put

(41) c� WDˆ.�C �; �/Cˆ.�
�
C �; ��/

and consider on the space SC.�/˝k S�.��/ the linear operator

(42) � WD

nX
iD1

.xi ˝ x
�
i C x

�
i ˝ xi /:

Proposition 19. The following properties of an element t 2 SC.�/˝k S�.��/ are
equivalent:

(i) t D s�.

(ii) �.t/D�c�t and t .e; e/D 1.

Proof. By [Bourbaki 1975, Chapitre VIII, §6.4, Corollaire], the Casimir element
� WD

Pn
iD1 xix

�
i 2U acts on any simple U-module with the highest weight  as

scalar multiplication by ˆ. C �; /. Since ˆ. C �; / > 0 if  ¤ 0, the kernel
of � in any finite-dimensional U-module V coincides with V G . We apply this to
V D SC.�/˝k S�.��/. For any elements f 2 SC.�/, h 2 S�.��/, we deduce
from (41), (42) the following:

�.f ˝h/D

nX
iD1

�
xix
�
i .f /˝hCx

�
i .f /˝xi .h/Cxi .f /˝x

�
i .h/Cf ˝xix

�
i .h/

�
D�.f /˝hCf ˝�.h/C�.f ˝h/D c�.f ˝h/C�.f ˝h/:

Now Corollary 17 and the aforesaid about ker� complete the proof. �
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Theorem 20. Let �1; : : : ; �m be a system of generators of the monoid X.T /C.
Then .ker�/G is the linear span over k of all monomials of the form

.s�1
� 1/d1 � � � .s�m

� 1/dm ; where di 2 N; d1C � � �C dm > 0;

where s�i
is defined in Corollary 17.

Proof. By Theorem 11(i), the linear span L referred to in Theorem 20 is contained
in .ker�/G . In view of Theorem 11, to prove the converse inclusion .ker�/G �L,
we have to show that, for every function

(43) f 2 .SC.�/˝k S�.��//G ;

we have f � f .e; e/ 2 L. Since �1; : : : ; �m is a system of generators of X.T /C,
there are integers d1; : : : ;dm 2 N such that �D

Pm
iD1 di�i . From (39) and (8) we

then infer that h WD
Qm
iD1 s

di

�i
2 .SC.�/˝k S�.��//G and h.e; e/D 1. This, (43),

and (29) imply that f D f .e; e/h. Therefore,

(44) f �f .e; e/D f .e; e/.h� 1/D f .e; e/

� mY
iD1

�
.s�i
� 1/C 1

�di
� 1

�
:

The right-hand side of (44) clearly lies in L. This completes the proof. �

Theorem 21. Let �1; : : : ; �m be a system of generators of the monoid X.T /C.
Then the ideal ker� in SC˝k S� is generated by s�1

� 1; : : : ; s�m
� 1, where s�i

is defined in Corollary 17.

Proof. This follows from Theorems 9 and 20. �

5. Presentation of S˙

If the group G is semisimple, then the semigroup X.T /C has no units other than 0.
Hence the set H of all indecomposable elements of X.T /C is finite,

(45) HD f�1; : : : ; �d g

generates X.T /C, and every generating set of X.T /C contains H (see, e.g., [Lorenz
2005, Lemma 3.4.3]). Note that H, called the Hilbert basis of X.T /C, in general
is not a free generating system of X.T /C (i.e., it is not true that every element
˛ 2 X.T /C may be uniquely expressed in the form ˛ D

Pd
iD1 ci�i , ci 2 N).

