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STABLE CAPILLARY HYPERSURFACES IN A WEDGE

JAIGYOUNG CHOE AND MIYUKI KOISO

Let 6 be a compact immersed stable capillary hypersurface in a wedge
bounded by two hyperplanes in Rn+1. Suppose that 6 meets those two
hyperplanes in constant contact angles ≥ π/2 and is disjoint from the edge
of the wedge, and suppose that ∂6 consists of two smooth components with
one in each hyperplane of the wedge. It is proved that if ∂6 is embedded
for n = 2, or if each component of ∂6 is convex for n ≥ 3, then 6 is part of
the sphere. The same is true for 6 in the half-space of Rn+1 with connected
boundary ∂6.

1. Introduction

The isoperimetric inequality says that among all domains of fixed volume in the
(n+ 1)-dimensional Euclidean space Rn+1 the one with least boundary area is the
round ball. What happens if the boundary area is a critical value instead of the
minimum? For this question the more general domains enclosed by the immersed
hypersurfaces have to be considered, hence one needs to introduce the oriented
volume (as defined in (1)). Then the answer to the question is that given a compact
immersed hypersurface 6 in Rn+1, its area is critical among all variations of 6
preserving the oriented volume enclosed by 6 if and only if 6 has constant mean
curvature (CMC).

So, H. Hopf [1989, p. 131] raised the question as to whether there exist closed
surfaces with CMC which are not spheres. To this question, W.-Y. Hsiang [1982]
obtained a counterexample, a CMC immersion of S3 in R4 which is not round, and
Wente [1986] constructed a CMC immersion of a torus in R3.

Is there an extra condition on a CMC surface 6 which guarantees that 6 is a
sphere? There are some affirmative results in this regard:

Choe supported in part by NRF, 2011-0030044, SRC-GAIA. Koiso supported in part by Grant-
in-Aid for Scientific Research (B) No. 25287012 and Grant-in-Aid for Challenging Exploratory
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(i) Aleksandrov [1962a; 1962b] showed that every compact embedded hypersur-
face of CMC in Rn+1 is a sphere,

(ii) Hopf himself [1989] proved that an immersed CMC 2-sphere is round, and

(iii) Barbosa and do Carmo [1984] showed that the only compact immersed stable
CMC hypersurface of Rn+1 is the sphere.

A CMC hypersurface 6 is said to be stable if the second variation of the n-
dimensional area of 6 is nonnegative for all (n+1)-dimensional volume-preserving
perturbations of 6.

A CMC surface with nonempty boundary along which it makes a constant contact
angle with a prescribed supporting surface is called a capillary surface. It is an
equilibrium surface of the sum of the area and the wetting energy on the supporting
surface (we call it the total energy of the surface) for volume-preserving variations
(see Section 2). Such a surface is said to be stable if the second variation of the total
energy is nonnegative for all volume-preserving variations. In this paper, we prove
the following uniqueness result (Section 4, Theorem 1) which is a generalization of
the theorem by Barbosa and do Carmo [1984] mentioned above:

Let 6 be a compact immersed stable capillary hypersurface in a wedge
bounded by two hyperplanes in Rn+1, n ≥ 2. Suppose that 6 meets
those two hyperplanes in constant contact angles ≥ π/2 and does not hit
the edge of the wedge. We also assume that ∂6 consists of two smooth
embedded (n− 1)-dimensional manifolds, one in each hyperplane of the
wedge, and that each component of ∂6 is convex when n ≥ 3 (see figure).
Then 6 is part of the sphere. Also, the same conclusion holds if 6 is in
the half-space of Rn+1 and ∂6 is connected.
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D1
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1

θ

2α
2
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We emphasize that there is a stable capillary surface between two parallel planes
which is not part of the sphere [Vogel 1989]. Our result shows that, if the initial
supporting surface is the union of two parallel planes and we consider a stable
nonspherical capillary surface, then the configuration changes discontinuously on
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infinitesimal tilting of one of the planes. Such discontinuity was pointed out already
in [Concus et al. 2001] without the stability of the surface.

The idea of our proof is motivated by Wente [1991]. He simplified Barbosa
and do Carmo’s proof by using the parallel hypersurfaces and the homothetic
contraction. We have found that Wente’s method carries over nicely to our capillary
hypersurfaces in a wedge and in the half-space. On the other hand, the Minkowski
inequality for ∂6 is indispensable in our arguments. Wente informed us that recently
Marinov [2012] obtained the same result when 6 is in R3 and ∂6 is in a plane.

Here we mention some additional related results. McCuan [1997] and Park
[2005] proved that an embedded annular capillary surface in a wedge in R3 is
necessarily part of the sphere. The question then arises whether one can extend the
theorems of Aleksandrov, Hopf, and Barbosa–do Carmo to the case of capillary
surfaces in a wedge or in the half-space. That is:

(i) Does there exist no compact embedded capillary surface of genus ≥ 1 in a
wedge (or in the half-space) of R3?

(ii) Is there a compact immersed annular capillary surface of genus 0 (or higher)
in a wedge (or in the half-space) which is not part of the sphere?

(iii) Which hypothesis of McCuan’s and Park’s can be dropped or generalized if
the capillary surface is stable?

As mentioned above, in this paper we give an answer to (iii). To question (i),
McCuan [1997] gave an affirmative answer with the contact angle condition θi ≤π/2.
In relation to question (ii), Wente [1995] constructed noncompact capillary surfaces
bifurcating from the cylinder in a wedge.

Finally, it should be mentioned that the stable capillary surfaces in a ball also
have been studied very actively. To begin with, Nitsche [1985] showed that a
capillary disk in a ball ⊂ R3 is a spherical cap (for a simpler proof, see [Finn and
McCuan 2000, Appendix]). Ros and Souam [1997] proved that a stable capillary
surface of genus 0 in a ball in R3 is a spherical cap. They also proved that a
stable minimal surface with constant contact angle in a ball ⊂ R3 is a flat disk or a
surface of genus 1 with at most three boundary components. Moreover, Ros and
Vergasta [1995] showed that a stable minimal hypersurface in a ball B ⊂ Rn which
is orthogonal to ∂B is totally geodesic, and that a stable capillary surface in a ball
⊂ R3 and orthogonal to ∂B is a spherical cap or a surface of genus 1 with at most
two boundary components.

2. Preliminaries

Let 51 and 52 be two hyperplanes in Rn+1 containing the (n− 1)-plane {xn = 0,
xn+1 = 0} and making angles α and −α (with 0 < α < π/2) with the horizontal
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hyperplane {xn+1 = 0}, respectively. Let � ⊂ {xn > 0} be the wedge-shaped
domain bounded by 51 and 52. We denote by � the closure of �. Denote by
X : (6, ∂6) → (�, ∂�) an immersion of an n-dimensional oriented compact
connected C∞ manifold 6 with nonempty boundary into � such that X (6◦)⊂�
and X (∂6)⊂ ∂�, where 6◦ :=6− ∂6. The (n− 1)-plane

50 :=51 ∩52 = {xn = 0, xn+1 = 0}

is called the edge of the wedge �. In this paper we are concerned only with the
immersed surfaces X (6) which connect 51 to 52 without intersecting 50.

For the immersion X : (6, ∂6)→ (�, ∂�), the n-dimensional area Hn(X) is
written as

Hn(X)=
∫
6

d S,

where d S is the volume form of 6 induced by X . The (n+1)-dimensional oriented
volume V (X) enclosed by X (6) is defined by

(1) V (X)= 1
n+1

∫
6

〈X, ν〉 d S,

where the Gauss map ν is the unit normal vector field along X with orientation
determined as follows. Let {e1, . . . , en} be an oriented frame on the tangent space
Tp(6), p ∈6. Then {d X p(e1), . . . , d X p(en), ν} is a frame of Rn+1 with positive
orientation.

In this paper X (6) is immersed while X (∂6) is assumed to be embedded. X (∂6)
influences the area Hn(X) through the wetting energy. Set Ci = X (∂6)∩5i and let
Di ⊂5i be the domain bounded by Ci . The wetting energy W(X) of X is defined
by

W(X)= ω1Hn(D1)+ω2Hn(D2),

where ωi is a constant with |ωi |< 1 and Hn(Di ) is the n-dimensional area of Di .
Then we define the total energy E(X) of the immersion X by

E(X)=Hn(X)+W(X).

Note that 6 ∪ D1 ∪ D2 is a piecewise smooth hypersurface without boundary. We
can extend ν :6→ Sn to the Gauss map ν :6∪D1∪D2→ Sn . Since the origin of
Rn+1 is on the edge 50 of �, 〈X, ν〉 = 0 on D1 ∪ D2. Hence the oriented volume

(2) V̂ (X)= 1
n+1

∫
6∪D1∪D2

〈X, ν〉 d S

coincides with V (X).
Let X t : (6, ∂6)→ (�, ∂�) be a 1-parameter family of immersions with X0= X .

It is well known [Finn 1986, Chapter 1] that a necessary and sufficient condition for
X to be a critical point of the total energy for all variations X t for which the volume
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V̂ (X t) is constant is that the immersed surface have constant mean curvature H
and that the contact angle θi of X (6) with 5i (measured between X (6) and Di )
be constant along Ci (see figure on page 2). More precisely,

cos θi =−ωi on Ci .

The hypersurface X (6) of constant mean curvature with constant contact angle
along Ci will be called a capillary hypersurface. A capillary hypersurface is said to
be stable if the second variation of E(X t) at t = 0 is nonnegative for all volume-
preserving perturbations X t : (6, ∂6)→ (�, ∂�) of X (6).

A capillary hypersurface X (6) in � has a nice property called the balancing
formula [Choe 2002; Concus et al. 2001; Korevaar et al. 1989]:

Lemma 1. We have

(3) nHHn(Di )=−(sin θi )H
n−1(Ci ), i = 1, 2.

Proof. We first remark the following fact. Let 6̂ be an m-dimensional oriented
compact connected C∞ manifold, and Y : 6̂→ Rm+1 a continuous map which is a
piecewise C∞ immersion. Also let ν̂ be the Gauss map of Y . Then, by using the
divergence theorem, we obtain ∫

6̂

ν̂ d S = 0.

Now integrate
16X = nHν

on 6 to get
2∑

i=1

∫
Ci

η ds = nH
∫
6

ν d6,

where η is the outward-pointing unit conormal to ∂6 on X . Then, use the above
remark to obtain

(4)
2∑

i=1

∫
Ci

η ds =−nH
2∑

i=1

∫
Di

ν d S.

Denote by Ni the unit normal to 5i that points outward from �. Denote by ni the
inward pointing unit normal to Ci in 5i . Set

(5) εi :=

{
1 if ν = Ni on Di ,
−1 if ν =−Ni on Di .
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Then from (4) we obtain

2∑
i=1

∫
Ci

(
(sin θi )εi Ni − (cos θi )ni

)
ds+

2∑
i=1

nHHn(Di )εi Ni = 0,

that is, for the (n− 1)-dimensional area Hn−1(Ci ),
2∑

i=1

(sin θi )εi H
n−1(Ci )Ni −

2∑
i=1

(cos θi )

∫
Ci

ni ds+
2∑

i=1

nHHn(Di )εi Ni = 0.

Using the above remark again, we obtain
2∑

i=1

(
nHHn(Di )+ (sin θi )H

n−1(Ci )
)
Ni = 0.

Since N1 and N2 are linearly independent, we obtain the formula (3). �

Another tool that will be essential in this paper is the formula for the volume
of tubes due to H. Weyl [1939]. Given an immersion X of a compact oriented
n-manifold M into Rn+1, let X t = X + tν be the one-parameter family of parallel
hypersurfaces to X . Thanks to the parallelness of X t one can easily see that X t has
the same unit normal vector field as X and that the area Hn(X t) is a polynomial of
degree n in t . Namely, if k1, . . . , kn are the principal curvatures of X , then

(6) Hn(X t)=

∫
M

n∏
i=1

(1− ki t) d S

= a0+ a1t + a2t2
+ · · ·+ antn,

a0 =Hn(X0),

a1 =−

∫
M

nH d S,

a2 =

∫
M

∑
i< j

ki k j d S,

a` = (−1)`
∫

M

∑
i1<···<i`

ki1ki2 · · · ki` d S.

Moreover, the oriented volume V (X t) satisfies

d
dt

V (X t)=Hn(X t).

Hence

V (X t)= v0+ v1t + v2t2
+ · · ·+ vn+1tn+1,

v1 = a0, 2v2 = a1, . . . .
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3. Admissible variations

Here we assume that our capillary hypersurface X : (6, ∂6)→ (�, ∂�) has a
nonempty boundary component on each 5i , i = 1, 2. But the case when 6 is in
the half-space and ∂6 is connected can be treated similarly.

To check the stability of X one needs to deal with its volume-preserving variations
X t : (6, ∂6)→ (�, ∂�). The specific variation that we use arises from the parallel
hypersurfaces

X1
t = X + tν.

But X1
t does not satisfy the boundary condition X1

t (∂6)⊂ ∂� unless θi = π/2. To
move the boundary to a desired place in ∂�, we apply a translation

X2
t (p)= p + ta

for some a ∈ Rn+1. The vector a is determined in such a way that

X2
t ◦ X1

t (∂6)⊂ ∂�.

Clearly such a vector uniquely exists as can be seen in the figure.

Π

ΣΣ X  (Σ)1
t

θ

1tv

ta
tv

1

− t cos θ 1

− t cos θ
2

θ2

Π2

However, X2
t ◦ X1

t is not volume-preserving. One way of making it into a
volume-preserving variation is to deform it by a homothetic contraction

(7) X t := s(t)X2
t ◦ X1

t ,

where s(t) satisfies

(8) V̂ (X t)= V̂ (X0)= v0.

In order to compute V̂ (X t)we first must consider the oriented volume V̂ (X2
t ◦X1

t )

enclosed by X2
t ◦ X1

t (6) ∪ Dt
1 ∪ Dt

2, where Dt
i ⊂ 5i is the domain bounded by

5i∩X2
t ◦X1

t (∂6). Note here that since X2
t ◦X1

t (6)∪Dt
1∪Dt

2 is closed, the oriented
volume V̂ (X2

t ◦ X1
t ) as computed by (2) is independent of the translation X2

t . While
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t increases by 1t , the oriented volume V̂ (X2
t ◦ X1

t ) increases by Hn(X2
t ◦ X1

t )1t
on X2

t ◦ X1
t (6) and by − cos θi H

n(Dt
i )1t on Dt

i . Hence

(9) d
dt

V̂ (X2
t ◦ X1

t )=Hn(X2
t ◦ X1

t )−
∑

i

cos θi H
n(Dt

i ).

Calling −
∑

i cos θi H
n(Dt

i ) the wetting energy W(X2
t ◦ X1

t ) of X2
t ◦ X1

t (6), we
define the total energy by

E(X2
t ◦ X1

t )=Hn(X2
t ◦ X1

t )+W(X2
t ◦ X1

t ).

The tube formula (6) for the capillary hypersurface 6 yields

Hn(X2
t ◦ X1

t )= a0+ a1t + a2t2
+ · · ·+ antn,

a0 =Hn(6), a1 =−nHa0, a2 =

∫
6

∑
i< j

ki k j d S,

d
dt

V̂ (X2
t ◦ X1

t )= E(X2
t ◦ X1

t ).(10)

Recall Ci = X (∂6)∩5i . Since X2
t ◦ X1

t (6) has constant contact angle with ∂�
for all t , X2

t ◦ X1
t (Ci ) are the parallel hypersurfaces of p5i (X

2
t (Ci )), where p5i

denotes the projection of Rn+1 onto 5i . Also recall ∂Di = Ci , Di = D0
i . The

distance between X2
t ◦ X1

t (Ci ) and p5i (X
2
t (Ci )) is t sin θi . Hence again by the tube

formula for Hn−1(X2
t ◦ X1

t (Ci )), we obtain

Hn(Dt
i )=Hn(Di )+Hn−1(Ci ) t sin θi −

1
2

(∫
Ci

(n− 1)H d S
)

t2 sin2 θi

+ · · ·+ (−1)n−1 1
n

(∫
Ci

k̄1k̄2 · · · k̄n−1 d S
)

tn sinn θi ,

where H and k̄i are, respectively, the mean curvature and the principal curvature of
Ci in 5i with respect to the outward unit normal, and d S is the (n−1)-dimensional
volume form of Ci .

