
Pacific
Journal of
Mathematics

ON CRDAHA AND FINITE GENERAL LINEAR AND
UNITARY GROUPS

BHAMA SRINIVASAN

Volume 279 No. 1-2 December 2015





PACIFIC JOURNAL OF MATHEMATICS
Vol. 279, No. 1-2, 2015

dx.doi.org/10.2140/pjm.2015.279.465

ON CRDAHA AND FINITE GENERAL LINEAR AND
UNITARY GROUPS

BHAMA SRINIVASAN

Dedicated to the memory of Robert Steinberg

We show a connection between Lusztig induction operators in finite general
linear and unitary groups and parabolic induction in cyclotomic rational
double affine Hecke algebras. Two applications are given: an explanation of
a bijection result of Broué, Malle and Michel, and some results on modular
decomposition numbers of finite general linear groups.

1. Introduction

Let 0n be the complex reflection group G(e, 1, n), the wreath product of Sn

and Z/eZ, where e>1 is fixed for all n. Let H(0n) be the cyclotomic rational double
affine Hecke algebra, or CRDAHA, associated with the complex reflection group 0n .
The representation theory of the algebras H(0n) is related to the representation
theory of the groups 0n , and thus to the modular representation theory of finite
general linear groups GL(n, q) and unitary groups U (n, q). In this paper we study
this connection in the context of a recent paper of Shan and Vasserot [2012]. In
particular we show a connection between Lusztig induction operators in general
linear and unitary groups and certain operators in a Heisenberg algebra acting on a
Fock space. We give two applications of this result, where ` is a prime not dividing
q and e is the order of q mod `. The first is a connection via Fock spaces between an
induction functor in CRDAHA described in [Shan and Vasserot 2012] and Lusztig
induction, which gives an explanation for a bijection given by Broué, Malle and
Michel [1993] and Enguehard [1992] between characters in an `-block of a finite
general linear, unitary or classical group and characters of a corresponding complex
reflection group. The second is an application to the `-modular theory of GL(n, q),
describing some Brauer characters by Lusztig induction, for large `.

The paper is organized as follows. In Section 3 we state the results on CRDAHA
from [Shan and Vasserot 2012] that we need. We introduce the category O(0)=⊕

n≥0 O(0n) where O(0n) is the category O of H(0n).
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In Section 4 we describe the `-block theory of GL(n, q) and U (n, q). The
unipotent characters in a unipotent block are precisely the constituents of a Lusztig
induced character from an e-split Levi subgroup. Complex reflection groups arise
when considering the defect groups of the blocks.

In Section 5 we introduce the Fock space and the Heisenberg algebra, and
describe the connection between parabolic induction in CRDAHA and a Heisenberg
algebra action on a Fock space given in [Shan and Vasserot 2012]. We have a Fock
space F (s)

m,` where m, ` > 1 are positive integers and (s) is an `-tuple of integers. In
[Shan and Vasserot 2012] a functor a∗µ, where µ is a partition, is introduced on the
Grothendieck group [O(0)] and is identified with an operator Sµ of a Heisenberg
algebra on the above Fock space.

The case ` = 1 is considered in Section 6. We consider a Fock space with a
basis indexed by unipotent representations of general linear or unitary groups. We
define the action of a Heisenberg algebra on this by a Lusztig induction operator
Lµ and prove that it can be identified with an operator Sµ defined by Leclerc and
Thibon [1996]. This is one of the main results of the paper. It involves using a map
introduced by Farahat [1954] on the characters of symmetric groups, which appears
to be not widely known.

In Sections 7 and 8 we give applications of this result, using the results of
Section 5. The first application is that parabolic induction a∗µ in CRDAHA and
Lusztig induction Lµ on general linear or unitary groups can be regarded as operators
arising from equivalent representations of the Heisenberg algebra. This gives an
explanation for an observation of Broué, Malle and Michel on a bijection between
Lusztig induced characters in a block of GL(n, q) and U (n, q) and characters of a
complex reflection group arising from the defect group of the block.

The second application deals with `-decomposition numbers of the unipotent
characters of GL(n, q) for large `. Via the q-Schur algebra we can regard these
numbers as arising from the coefficients of a canonical basis G−(λ) of a Fock space,
where λ runs through all partitions, in terms of the standard basis. The G−(λ) then
express the Brauer characters of GL(n, q) in terms of unipotent characters. The
G−(λ) are also described in terms of the Sµ, and so we finally get that if λ=µ+eα
where µ′ is e-regular, the Brauer character parametrized by λ is in fact a Lusztig
induced generalized character.

2. Notation

We let P,Pn,P`,P`n denote the set of all partitions, the set of all partitions of n≥ 0,
the set of all `-tuples of partitions, and the set of all `-tuples of partitions of integers
n1, n2, . . . n` such that

∑
ni = n, respectively.