Namely, it is free if and only if G D G1 � � � � �Gs , where every Gi is either a
simply connected simple algebraic group or isomorphic to SOni

for an odd ni
(see [Steinberg 1975, §3], [Richardson 1979, Proposition 4.1], [Richardson 1982,
Proposition 13.3] and [Popov 2011, Remark 3.16]). In particular, if G is simply
connected, then H coincides with the set of all fundamental weights and generates
X.T /C freely. Note that ��i 2H for every i .
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To understand the presentation of S˙, denote respectively by SymS˙.�i / and
Symm S˙.�i / the symmetric algebra and the m-th symmetric power of S˙.�i /.
The naturally Nd -graded free commutative k-algebra

(46) F˙ WD SymS˙.�1/˝k � � � ˝k SymS˙.�d /

may be viewed as the algebra of regular functions kŒL˙� on the vector space

L˙ WD S˙.�1/�˚ � � �˚S˙.�d /�:

Let ei be the i-th unit vector of Nd and let F˙p;q be the homogeneous component
of F˙ of degree epC eq . We have the natural isomorphisms of G-modules

(47) '˙p;qWF
˙
p;q

Š
�!S˙p;q WD

�
S˙.�p/˝k S˙.�q/ if p ¤ q;
Sym2 S˙.�p/ if p D q:

By Theorems 1 and 2, the natural multiplication homomorphisms

(48) �˙WF˙! S˙ and  ˙p;qWS
˙
p;q! S˙.�pC�q/

are surjective. Since F˙ is a polynomial algebra, the surjectivity of �˙ reduces
finding a presentation of S˙ by generators and relations to describing ker�˙. If
d D dimT , the following explicit description of ker�˙ is available:

Theorem 22. Let G be a connected semisimple group such that the Hilbert basis
(45) freely generates the semigroup X.T /C. Then

(i) the ideal ker�˙ of the Nd -graded k-algebra F˙ is homogeneous;

(ii) this ideal is generated by the union of all its homogeneous components of the
total degree 2;

(iii) the set of these homogeneous components coincides with the set of all subspaces
.'˙p;q/

�1.ker ˙p;q/, 16 p 6 q 6 d .

Proof. This is the main result of [Kempf and Ramanathan 1987]. �

Remark 23. In characteristic 0, for the first time the proof of Theorem 22 was
obtained (but not published) by B. Kostant; his proof appeared in [Lancaster and
Towber 1979, Theorem 1.1]. In this case, (47) and the surjectivity of  ˙p;q yield
that  ˙p;q is the projection of S˙p;q to the Cartan component of S˙p;q , and ker ˙p;q is
the unique G-stable direct complement to this component. The subspace ker ˙p;q
admits the following description using the notation of Remark 18 [loc. cit.]. Let
fx1; : : : ; xng and fx�1 ; : : : ; x

�
ng be the dual bases of LieG with respect to ˆ. Then

ker Cp;q is the image of the linear transformation
�Pn

sD1.xs˝ x
�
s C x

�
s ˝ xs/

�
�

2ˆ.��p; �
�
q/id of the vector space S˙p;q .
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Summing up, ifG is a connected semisimple group such that the Hilbert basis (45)
freely generates the semigroup X.T /C, then the sought-for canonical presentation
of kŒG� is given by the surjective homomorphism

(49) � WD �C˝��WF WD FC˝k F�! kŒG�

of the polynomial k-algebra F and the following generating system R of the
ideal ker�. Identify FC and F� with subalgebras of F in the natural way. Then
RDR1 tR2, where

(50) R1 D

[
p;q

�
.'Cp;q/

�1.ker Cp;q/[ .'
�
p;q/
�1.ker �p;q/

�
(see the definition of '˙p;q ,  ˙p;q in (47), (48)) and

(51) R2 D fs�1
� 1; : : : ; s�d

� 1g

(see the definition of s�i
in Corollary 17). The elements of R1 (respectively, R2)

are the Plücker-type (respectively, the SL2-type) relations of the presentation.
The canonical presentation of kŒG� is redundant. To reduce the size of R1, we

may replace every space ker ˙p;q in (50) by a basis of this space. Finding such a
basis falls within the framework of Standard Monomial Theory.

6. An example

As an illustration, here we explicitly describe the canonical presentation of kŒG�
for G D SLn, n> 2, and char k D 0.