Then (9) gives

d
dt

V̂ (X2
t ◦ X1

t )= a0−
∑

i

cos θi H
n(Di )−

(
nHa0+

∑
i

cos θi sin θi Hn−1(Ci )

)
t

+

(∫
6

∑
i< j

ki k j d S+ 1
2

∑
i

cos θi sin2 θi

∫
Ci

(n− 1)H d S
)

t2
+ · · · .

Hence if we write

E(X2
t ◦ X1

t )= e0+ e1t + · · ·+ entn,
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then (10) yields

(11)

e0 = a0−
∑

i

cos θi H
n(Di ),

e1 =−nHa0−
∑

i

cos θi sin θi Hn−1(Ci ),

e2 =

∫
6

∑
i< j

ki k j d S+ 1
2

∑
i

cos θi sin2 θi

∫
Ci

(n− 1)H d S.

On the other hand, if we let

V̂ (X2
t ◦ X1

t )= v0+ v1t + v2t2
+ · · ·+ vn+1tn+1,

then it follows from (7), (8), and the binomial series that

s(t)n = vn/(n+1)
0 (v0+ v1t + v2t2

+ · · ·+ vn+1tn+1)−n/(n+1)

= 1− n
n+1

(
v1
v0

)
t +

(
n(2n+1)
2(n+1)2

(
v1
v0

)2
−

n
n+1

(
v2
v0

))
t2
+ · · · .

Thus

(12) E(X t)= s(t)n E(X2
t ◦ X1

t (6))

= e0+

(
e1−

n
n+1

(
v1
v0

)
e0

)
t

+

(
e2−

n
n+1

(
v1
v0

)
e1+

n(2n+1)
2(n+1)2

(
v1
v0

)2
e0−

n
n+1

(
v2
v0

)
e0

)
t2

+ · · · .

From (10) we have

(13) v1 = e0, 2v2 = e1,

and the fact that E ′(0)= 0 in (12) implies

(14) v0 =
n

n+ 1
e2

0

e1
.

Substituting the identities of (13) and (14) into the coefficient of t2 in (12) yields

E ′′(0)/2= 1
2ne0

(
2ne0e2− (n− 1)e2

1
)
.
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Hence from (11) we get

ne0 E ′′(0)= 2n
(

a0−
∑

i

cos θi H
n(Di )

)
×

(∫
6

∑
i< j

ki k j d S+ 1
2

∑
i

cos θi sin2 θi

∫
Ci

(n− 1)H d S
)

−(n− 1)
(

nHa0+
∑

i

cos θi sin θi Hn−1(Ci )

)2

.

Then the balancing formula (3) yields(
nHa0+

∑
i

cos θi sin θi Hn−1(Ci )

)2

= n2 H 2
(

a0−
∑

i

cos θi H
n(Di )

)2

.

Therefore,

ne0 E ′′(0)=
(

a0−
∑

i

cos θi H
n(Di )

)
×

(
2n
∫
6

∑
i< j

ki k j d S+ n
∑

i

cos θi sin2 θi

∫
Ci

(n− 1)H d S

−

∫
6

n2(n− 1)H 2 d S+ n2(n− 1)H 2
∑

i

cos θi H
n(Di )

)
=

(
a0−

∑
i

cos θi H
n(Di )

)
×

(
−

∫
6

∑
i< j
(ki − k j )

2 d S+ n
∑

i

cos θi sin2 θi

∫
Ci

(n− 1)H d S

+ n2(n− 1)H 2
∑

i

cos θi H
n(Di )

)
.

Applying the balancing formula (3) again, this gives

(15) ne0 E ′′(0)=
(

a0−
∑

i

cos θi H
n(Di )

)(
−

∫
6

∑
i< j

(ki − k j )
2 d S

+ (n− 1)
∑

i

cos θi sin2 θi

(
n
∫

Ci

H d S+ Hn−1(Ci )
2

Hn(Di )

))
.

We shall see in the next section that

n
∫
∂Di

H d S+ Hn−1(∂Di )
2

Hn(Di )
≥ 0.
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4. Theorem

We are now ready to state the theorem of this paper.

Theorem 1. Let W be a wedge in Rn+1 bounded by two hyperplanes 51 and 52.
Let 6 ⊂ W be a compact oriented immersed hypersurface that is disjoint from
the edge 51 ∩52 of W , having smooth embedded boundary ∂6 ⊂51 ∪52, and
satisfying ∂6 ∩5i = ∂Di for a nonempty bounded connected domain Di in 5i .
Suppose that 6 is a stable capillary hypersurface in W . In other words, 6 is an
immersed constant mean curvature hypersurface making a constant contact angle
θi ≥ π/2 with Di such that for all volume-preserving perturbations (for the oriented
volume enclosed by 6 ∪D1∪D2), the second variation of the total energy

E(6)=Hn(6)− cos θ1Hn(D1)− cos θ2Hn(D2)

is nonnegative.

(i) If n = 2, then 6 is part of the 2-sphere.

(ii) If n ≥ 3 and D1 and D2 are convex, then 6 is part of the n-sphere.

Conversely, if 6 is part of the n-sphere, then it is stable.
Moreover, the same conclusion holds when 6 is in the half-space of Rn+1 and

∂6 is connected.

Proof. We prove the theorem for6 in a wedge, and the proof for6 in the half-space
is similar.

When n = 2, (15) becomes

2e0 E ′′(0)=
(

a0−
∑

i

cos θi H
2(Di )

)(
−

∫
6

(k1− k2)
2 d S

+

∑
i

cos θi sin2 θi

(
2
∫
∂Di

k ds+ H1(∂Di )
2

H2(Di )

))
,

where k is the geodesic curvature of ∂Di with respect to the outward unit normal
along ∂Di . Note that on the smooth Jordan curve ∂Di ,

∫
∂Di

k ds =−2π . Hence the
isoperimetric inequality of Di and the angle condition cos θi ≤ 0 yield

E ′′(0)≤ 0.

Therefore 6 needs to be umbilic everywhere if it is stable.
When n ≥ 3, Minkowski showed that for a convex domain D ⊂ Rn with mean

curvature H on ∂D,

n
∫
∂D
|H | d S ≤ Hn−1(∂D)2

Hn(D)

[Osserman 1978, p. 1191]. Hence it follows from (15) that the stable 6 is all
umbilic.
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If 6 is part of the n-sphere, then 6 is the minimizer of the energy E among all
embedded hypersurfaces in � enclosing the same volume [Zia et al. 1988]. The
proof is similar to that of Theorem 4.1 in [Koiso and Palmer 2007]; the method is
essentially the same as in [Winterbottom 1967]. Hence 6 is stable for all n ≥ 2. �

Remark 1. Our contact angle condition θi ≥ π/2 is quite natural because McCuan
[1997] proved the nonexistence of embedded capillary surfaces with θi ≤ π/2 in
a wedge of R3. Also it had been experimentally observed that a wedge forces the
liquid drops (bridges) with θi ≤ π/2 to move toward its edge.

5. Minkowski’s inequality

The Minkowski inequality is not well known among geometers and its proof is not
easily available in the literature. So in this section we sketch a proof of it. First we
need to introduce the mixed volume [Schneider 1993].

The Minkowski sum of two sets A and B in Rn is the set

A+ B = {a+ b ∈ Rn
: a ∈ A, b ∈ B}.

Given convex bodies K1, . . . , Kr in Rn , the volume of the Minkowski sum λ1K1+

· · ·+ λr Kr (for λi ≥ 0) of the scaled convex bodies λi Ki of Ki is a homogeneous
polynomial of degree n given by

Hn(λ1K1+ · · ·+ λr Kr ) =

r∑
j1,..., jn=1

V (K j1, . . . , K jn )λ j1 · · · λ jn .

V (K j1, . . . , K jn ) is called the mixed volume of K j1, . . . , K jn . The mixed volume
is uniquely determined by the following three properties:

(i) V (K , . . . , K )=Hn(K ), (ii) V is symmetric, (iii) V is multilinear.

A remarkable property of the mixed volume is the Aleksandrov–Fenchel inequality:

V (K1, K2, K3, . . . , Kn)
2
≥ V (K1, K1, K3, . . . , Kn) · V (K2, K2, K3, . . . , Kn).

For a convex body K ⊂ Rn and a unit ball B ⊂ Rn , the mixed volume

W j (K ) := V (

n− j times︷ ︸︸ ︷
K , K , . . . , K ,

j times︷ ︸︸ ︷
B, B, . . . , B)

is called the j-th quermassintegral of K . The Steiner formula says that the quer-
massintegrals of K determine the volume of the parallel bodies of K :

Hn(K + t B)=
n∑

j=0

(n
j

)
W j (K )t j .
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Comparing the Steiner formula for a convex domain D⊂Rn with its tube formula,
one can obtain

W0(D)=Hn(D),

nW1(D)=Hn−1(∂D),

nW2(D)=
∫
∂D
|H | d S,

n(n− 1)(n− 2)W3(D)= 2
∫
∂D

∑
i< j

ki k j d S.

The Aleksandrov–Fenchel inequality for the quermassintegrals yields

W1(D)2 ≥W0(D)W2(D),

W2(D)2 ≥W1(D)W3(D).

Consequently,

n
∫
∂D
|H | d S ≤ Hn−1(∂D)2

Hn(D)
,(16) ∫

∂D

∑
i< j

ki k j d S ≤ (n−1)(n−2)
2

(∫
∂D |H | d S

)2

Hn−1(∂D)
(17)

≤
(n−1)(n−2)

2n2
Hn−1(∂D)3

Hn(D)2
,

where (16) is the desired Minkowski inequality.

Remark 2. We note that (16) is the isoperimetric inequality when D is a domain
in R2, and so is (17) when D ⊂ R3, because∫

∂D⊂R2
|k| ds = 2π and

∫
∂D⊂R3

k1k2 d S = 4π.

Remark 3. Let Dt ⊂ Rn be the parallel domain with distance t to D. Then (16) is
equivalent to

n Hn−1(∂Dt)
′

Hn−1(∂Dt)
≤
(n−1)Hn(Dt)

′

Hn(Dt)
,

or equivalently, (
Hn−1(∂Dt)

n

Hn(Dt)n−1

)′
≤ 0.

Hence the isoperimetric quotient Hn−1(∂Dt)
n/Hn(Dt)

n−1 decreases as t increases.
Indeed, the parallel domain Dt becomes rounder and rounder as t increases.
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1. Introduction

Let G be a Lie group with Lie algebra g. Given a principal G-bundle P→ Y over
a closed, oriented 3-manifold Y , one can define the Chern–Simons function

CS :A(P)→ R/Z,

where A(P) is the space of connections on P . The set of critical points of CS is the
space of flat connections Aflat(P)⊂A(P), and the critical values are topological
invariants of Y . In general, computing the critical values of CS is fairly difficult.
Nevertheless, various techniques have been developed to handle certain classes of 3-
manifolds; for example, see [Kirk and Klassen 1993; Auckly 1994; Reznikov 1996;
Nishi 1998; Neumann and Yang 1995; Dostoglou and Salamon 1994; Wehrheim
2006]. Most of these techniques are specific to the choice of Lie group G, common
examples being SU(2), Sp(1) and SLC(2).

In the present paper we compute the Chern–Simons critical values for any 3-
manifold Y that can be written as a double

Y = H ∪∂H H,
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where H is a compression body, H is a copy of H with the opposite orientation,
and the identity map on ∂H is used to glue H and H ; see Figure 1. For us, the
term compression body means that

• H is a compact, connected, oriented cobordism between surfaces 6−, 6+,

• H admits a Morse function f :H→[−1, 1] with critical points of index 0 or 1,

• all critical values of f are in the interior of (−1, 1), and

• f −1(±1)=6±.

It follows that, up to homotopy, H can be obtained from 6+ by attaching 2-handles.
These topological assumptions imply that 6+ is connected; there is no bound on
the number of components of 6−. (Note that not every 3-manifold can be realized
as the double of a compression body; the Poincaré homology sphere is a simple
counterexample.)

Throughout this paper we work with an arbitrary compact, connected Lie group
G, and we assume the bundle P is obtained by doubling a bundle over H in the
obvious way.

6+
H H

6+

6−

H H

Figure 1. Pictured above are two possibilities for Y . The first has
6− =∅, making H a handlebody. In the second figure, 6− is connected.

Before stating the main result, we mention that the definition of CS requires a
choice of normalization. When G is simple this choice can be made in an essentially
unique way. However, for arbitrary compact G the situation is not as simple. It
turns out that, in general, this normalization can be fixed by choosing a faithful
unitary representation ρ0 : G→ U(W ), where W is a finite-dimensional Hermitian
vector space. One upshot of this approach is that certain computations reduce to
the case where G is a classical group; see Remark 2.2. It is convenient to phrase
the main result in terms of a lift CSa :A(P)→ R of the Chern–Simons function
CS; this lift can be defined by fixing a flat reference connection a ∈Aflat(P). See
Section 2B for more details.
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Theorem 1.1. Let G be a compact, connected Lie group. There is a positive integer
NG such that if H , P , Y , ρ0 are as above, then all critical values of CSa :A(P)→R

are integer multiples of 1/NG .
The dependence of these critical values on the choice of ρ0 is only up to an overall

integer multiple. In particular, if the representation ρ0 has image in SU(W )⊂U(W ),
then all critical values are multiples of 2/NG . If ρ0 is the complexification of a
faithful orthogonal representation of G (see Remark 2.2), then all critical values
are multiples of 4/NG .

Following Wehrheim [2006], the integer NG appearing in Theorem 1.1 can be
defined explicitly as follows. Consider the integer

nG := sup
G ′≤G
{|π0(C(G ′))|},

where the supremum is over all subgroups of G, and C(G ′) denotes the centralizer
in G. Then nG is finite since G is compact. We define NG to be the least common
multiple of {1, 2, . . . , nG}. Thus NG ≥ 1 is an integer depending only on G.

The definition of NG can often be refined if one has certain knowledge about
G or P . In particular, the proof will show that we can take NG = 1 provided the
following hypothesis holds.

Hypothesis 1. For each connected component S ⊂6−, the identity component of
the gauge group acts trivially on Aflat(P|S).

For example, Hypothesis 1 holds trivially when 6− is empty. When 6− is
nonempty, the hypothesis holds when G = SO(3) and the restriction of P to each
component of 6− is nontrivial. More generally, this hypothesis is satisfied if
G = U(r) or PU(r) and the integer c1(P)[S] is coprime to r for all connected
components S ⊂ 6−; see [Wehrheim and Woodward 2009]. On the other hand,
Hypothesis 1 is never satisfied if the bundle P is trivial, due to the trivial connection.
That being said, it is perhaps worth mentioning that there are other hypotheses that
allow one to replace NG by 1. For example, an argument by Wehrheim [2006] can
be used in our proof below to show that when G = SU(2), one can always replace
NSU(2) by 1 in the statement of Theorem 1.1. We also point out that Hypothesis 1 is
not assumed in Theorem 1.1; our primary motivation for introducing this hypothesis
is to simplify the discussion at various times.

Motivated by the techniques of [Dostoglou and Salamon 1994, page 633] and
[Wehrheim 2006], our strategy for proving Theorem 1.1 is to show that all flat
connections are gauge equivalent to a connection in a certain canonical form. As
a consequence, Theorem 1.1 can be viewed as a statement about the connected
components of Aflat(P). For example, we arrive at the following corollary; see
Remark 3.5.
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Corollary 1.2. Let P→ Y be as in Theorem 1.1. Assume Hypothesis 1 is satisfied
and either
• G = U(r) or SU(r) and ρ0 is the standard representation, or

• G = PU(r) and ρ0 is the adjoint representation.