If C is an abelian category, we write [C] for the complexified Grothendieck group
of C.
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We write λ ` n if λ is a partition of n ≥ 0. The parts of λ are denoted by
{λ1, λ2, . . .}. If λ = {λi }, µ = {µi } are partitions, then λ+ µ = {λi + µi } and
eλ= {eλi } where e is a positive integer.

3. CRDAHA, complex reflection groups

The main reference for this section is [Shan and Vasserot 2012]. We use the notation
of Section 3.3 (page 967) of this paper.

Let 0n = µ` oSn , where µ` is the group of `-th roots of unity in C and Sn is the
symmetric group of degree n, so that 0n is a complex reflection group. The category
of finite-dimensional complex representations of 0n is denoted by Rep(C0n). The
irreducible modules in Rep(C0n) are known by a classical construction and denoted
by Lλ where λ ∈ P`n (see for instance [Shan and Vasserot 2012, Equation (3.4),
p. 968]). Let R(0)=

⊕
n≥0[Rep(C0n)].

Let H be the reflection representation of 0n and H∗ its dual. The cyclotomic
rational double affine Hecke algebra or CRDAHA associated with 0n is denoted by
H(0n), and is the quotient of the smash product of C0n and the tensor algebra of
H⊕H∗ by certain relations. The definition involves certain parameters (see [Shan
and Vasserot 2012, p. 967]) which play a role in the results we quote from [Shan
and Vasserot 2012], although we will not state them explicitly.

The category O of H(0n) is denoted by O(0n). This is the category of H(0n)-
modules whose objects are finitely generated as C[H]-modules and are H-locally
nilpotent. Here C[H] is the subalgebra of H(0n) generated by H∗. Then O(0n) is
a highest weight category (see for instance [Rouquier et al. 2013]) and its standard
modules are denoted by 1λ where λ ∈ P`n . Let O(0)=

⊕
n≥0 O(0n). This is one

of the main objects of our study.
We then have a C-linear isomorphism spe : [Rep(C0n)] → [O(0n)] given by
[Lλ] → [1λ]. We will from now on consider [O(0n)] instead of [Rep(C0n)].

Let r,m, n ≥ 0. For n, r we have a parabolic subgroup 0n,r ∼= 0n × Sr of
0n+r , and there is a canonical equivalence of categories O(0n,r )=O(0n)⊗O(Sr )

(for the tensor product of categories, see for instance [Deligne 1990, Section 5.1,
Proposition 5.13]). By the work of Bezrukavnikov and Etingof [2009] there are
induction and restriction functors

OIndn,r :O(0n)⊗O(Sr )→O(0n+r )

and
OResn,r :O(0n+r )→O(0n)⊗O(Sr ).

For µ` r , Shan and Vasserot [2012, Section 5.1] defined functors Aµ,!, A∗µ, Aµ,∗
on the bounded derived category Db(O(0)).
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Here we will be concerned with A∗µ, defined as follows.

(3-1)
A∗µ : D

b(O(0n))→ Db(O(0n+mr )),

M→OIndn,mr (M ⊗ Lmµ)

Then a∗µ is defined as the endomorphism of [O(0)] induced by A∗µ.

4. Finite general linear and unitary groups

In this section we describe a connection between the block theory of GL(n, q) or
U (n, q), and complex reflection groups. This was first observed by Broué, Malle
and Michel [1993] and Enguehard [1992] for arbitrary finite reductive groups.

Let Gn = GL(n, q) or U (n, q). The unipotent characters of Gn are indexed
by partitions of n. Using the description in [Broué et al. 1993, p. 45] we denote
the character corresponding to λ ` n of GL(n, q) or the character, up to sign,
corresponding to λ ` n of U (n, q) as in [Fong and Srinivasan 1982] by χλ.

Let ` be a prime not dividing q and e the order of q mod `. The `-modular rep-
resentations of Gn have been studied by various authors (see for instance [Cabanes
and Enguehard 2004]) since they were introduced in [Fong and Srinivasan 1982].
The partition of the unipotent characters of Gn into `-blocks is described in the
following theorem from [Fong and Srinivasan 1982]. This classification depends
only on e, so we can refer to an `-block as an e-block, e.g., in Section 7.

Theorem 4.1. The unipotent characters χλ and χµ of Gn are in the same e-block if
and only if the partitions λ and µ of n have the same e-core.

There are subgroups of Gn called e-split Levi subgroups ([Cabanes and Engue-
hard 2004, p. 190]). In the case of Gn = GL(n, q) an e-split Levi subgroup L is of
the form a product of smaller general linear groups over Fqe and Gk with k ≤ n.
In the case of Gn =U (n, q), L is of the form a product of smaller general linear
groups or of smaller unitary groups over Fqe and Gk with k≤ n. Then a pair (L , χλ)
is an e-cuspidal pair if L is e-split of the form a product of copies of tori, all of
order qe

− 1 in the case of GL(n, q), or all of orders qe
− 1, q2e

− 1 or qe/2
+ 1

in the case of U (n, q) and Gk , where Gk has an e-cuspidal unipotent character χλ
([Broué et al. 1993, p. 18, p. 27; Enguehard 1992, p. 42]). Here a character of L is
e-cuspidal if it is not a constituent of a character obtained by Lusztig induction RL

M
from a proper e-split Levi subgroup M of L .