Let T be the maximal torus of diagonal matrices in G, and let BC (respectively,
B�) be the Borel subgroup of lower (respectively, upper) triangular matrices in G.
Then

HD f$1; : : : ;$n�1g; where

$d WT ! k; diag.a1; : : : ; an/ 7! an�dC1 � � � an:

Every pair i1; i2 2 Œn� determines the function

(52) xi1;i2 WG! k;

0@a1;1 : : : a1;n: : : : : : : : :

an;1 : : : an;n

1A 7! ai1;i2 :

The k-algebra generated by all functions (52) is kŒG�.
For every d 2 Œn� 1� and every sequence i1; : : : ; id of d elements of Œn�, put

f �i1;:::;id WD det

0@xi1;1 : : : xi1;d
: : : : : : : : : : :

xid ;1 : : : xid ;d

1A ; f Ci1;:::;id WD det

0@xi1;n�dC1 : : : xi1;n
: : : : : : : : : : : : : :

xid ;n�dC1 : : : xid ;n

1A :
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For every fixed d , all functions f �i1;:::;id (respectively, f Ci1;:::;id ) such that
i1 < � � �< id are linearly independent over k and their linear span over k is the
simple G-module S�.$d / (respectively, SC.$d /); see, e.g., [Flath and Towber
1992, Proposition 3.2]. Therefore, denoting by x˙i1;:::;id the element f ˙i1;:::;id of
the k-algebra F˙ defined by (46), we identify F˙ with the polynomial k-algebra
in variables x˙i1;:::;id , where d runs over Œn � 1� and i1; : : : ; id runs over Œn�d .
Correspondingly, the k-algebra F is identified with the polynomial k-algebra in
the variables x�i1;:::;id and xCi1;:::;id , the homomorphism (49) takes the form

�WF ! kŒG�; xCi1;:::;id 7! f Ci1;:::;id ; x�i1;:::;id 7! f �i1;:::;id ;

and �˙ D �jF˙ . Below the sets (50) and (51) are explicitly specified using this
notation.

First, we will specify the Plücker-type relations. It is convenient to introduce the
following elements of F˙. Let i1; : : : ; id be a sequence of d 2 Œn� 1� elements
of Œn�, and let j1; : : : ; jd be the nondecreasing sequence obtained from i1; : : : ; id
by permutation. Then we put

x˙i1;:::;id D

�
sgn.i1; : : : ; id /x˙j1;:::;jd

if ip ¤ iq for all p ¤ q;
0 otherwise:

The k-algebra S˙ is the coordinate algebra of the affine multicone over the flag
variety; see [Towber 1979]. By the well-known classical Hodge’s result [1942;
1943] (see also [Towber 1979, p. 434, Corollary 1]), the ideal ker�˙ is generated
by all elements of the form

(53)
qC1X
lD1

.�1/lx˙i1;:::;ip�1;jl
x˙j1;:::; Ojl ;:::;jqC1

;

where p and q run over Œn � 1�, p 6 q, and i1; : : : ; ip�1 and j1; : : : ; jqC1 run
over Œn�p�1 and Œn�qC1 respectively. Since every element (53) is homogeneous
of degree 2, this result together with Theorem 22 imply that, for every fixed
p; q2 Œn�1�, the set .'˙p;q/

�1.ker ˙p;q/ in (50) is the linear span of all elements (53),
where i1; : : : ; ip�1 and j1; : : : ; jqC1 run over Œn�p�1 and Œn�qC1 respectively. This
describes the Plücker-type relations (50).

Secondly, we will describe s$d
. If i 2 Œn�n�d is a sequence i1; : : : ; in�d , we put

x˙
i
WD x˙i1;:::;in�d

and denote by i � 2 Œn�d the unique sequence j1; : : : ; jd whose
intersection with i1; : : : ; in�d is empty. Let sgn.i ; i �/ be the sign of the permutation
.i1; : : : ; in�d ; j1; : : : ; jd /. Then by [Flath and Towber 1992, Theorem 3.1(b)],

s$d
D

X
i2Œn�n�d

sgn.i ; i �/x�i x
C

i�
:

This describes the SL2-type relations (51).
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A similar description of the presentation of kŒG� may be given for the classical
groups G of several other types: for them, the Plücker-type (respectively, the SL2-
type) relations are obtained using [Lancaster and Towber 1979; 1985] (respectively,
[Flath and Towber 1992]).
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