If a, a′ ∈Aflat(P), then there is a gauge transformation u such that u∗a and a′ lie
in the same component of Aflat(P). Moreover, two flat connections a, a′ lie in the
same component of Aflat(P) if and only if CS(a)= CS(a′).

Our proof also identifies precisely when flat connections on P exist. To state
this, consider the commutator subgroup [G,G] ⊆ G. Then the quotient P/[G,G]
is a torus bundle over Y . For example, if G is semisimple then P/[G,G] = Y , and
if G = U(r) then this quotient is the determinant U (1)-bundle. The next result
follows from the proof of Proposition 3.3 below.

Corollary 1.3. Let P → Y be as in Theorem 1.1. The space Aflat(P) of flat
connections is nonempty if and only if (i) the restriction P/[G,G] |∂H is the trivial
bundle, and (ii) for any spherical component S2

⊆ ∂H , the restriction P|S2 is the
trivial bundle.

The author’s primary interest in Theorem 1.1 is due to its implications for the
instanton energy values on certain noncompact 4-manifolds; see [Duncan 2013b].
These 4-manifolds are those of the form R× H∞, where

(1) H∞ := H ∪∂H ([0,∞)× ∂H)

is obtained from a Riemannian 3-manifold H by attaching a cylindrical end on its
boundary. Given a principal G-bundle P→ H , define P∞→ H∞ similarly. Then
the “manifold at infinity” of R× H∞ is the double of H (see Section 3C).

Corollary 1.4. Suppose G is a compact, connected Lie group and H is a compact,
oriented 3-manifold with boundary. Let A be any finite-energy instanton on R×

P∞→R×H∞, with the instanton equation defined using the product metric. Then
there is a flat connection a[ on H ∪∂H H such that the energy of A is CSa(a[).

Note that the assumptions on G and H are very general. Corollary 1.4 is proved in
Section 3C using an extension of a standard argument; see [Taubes 1982; Dostoglou
and Salamon 1994; Salamon 1995; Wehrheim 2006; 2005; Nishinou 2010]. See also
[Yeung 1991; Etesi 2013] for similar results on instanton energies and characteristic
numbers for noncompact manifolds.

2. Background

Given a vector bundle E → X , we will write �•(X, E) := ⊕k�
k(X, E) for the

space of differential forms on X with values in E . We use the wedge product given
by µ∧ ν = µ⊗ ν− ν⊗µ for real-valued 1-forms µ, ν.
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Let G be a compact Lie group, and ρ0 :G→U(W ) the faithful unitary represen-
tation from the introduction. Then define a bilinear form 〈 · , · 〉 on the Lie algebra
g by setting

(2) 〈µ, ν〉 := −
1

2π2 Tr((ρ0)∗µ · (ρ0)∗ν), ∀µ, ν ∈ g,

where the trace is the one on u(W ). (The normalizing factor 1/2π2 is chosen so
that the quantities (4) and (6) below are integers. If ρ0 has image in SU(W ) then the
more familiar 1/4π2 can be used.) Since we have assumed ρ0 is faithful, it follows
that 〈 · , · 〉 is nondegenerate, and so this defines an Ad-invariant inner product on g.

Suppose π : P→ X is a principal G-bundle over a smooth n-manifold X ; we
assume G acts on P on the right. Given a right action ρ : G→ Diff(F) of G on
a manifold F we will denote the associated bundle by P ×G F := (P × F)/G. If
F = V is a vector space and G→ Diff(V ) has image in GL(V ) ⊂ Diff(V ), then
P ×G V is a vector bundle and we will write P(V ) := P ×G V . Pullback by π
induces an injection

π∗ :�•(X, P(V )) ↪→�•(P, P × V )

with image the space of forms that are equivariant and horizontal.
We will write P(g) for the adjoint bundle associated to the adjoint representation

G→GL(g). The Lie bracket [ · , · ] on g is Ad-invariant, and so this combines with
the wedge to define a bilinear map µ⊗ ν 7→ [µ∧ ν] on �•(X, P(g)), endowing
�•(X, P(g)) with the structure of a graded algebra. Similarly, the Ad-invariance
of the inner product 〈 · , · 〉 implies that it induces a fiberwise inner product on the
vector bundle P(g). This combines with the wedge to give a graded bilinear map

�k(X, P(g))⊗�l(X, P(g))→�k+l(X), µ⊗ ν 7→ 〈µ∧ ν〉.

2A. Gauge theory. We denote by A(P) the set of all connections on P . By defi-
nition, A(P) consists of the elements of �1(P, P × g) that are both G-equivariant
and vertical. It follows that A(P) is an affine space modeled on π∗�1(X, P(g))∼=
�1(X, P(g)). We will write A1(P) for the completion of A(P) with respect to the
H 1-Sobolev norm; we will always assume A1(P) is equipped with the H 1-topology.
The space A1(P) is well-defined when X is compact; when X is noncompact the
H 1-norm depends on the choice of a smooth reference connection at infinity.

Given any representation ρ :G→GL(V ), each connection A∈A(P) determines
a covariant derivative

dA,ρ :�
•(X, P(V ))→�•+1(X, P(V )), µ 7→ (π∗)−1(d(π∗µ)+ρ∗(A)∧π∗µ),

where d is the trivial connection on P × V . When considering the adjoint repre-
sentation, we will write dA := dA,Ad. The curvature endomorphism curv(dA,ρ) ∈
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�2(X,End(P(V ))) is defined by the relation

dA,ρ ◦ dA,ρµ= curv(dA,ρ)∧µ

for all µ ∈�•(X, P(V )). We define the curvature (2-form) of A by

FA = (π
∗)−1(d A+ 1

2 [A∧ A]
)
∈�2(X, P(g)).

The curvature 2-form FA recovers the curvature endomorphism curv(dA,ρ) in any
representation ρ in the sense that

(3) ρ∗FA = curv(dA,ρ).

Taking ρ=Ad, we therefore have curv(dA)∧µ=[FA∧µ] for all µ∈�•(X, P(g)).
Given any A ∈A(P), the covariant derivative and curvature satisfy

dA+µ = dA+ [µ∧ · ], FA+µ = FA+ dAµ+
1
2 [µ∧µ],

for all µ∈�1(X, P(g)). We also have the Bianchi identity dA FA= 0. A connection
A is flat if FA = 0, and we denote the set of all smooth (resp. H 1) flat connections
on P by Aflat(P) (resp. A1

flat(P)).
Suppose X is a closed, oriented 4-manifold. Then associated to the fixed repre-

sentation ρ0 :G→U(W ) from the introduction, we obtain a complex vector bundle
P(W ) equipped with a Hermitian inner product. In particular, this has well-defined
Chern classes ci := ci (P(W )) ∈ H 2i (X,Z). The usual Chern–Weil formula says

κ(P)= κ(P; ρ0) := (c2
1−2c2)[X ] = −

1
4π2

∫
X

Tr(curv(dA,ρ0)∧ curv(dA,ρ0)) ∈ Z,

for any connection A ∈A(P); the Bianchi identity shows this is independent of the
choice of A. Here Tr(µ∧ ν) is obtained by combining the wedge with the trace on
u(W ). Then equations (2) and (3) show

(4) κ(P)= 1
2

∫
X
〈FA ∧ FA〉.

Remark 2.1. This characteristic number can be equivalently defined as follows. Let
BU(W ) be the classifying space for the unitary group, and let κ ∈ H 4(BU(W ),Z)

be given by the square of the first Chern class minus two times the second Chern
class. Then κ(P) ∈ H 4(X,Z) ∼= Z is obtained by pulling back κ under the map
X → BG → BU(W ); here the first arrow is the classifying map for P , and the
second is induced by the representation ρ0 : G→ U(W ).

It follows immediately from the definition that κ(P) is even if the mod-2 reduction
of c1 vanishes. Now suppose ρ0 is obtained by complexifying a (real) orthogonal
representation G→O(V ). Then P(W )= P(V )C is the complexification of the real
vector bundle P(V ) and so c1= 0 vanishes. If, in addition, X = S1

×Y is a product,
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then a characteristic class argument shows that c2 is even (e.g., see [Duncan 2013a,
Section 4.3]), and so κ(P) is a multiple of 4.

For example, consider the case where G = SO(r) with r ≥ 2, and ρ0 = AdC

is the complexified adjoint representation. Then κ(P) = 2(r − 2)p1(P(Rr ))[X ],
where p1(P(R4)) is the Pontryagin class of the vector bundle associated to the
standard representation of SO(r).

As a second example, consider G = SU(r). Then the integers κ coming from
the complexified adjoint and standard representations are related by

κ(P;AdC)= 2r κ(P; standard).

A gauge transformation on P is a G-equivariant bundle map P→ P covering
the identity. The set G(P) of gauge transformations on P forms a group, called
the gauge group. One may equivalently view the gauge group as the set of G-
equivariant maps P → G. Here G acts on itself by conjugation of the inverse,
making it a right action. A third equivalent way to view G(P) is as the space of
sections of the bundle P ×G G → X , where P ×G G is formed using the same
action of G on itself.

Denote by G0 = G0(P) the connected component of the identity in G(P). We
need to specify a topology on G(P) for the term “connected component” to be
meaningful, and we do this by viewing G(P) as a subspace of the space of functions
P→ G, equipped with the H 2-topology (however, any other Hölder or Sobolev
topology would determine the same connected components). We denote by G2(P)
the completion of G(P) in the H 2-topology. Note that this depends on a choice of
faithful representation of G (see [Wehrheim 2004, Appendix B]), and we take ρ0

for this choice.
The gauge group acts on �•(P, P × g) and A(P)⊂�•(P, P × g) by pullback.

When the dimension of X is three or less, this action is smooth with the specified
topologies [Wehrheim 2004, Appendix A]. We note that the action of a gauge
transformation u on a connection A can be expressed as

(5) u∗A = u−1 Au+ u−1du,

where the concatenation on the right is matrix multiplication and du is the lineariza-
tion of u : P → G. In dimensions three or less, Equation (5) combines with the
Sobolev multiplication theorem to show that if u, A and u∗A are all of Sobolev
class H 1, then u is actually of Sobolev class H 2.

The group G(P) also acts on �•(X, P(g)) by the pointwise adjoint action
(ξ, u) 7→ Ad(u−1)ξ . In particular, the curvature of A ∈ A(P) transforms under
u ∈ G(P) by

Fu∗A = Ad(u−1)FA.
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We introduce a notation convention that is convenient when the dimension of the
underlying space X is relevant. If dim X = 4, then we use A,U for connections
and gauge transformations; if dim X = 3, then we use a, u for connections and
gauge transformations; if dim X = 2, then we use α,µ for connections and gauge
transformations. For example, this provides an effective way to distinguish between
a path of gauge transformations µ : I → G(P) on a surface X , and its associated
gauge transformation u ∈ G(I × P) on the 3-manifold I × X defined by u|{t}×P =

µ(t).

2B. The Chern–Simons functional. Fix a closed, connected, oriented 3-manifold Y ,
as well as a principal G-bundle P→ Y . The space of connections admits a natural
1-form λ ∈�1(A(P),R) defined at a ∈A(P) by

λa : TaA(P)→ R, v 7→

∫
Y
〈v∧ Fa〉.

The Bianchi identity shows that this is a closed 1-form. Since A(P) is contractible
it follows that λ is exact. Fixing a reference connection a0, this exact 1-form
can therefore be integrated along paths from a0 to obtain a real-valued function
CSa0 :A(P)→ R. One can compute that CSa0 is given by the formula

CSa0(a) :=
∫

Y
〈Fa0 ∧ v〉+

1
2〈da0v∧ v〉+

1
6〈[v∧ v] ∧ v〉,

where we have set v := a−a0 ∈�
1(Y, P(g)). We will typically choose a0 to be flat,

but this is not always convenient. In general, however, changing a0 changes CSa0

by a constant. Projecting CSa0 to the circle R/Z, one obtains the Chern–Simons
function CS :A(P)→ R/Z from the introduction; we will refer to the lift CSa0 as
the Chern–Simons functional. Moreover, CSa0 has a smooth extension from the
smooth connections A(P) to the H 1-completion A1(P).

Suppose a, a′ ∈ A(P). Any path a( ·) : [0, 1] → A(P) from a to a′ can be
interpreted as a connection A on [0, 1]×P→[0, 1]×Y by requiring that it restricts
to a(t) on {t}× Y . It follows from the definitions that

CSa0(a
′)− CSa0(a)=

1
2

∫
I×Y
〈FA ∧ FA〉.

In the special case where a′ = u∗a, with u ∈ G(P), the connection A descends to a
connection on the mapping torus

Pu := I × P/(0, u(q))∼ (1, q),

which is a bundle over S1
× Y . Then the above gives

(6) CSa0(u
∗a)− CSa0(a)=

1
2

∫
S1×Y
〈FA ∧ FA〉 = κ(Pu) ∈ Z,
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where we used (4) in the second equality. It follows that the value of this depends
only on the path component of u in G(P). Equation (6) also shows that CSa0 is
invariant under the subgroup of gauge transformations u with κ(Pu)= 0 (the ‘degree
zero’ gauge transformations), and that the circle-valued function CS :A(P)→R/Z

is invariant under the full gauge group G(P).

Remark 2.2. The discussion following Equation (4) shows that if the mod-2 reduc-
tion of c1(Pu(W )) vanishes, then (6) is even. Similarly, if the fixed representation
ρ0 is the complexification of a real representation, then (6) is a multiple of 4.

For completeness we show that the space of flat connections on P is locally
path-connected. This implies, for example, that the Chern–Simons critical values
are always isolated since the moduli space Aflat(P)/G(P) is compact and CSa0 is
constant on the path components of Aflat(P).

Proposition 2.3. The space A1
flat(P) of flat connections is locally path-connected.

In particular, the path components are the connected components.

Proof. Råde [1992] used the heat flow associated to the Yang–Mills equations
to show that there is some εP > 0 such that if a ∈ A1(P) is a connection with
‖Fa‖L2 ≤ εP , then there is a nearby flat connection

Heat(a) ∈A1
flat(P).

Råde shows that the map a 7→Heat(a) is continuous, gauge equivariant and restricts
to the identity on A1

flat(P).
Let a0, a1 ∈ A1

flat(P). We want to show that if a0 and a1 are close enough (in
H 1), then they are connected by a path in A1

flat(P). Consider the straight-line path
a(t)= a0+ t (a1− a0). Then

Fa(t) = tda0(a1− a0)+
t2

2
[a1− a0 ∧ a1− a0],

and so

‖Fa(t)‖L2 ≤ ‖da0(a1− a0)‖L2 +‖a1− a0‖
2
L4 ≤ C

(
‖a1− a0‖H1 +‖a1− a0‖

2
H1

)
,

where we have used the Sobolev embedding H 1 ↪→ L4. Then a(t) is in the realm
of Råde’s heat flow map for all t ∈ [0, 1], provided ‖a1− a0‖H1 <min{1, εP/2C}.
When this is the case, t 7→Heat(a(t)) ∈A1

flat(P) is a path from a0 to a1, as desired.
�

3. Chern–Simons values and instantons

We prove Theorem 1.1 and Corollary 1.4 in Sections 3B and 3C, respectively. We
take a TQFT approach to the proof of Theorem 1.1 in the sense that we treat each
connection on Y = H∪∂ H as a pair of connections on H that agree on the boundary.
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This reduces the problem to a study of the flat connections on H and ∂H , which is
the content of Section 3A.

3A. The components of the gauge group and the space of flat connections. In
this section we fix a principal G-bundle P → X , where X is a manifold with
(possibly empty) boundary. Unfortunately, the action of the gauge group is rarely
free. To account for this, it is convenient to consider the based gauge group
Gp = Gp(P) defined as the kernel of the map G(P) → G given by evaluating
u : P→ G at some fixed point p ∈ P . If X is connected, then Gp acts freely on
A(P) (in general, the stabilizer in G(P) of a connection A ∈A(P) can be identified
with the image in G of the evaluation map u→ u(p)).