The unipotent blocks, i.e., blocks containing unipotent characters, are classified
by e-cuspidal pairs up to Gn-conjugacy. Let B be a unipotent block corresponding
to (L , χλ). Then if µ` n, χµ ∈ B if and only if 〈RGn

L (χλ), χµ〉 6= 0. As above, RGn
L

is Lusztig induction.
The defect group of a unipotent block is contained in NGn (T ) for a maximal

torus T of Gn such that NGn (T )/T is isomorphic to a complex reflection group
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WGn (L , λ) = Ze o Sk for some k ≥ 1. Here Ze = Z/eZ. Thus the irreducible
characters of WGn (L , λ) are parametrized by Pe

k .
Let B be a unipotent block of Gn and WGn (L , λ) as above. We then have the

following theorem due to Broué, Malle and Michel [1993, Section 3.2] and to
Enguehard [1992, Theorem B].

Theorem 4.2 (Global to local bijection for Gn). Let M be an e-split Levi subgroup
containing L and let WM(L , λ) be defined as above for M. Let µ be a partition,
and let I M

L be the isometry mapping the character of WM(L , λ) parametrized by
the e-quotient of µ to the unipotent character χµ of M (up to sign) which is a
constituent of RGn

M (λ). Then we have RGn
M I M

L = I Gn
L IndWGn (L ,λ)

WM (L ,λ) .

The theorem is proved case by case for “generic groups”, and thus for finite
reductive groups. We have stated it only for Gn .

We state a refined version of the theorem involving CRDAHA and prove it in
Section 7.

5. Heisenberg algebra, Fock space

Throughout this section we use the notation of [Shan and Vasserot 2012, Sections
4.2, 4.5, 4.6].

The affine Kac–Moody algebra ŝ`` is generated by elements ep, f p for p =
0, . . . , `−1, satisfying Serre relations ([Shan and Vasserot 2012, Section 3.4]). We
have ŝ`` = s``⊗C[t, t−1

]⊕C1, where 1 is central.
The Heisenberg algebra is the Lie algebra H generated by 1, br , b′r for r ≥ 0, with

relations [b′r , b′s] = [br , bs] = 0, [b′r , bs] = r1δr,s for r, s ≥ 0 ([Shan and Vasserot
2012, Section 4.2]). In U (H) we then have elements br1, br2, . . . with

∑
i ri = r .

If λ ∈ P we then have the element bλ = bλ1bλ2 . . ., and then for any symmetric
function f the element b f equals

∑
λ∈P z−1

λ 〈Pλ, f 〉bλ. Here Pλ is a power sum
symmetric function and zλ =

∏
i imi mi ! where mi is the number of parts of λ equal

to i . The scalar product 〈 · , · 〉 is the one used in symmetric functions, where the
Schur functions form an orthonormal basis (see [Macdonald 1995]).

We now define Fock spaces Fm , F (d)
m,` and F (s)

m,`, where m > 1. Choose a basis
(ε1, . . . , εm) of Cm . If d ∈Z, let F (d)

m be the space of elements of the form ui1∧ui2 . . .

for i1 > i2 . . ., where ui− jm = εi ⊗ t j with ik = d − k + 1 for k � 0. If we set
|λ, d〉 = ui1 ∧ui2 . . . for ik = λk+d− k+1, the elements |λ, d〉 with λ ∈ P form a
basis of F (d)

m . The Fock space Fm is defined as the space of semi-infinite wedges
of the C-vector space Cm

⊗C[t, t−1
], and we have Fm =

⊕
d∈Z Fm

(d). Then ŝ`m

acts on Fm
(d). This setup has been studied by Leclerc and Thibon [1996; 2000].

Similarly choose a basis (ε1, . . . εm) of Cm and a basis (ε′1, . . . , ε
′
`) of C`.

The Fock space Fm,` of rank m and level ` is defined as the space of semi-infinite
wedges, i.e., elements of the form ui1 ∧ ui1 . . . with i1 > i2 > . . ., where the u j are
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vectors in a C-vector space Cm
⊗C`⊗C[z, z−1

] given by ui+( j−1)m−km`=εi⊗ε
′

j⊗zk ,
with i = 1, 2, . . .m, j = 1, 2, . . . `, k ∈ Z. Then ŝ``, ŝ`m and H act on the space
([Shan and Vasserot 2012, Section 4.6]), and these actions are pairwise commuting.

Let d ∈ Z. There is a space 3d+∞/2 defined by Uglov [2000, Section 4.1]. This
space has a basis which Uglov indexes by P or by pairs (λ, s) where λ ∈ Pm and
s = (sp) is an m-tuple of integers with

∑
p sp = d. There is a bijection between

the two index sets given by λ→ (λ∗, s) where λ∗ is the m-quotient of λ and s is a
particular labeling of the m-core of λ ([Uglov 2000, Sections 4.1, 4.2]).

We have a decomposition Fm,`=
⊕

d∈Z F (d)
m,` defined using semi-infinite wedges,

as in the case of Fm . Then F (d)
m,` can be identified with the space defined by Uglov.

There is a subspace F (s)
m,` of F (d)

m,`, the Fock space associated with (s), which is a
weight space for the ŝ`` action ([Shan and Vasserot 2012, p. 982]). We have
F (d)

m,` =
⊕

F (s)
m,`, the sum of weight spaces. Here we can define a basis {|λ, s〉} with

λ ∈ P` of Fm,`
(s). The spaces F (s)

m,` were also studied by Uglov.
The endomorphism of Cm

⊗ C[t, t−1
] induced by multiplication by tr gives

rise to a linear operator br and its adjoint b′r on Fm
(d), and thus to an action of H

on Fm
(d). We also have an action of H by operators br , b′r on Fm,`

(s), and this is
the main result that we need ([Shan and Vasserot 2012, p. 982]).

We now choose a fixed `-tuple s. With suitable parameters of H(0n) for each n,
the C-vector space [O(0)] is then canonically isomorphic to F (s)

m,`. We then have
the following C-linear isomorphisms ([Shan and Vasserot 2012, Equation (5.20),
p. 990]):

(5-1)
[O(0)] → R(0)→ F (s)

m,`,

1λ→ Lλ→ |λ, s〉.

Consider the Fock space F (s)
m,` with basis indexed by {|λ, s〉} where λ ∈ P`. The

element bsµ ∈ H, i.e., b f where f = sµ, a Schur function, acts by an operator Sµ
on the space. The functor a∗µ on [O(0)] (see Section 3) is now identified with Sµ
by [Shan and Vasserot 2012, Proposition 5.13, p. 990].

Remark. The bijection between m-core partitions and the m-tuples (s) as above
has been studied by combinatorialists (see for instance [Garvan et al. 1990]).

6. Fock space revisited

References for the combinatorial definitions in this section are [Leclerc and Thibon
1996; 2000]. Given a partition µ we introduce three operators on a Fock space:
an operator Sµ defined by Leclerc and Thibon [1996], an operator F∗µ defined by
Farahat [1954] on representations of the symmetric groups Sn , and the operators
Lµ of Lusztig induction on Gn . The algebra of symmetric functions in {x1, x2, . . .}

is denoted by 3.
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Integers `,m were introduced in Section 5. For the rest of the paper we set
`= m = e, where e is a positive integer which was used in the context of blocks
of Gn . Thus 0n = µe oSn .

First consider the space F (d)
e where d ∈ Z, with basis elements {|λ, d〉} where

λ ∈ P . Leclerc and Thibon [1996] introduced elements in U (H) which we write in
our previous notation as bhρ and bsµ , acting as operators Vρ and Sµ on F (d)

e where
ρ,µ ∈ P and hρ is a homogeneous symmetric function. These operators have a
combinatorial description as follows. Here we will write |λ〉 for |λ, d〉.

First they define commuting operators Vk for k ≥ 1 on F (d)
e defined by

Vk(|λ〉)=
∑
µ

(−1)−s(µ/λ)
|µ〉,

where the sum is over all µ such that µ/λ is a horizontal n-ribbon strip of weight k,
and s(µ/λ) is the “spin” of the strip.

Remark. The minus sign in the exponent in the formula is not necessary, but
appears because it is a special case of a quantized formula.

Here a ribbon is the same as a rim-hook, i.e., a skew partition which does not
contain a 2× 2 square. The spin is the leg length of the ribbon, i.e., the number of
rows −1.

Definition. (see [Lam 2005]) A horizontal n-ribbon strip of weight k is a tiling of
a skew partition by k n-ribbons such that the top rightmost square of every ribbon
touches the northern edge of the shape. The spin of the strip is the sum of the spins
of all the ribbons.

It can be shown that a tiling of a skew partition as above is unique. More
generally we can then define Vρ where ρ is a composition. If ρ = {ρ1, ρ2, . . .} then
Vρ = Vρ1 .Vρ2 . . .. Finally we define operators Sµ acting on F (d)

e which we connect
to Lusztig induction. They coincide with the operators mentioned at the end of the
last section.

Definition. We have Sµ =
∑

ρ κµρVρ where the κµρ are inverse Kostka numbers
([Leclerc and Thibon 1996, p. 204; Lam 2005, p. 8]).

Remark. Let pe( f ) denote the plethysm by the power function in 3, i.e.,

pe( f (x1, x2, . . .))= f (xe
1, xe

2, . . .).