Let G̃ → G be the universal cover. We will be interested in the subgroup
H = H(P) of gauge transformations u : P → G that lift to G-equivariant maps
ũ : P→ G̃, where the (right) action of G on G̃ is induced by the conjugation action
of G̃ on itself.

Lemma 3.1. The subgroup H is a union of connected components of G(P). In
particular, H contains the identity component G0 of G(P).

Proof. Consider the aforementioned right action of G on G̃. Use this action to define
a bundle P ×G G̃→ X , and consider the natural projection P ×G G̃→ P ×G G.
Viewing a gauge transformation u as a section of P×G G→ X , the defining condi-
tion of H is equivalent to the existence of a section ũ : X→ P ×G G̃ lifting u. It fol-
lows from the homotopy lifting property for the covering space P ×G G̃→ P ×G G
that u is an element of H if and only if u can be connected by a path to an element
of H. �

Lemma 3.2. Suppose G is compact and connected, and that X has the homotopy
type of a connected 2-dimensional CW complex. Then H∩Gp is connected, and the
inclusion Gp ⊆ G(P) induces a bijection π0(Gp)∼= π0(G(P)). Consequently, H is
the identity component G0 of G(P).

Proof. First we show that H∩Gp is connected. For u ∈H, let ũ be a lift as above.
Note that if u ∈ Gp, then ũ(p) ∈ Z(G̃) is in the center and so ũ(p)−1ũ is another
equivariant lift of u. In particular, by replacing ũ with ũ(p)−1ũ, we may assume ũ
has been chosen so that ũ(p)= e ∈ G̃. Moreover, by homotoping u we may assume
that u (hence ũ) restricts to the identity on π−1(B), where B ⊂ X is some open
coordinate ball around x = π(p). The topological assumptions imply that B can be
chosen so the complement X − B deformation retracts to its 1-skeleton. Since G is
connected, the restriction P|X−B → X − B is trivializable. By equivariance, we
may therefore view ũ simply as a map

ũ : (X − B, ∂B)→ (G̃, e).
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Now we show π0(Gp)∼=π0(G(P)). We may homotope any gauge transformation
u : P→ G so that it is constant on π−1(B)⊂ P , with B as above. Just as above
P|B→ B is the trivial bundle, so gauge transformations on P|B are exactly maps
B → G. Since G is connected, we can obviously find a homotopy rel ∂B of
u : (B, ∂B)→ (G, u(p)) to a map that sends x ∈ B to the identity. This shows that
u can be homotoped to an element of Gp.

Finally, by Lemma 3.1 we have G0⊆H, while the reverse inclusion follows from
the conclusions of the previous two paragraphs. �

Fix x ∈ X as well as a point p ∈ P over x . It is well-known that the holonomy
provides a map hol : Aflat(P)→ hom(π1(X, x),G). This intertwines the action
of G(P) on Aflat(P) with the conjugation action of G on itself in the sense that if
γ : (S1, 1)→ (X, x) is a smooth loop, then

holu∗A(γ )= u(p)−1 holA(γ )u(p)

for all gauge transformations u ∈ G(P) and flat connections A; see [Kobayashi
and Nomizu 1963, Proposition 4.1] and [Atiyah and Bott 1983]. Moreover, the
holonomy descends to a topological embedding

Aflat(P)/Gp ↪→ hom(π1(X, x),G)

with image a union of connected components that are determined by the topological
type of the bundle P . To determine this set of image components for a given
bundle P , it is useful to consider the following variation dating back to Atiyah and
Bott [1983]. Let j : G→ P denote the embedding g 7→ p · g−1 (recall G acts on P
on the right), and let j∗ denote the induced map on π1. Consider the universal cover
G̃→ G and denote by ι : π1(G) ↪→ Z(G̃) the natural inclusion into the center of G̃.
Then there is a homeomorphism

(7) Aflat(P)/(H∩Gp)∼=
{
ρ ∈ hom(π1(P, p), G̃)

∣∣ ρ ◦ j∗ = ι
}
.

We defer a proof of (7) until the end of this section.

Proposition 3.3. Assume G is compact and connected. Suppose X is either a
closed, connected, oriented surface, or X = H is a compression body. Then the
space of flat connections Aflat(P) is connected when it is nonempty.

Proof. By Lemma 3.2, the group H∩Gp = G0 ∩Gp is connected. Moreover, it acts
freely on Aflat(P) since this is the case with Gp. We will show the space on the
right-hand side of (7) is connected. The proposition follows immediately by the
homotopy exact sequence for the bundle Aflat(P)→Aflat(P)/(H∩Gp).

First assume X is a surface of genus g≥0. For g=0, the space Aflat(P)/(G0∩Gp)

is either a single point or empty, depending on whether P is trivial or not. We
may therefore assume g ≥ 1. The bundle P → X is determined up to bundle
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isomorphism by some δ ∈ π1(G)⊂ Z(G̃). Since G̃ is simply-connected, it follows
that G̃ = G1× . . .×Gk ×Rl for some simple, connected, simply-connected Lie
groups G1, . . . ,Gk . Write δ = (δ1, . . . , δk, r) according to this decomposition.

Now we compute π1(P, p). Let U be the complement in X of a point y, and let
V be a small disk around y. Applying the Seifert–van Kampen theorem to the sets
P|U , P|V ⊂ P , one finds a presentation for π1(P, p) that consists of generators and
relations coming from π1(G), as well as additional generators α1, β1, . . . , αg, βg

subject to the relation

(8)
g∏

j=1

[
α j , β j

]
= δ,

as well as further relations asserting that each element of {αi , βi }i commutes with
each generator coming from π1(G). Alternatively, the relation (8) can be viewed as
arising when one compares trivializations of P|U and P|V on the overlap U ∩V . It
follows that Aflat(P)/G0 ∩Gp can be identified with the set of tuples (Ai j , Bi j )i, j ,
for 1≤ i ≤ k+ 1 and 1≤ j ≤ g, where

(i) Ai j , Bi j ∈ Gi , and
∏g

j=1[Ai j , Bi j ] = δi for 1≤ i ≤ k;

(ii) Ak j , Bk j ∈ Rl , and
∏g

j=1[Ak j , Bk j ] = r .

Since Rl is abelian, the tuples (Ak j , Bk j ) j appearing in (ii) can only exist if r = 0.
This shows that Aflat(P) is empty if r 6= 0, so we may assume r = 0. (Note that
r = 0 if and only if the torus bundle P/[G,G], from the introduction, is the trivial
bundle.)

For 1 ≤ i ≤ k, given any δi ∈ G̃ it can be shown that (a) there always exist
tuples (Ai j , Bi j ) j ⊂ G2g

i satisfying
∏g

j=1[Ai j , Bi j ] = δi , and (b) the set of such
(Ai j , Bi j ) j is always connected; see [Alekseev et al. 1998], [Ramadas et al. 1989,
Section 2.1] or [Ho and Liu 2003, Fact 3]. It follows that Aflat(P)/G0 ∩ Gp is a
product of connected spaces and is therefore connected. This finishes the proof in
the case where X is a surface.

Now suppose X = H is a compression body. Then there is a homotopy equiva-
lence H ' (

∨s
i=16i )∨(

∨t
i=1 S1) onto a wedge sum of closed, connected, oriented

surfaces 6i and circles; note that the surfaces can be identified with the components
of the incoming end 6− ⊂ ∂H . It follows from (7) that Aflat(P)/G0 ∩ Gp is
homeomorphic to{
ρ ∈ hom(π1(P1), G̃)

∣∣ ρ◦ j∗= ι
}
× . . .×

{
ρ ∈ hom(π1(Ps), G̃)

∣∣ ρ◦ j∗= ι
}
×(G̃)t ,

where Pi → 6i is the restriction of P to the surface 6i ⊂ H . By the previous
paragraph this is a product of connected spaces, and so is itself connected. �
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Remark 3.4. The above proof shows that, when H is a compression body, restrict-
ing to the incoming end 6− ⊂ ∂H yields a surjective map

Aflat(P)
G0 ∩Gp

→
Aflat(P1)

G0(P1)∩Gp1(P1)
× . . .×

Aflat(Ps)

G0(Ps)∩Gps (Ps)

that is a (trivial) principal G̃ t -bundle. Similarly, restricting to the outgoing end
6+ ⊂ ∂H yields an injection

Aflat(P)
G0 ∩Gp

↪→
Aflat(P+)

G0(P+)∩Gp+(P+)
,

where P+→6+ is the restriction of P . In particular, a flat connection on P→ H is
determined uniquely, up to G0(P)∩Gp(P), by its value on the boundary component
6+, and hence by its value on ∂H .

Now we verify (7). This can be viewed as arising from the G̃-valued holonomy,
which we now describe. Let A ∈ A(P) be a connection. Given a smooth loop
γ : S1

=R/Z→ P , consider the induced loop in the base π ◦γ : S1
→ X . Use this

to pull P back to a bundle over the circle (π ◦γ )∗P→ S1. The standard (G-valued)
holonomy determines a lift holA(π ◦ γ ) of the quotient map [0, 1] ↪→ S1

= R/Z:

(9)

(π ◦ γ )∗P

[0, 1] ⊂ -

hol A(
π◦
γ )-

S1
?

and this lift is unique if we require that it sends 0 to γ (0) ∈ (π ◦γ )∗P . On the other
hand, γ determines a trivialization of this pullback bundle

(π ◦ γ )∗P ∼= S1
×G, γ (t) 7→ (t, e).

Compose the lift in (9) with this isomorphism and then with the projection to the
G-factor in S1

×G to get a map

(10) holA(π ◦ γ ) : [0, 1] → G,

which we denote by the same symbol we used for the standard holonomy. Then the
map in (10) sends 0 to the identity e ∈ G and the value at 1 recovers the standard
holonomy for A around γ . Viewing G̃→ G as a covering space, holA(π ◦ γ ) lifts
to a unique map h̃olA(π ◦ γ ) : [0, 1] → G̃ that sends 0 to e. Then we declare the
G̃-valued holonomy of A around γ to be the value at 1:

holG̃
A (γ ) := h̃olA(π ◦ γ )(1) ∈ G̃.

As with the standard holonomy, one can check that this is multiplicative under
concatenation of paths γ . Similarly, this is equivariant in the following sense.
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Suppose u ∈H and so u lifts to a G-equivariant map ũ : P→ G̃. Setting g := ũ(p),
we have

holG̃
u∗A(γ )= g−1 holG̃

A (γ )g.

Next, suppose A is a flat connection. Then holG̃
A (γ ) depends only on the homo-

topy class of γ . It follows from the above observations that the G̃-valued holonomy
defines a map Aflat(P)→ hom(π1(P, p), G̃), and this intertwines the actions of H
and G̃. Moreover, from the definition of Gp we have that the G̃-valued holonomy
is invariant under the action of H ∩ Gp. We therefore have a well-defined map
Aflat(P)/H∩Gp→ hom(π1(P), G̃). It follows from the definitions above that
the image lies in the right-hand side of (7). That this map is a homeomorphism
follows from the analogous argument for the standard holonomy, together with the
commutativity of the following diagram.

Aflat(P)/(H∩Gp) - {ρ ∈ hom(π1(P), G̃)
∣∣ ρ ◦ j∗ = ι}

Aflat(P)/G(P)
?

⊂ - hom(π1(X),G)/G
?

3B. Proof of Theorem 1.1. Write Y = H ∪∂H H , where H is a compression body.
Fix a collar neighborhood [0, ε)× ∂H ↪→ H for ∂H , and use this to define the
smooth structure on Y . This smooth structure is independent, up to diffeomorphism,
of the choice of collar neighborhood, see [Milnor 1965, Theorem 1.4]. The product
structure of this collar neighborhood can be used to define a vector field ν on Y
that is normal to ∂H and that does not vanish at ∂H . Moreover, we assume ν has
support near ∂H , and so ν lifts to an equivariant vector field on P that we denote
by the same symbol.

Restriction to each of the H factors in Y = H ∪∂H H determines an embedding

A1
flat(P) ↪→

{
(b, c) ∈A1

flat(P|H )×A1
flat(P|H )

∣∣∣ b|∂H = c|∂H ,

−ινb|∂H = ινc|∂H

}
given by

(11) a 7→ (a|H , a|H ).

A few comments about the defining conditions in the codomain are in order: (i) we
are treating ν = ν|H as a vector field on H , viewed as the second factor in H∪∂H H ;
(ii) the negative sign is due to the reversed orientation of the first factor; and
(iii) restriction to the hypersurface ∂H ⊂ Y extends to a bounded linear map
H 1(Y )→ L2(∂H) (see, e.g., [Adams 1975, Theorem 6.3]), and so these equalities
should be treated as equalities in the L2 sense.
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Suppose (b, c) is in the codomain of (11). These define a connection a on Y
by setting a|H = b and a|H = b. It is straightforward to check that if b and c are
both smooth, then a is continuous and of Sobolev class H 1 on Y . Since the smooth
connections are dense in A1, it follows that (11) is surjective, and so we may treat
(11) as an identification.

The bijection (11) singles out a preferred subspace that we call the diagonal

(12)
{
(b, b) ∈A1

flat(P|H )×A1
flat(P|H )

∣∣ ινb|∂H = 0
}
⊂A1

flat(P).

It is convenient to consider a slightly larger space C ⊂A1
flat(P) defined to be the set

of flat connections that can be connected by a path to an element of the diagonal (12).

Claim. The diagonal (12) is path-connected. In particular, C is also path-connected.

To see this, consider diagonal elements (b0, b0), (b1, b1). It suffices to prove the
claim under the assumption that b0, b1 are both smooth and satisfy

(13) ινb0|U = ινb1|U = 0

on some neighborhood U of ∂H (this is because the H 1-completion of the space
of these connections recovers (12) and the path-components are stable under com-
pletion). By Proposition 3.3 there is a path of flat connections t 7→ bt ∈Aflat(P|H )
connecting b0 and b1. We will be done if we can ensure that ινbt |∂H = 0 for all
t ∈ [0, 1]. We will accomplish this by putting bt in a suitable ‘ν-temporal gauge’,
as follows. Restrict attention to the bicollar neighborhood (−ε, ε) × ∂H ⊂ Y
obtained by doubling the collar neighborhood from the beginning of this section.
Let s denote the variable in the (−ε, ε)-direction and fix a bump function β for U
that is equal to 1 on ∂H . For each t ∈ [0, 1], define a gauge transformation ut at
(s, h) ∈ (−ε, ε)× ∂H by the formula

ut(s, h) := exp
(
−

∫ s

0
ιβν(σ,h)bt(σ, h) dσ

)
.

Then ut depends smoothly on all variables, and a computation shows

ιβν(u∗t bt)= 0.

Moreover, it follows from (13) that ut is the identity gauge transformation when
t = 0, 1. The claim follows by extending ut to all of Y using a bump function.

It follows from the claim that the Chern–Simons functional is constant on C,
since CSa0 is locally constant on its critical set A1

flat(P). Suppose Hypothesis 1
holds. We will show that every flat connection in A1

flat(P) is gauge equivalent to
one in C; Theorem 1.1 will then follow immediately from Remark 2.2. In fact,
by another density argument, it suffices to show that every smooth flat connection
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is gauge equivalent to one in C. So we fix a ∈ Aflat(P). As in the proof of the
claim, by applying a suitable gauge transformation, we may assume that ινa = 0.
Use (11) to identify a with a pair (b, c) ∈ Aflat(P|H ) × Aflat(P|H ). Then b, c
agree on the boundary, so by Remark 3.4, there is some gauge transformation
u ∈ G0(P|H )∩Gp(P|H ) for which u∗c = b. Here we have chosen p ∈ H to lie in
6+ ⊂ ∂H , and we are thinking of the H that appears here as the second factor
in Y = H ∪∂H H . Our immediate goal is to show that u restricts to the identity
gauge transformation on the boundary ∂H =6+ ∪6−. Since p ∈6+, it follows
that the restriction u|6+ lies in Gp(P|6+), which acts freely. Since b and c agree
on 6+, it must be the case that u|6+ is the identity. Turning attention to 6−, for
each component 6′ ⊂6−, the restriction u|6′ lies in the identity component of the
gauge group. In particular, by Hypothesis 1 we have that u|∂H = e is the identity.
At this point we have that u is a gauge transformation on H ⊂ Y that is the identity
on all of ∂H . Then u extends over H ⊂ Y by the identity to define a continuous
gauge transformation u(1) = (e, u) on P . This is of Sobolev class H 1. We also
have (u(1))∗a ∈ C, since under (11) the connection (u(1))∗a corresponds to the pair
(b, b)= (b, u∗c) and we have assumed ινa = 0. Finally, since u(1), a and (u(1))∗a
are all H 1, it follows from (5) that u(1) is H 2. This finishes the proof of Theorem 1.1
under Hypothesis 1.