(This is related to a Frobenius morphism; see [Leclerc and Thibon 2000, p. 171].)
In fact in [Leclerc and Thibon 1996] H is regarded as a C(v)-space where v is
an indeterminate. Then Vρ and Sµ are v-analogs of multiplication by pe(hρ) and
pe(sµ) in 3.
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Next, let An be the category of unipotent representations of Gn . Let A =⊕
n≥0[An]. We recall from Section 4 that the unipotent characters of Gn are

denoted by {χλ} where λ ` n. We now regard A as having a basis [χλ] where λ
runs through all partitions. Then A is isomorphic to F (d)

e as a C-vector space, since
A also has a basis indexed by partitions.

We now define Lusztig operators Lµ on A and then relate them to the Sµ.

Definition. Let µ ` k. The Lusztig map Lµ : A → A is as follows. Define
Lµ : [An]→ [An+ke] by [χλ]→ [R

Gn+ke
L (χλ×χµ)], where L = Gn×GL(k, qe) or

L = Gn ×U (k, qe), an e-split Levi subgroup of Gn+ke.

Finally, consider the characters of Sn . We denote the character corresponding to
λ ∈ Pn as φλ. We also use λ ∈ Pn to denote representatives of conjugacy classes
of Sn . Let Cn be the category of representations of Sn and C =

⊕
n≥0[Cn].

Given partitions ν ` (n + ke), λ ` n such that ν/λ is defined, Farahat [1954]
has defined a character φ̂ν/λ of Sk , as follows. Let the e-tuples (ν(i)), (λ(i)) be
the e-quotients of ν and λ. Then ε

∏
i φ(ν(i)/λ(i)), where ε =±1 is a character of a

Young subgroup of Sk , which induces up to the character φ̂ν/λ of Sk .
We will instead use an approach of Enguehard ([1992, p. 37]) which is more

conceptual and convenient for our purpose.

Definition. The Farahat map F : [Cek] → [Ck] is defined by (Fχ)(µ) = χ(eµ),
where µ ` k.

Let µ ` k. Taking adjoints and denoting F∗ by F∗µ we then have, for λ ` n:

Definition. Define F∗µ : [Cn] → [Cn+ek] by φλ→ IndSn+ek
Sek×Sn

(F∗(φµ)×φλ).

By the standard classification of maximal tori in Gn we can denote a set of
representatives of the Gn-conjugacy classes of the tori by {Tw}, where w runs
over a set of representatives for the conjugacy classes of Sn . We then have that
the unipotent character χλ = 1

|Sn |

∑
w∈Sn

λ(w)RGn
Tw (1) (see for instance [Fong and

Srinivasan 1982, Equation (1.13)]). Here, as before, RGn
Tw (1) is Lusztig induction.

We assume in the proposition below that when Gn =U (n, q) that e ≡ 0 mod 4.
This is the case that is analogous to the case of GL(n, q). The other cases for e re-
quire some straightforward modifications which we mention below. The proof of the
proposition has been sketched by Enguehard ([1992, p. 37]) when Gn = GL(n, q).

Let M be the e-split Levi subgroup of Gn isomorphic to GL(k, qe)×GL`. We
denote by ∗RGn

M the adjoint of the Lusztig map RGn
M . It is an analogue of the map F∗,

and this is made precise below.
If λ ` n, we have a bijection φλ↔ χλ between [Cn] and [An]. We then have an

obvious bijection ψ : φλ↔ χλ between C and A.
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Proposition. Let G = GL(ek, q) or U (ek, q). In the case of U (ek, q) we assume
e ≡ 0 mod 4. Let M ∼= GL(k, qe), a subgroup of G. Let ψ : φλ↔ χλ between C
and A be as above. Then:

(i) If λ ` ek, then ψ(F(φλ))= ∗RG
M(χλ).

(ii) If µ ` k, then ψ(F∗(φµ))= RG
M(χµ).

Proof. We have

ψ(F(φλ))=
1
|Sk |

∑
w∈Sk

(Fφλ)(w)RM
Tw(1)=

1
|Sk |

∑
w∈Sk

φλ(ew)RM
Tw(1).

Since the torus parametrized by w in M is parametrized by ew in G, we can write
this as 1

|Sk |

∑
w∈Sk

φλ(ew)RM
Tew
(1).

On the other hand, we have (see [Fong and Srinivasan 1982, Lemma 2B]),
using the parametrization of tori in M , ∗RG

M(χλ)=
1
|Sk |

∑
w∈Sk

φλ(w)RM
Tw(1). This

proves (i). Then (ii) follows by taking adjoints. �

The proposition clearly generalizes to the subgroup M ∼= GL(k, qe)×G` of Gn

where n= ek+`. In the case of U (n, q), if e is odd we replace e by e′ where e′= 2e
with M ∼=GL(k, qe′), and if e≡ 2 mod 4 by e′ where e′ = e/2 with M ∼=U (k, qe′),
the proof being similar.

Using the isomorphisms between the spaces A, C and F (d)
e , we now regard the

operators Lµ, F∗µ and Sµ as acting on F (d)
e .