Remark 3.5. Continue to assume Hypothesis 1, and suppose a, a′ are flat connec-
tions. Then the construction of the previous paragraph shows that there is a gauge
transformation w ∈H(P) such that w∗a and a′ lie in the same path component. If
we further assume that CSa0(a)= CSa0(a

′), then it follows that κ(Pw)= 0. In many
cases, if w ∈H and κ(Pw)= 0, then w necessarily lies in the identity component.
For example, this is well-known when G = U(r) or SU(r) and ρ0 : G→ U(Cr ) is
the standard representation [Freed and Uhlenbeck 1991, page 79], or if G = PU(r)
and ρ0 is the adjoint representation [Duncan 2013a]. In such cases, it follows that
a and a′ lie in the same component of Aflat(P).

To prove the theorem without Hypothesis 1, we follow a strategy of Wehrheim
[2006]. Let nG be as in the definition of NG . Without Hypothesis 1 it may not be the
case that u ∈ G(P|H ) restricts to the identity on 6−. Write 6− =61 ∪ · · · ∪6s in
terms of its connected components and write Pi for the restriction of P to 6i ⊂ ∂H .
Since G is compact, the stabilizer subgroup in G(Pi ) of each restriction b|6i has
only finitely many components, and so there is some integer n ≤ nG for which
un
|6i lies in the identity component of the stabilizer group for b|6i . For simplicity

we assume un
|6i = e is the identity for each i ; one can check that the following

argument can be easily reduced to this case.
View H as a cobordism from 6− to 6+ (we may assume 6− is not empty,

otherwise Hypothesis 1 is satisfied), and define a manifold Y (n) by gluing H to
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itself 2n times:
H ∪

Σ
+

H

∪Σ
+

H
∪Σ−

H

Σ
−
∪

. . .
Σ+∪

(14)

Define a bundle P (n)→ Y (n) similarly. Then a = (b, c) determines a continuous
flat connection on P (n) by the formula

a(n) := (b, c, b, c, . . . , b, c).

The notation means that the k-th component lies in the k-th copy of H in (14).
Similarly, the reference connection a0 defines a reference connection a(n)0 on P (n),
and the gauge transformation u determines a continuous gauge transformation on
P (n) by

u(n) := (e, u, u, u2, u2, . . . , un−1, un−1, un).

Let CS(n) denote the Chern–Simons functional for P (n) defined using a(n)0 . Then
(6) and the additivity of the integral over its domain give

CS(n)
(
(u(n))∗a(n)

)
= CS(n)

(
a(n)

)
+ κ(Pu(n))= nCSa0(a)+ κ(Pu(n)).

In addition, the pullback of a(n) by u(n) is (b, b, u∗b, u∗b, . . . , (un−1)∗b, (un−1)∗b),
and so

CS(n)
(
(u(n))∗a(n)

)
= nCSa0(a

′)+ kn, kn :=
1
2 n(n− 1)κ(Pu) ∈ Z,

where a′ ∈ C is the connection corresponding to (b, b) under (11). Combining these
gives CSa0(a)− CSa0(a

′) ∈ 1
n Z⊆ 1

NG
Z.

3C. The energies of instantons. Let P∞→ H∞ be as in Corollary 1.4, and let g
be the cylindrical end metric on H∞. Equip the 4-manifold R×H∞ with the product
metric, and denote by Q → R× H∞ the pullback of P∞ under the projection
R× H∞→ H∞. The energy of a connection A ∈A(Q) is defined to be

1
2
‖FA‖L2(R×H∞) =

1
2

∫
R×H∞

〈FA ∧∗FA〉,

where ∗ is the Hodge star coming from the metric. We will always assume the
energy of A is finite. We say that A is an instanton if ∗FA =±FA. It follows that
the energy of any instanton is given, up to a sign, by

(15) 1
2

∫
R×H∞

〈FA ∧ FA〉.

In this section we will prove Corollary 1.4 by showing that (15) is equal to CSa0(a[)
for some flat connections a[, a0 on Y := H∪∂H H . First we introduce some notation.
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Recalling the decomposition (1), there is a projection

(16) R× H∞→ H

to the upper half-plane, sending {s}×H to (s, 0) ∈H, and sending each element
of {(s, t)} × ∂H to (s, t). (This projection is continuous, but not differentiable.)
Note that for each τ ∈ (0,∞), the inverse image under (16) of the semicircle

{(τ cos(θ), τ sin(θ)) | θ ∈ [0, π]} ⊂ H

is the closed 3-manifold

Yτ := H ∪{0}×∂H ([0, τπ]× ∂H)∪{τπ}×∂H H.

In the degenerate case τ = 0, we declare Y0 to be the inverse image under (16) of
the origin; so Y0 = {0}× H . Then we have

R× H∞ =
⋃
τ≥0

Yτ .

Moreover, for each τ > 0, there is an identification Yτ ∼= Y1 induced from the
obvious linear map [0, τπ] ∼= [0, π]. This identification is continuous, but when
τ 6=1 this identification is not smooth due to the directions transverse to {0, τπ}×∂H
in Yτ . We note also that we can identify Y1 with the double Y ; however we find
it convenient to work with Y1 rather than Y at this stage. In summary, we have
defined a continuous embedding

5 : (0,∞)× Y1→ R× H∞

with image the complement of Y0; this map is not smooth. We think of 5 as
providing certain “polar coordinates” on R× H∞.

Fix a connection A. Then we can write the pullback under 5 as

5∗A = a(τ )+ p(τ ) dτ,

where τ is the coordinate on (0,∞), a( ·) is a path of connections on Y1, and p( ·)
is a path of 0-forms on Y1. Fixing τ , the failure of 5 to be smooth implies that the
connection a(τ ) will not be continuous on Y1, unless

(17) ιν A = 0.

Here, ν is the normal vector to the hypersurface R× ∂H ⊂ R× H∞. However,
by performing a suitable gauge transformation to A, we can always achieve (17).
(See the previous section for a similar construction; also note that the action of the
gauge group on A does not change the value of (15).) When (17) holds it follows
that the connection a(τ )

• is continuous everywhere on Y1,

• is smooth away from the hypersurface {0, π}× ∂H ⊂ Y1, and

• has bounded derivative near this hypersurface.
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In particular, a(τ ) is of Sobolev class H 1 on Y1.
Now we introduce a convenient reference connection a0 on Y1 with which we

will define CSa0 . This reference connection will depend on the given connection A;
we continue to assume that (17) holds. Define a0 on the first copy of H in Y1 by
declaring it to equal A|Y0 , where we are identifying Y0 with H in the obvious way.
Define a0 on the second copy of H to also equal A|Y0 . It remains to define a0 on
the cylinder [0, π]× ∂H , and there is a unique way to do this if we require that a0

is (i) continuous and (ii) constant in the [0, π]-direction. It follows from (17) that
a0 is of Sobolev class H 1. Moreover,

lim
τ→0+

a(τ )= a0,

where this limit is in the H 1-topology on Y1 (this is basically just the statement
that A is continuous at Y0 ⊂ R× H∞). Note that this choice of a0 may not be flat.
However, it turns out that CSa0 = CSa1 for some flat connection a1 (in fact, any flat
connection in the diagonal (12) will do); see Remark 3.6.

Now we prove Corollary 1.4. At this stage the argument follows essentially as
in [Wehrheim 2006, Theorem 1.1]; we recall the details for convenience. Let A be
any finite energy connection on R× H∞, and assume it has been put in a gauge so
that (17) holds. Use the identity F5∗A = Fa + dτ ∧ (∂τa− da p) to get

1
25
∗
〈FA ∧ FA〉 = dτ ∧ 〈Fa ∧ (∂τa− da p)〉.

Integrate both sides and use the fact that the image of5 has full measure in R×H∞

to get

(18) 1
2

∫
R×H∞

〈FA ∧ FA〉 =

∫
∞

0

∫
Y1

dτ ∧ 〈Fa ∧ ∂τa〉

=

∫
∞

0

d
dτ

CSa0(a(τ )) dτ

= lim
τ→∞

CSa0(a(τ ))− lim
τ→0+

CSa0(a(τ )),

where we used the Bianchi identity to kill off the da p-term, and then used the
definition of CSa0 . From the definition of a0, we have

lim
τ→0+

CSa0(a(τ ))= CSa0(a0)= 0,

so it suffices to consider the limit at∞.
Notice that (18) shows that limτ→∞ CSa0(a(τ )) exists. The goal now is to show

that this limit equals CSa0(a[) for some flat connection a[. Endow Y1 with the
metric induced from ds2

+ g via the inclusion Y1 ⊂ R× H∞. Then it follows from
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the definitions that ∫
∞

1
‖Fa(τ )‖

2
L2(Y1)

≤ ‖FA‖
2
L2(R×H∞).

Since the energy of A is finite, the integral over [1,∞) on the left converges and
so there is a sequence τi ∈ R with

‖Fa(τi )‖
2
L2(Y1)

i
→ 0 and τi

i
→∞.

By Uhlenbeck’s weak compactness theorem [1982], we can find

• a subsequence of the {a(τi )}, denoted by {ai },

• a sequence of gauge transformations {ui }, and

• a flat connection a∞,

for which {u∗i ai } converges to a∞ weakly in H 1 and hence strongly in L4. This
convergence is enough to put each u∗i ai in Coulomb gauge with respect to a∞
[Wehrheim 2004, Theorem 8.1], so by redefining each ui we may assume this is
the case. Then u∗i ai converges to a∞ strongly in H 1. Since CSa0 is continuous in
the H 1-topology, we have

lim
i→∞

CSa0(u
∗

i ai )= CSa0(a∞).

On the other hand,

CSa0(u
∗

i ai )− CSa0(ai )= κ(Pui ) ∈ Z

for all i . Since CSa0(u
∗

i ai ) and CSa0(ai ) both converge, it follows that κ(Pui ) is
constant for all but finitely many i . By passing to yet another subsequence, we may
assume that κ(Pui ) is constant for all i . Then there is some gauge transformation u
such that κ(Pu)= κ(Pui ) for all i (just take u to be one of the ui ). This gives

1
2

∫
R×H∞

〈FA ∧ FA〉 = lim
i→∞

CSa0(ai )= lim
i→∞

CSa0(u
∗

i ai )− κ(Pui )

= CSa0(a∞)− κ(Pu)= CSa0((u
−1)∗a∞).

So taking a[ := (u−1)∗a∞ finishes the proof.

Remark 3.6. Here we address the fact that the reference connection a0, constructed
in the proof above, may not be a flat connection. We address this from two different
angles. First of all, the quantity (15) is independent of the choice of connection
A, provided that one restricts to connections with the same asymptotic behavior at
infinity. In particular, one can always modify the connection A so that its restriction
to Y0 is flat. This forces a0 to be flat.

Secondly, the argument of the previous paragraph suggests that the value CSa0(a)
is somehow independent of a0. It is interesting to see this explicitly without
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modifying the original connection A. There is an obvious Z2 action on Y =H∪∂H H
given by interchanging the two H -factors. Call a form or connection on Y symmetric
if it is fixed by this action. For example, all elements of the diagonal (12) are
symmetric. The key observation here is that a0 is symmetric. Then we claim
that function CSa0 is independent of the choice of a0 from the class of symmetric
connections. Indeed, suppose a1 is a second connection that is symmetric. We want
to show that CSa0(a)= CSa1(a) for all connections a. From the definition of the
Chern–Simons functional we have

CSa0(a)− CSa1(a)=−CSa(a0)+ CSa(a1).

Note that the right-hand side is actually independent of a, since changing the
connection a changes CSa by a constant. We can therefore replace a with a0 on
the right-hand side to get

CSa0(a)− CSa1(a)= CSa0(a1)=

∫
Y
〈Fa0 ∧ v〉+

1
2〈da0v∧ v〉+

1
6〈[v∧ v] ∧ v〉,

where v := a1 − a0. Let csa0(v) denote the integrand on the right. Now use the
following facts: (i) Y decomposes into two copies of H , (ii) the two copies of
H have opposite orientations, and (iii) csa0(v) is symmetric (it is made up of the
symmetric a0, a1). These allow us to compute

CSa0(a)− CSa1(a)=
∫

H
csa0(v)+

∫
H

csa0(v)=−

∫
H

csa0(v)+

∫
H

csa0(v)= 0.
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COMPACTNESS AND THE PALAIS–SMALE PROPERTY
FOR CRITICAL KIRCHHOFF EQUATIONS

IN CLOSED MANIFOLDS

EMMANUEL HEBEY

We prove the Palais–Smale property and the compactness of solutions for
critical Kirchhoff equations using solely energy arguments in the situation
where no sign assumption is made on the solutions. We then prove the exis-
tence of a mountain-pass solution to the equation, discuss its ground-states
structure, and, in extreme cases, prove uniqueness of this solution.

The Kirchhoff equation [1883] was proposed as an extension of the classical
wave equation of D’Alembert for the vibration of elastic strings. The model takes
into account the small vertical vibrations of a stretched elastic string when the
tension is variable but the ends of the string are fixed. The equation in [loc. cit.]
was written as

ρ
∂2u
∂t2
−

(
P0
h
+

E
2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2 dx
)
∂2u
∂x2
= 0,

where L is the length of the string, h is the area of the cross-section, E is the young
modulus of the material (also referred to as the elastic modulus — it measures the
string’s resistance to being deformed elastically), ρ is the mass density, and P0 is
the initial tension. Almost one century later, Jacques-Louis Lions [1978] returned
to the equation and proposed a general Kirchhoff equation in arbitrary dimension
with external force term which was written as

∂2u
∂t2
+

(
a+ b

∫
�

|∇u|2 dx
)
1u = f (x, u),

where
1=−

∑
∂2

∂x2
i

is the Laplace–Beltrami Euclidean Laplacian. We investigate in this paper the
stationary version of this equation, in the case of closed manifolds, and when f is
the critical pure power nonlinearity. We prove the surprising result that the equation
satisfies the Palais–Smale property when a and b are large (in a sense to be made
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Keywords: compactness, ground-states, Kirchhoff equation, mountain-pass solution, Palais–Smale

property.
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precised in Theorem 1 below). As usual, solutions of the stationary equation (with
the square of the phase added as a potential) correspond to standing wave solutions
of the evolution equation.

In what follows, we let (M, g) be a closed n-dimensional Riemannian manifold
of dimension n ≥ 4, a, b > 0 be positive real numbers, and h ∈ C1(M,R). The
Kirchhoff equation we investigate is written as

(1)
(

a+ b
∫

M
|∇u|2 dvg

)
1gu+ hu = |u|2

?
−2u,

where 2? = 2n/(n− 2) is the critical Sobolev exponent. It is an appealing mathe-
matical model because of its nonlocal nature and its integrodifferential structure. It
has been paid much attention over the past years. Among other possible references
(the following list is far from being exhaustive), we mention Figueiredo [2013],
Figueiredo, Ikoma, and Santos [Figueiredo et al. 2014], Figueiredo and Santos
[2012], He and Zou [2012], and the references in these papers. The case of
positive solutions in the curved setting of closed manifolds has been investigated in
Hebey and Thizy [2015a; 2015b]. We treat here the case where absolutely no sign
assumption is made on the solutions. As a remark, the equation always has a pair
of constant solutions if h > 0 is constant.

In what follows, we let H 1 be the Sobolev space of functions in L2 with one
derivative in L2. We let also I : H 1

→ R be the functional

(2) I (u)= a
2

∫
M
|∇u|2 dvg +

b
4

(∫
M
|∇u|2 dvg

)2

+
1
2

∫
M

hu2 dvg −
1
2?

∫
M
|u|2

?

dvg.

As is easily checked, critical points of I are solutions of (1). In particular, (1) has a
variational structure. A sequence (uα)α in H 1 is said to be a Palais–Smale sequence
for I if the sequence (I (uα))α is bounded with respect to α, and I ′(uα)→0 in (H 1)′

as α→+∞. Following standard terminology, we say that I satisfies the Palais–
Smale property if Palais–Smale sequences for I converge, up to a subsequence, in
H 1. Let Sn be the sharp Euclidean Sobolev constant given by Sn =

1
4 n(n− 2)ω2/n

n ,
where ωn is the volume of the unity n-sphere. We define the dimensional constant
C(n) by

(3) C(n)=
2(n− 4)(n−4)/2

(n− 2)(n−2)/2Sn/2
n
.

The main result of this paper provides very simple criteria on a and b for the
equation to be compact and I to satisfy the Palais–Smale property. Our main result
is stated as follows.

Theorem 1. Suppose that (M, g) is a closed n-dimensional Riemannian manifold
of dimension n ≥ 4, that a, b > 0 are positive real numbers, and that h ∈ C1(M,R)

makes1g+h/a positive. Assume that b� 1 when n= 4, and that a(n−4)/2b>C(n)
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when n ≥ 5, where C(n) is as in (3). Then, I satisfies the Palais–Smale property
and the set of solutions of (1) is compact in the C2-topology.

It is very surprising that such a compactness result, in strong topologies, for an
equation with critical nonlinearity, can be obtained without the whole machinery of
strong pointwise estimates (see Hebey [2014] for a reference in book form on this
machinery). Moreover, no assumption of positiveness is made on the solutions in
Theorem 1.

Proof of Theorem 1. (i) We prove that Palais–Smale sequences for I are bounded in
H 1, assuming that b� 1 when n = 4. Let (uα)α be a Palais–Smale sequence for I .
Then, we get that I (uα) = O(1) and I ′(uα) . (uα) = o(‖uα‖H1), where ‖ · ‖H1 is
the H 1-norm given for u ∈ H 1 by

‖u‖2H1 = ‖∇u‖2L2 +‖u‖2L2 .

In particular,

(4) a
∫

M

(
|∇uα|2+

h
a

u2
α

)
dvg + b

(∫
M
|∇uα|2 dvg

)2

=

∫
M
|uα|2

?

dvg + o(‖uα‖H1)

and that

(5) a
2

∫
M

(
|∇uα|2+

h
a

u2
α

)
dvg +

b
4

(∫
M
|∇uα|2dvg

)2

=
1
2?

∫
M
|uα|2

?

dvg + O(1).

By the Sobolev–Poincaré inequality, there exist C1,C2 > 0 such that

(6) ‖uα‖2
?

L2?≤ C1‖∇uα‖2
?

L2 +C2 |uα|2
?

for all α, where

uα =
1

Vg

∫
M

uα dvg

is the average of uα, and by the Poincaré inequality,

(7) ‖uα − uα‖2L2 ≤
1
λ1
‖∇uα‖2L2

for all α, where λ1 = λ1(M, g) > 0 is the first nonzero eigenvalue of 1g. It clearly
follows from the positivity of 1g+h/a, (5), and (6) that if either n = 4 and b>C1

or n ≥ 5 and if uα = O(1), then ‖uα‖H1 = O(1). We may therefore assume that
uα→+∞ as α→+∞. Then, still by the positivity of 1g + h/a, (5), and (6),

(8)
∫

M
|∇uα|2 dvg =

{ 1
b O(u2

α) if n = 4,
o(u2

α) if n ≥ 5,

where we assume that b > C1 when n = 4. Now, we write that

(9) uα = uα(1+ϕα).
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Then,
∫

M
ϕα dvg = 0 and

(10) u2
α

∫
M
|∇ϕα|

2 dvg =

∫
M
|∇uα|2 dvg.

It follows from (8), (10), the Poincaré inequality, (7), and (10) that

(11) ‖ϕα‖
2
H1 =

{
O
( 1

b

)
if n = 4,

o(1) if n ≥ 5.

In particular, by (9) and (11),

(12)
∫

M

(
|∇uα|2+

h
a

u2
α

)
dvg = u2

α(1+ Aα) and
∫

M
|uα|2

?

dvg = u2?
α (1+ Bα),

where Aα = O
( 1

b

)
and Bα = O

( 1
b

)
if n = 4, and Aα = o(1) and Bα = o(1) if n ≥ 5.

Subtracting 1
4 of (4) from (5) yields

(13) a
4

∫
M

(
|∇uα|2+

h
a

u2
α

)
dvg =

( 1
2?
−

1
4

)∫
M
|uα|2

?

dvg + O(1)+ O(‖uα‖H1).

Picking b� 1 when n = 4, the contradiction follows by combining (12) and (13).
This proves that (uα)α is bounded in H 1.

(ii) We prove that I satisfies the Palais–Smale property assuming that b� 1 when
n = 4, and that a(n−4)/2b > C(n) when n ≥ 5. We let

(14) Kα = a+ b
∫

M
|∇uα|2 dvg,

hα = K−1
α h, and

(15) vα =
( 1

Kα

) 1
2?−2 uα.

We define Iα : H 1
→ R by

(16) Iα(u)=
1
2

∫
M

(
|∇u|2+ hαu2) dvg −

1
2?

∫
M
|u|2

?

dvg.

According to (i), and up to passing to a subsequence, Kα→ K∞ as α→+∞ for
some K∞ ≥ a. In particular, (hα)α converges in Ck for all k, and (vα)α is bounded
in H 1. This implies that Iα(vα)= O(1), and, as one can check,

I ′α(vα) . (ϕ)=
( 1

Kα

) 2?−1
2?−2 I ′(uα) . (ϕ)

for all ϕ ∈ H 1. Then (vα)α is a Palais–Smale sequence for the family (Iα)α (in the
sense of Hebey [2014]). In particular the H 1-decomposition as in Struwe [1984]
applies (see Druet, Hebey, and Robert [Druet et al. 2004], Hebey [2014], and Vétois
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[2007] for the closed setting with varying potentials), and we get that there exists
v∞ ∈ H 1, k ∈N, and k+1 sequences (B1,α)α, . . . , (Bk,α)α, (Rα)α in H 1 such that

(17) vα = v∞+

k∑
i=1

Bi,α + Rαin M

and

(18)
∫

M
|∇vα|

2 dvg =

∫
M
|∇v∞|

2 dvg +

k∑
i=1

∫
M
|∇Bi,α|

2 dvg + o(1)

for all α, Rα→ 0 in H 1 as α→+∞ and the “bubbles” (Bi,α)α satisfy the following
properties for any i = 1, . . . , k:

(a) Bi,α→ 0 in L2 as α→+∞,

(b) ‖Bi,α‖ = O(1), and

(c)
∫

M |∇Bi,α|
2 dvg ≥ Sn/2

n + o(1) for all α,

where Sn is the sharp Euclidean constant as in (3). In (c), there is equality if each
Bi,α is positive. Then, since (uα)α is bounded in H 1, and by (17)–(18), we get that,
up to passing to a subsequence,

(19) Kα = a+ b
∫

M
|∇uα|2 dvg

= a+ bK 2/(2?−2)
α

∫
M
|∇vα|

2 dvg

= a+ bK 2/(2?−2)
α

∫
M
|∇v∞|

2 dvg + bK 2/(2?−2)
α

k∑
i=1

∫
M
|∇Bi,α|

2 dvg + o(1)

= a+ bK 2/(2?−2)
∞

∫
M
|∇v∞|

2 dvg + bCK 2/(2?−2)
∞

+ o(1),

where C ≥ kSn/2
n . In particular, by (19),

(20) K∞ = a+ bK 2/(2?−2)
∞

∫
M
|∇v∞|

2 dvg + bCK 2/(2?−2)
∞

.

When n = 4, we have 2/(2?−2)= 1, and (20) implies that k = 0 in (17) as soon as
b� 1. In particular, the sequence (uα)α converges strongly in H 1, and I satisfies
the Palais–Smale property. When n ≥ 5, we define

f (x)= bkSn/2
n x(n−2)/2

− x + a.
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By (20), and since C ≥ kSn/2
n , we have that f (K∞) ≤ 0. Assuming that k ≥ 1,

noting that f is minimum at x0, where

x0 =

(
2

(n− 2)bkSn/2
n

)2/(n−4)

,

we compute that

(21) f (x0)=−
n−4
n−2

(
bkSn/2

n
)−2/(n−4)

( 2
n−2

)2/(n−4)
+ a.

If f (K∞)≤ 0, then f (x0)≤ 0, and by (21), bka(n−4)/2
≤ C(n). Since by assump-

tion a(n−4)/2b > C(n), it must be the case that k = 0 in (17). In particular, the
sequence (uα)α converges strongly in H 1, and I satisfies the Palais–Smale property
also when n ≥ 5.

(iii) We prove the compactness of (1) assuming that b� 1 when n = 4 and that
a(n−4)/2b > C(n) when n ≥ 5. Noting that a bounded sequence in H 1 of solutions
of (1) is a Palais–Smale sequence for I, according to what we proved above, it
suffices to prove that if (uα)α is a sequence of solutions of (1), then (uα)α is bounded
in H 1 when n ≥ 5 and when n = 4 and b� 1. By the Palais–Smale property we
would indeed get that, up to passing to a subsequence, (uα)α converges in H 1, and
by standard elliptic theory, this actually implies that the sequence converges in C2.
Now, we multiply the equation by uα and integrate over M, yielding

(22) a
∫

M

(
|∇uα|2+

h
a

u2
α

)
dvg + b

(∫
M
|∇uα|2 dvg

)2

=

∫
M
|uα|2

?

dvg

for all α. We clearly get from (6) and (22) that (uα)α is bounded in H 1 if the
sequence (uα)α is bounded (and b� 1 when n = 4). We may thus assume that
uα→+∞ as α→+∞. By (6) and (22), we get that (8) holds. Writing (9), we
then get that (12) holds and also that

(23)
∫

M
|uα| dvg = |uα|(1+Cα),

where Cα = O
( 1

b

)
if n = 4, and Cα = o(1) if n ≥ 5. Integrating the equation,

(24)
∫

M
huα dvg =

∫
M
|uα|2

?
−2uα dvg.

The contradiction follows from (12), (23), and (24). This proves the above claim
that (uα)α is bounded in H 1. This also proves that the set of solutions of (1) is
compact in the C2-topology. �

At this point we define a mountain-pass solution of (1) as a solution which
we obtain from I by the use of the mountain-pass lemma. We easily get from
Theorem 1 that the following existence result holds true.
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Proposition 2. Suppose that (M, g) is a closed Riemannian manifold of dimension
n ≥ 4, that a and b are positive real numbers, and that h ∈ C1(M,R) is such that
1g + h/a is positive. Assume that b� 1 when n = 4, and that a(n−4)/2b > C(n)
when n ≥ 5, where C(n) is as in (3). Then, (1) possesses a nontrivial mountain-pass
solution.

Proof of Proposition 2. Let u0 ≡ 1. Then, I is C1, I (0) = 0, I (T u0) < 0 for
T � 1, and by the coercivity of 1g + h/a, there exist C1,C2 > 0 such that
I (u) ≥ C1‖u‖2H1 − C2‖u‖2

?

H1 for all u. Then, we can apply the mountain-pass
lemma of Ambrosetti and Rabinowitz [1973] and we get that there exists a sequence
(uα)α in H 1 such that I (uα)= c+o(1) and I ′(uα).(ψ)= o(‖ψ‖H1) for all ψ ∈ H 1,
where

c = inf
γ∈0

sup
u∈γ

I (u),

and 0 is the set of continuous paths from 0 to T u0. Obviously, c> 0. By Theorem 1,
up to passing to a subsequence, (uα)α converges in H 1. Let u∞ be the limit in H 1

of the sequence uα. Then I (u∞) = c, u∞ 6≡ 0, and by passing to the limit in the
equation I ′(uα) . (ϕ)= o(1) for all ϕ ∈ H 1, we get that u∞ solves (1). �

It is easily seen that the mountain-pass solution u∞ obtained in Proposition 2
has a nice ground-state structure when n = 4. We define the Nehari manifold N

attached to I by

(25) N= {u ∈ H 1
\ {0} | I ′(u) . (u)= 0}.

The following 4-dimensional ground-state characterization of the solution obtained
in Proposition 2 holds true.

Proposition 3. Suppose that (M, g) is a closed 4-dimensional Riemannian mani-
fold, that a and b are positive real numbers, and that h ∈ C1(M,R) is such that
1g + h/a is positive. Assume that b� 1. Then, the mountain-pass solution u∞
obtained in Proposition 2 has a ground-state structure given by

(26) I (u∞)= inf
u∈N

I (u),

where N is the Nehari manifold attached to I given by (25).

Proof of Proposition 3. We obviously have that u∞ ∈ N, and thus there holds that
I (u∞) ≥ infu∈N I (u). Given ũ ∈ H 1

\ {0}, we define the mountain-pass energy
level cũ by

cũ = inf
γ∈0ũ

sup
u∈γ

I (u),

where 0ũ is the set of continuous paths from 0 to ũ. Let u0 ≡ 1 be as in the proof of
Proposition 2. Let T0� 1 be such that I (T0u0) < 0. By construction (see the proof
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of Proposition 2), it holds that I (u∞)= cT0u0 . Let u ∈ N. Then I (u)= I (|u|),

a
∫

M

(
|∇u|2+ h

a
u2
)

dvg + b
(∫

M
|∇u|2 dvg

)2

=

∫
M

u4 dvg

and for t ≥ 0,

(27) I (t |u|)= at2

2

∫
M

(
|∇u|2+ h

a
u2
)

dvg +
bt4

4

(∫
M
|∇u|2 dvg

)2

−
t4

4

∫
M

u4 dvg

=
at2(2−t2)

4

∫
M

(
|∇u|2+ h

a
u2
)

dvg.

In particular, I (T1|u|) < 0 for T1 >
√

2. Let u1 = |u| and T1 � 1. It is easily
checked (since u0 is constant) that

I (tT1u1+ (1− t)T0u0)≤ t2 I (T1u1)−
(1− t)2T 2

0 u2
0Vg

4
< 0

for all 0≤ t ≤ 1, where Vg is the volume of (M, g). In particular, cT0u0 = cT1u1 since
T0u0 and T1u1 can be connected by a continuous path along which I is everywhere
negative. So,

(28) cT0u0 ≤ sup
0≤t≤T1

I (tu1).

By (27) we see that t→ I (tu1) is maximal at t = 1, and thus cT0u0 ≤ I (u) by (28).
This proves that I (u∞)≤ I (u) for all u ∈ N, and thus that (26) holds. �

Balancing Proposition 2 we prove that the following uniqueness result, in the
sense of Brézis and Li [2006], holds.

Proposition 4. Suppose that (M, g) is a closed Riemannian manifold of dimension
n ≥ 4 and that h is a positive constant. Let ε0 > 0 arbitrary. For a, b� 1 when
n = 4, and a� 1, b ≥ ε0 when n ≥ 5, the sole nontrivial pair of solutions of (1) is
the pair (−u, u) of constant solutions, where u = h(n−2)/4.