We now prove one of the main results in this paper.

Theorem 6.1. The operators Lµ and Sµ on F (d)
e coincide.

Proof. We note that F∗µ = Lµ. This follows from the previous proposition, general-
ized to Gn , and the fact that parabolic induction in symmetric groups is compatible
with Lusztig induction in Gn , using the combinatorial description of both functors.
We will now show that F∗µ = Sµ.

More generally we consider the character φ̂ν/λ of Sk defined by Farahat, where
ν ` (n+ ke) and µ ` n, and describe it using F . The restriction of φν to Sn × Ske

can be written as a sum of φλ×φν/λ where φν/λ is a (reducible) character of Ske,
and characters not involving φλ. We then define φ̂ν/λ = F(φν/λ), a character
of Sk . We then note that φ̂ν/λ(u)= φν/λ(eu). Using the characteristic map we get
a corresponding skew symmetric function sν∗/λ∗ . This is precisely the function
which has been described in [Macdonald 1995, p. 91], since it is derived from
the usual symmetric function sν/λ by taking e-th roots of variables. Using the
plethysm function pe and its adjoint ψe ([Lascoux et al. 1997, p. 1048]) we get
sν∗/λ∗ = ψe(sν/λ).
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By the above facts we get

(φ̂ν/λ, φµ)= (sν∗/λ∗, sµ)= (ψe(sν/λ), sµ)

= (sν/λ, pe(sµ))= (pe(sµ).sλ, sν)

= (Sµ[χλ], [χν]).

The last equality can be seen as follows. There is a C-linear isomorphism between
the algebra3 and F (d)

e , since both have bases indexed by P . Under this isomorphism
multiplication by the symmetric function pe(sµ) on 3 corresponds to the operator
Sµ on a Fock space (see [Leclerc and Thibon 1996, p. 6]).

This proves that Lµ = Sµ. �

We recall that ŝle acts on F (d)
e and hence on A.

Corollary. The highest weight vectors Vρ∅ of the irreducible components of the
ŝle-module A ([Lascoux et al. 1997, p. 1054]) can be described by Lusztig induction.

Remark. In fact Leclerc and Thibon also have a parameter q in their definition
of Sµ, since they deal with a deformed Fock space. Thus Sµ can be regarded as a
quantized version of a Lusztig operator Lµ.

Remark. In the notation of [Leclerc and Thibon 2000, p. 173] we have

(sν∗/λ∗,sµ)=(sν0/λ0 sν1/λ1 ...sνe−1/λe−1 ,sµ)= cµν/λ.

In this equation, the cµν/λ are Littlewood–Richardson coefficients. We now have
(χν, RGn

M (χλ × χµ)) = εcµν/λ, where ε = ±1. In particular c(k)ν/λ is the number of
tableaux of shape ν such that ν/λ is a horizontal e-ribbon of weight k. Thus the
Lusztig operator Lk can be described in terms of e-ribbons of weight k, similar to
the case of k = 1 which classically is described by e-hooks.

7. CRDAHA and Lusztig induction

The main reference for parabolic induction in this section is [Shan and Vasserot
2012].

In this section we show a connection between the parabolic induction functor a∗µ
on [O(0)] and the Lusztig induction functor Lµ in A using Fock spaces. In particular
this gives an explanation of the global to local bijection for Gn given in Theorem 4.2.
This can be regarded as a local, block-theoretic version of Theorem 6.1.

As mentioned in Section 4, the unipotent characters χλ in an e-block of Gn are
constituents of the Lusztig character RGn

L (λ) where (L , λ) is an e-cuspidal pair. Up
to sign, they are in bijection with the characters of WGn (L , λ), and they all have
the same e-core.
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For our result we can assume d = 0, which we do from now on. We set `=m= e
as in Section 6. We have spaces F (0)

e and F (0)
e,e =

⊕
s F

(s)
e,e where s = (sp) is an

e-tuple of integers with
∑

p sp = 0. We now fix such an s.
By [Shan and Vasserot 2012, Sections 6.17, 6.22, p. 1010] we have an U (H)-

isomorphism between F (0)
e and F (0)

e,e . Let F (s)
e be the inverse image of F (s)

e,e under
this isomorphism. We then have C-isomorphisms from F (s)

e,e to [O(0)], and from
F (s)

e to A(s), where A(s) is the subspace of A spanned by [χλ] where the χλ are in
e-blocks parametrized by e-cores labeled by (s) (see Section 5).

The spaces F (s)
e , F (s)

e,e , [O(0)], A(s) have bases {|λ, s〉 : λ ∈ P}, {|λ, s〉 : λ ∈ Pe
},

{1λ : λ ∈ Pe
} and [χλ] where λ has e-core labeled by s, respectively.

We have maps Sµ : F (s)
e,e → F (s)

e,e for µ ∈ Pe, Sµ : F (s)
e → F (s)

e for µ ∈ P ,
Lµ :A(s)→A(s) and a∗µ : [O(0)] → [O(0)].

Here we note that Lusztig induction preserves e-cores, and thus Lµ fixes A(s).
The following theorem can be regarded as a refined version of the global to local

bijection of [Broué et al. 1993]. The case e= 1 is due to Enguehard ([1992, p. 37]),
where the proof is a direct verification of the theorem from the definition of the
Farahat map F in Sn (see Section 6) and Lusztig induction in Gn .

Theorem 7.1. Under the isomorphism A(s)∼= [O(0)] given by [χλ]→ [1λ∗] where
λ∗ is the e-quotient of λ, Lusztig induction Lµ on A(s) with µ ∈ P corresponds to
parabolic induction a∗µ on [O(0)] with µ ∈ Pe.

Proof. Consider the action of bsµ ∈U (H) on F (s)
e,e . The operator Sµ acting on F (s)

e,e can
be identified with a∗µ acting on [O(0)], with the basis element |λ, s〉 corresponding
to [1λ] ([Shan and Vasserot 2012, Equation (5.20)]).

On the other hand, bsµ ∈ U (H) acts as Sµ on the space F (s)
e and thus, by

Theorem 6.1 as Lµ on A(s) with the basis element |λ, s〉 corresponding to [χλ].
Now F (s)

e is isomorphic to A(s) and F (s)
e,e is isomorphic to [O(0)]. Thus we have

shown that a∗µ and Lµ correspond under two equivalent representations of U (H). �

Corollary. The BMM-bijection of Theorem 4.2 between the constituents of the
Lusztig map RGn

L (λ) where (L , λ) is an e-cuspidal pair and the characters of
WGn (L , λ) is described via equivalent representations of U (H) on Fock spaces.

This follows from the theorem, using the map spe (see Section 3).

8. Decomposition numbers

References for this section are [Dipper and James 1989; Leclerc and Thibon 1996;
2000]. In this section we assume Gn = GL(n, q), since we will be using the
connection with q-Schur algebras. We describe connections between weight spaces
of ŝ`e on Fock spaces, blocks of q-Schur algebras, and blocks of Gn . We show that
some Brauer characters of Gn can be described by Lusztig induction.
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The `-decomposition numbers of the groups Gn have been studied by Dipper
and James and by Geck, Gruber, Hiss and Malle. The latter have also studied the
classical groups, using modular Harish-Chandra induction. One of the key ideas in
these papers is to compare the decomposition matrices of the groups with those of
q-Schur algebras.

We have the Dipper–James theory over a field of characteristic 0 or `. Dipper and
James define ([1989, Section 2.9]) the q-Schur algebra Sq(n), endomorphism
algebra of a sum of permutation representations of the Hecke algebra Hn of
type An−1.The unipotent characters and the `-modular Brauer characters of Gn are
both indexed by partitions of n (see [Fong and Srinivasan 1982]). Similarly the
Weyl modules and the simple modules of Sq(n) are both indexed by partitions of n
(see [Dipper and James 1989]).

For Sq(n) over k of characteristic `, q ∈ k, one can define the decomposition
matrix of Sq(n), where q is an e-th root of unity, where as before e is the order of
q mod `. By the above, this is a square matrix whose entries are the multiplicities
of simple modules in Weyl modules. Dipper and James ([1989, Theorem 4.9])
showed that this matrix, up to reordering the rows and columns, is the same as the
unipotent part of the `-decomposition matrix of Gn , the transition matrix between
the ordinary (complex) characters and the `-modular Brauer characters. The rows
and columns of the matrices are indexed by partitions of n.

We consider the Fock space F = Fe
(d) for a fixed d, which as in Section 6 is

isomorphic to A, and has the standard basis {|λ〉 : λ ∈ P}. It also has two canonical
bases G+(λ) and G−(λ) for λ ∈ P ([Leclerc and Thibon 1996; 2000]). There is a
recursive algorithm to determine these two bases.

We fix an s as in Section 6. The algebra ŝ`e acts on F (s)
e,e and hence on F (s)

e .
The connection between ŝ`e-weight spaces and blocks of the q-Schur algebras and
hence blocks of GL(n, q) with n≥ 0 is known, and we describe it below. We denote
the Weyl module of Sq(n) parametrized by λ by W (λ).

We need to introduce a function res on P . If λ∈P , the e-residue of the (i, j)-node
of the Young diagram of λ is the nonnegative integer r given by r ≡ j − i mod e
for 0≤ r < e, denoted resi, j (λ). Then res(λ)=

⋃
(i, j)(resi, j (λ)).

Proposition. A weight space for ŝ`e on F (s)
e can be regarded as a union of blocks

of q-Schur algebras with q a primitive e-th root of unity.

Proof. The fact that res defines a weight space follows for instance from [Rouquier
et al. 2013, p. 60]. Two Weyl modules W (λ),W (µ) are in the same block if and
only if res(λ)= res(µ) (see for instance [Mathas 2004, Theorem 5.5, (i)⇔ (iv)]. �

Thus a weight space determines a set of partitions of a fixed n ≥ 0.