Proof of Proposition 4. Let ε0 > 0 be given arbitrarily small. We prove the result by
contradiction. We assume that there exist sequences (aα)α, (bα)α of positive real
numbers, and a sequence (uα)α of nonconstant solutions of

(29)
(

aα + bα

∫
M
|∇uα|2 dvg

)
1guα + huα = |uα|2

?
−2uα

for all α such that aα→+∞ and bα→+∞ as α→+∞ when n = 4, and such
that aα →+∞ as α→+∞ and bα ≥ ε0 for all α when n ≥ 5. As in the proof
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of Theorem 1, this implies that ‖uα‖H1 = O(1). Suppose that Kα is as in (14),
hα = K−1

α h, and vα is as in (15). Then,

(30) 1gvα + hαvα = |vα|2
?
−2vα,

and Kα→+∞ since aα→+∞ as α→+∞. Then, by elliptic regularity, vα→ 0
in C0. Multiplying (30) by vα − vα, and integrating over M,

(31) λ1

∫
M
(vα − vα)

2 dvg ≤

∫
M
(vα − vα)

(
|vα|

2?−2vα − |vα|
2?−2vα

)
dvg

≤ C‖vα‖2
?
−2

L∞

∫
M
(vα − vα)

2 dvg

for all α, where C > 0 is independent of α, and λ1 > 0 is the first nontrivial
eigenvalue of 1g. Since vα → 0 in C0, (31) implies that vα = vα, and we get a
contradiction. �
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ON THE EQUIVALENCE OF THE DEFINITIONS
OF VOLUME OF REPRESENTATIONS

SUNGWOON KIM

Let G be a rank-1 simple Lie group and let M be a connected, orientable,
aspherical, tame manifold. Assume that each end of M has amenable fun-
damental group. There are several definitions of volume of representations
of π1(M) into G. We give a new definition of volume of representations and
furthermore show that all definitions so far are equivalent.

1. Introduction

Let G be a semisimple Lie group and let X be the associated symmetric space of
dimension n. Let M be a connected, orientable, aspherical, tame manifold of the
same dimension as X . First assume that M is compact. To each representation
ρ : π1(M)→ G, one can associate a volume of ρ in the following way. First,
associate a flat bundle Eρ over M with fiber X to ρ. Since X is contractible, there
always exists a section s : M→ Eρ . Let ωX be the Riemannian volume form on X .
One may think of ωX as a closed differential form on Eρ by spreading ωX over the
fibers of Eρ . Then the volume of ρ is defined by

Vol(ρ)=
∫

M
s∗ωX .

Since any two sections are homotopic to each other, the volume Vol(ρ) does not
depend on the choice of section.

The volume of representations has been used to characterize discrete faithful
representations. Let 0 be a uniform lattice in G. Then the volume of representations
satisfies a Milnor–Wood type inequality. More precisely, for any representation
ρ : 0→ G, we have

(1) |Vol(ρ)| ≤ Vol(0\X ).

This research was supported by the Basic Science Research Program through the National Re-
search Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology
(NRF-2012R1A1A2040663).
MSC2010: 53C24, 53C35.
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Furthermore, equality holds in (1) if and only if ρ is discrete and faithful. This is
the so-called volume rigidity theorem. Goldman [1982] proved the volume rigidity
theorem in the higher rank case and Besson, Courtois and Gallot [Besson et al.
2007] proved the theorem in the rank-1 case.

Now assume that M is noncompact. Then the definition of volume of represen-
tations as above is not valid anymore since some problems of integrability arise.
So far, three definitions of volume of representations have been given under some
conditions on M . Let us first fix the following notation throughout the paper.

Setup. Let M be a noncompact, connected, orientable, aspherical, tame manifold.
Denote by M the compact manifold with boundary whose interior is homeomorphic
to M . Assume that each connected component of ∂M has amenable fundamental
group. Let G be a rank-1 semisimple Lie group with trivial center and no compact
factors. Let X be the associated symmetric space of dimension n. Assume that M
has the same dimension as X .

First of all, Dunfield [1999] introduced the notion of pseudodeveloping map to
define the volume of representations of a nonuniform lattice 0 in SO(3, 1). It was
successful in making an invariant associated with a representation ρ :0→ SO(3, 1)
but he did not prove that the volume of representations does not depend on the chosen
pseudodeveloping map. After that, Francaviglia [2004] proved the well-definedness
of the volume of representations. Then Francaviglia and Klaff [2006] extended the
definition of volume of representations and the volume rigidity theorem to general
nonuniform hyperbolic lattices. We call the definition of volume of representations
via pseudodeveloping map D1. For more detail about D1, see [Francaviglia and
Klaff 2006] or Section 4.

The second definition D2 of volume of representations was given by Bucher,
Burger and Iozzi [Bucher et al. 2013] and generalizes the one introduced in [Burger
et al. 2010] for noncompact surfaces. They used the theory of bounded cohomology
to make an invariant associated with a representation. Given a representation
ρ :π1(M)→G, one cannot get any information from the pullback map in degree n in
continuous cohomology, ρ∗c : H

n
c (G,R)→ H n(π1(M),R), since H n(π1(M),R)∼=

H n(M,R) is trivial. However, the situation is different in continuous bounded
cohomology. Not only may the pullback map ρ∗b : H n

c,b(G,R)→ H n
b (π1(M),R)

be nontrivial but it also encodes subtle algebraic and topological properties of a
representation such as injectivity and discreteness. Bucher, Burger and Iozzi gave a
proof of the volume rigidity theorem for representations of hyperbolic lattices from
the point of view of bounded cohomology. We refer the reader to [Bucher et al.
2013] or Section 2 for further discussion about D2.

Recently, S. Kim and I. Kim [2014] gave a new definition, called D3, of volume
of representations in the case that M is a complete Riemannian manifold with
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finite Lipschitz simplicial volume. See [Kim and Kim 2014] or Section 5 for the
exact definition of D3. In D3, it is not necessary that each connected component
of ∂M has amenable fundamental group, while the amenable condition on ∂M is
necessary in D2. They only use the bounded cohomology and `1-homology of M . It
is quite useful to define the volume of representations in the case that the amenable
condition on ∂M does not hold. They give a proof of the volume rigidity theorem
for representations of lattices in an arbitrary semisimple Lie group in their setting.

In this note, we will give another definition of volume of representations,
called D4. In D4, ρ-equivariant maps are involved as in D1 and the bounded
cohomology of M is involved as in D2 and D3. In fact, D4 seems to be a kind of
definition connecting the other definitions D1, D2 and D3. Eventually we show
that all the definitions are equivalent.

Theorem 1.1. Let G be a rank-1 simple Lie group with trivial center and no
compact factors. Let M be a noncompact, connected, orientable, aspherical, tame
manifold. Suppose that each end of M has amenable fundamental group. Then
all definitions D1, D2 and D3 of volume of representations of π1(M) into G are
equivalent. Furthermore, if M admits a complete Riemannian metric with finite
Lipschitz simplicial volume, all definitions D1, D2, D3 and D4 are equivalent.

The paper is organized as follows. For our proof, we recall the definitions of
volume of representations in the order D2, D4, D1, D3. In Section 2, we first recall
definition D2. In Section 3, we give definition D4 and then prove that D2 and D4
are equivalent. In Section 4, after recalling definition D1, we show the equivalence
of D1 and D4. Finally in Section 5, we complete the proof of Theorem 1.1 by
proving that D3 and D4 are equivalent.

2. Bounded cohomology and definition D2

We choose the appropriate complexes for the continuous cohomology and continuous
bounded cohomology of G for our purpose. Consider the complex C∗c (X ,R)alt

with the homogeneous coboundary operator, where

Ck
c (X ,R)alt = { f : X k+1

→ R | f is continuous and alternating}.

The action of G on Ck
c (X ,R)alt is given by

g · f (x0, . . . , xk)= f (g−1x0, . . . , g−1xk).

Then the continuous cohomology H∗c (G,R) can be isomorphically computed by
the cohomology of the G-invariant complex C∗c (X ,R)Galt (see [Guichardet 1980,
Chapitre III]). According to the Van Est isomorphism [Borel and Wallach 2000,
Proposition IX.5.5], the continuous cohomology H∗c (G,R) is isomorphic to the set
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of G-invariant differential forms on X . Hence, in degree n, H n
c (G,R) is generated

by the Riemannian volume form ωX on X .
Let Ck

c,b(X ,R)alt be a subcomplex of continuous, alternating, bounded real-
valued functions on X k+1. The continuous bounded cohomology H∗c,b(G,R) is
obtained by the cohomology of the G-invariant complex C∗c,b(X ,R)Galt (see [Monod
2001, Corollary 7.4.10]). The inclusion of complexes C∗c,b(X ,R)Galt ⊂ C∗c (X ,R)Galt
induces a comparison map H∗c,b(G,R)→ H∗c (G,R).

Let Y be a countable CW-complex. Denote by Ck
b(Y,R) the complex of bounded

real-valued k-cochains on Y . For a subspace B ⊂ Y , let Ck
b(Y, B,R) be the sub-

complex of those bounded k-cochains on Y that vanish on simplices with image
contained in B. The complexes C∗b (Y,R) and C∗b (Y, B,R) define the bounded
cohomologies H∗b (Y,R) and H∗b (Y, B,R) respectively. For our convenience, we
give another complex which computes the bounded cohomology H∗b (Y,R) of Y . Let
Ck

b(Ỹ ,R)alt denote the complex of bounded, alternating real-valued Borel functions
on (Ỹ )k+1. The π1(Y )-action on C∗b (Ỹ ,R)alt is defined as the G-action on C∗c (X ,R).
Ivanov [1985] proved that the π1(Y )-invariant complex C∗b (Ỹ ,R)

π1(Y )
alt defines the

bounded cohomology of Y .
Bucher, Burger and Iozzi [Bucher et al. 2013] used bounded cohomology to define

the volume of representations. Let M be a connected, orientable, compact manifold
with boundary. Suppose that each component of ∂M has amenable fundamental
group. In that case, it is proved in [Bucher et al. 2012; Kim and Kuessner 2015]
that the natural inclusion i : (M,∅)→ (M, ∂M) induces an isometric isomorphism
in bounded cohomology,

i∗b : H
∗

b (M, ∂M,R)→ H∗b (M,R),

in degrees ∗ ≥ 2. Noting the remarkable result of Gromov [1982, Section 3.1]
that the natural map H n

b (π1(M),R)→ H n
b (M,R) is an isometric isomorphism in

bounded cohomology, for a given representation ρ : π1(M)→ G we have a map

ρ∗b : H
n
c,b(G,R)→ H n

b (π1(M),R)∼= H n
b (M,R)∼= H n

b (M, ∂M,R).

The G-invariant Riemannian volume form ωX on X gives rise to a continuous
bounded cocycle 2 : X n+1

→ R defined by

2(x0, . . . , xn)=

∫
[x0,...,xn]

ωX ,

where [x0, . . . , xn] is the geodesic simplex with ordered vertices x0, . . . , xn in X .
The boundedness of2 is due to the fact that the volume of geodesic simplices in X is
uniformly bounded from above [Inoue and Yano 1982]. Hence the cocycle2 induces
a continuous cohomology class [2]c ∈ H n

c (G,R) and, moreover, a continuous
bounded cohomology class [2]c,b ∈ H n

c,b(G,R). The image of ((i∗b )
−1
◦ ρ∗b )[2]c,b
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via the comparison map c :H n
b (M, ∂M,R)→H n(M, ∂M,R) is an ordinary relative

cohomology class. Its evaluation on the relative fundamental class [M, ∂M] gives
an invariant associated with ρ.

Definition 2.1 (D2). For a representation ρ : π1(M)→ G, define the invariant

Vol2(ρ)= 〈(c ◦ (i∗b )
−1
◦ ρ∗b )[2]c,b, [M, ∂M]〉.

In definition D2, a specific continuous bounded volume class [2]c,b in H n
c,b(G,R)

is involved. The question is naturally raised as to whether, if another continuous
bounded volume class is used in D2 instead of [2]c,b, the value of the volume
of representations changes or not. One could expect that definition D2 does not
depend on the choice of continuous bounded volume class but it does not seem
easy to get an answer directly. It turns out that D2 is independent of the choice of
continuous bounded volume class. For a proof, see Section 5.

Proposition 2.2. Definition D2 does not depend on the choice of continuous
bounded volume class. That is, for any two continuous bounded volume classes
ωb, ω

′

b ∈ H n
c,b(G,R),

〈(c ◦ (i∗b )
−1
◦ ρ∗b )(ωb), [M, ∂M]〉 = 〈(c ◦ (i∗b )

−1
◦ ρ∗b )(ω

′

b), [M, ∂M]〉.

Bucher, Burger and Iozzi proved the volume rigidity theorem for hyperbolic
lattices as follows.

Theorem 2.3 [Bucher et al. 2013]. Let n ≥ 3. Let i : 0 ↪→ Isom+(Hn) be a lattice
embedding and let ρ : 0→ Isom+(Hn) be any representation. Then

|Vol2(ρ)| ≤ |Vol2(i)| = Vol(0\Hn),

with equality if and only if ρ is conjugated to i by an isometry.

3. New definition D4

In this section we give a new definition of volume of representations. It will turn
out that the new definition is useful in proving that all the definitions of volume of
representations are equivalent.

End compactification. Let M̂ be the end compactification of M obtained by adding
one point for each end of M . Let M̃ denote the universal cover of M . Define ̂̃M to
be the space obtained by adding to M̃ one point for each lift of each end of M . The
points added to M are called ideal points of M and the points added to M̃ are called
ideal points of M̃ . Denote by ∂ M̂ the set of ideal points of M and by ∂ ̂̃M the set of
ideal points of M̃ . Let p : M̃→ M be the universal covering map. The covering
map p : M̃→ M extends to a map p̂ : ̂̃M→ M̂ and, moreover, the action of π1(M)
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on M̃ by covering transformations induces an action on ̂̃M . The action on ̂̃M is not
free because each point of ∂ ̂̃M is stabilized by some peripheral subgroup of π1(M).

Note that M̂ can be obtained by collapsing each connected component of ∂M
to a point. Similarly, ̂̃M can be obtained by collapsing each connected component
of p̄−1(∂M) to a point where p̄ : M̃→ M is the universal covering map. We denote
the collapsing map by π : M̃→ ̂̃M .

One advantage of M̂ is the existence of a fundamental class in singular homology.
While the top dimensional singular homology of M vanishes, the top dimensional
singular homology of M̂ with coefficients in Z is isomorphic to Z. Moreover, it
can be easily seen that H∗(M̂,R) is isomorphic to H∗(M, ∂M,R) in degree ∗ ≥ 2.
Hence the fundamental class of M̂ is well-defined and we denote it by [M̂].

The cohomology groups. Let Y be a topological space and suppose that a group L
acts continuously on Y . Then the cohomology group H∗(Y ; L ,R) associated with
Y and L is defined in the following way. Our main reference for this cohomology
is [DuPre 1968].

For k > 0, define

Fk
alt(Y,R)= { f : Y k+1

→ R | f is alternating}.

Let Fk
alt(Y,R)L denote the subspace of L-invariant functions, where the action of L

on Fk
alt(Y,R) is given by

(g · f )(y0, . . . , yk)= f (g−1 y0, . . . , g−1 yk),

for f ∈ Fk
alt(Y ), g ∈ L . Define a coboundary operator δk : Fk

alt(Y,R)→ Fk+1
alt (Y,R)

by the usual

(δk f )(y0, . . . , yk+1)=

k+1∑
i=0

(−1)i f (y0, . . . , ŷi , . . . , yk+1).

The coboundary operator restricts to the complex F∗alt(Y,R)L . The cohomology
H∗(Y ; L ,R) is defined as the cohomology of this complex. Define F∗alt,b(Y,R)

as the subspace of F∗alt(Y,R) consisting of bounded alternating functions. Clearly
the coboundary operator restricts to the complex F∗alt,b(Y,R)L and so it defines
a cohomology, denoted by H∗b (Y ; L ,R). In particular, for a manifold M , the
cohomology H∗(M̃;π1(M),R) is actually isomorphic to the group cohomology
H∗(π1(M),R), and H∗b (M̃;π1(M),R) is isomorphic to the bounded cohomology
H∗b (π1(M),R).