Corollary. A weight space for ŝ`e on F (s)
e can be regarded as a union of blocks of

groups GL(n, q), where the n are determined from the weight space.



ON CRDAHA AND FINITE GENERAL LINEAR AND UNITARY GROUPS 477

We now have the following theorem which connects the `-decomposition numbers
of Gn with n ≥ 0 with Fock spaces.

Theorem 8.1. Let φµ be the Brauer character of Gn indexed by µ∈Pn . Let λ∈Pn .
Then, for large `, (χµ, φλ)= (G−(λ), |µ〉).

Proof. The decomposition matrix of Sq(n) over a field of characteristic 0, with q a
root of unity, is known by Varagnolo–Vasserot [1999]. By their work the coefficients
in the expansion of the G+(λ) in terms of the standard basis give the decomposition
numbers for the algebras Sq(n) for n ≥ 0, with q specialized at an e-th root of unity.

By an asymptotic argument of Geck [2001] we can pass from the decomposition
matrices of q-Schur algebras in characteristic 0 to those in characteristic `, where
` is large. Then by the Dipper–James theorem we can pass to the decomposition
matrices of the groups Gn over a field of characteristic ` with q an e-th root of
unity in the field.

Let Dn be the unipotent part of the `-decomposition matrix of Gn and En its
inverse transpose. Thus Dn has columns G+(λ) and En has rows given by G−(λ)
(see [Leclerc and Thibon 1996, Section 4]). The rows of En also give the Brauer
characters of Gn , in terms of unipotent characters. These two descriptions of the
rows of En then give the result. �

The following analog of Steinberg’s tensor product theorem is proved for the
canonical basis G−(λ) in [Leclerc and Thibon 1996].

Theorem 8.2. Let λ be a partition such that λ′ is e-singular, so that λ = µ+ eα
where µ′ is e-regular. Then G−(λ)= SαG−(µ).

We now show that the rows indexed by partitions λ as in the above theorem can
be described by Lusztig induction. By replacing Sα by Lα and using Theorem 6.1
it follows that in these cases, Lusztig-induced characters coincide with Brauer
characters.

Theorem 8.3. Let λ= µ+ eα where µ′ is e-regular. Then, for sufficiently large `,
the Brauer character represented by G−(λ) is equal to the Lusztig generalized
character RGn

L (G−(µ)×χα), where L = Gm ×GL(k, qe), n = m+ ke, and α ` k.

By using the BMM bijection, Theorem 4.2, we have the following corollary.

Corollary. Let µ= φ, so that λ= eα. Then the Brauer character represented by
G−(λ) can be calculated from an induced character in a complex reflection group.

Some tables giving the basis vectors G−(λ) for e = 2 are given in [Leclerc and
Thibon 2000]. In our examples we use transpose partitions of the partitions in these
tables, and rows instead of columns.
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We first give an example of a weight space for ŝle, which is also a block for Gn ,
with n = 4, e= 4. This is an example of a decomposition matrix D for n = 4, e= 4.
This matrix occurs in a paper of Ariki [2011] as a decomposition matrix of a q-Schur
algebra. 

4|| 1 0 0 0
31|| 1 1 0 0
211|| 0 1 1 0
1111|| 0 0 1 1


The following example is to illustrate Theorem 8.3. It was calculated using a GAP
[2015] program for decomposition matrices of q-Schur algebras. It is an example
of the inverse of a decomposition matrix for n = 6, e = 2. Here ` is large, because
of the comparison with q-Schur algebras.

1 0 0 0 0 0 0 0 0 0
–1 1 0 0 0 0 0 0 0 0

1 –1 1 0 0 0 0 0 0 0
–1 0 –1 1 0 0 0 0 0 0
–1 1 –1 0 1 0 0 0 0 0

1 –1 1 –1 –1 1 0 0 0 0
1 0 1 –1 –1 0 1 0 0 0
0 0 –1 1 1 –1 –1 1 0 0
0 0 1 –1 0 0 1 –1 1 0
0 0 0 0 0 0 –1 1 –1 1


Here the rows are indexed as: 6, 51, 42, 412, 32, 313, 23, 2212, 214, 16. In the above
matrix:

(1) The rows indexed by 16, 2212, 32, 214, 412 have interpretations as Brauer
characters, in terms of RGn

L , with L an e-split Levi of the form GL(3, q2) for
λ = 16, 2212, 32, of the form GL(2, q)×GL(2, q2) for λ = 214, and of the
form GL(4, q)×GL(1, q2) for λ= 412.

(2) Put L = GL(3, q2). Then:

(a) the row indexed by 32 is RG
L (χ3)= χ32 −χ42+χ51−χ6,

(b) the row indexed by 2212 is RG
L (χ21) and

(c) the row indexed by 16 is RG
L (χ13).
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