Remark 3.1. Let L and L ′ be groups acting continuously on topological spaces
Y and Y ′, respectively. Given a homomorphism ρ : L → L ′, any ρ-equivariant
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continuous map P : Y → Y ′ defines a chain map,

P∗ : F∗alt(Y
′,R)L ′

→ F∗alt(Y,R)L .

Thus it gives a morphism in cohomology. Let Q : Y → Y ′ be another ρ-equivariant
map. For each k > 0, one may define

Hk(y0, . . . , yk)=

i∑
i=0

(−1)k(P(y0), . . . , P(yi ), Q(yi ), . . . , Q(yk)).

Then by a straightforward computation,

(∂k+1 Hk + Hk−1∂k)(y0, . . . , yk)= (P(y0), . . . , P(yk))− (Q(y0), . . . , Q(yk)).

It follows from the above identity that, for any cocycle f ∈ Fk
alt(Y

′,R)L ′ ,

(P∗ f − Q∗ f )(y0, . . . , yk)= δk( f ◦ Hk−1)(y0, . . . , yk).

From this usual process in cohomology theory, one could expect that P and Q
induce the same morphism in cohomology. However, since f ◦ Hk−1 may not be
alternating, P and Q may not induce the same morphism in cohomology.

Since 2 : X n+1
→ R is a G-invariant continuous bounded alternating cocycle, it

yields a bounded cohomology class [2]b ∈ H n
b (X ;G,R). Let X be the compactifi-

cation of X obtained by adding the ideal boundary ∂X . Extending the G-action
on X to X , we can define a cohomology H∗(X ;G,R) and bounded cohomology
H∗b (X ;G,R). In the rank-1 case, since the geodesic simplex is well-defined for
any (n+ 1)-tuple of points of X , the cocycle 2 can be extended to a G-invariant
alternating bounded cocycle 2 : Xn+1

→ R. Hence 2 determines a cohomology
class [2] ∈ H n(X ;G,R) and [2]b ∈ H n

b (X ;G,R).
Let D̂ : ̂̃M→ X be a ρ-equivariant continuous map whose restriction to M̃ is a

ρ-equivariant continuous map from M̃ to X . We will consider only such kinds of
equivariant maps throughout the paper. Denote by D : M̃→ X the restriction of D̂
to M̃ . Then D̂ induces a homomorphism in cohomology,

D̂∗ : H n(X ;G,R)→ H n( ̂̃M;π1(M),R).

Note that the action of π1(M) on ̂̃M is not free and hence H∗( ̂̃M;π1(M),R)may not
be isomorphic to H∗(M̂,R). Let H∗simp(M̂,R) denote the simplicial cohomology
induced from a simplicial structure on M̂ . Then there is a natural restriction map
H∗( ̂̃M;π1(M),R)→ H∗simp(M̂,R)∼= H∗(M̂,R). Thus we regard the cohomology
class D̂∗[2] as a cohomology class of H n(M̂,R). Let [M̂] be the fundamental
cycle in Hn(M̂,R)∼= R.
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Definition 3.2 (D4). Let D : M̃→ X be a ρ-equivariant continuous map which is
extended to a ρ-equivariant map D̂ : ̂̃M→ X . Then we define the invariant

Vol4(ρ, D)= 〈D̂∗[2], [M̂]〉.

As observed before, D̂∗[2] may depend on the choice of ρ-equivariant map.
However, it turns out that the value Vol4(ρ, D) is independent of the choice of
ρ-equivariant continuous map as follows.

Proposition 3.3. Let ρ : π1(M)→ G be a representation. Then

Vol2(ρ)= Vol4(ρ, D).

Proof. Since the continuous bounded cohomology H∗c,b(G,R) can be computed
isomorphically from the complex C∗c,b(X ,R)alt, there is the natural inclusion
C∗c,b(X ,R)alt ⊂ F∗alt,b(X ,R). Denote the homomorphism in cohomology induced
from the inclusion by iG : H k

c,b(G,R)→ H k
b (X ;G,R). Clearly, iG([2]c,b)= [2]b.

The bounded cohomology H∗b (π1(M),R) is obtained by the cohomology of the
complex C∗b (M̃,R)

π1(M)
alt . Since C∗b (M̃,R)alt = F∗alt,b(M̃,R), the induced map

iM : H k
b (π1(M),R)→ H k

b (M̃;π1(M),R) is the identity map. Let D̂ : ̂̃M→X be a
ρ-equivariant map which maps M̃ to X . Then consider the following commutative
diagram, where π : M̃→ ̂̃M is the collapsing map:

H n(X ;G,R)
D̂∗

// H n( ̂̃M;π1(M),R)

π∗

))

H n
b (X ;G,R)

D̂∗b
//

resX
��

c̄

OO

H n
b (
̂̃M;π1(M),R)

resM

��

π∗b

))

ĉ

OO

H n(M, ∂M,R)

H n
b (X ;G,R)

D∗b
// H n

b (M̃;π1(M),R) H n
b (M, ∂M,R)

i∗b
oo

c

OO

H n
c,b(G,R)

iG

OO

ρ∗b
// H n

b (π1(M),R)

iM

OO

Note that the map ρ∗b in the bottom of the diagram is actually induced from the
restriction map D : M̃→X . However, it does not depend on the choice of equivariant
map but only on the homomorphism ρ. In other words, any continuous equivariant
map from M̃ to X gives rise to the same map, ρ∗b : H

∗

c,b(G,R)→ H∗b (π1(M),R).
For this reason, we denote it by ρ∗b instead of D∗c,b.

Note that π induces a map π∗ : F∗alt(
̂̃M,R)→ F∗alt(M̃,R). It follows from the al-

ternating property that the image of π∗ is contained in C∗(M, ∂M,R). Hence the
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map π∗ : H n( ̂̃M;π1(M),R)→ H n(M, ∂M,R) makes sense. One can understand
π∗b : H

n
b (
̂̃M;π1(M),R)→ H n

b (M, ∂M,R) in a similar way.
Noting that c̄([2]b) = [2] and resX ([2]b) = [2]b, it follows from the above

commutative diagram that

((i∗b )
−1
◦ iM ◦ ρ∗b )[2]c,b = ((i

∗

b )
−1
◦ D∗b ◦ iG)[2]c,b = ((i∗b )

−1
◦ D∗b ◦ resX )[2]b

= ((i∗b )
−1
◦ resM ◦D̂∗b)[2]b = (π

∗

b ◦ D̂∗b)[2]b.

Hence

Vol2(ρ)= 〈(c ◦ (i∗b )
−1
◦ iM ◦ ρ∗b )[2]c,b, [M, ∂M]〉

= 〈(c ◦π∗b ◦ D̂∗b)[2]b, [M, ∂M]〉 = 〈(π∗ ◦ D̂∗ ◦ c̄)[2]b, [M, ∂M]〉

= 〈(π∗ ◦ D̂∗)[2], [M, ∂M]〉 = 〈D̂∗[2], π∗[M, ∂M]〉

= 〈D̂∗[2], [M̂]〉 = Vol4(ρ, D). �

Proposition 3.3 implies that the value Vol4(ρ, D) does not depend on the choice
of continuous equivariant map. Hence from now on we will use the notation
Vol4(ρ) := Vol(ρ, D). Furthermore, Proposition 3.3 allows us to interpret the
invariant Vol2(ρ) in terms of a pseudodeveloping map via Vol4(ρ) in the next
section. Note that a pseudodeveloping map for ρ is a specific kind of ρ-equivariant
continuous map ̂̃M→ X .

4. Pseudodeveloping map and definition D1

Dunfield [1999] introduced the notion of pseudodeveloping map in order to define
the volume of representations ρ : π1(M)→ SO(3, 1) for a noncompact complete
hyperbolic 3-manifold M of finite volume. We start by recalling the definition of
pseudodeveloping map.

Definition 4.1 (cone map). Let A be a set, let t0 ∈ R, and let cone(A) be the cone
obtained from A× [t0,∞] by collapsing A× {∞} to a point, called ∞. A map
D̂ : cone(A)→ X is a cone map if D̂(cone(A))∩ ∂X = {D̂(∞)} and for all a ∈A
the map D̂|a×[t0,∞] is either the constant to D̂(∞) or the geodesic ray from D̂(a, t0)
to D̂(∞), parametrized in such a way that the parameter (t − t0), t ∈ [t0,∞], is
the arc length.

For each ideal point v of M , fix a product structure Tv×[0,∞) on the end relative
to v. The fixed product structure induces a cone structure on a neighborhood of v
in M̂ , which is obtained from Tv × [0,∞] by collapsing Tv × {∞} to a point v.
We lift such structures to the universal cover. Let ṽ be an ideal point of M̃ that
projects to the ideal point v. Denote by Eṽ the cone at ṽ that is homeomorphic to
Pṽ ×[0,∞], where Pṽ covers Tv and Pṽ ×{∞} is collapsed to ṽ.
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Definition 4.2 (pseudodeveloping map). Let ρ : π1(M)→ G be a representation.
A pseudodeveloping map for ρ is a piecewise-smooth ρ-equivariant map D : M̃→X .
Moreover, D is required to extend to a continuous map D̂ : ̂̃M → X with the
property that there exists a t ∈ R+ such that, for each end Eṽ = Pṽ ×[0,∞] of ̂̃M ,
the restriction of D̂ to Pṽ ×[t,∞] is a cone map.

Definition 4.3. A triangulation of M̂ is an identification of M̂ with a complex
obtained by gluing together with simplicial attaching maps. It is not required for
the complex to be simplicial, but it is required that open simplices embed.

Note that a triangulation of M̂ always exists and it lifts uniquely to a trian-
gulation of ̂̃M . Given a triangulation of M̂ , one can define the straightening of
pseudodeveloping maps as follows.

Definition 4.4 (straightening map). Let M̂ be triangulated. Let ρ :π1(M)→G be a
representation and D : M̃→X a pseudodeveloping map for ρ. A straightening of D
is a continuous piecewise-smooth ρ-equivariant map Str(D) : ̂̃M→ X such that

• for each simplex σ of the triangulation, Str(D) maps σ̃ to Str(D ◦ σ̃ ),

• for each end Eṽ = Pṽ×[0,∞], there exists a t ∈R such that Str(D) restricted
to Pṽ ×[t,∞] is a cone map,

where σ̃ is a lift of σ to ̂̃M and Str(D ◦ σ̃ ) is the geodesic straightening of the map
D ◦ σ̃ :1n

→ X .

Note that any straightening of a pseudodeveloping map is also a pseudodeveloping
map.

Lemma 4.5. Let M̂ be triangulated. Let ρ : π1(M)→ G be a representation and
D : M̃ → X a pseudodeveloping map for ρ. Then a straightening Str(D) of D
exists and, furthermore, Str(D) : ̂̃M→ X is always equivariantly homotopic to D̂
via a homotopy that fixes the vertices of the triangulation.

Proof. First, set Str(D)(V )= f (V ) for every vertex V of the triangulation. Then
extend Str(D) to a map which is piecewise-straight with respect to the triangulation.
This is always possible because X is contractible. Note that D̂ and Str(D) agree
on the ideal vertices of ̂̃M and are equivariantly homotopic via the straight-line
homotopy between them. Hence it can be easily seen that the extension is a
straightening of D. �

For any pseudodeveloping map D : M̃→ X , for ρ,∫
M

D∗ωX

is always finite. This can be seen as follows. We stick to the notation used in
Definition 4.2. We may assume that the restriction of D̂ to each Eṽ = Pṽ ×[0,∞]
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is a cone map. Choose a fundamental domain F0 of Tv in Pṽ. Then there exists
a t ∈ R+ such that∣∣∣∣∫

Tv×[t,∞)
D∗ωX

∣∣∣∣= Voln
(
cone(D(F0×{t}))

)
≤

1
n− 1

Voln−1(D(F0×{t})),

where Voln−1 denotes the (n− 1)-dimensional volume. The last inequality holds
for any Hadamard manifold with sectional curvature at most −1. See [Gromov
1982, Section 1.2]. Hence the integral of D∗ωX over M is finite.

Definition 4.6 (D1). Let D : M̃→ X be a pseudodeveloping map for a representa-
tion ρ : π1(M)→ G. Define the invariant

Vol1(ρ, D)=
∫

M
D∗ωX .

In the case that G = SO(n, 1), Francaviglia [2004] showed that definition D1
does not depend on the choice of pseudodeveloping map. We give a self-contained
proof for this in the rank-1 case.

Proposition 4.7. Let ρ : π1(M)→ G be a representation. Then, for any pseudo-
developing map D : M̃→ X ,

Vol1(ρ, D)= Vol4(ρ).

Thus, Vol1(ρ, D) does not depend on the choice of pseudodeveloping map.

Proof. Let T be a triangulation of M̂ with simplices σ1, . . . , σN . Then the triangula-
tion gives rise to a fundamental cycle

∑N
i=1 σi of M̂ . Let Str(D) be a straightening

of D with respect to the triangulation T . Since Str(D) is a ρ-equivariant continuous
map, we have

Vol4(ρ) := Vol4(ρ, D)= 〈Str(D)∗[2], [M̂]〉 = 〈2,
N∑

i=1

Str(D̂(σi ))〉

=

N∑
i=1

∫
Str(D̂(σi ))

ωX =

∫
M

Str(D)∗ωX .

Since both Str(D) and D̂ are pseudodeveloping maps for ρ that agree on the ideal
points of ̂̃M , it can be proved, using the same arguments as the proof of [Dunfield
1999, Lemma 2.5.1], that∫

M
Str(D)∗ωX =

∫
M

D∗ωX = Vol1(ρ, D). �

Remark 4.8. While D1 is defined with only a pseudodeveloping map, definition D4
is defined with any equivariant map. This is one advantage of definition D4. By
Proposition 4.7, the notation Vol1(ρ) := Vol1(ρ, D) makes sense.
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5. Lipschitz simplicial volume and definition D3

In this section, M is assumed to be a Riemannian manifold with finite Lipschitz
simplicial volume. Gromov [1982, Section 4.4] introduced the Lipschitz simplicial
volume of Riemannian manifolds. One can define the Lipschitz constant for each
singular simplex in M by giving the Euclidean metrics on the standard simplices.
Then the Lipschitz constant of a locally finite chain c of M is defined as the
supremum of the Lipschitz constants of all singular simplices occurring in c. The
Lipschitz simplicial volume of M is defined by the infimum of the `1-norms of all
locally finite fundamental cycles with finite Lipschitz constant. Let [M]`

1

Lip be the
set of all locally finite fundamental cycles of M with finite `1-seminorm and finite
Lipschitz constant. If [M]`

1

Lip =∅, the Lipschitz simplicial volume of M is infinite.
In the case that [M]`

1

Lip 6= ∅, we gave a new definition of volume of represen-
tations in [Kim and Kim 2014] as follows. A representation ρ : π1(M) → G
induces a canonical pullback map ρ∗b : H

∗

c,b(G,R)→ H∗b (π1(M),R)∼= H∗b (M,R)

in continuous bounded cohomology. Hence, for any continuous bounded volume
class ωb ∈ H n

c,b(G,R), we obtain a bounded cohomology class ρ∗b (ωb)∈ H n
b (M,R).

Then, the bounded cohomology class ρ∗b (ωb) can be evaluated on `1-homology
classes in H `1

n (M,R) by the Kronecker products,

〈 · , · 〉 : H∗b (M,R)⊗ H `1

∗
(M,R)→ R.

For more details about this, see [Kim and Kim 2014].

Definition 5.1 (D3). We define the invariant

Vol3(ρ)= inf〈ρ∗b (ωb), α〉,

where the infimum is taken over all α ∈ [M]`
1

Lip and all ωb ∈ H n
c,b(G,R) with

c(ωb)= ωX .

One advantage of D3 is that the isomorphism H n
b (M, ∂M,R)→H n

b (M,R) is not
needed. When M admits the isomorphism above, we will verify that definition D3
is eventually equivalent to the other definitions of volume of representations.

Lemma 5.2. Suppose that M is a noncompact, connected, orientable, aspherical,
tame Riemannian manifold with finite Lipschitz simplicial volume and that each
end of M has amenable fundamental group. Then, for any α ∈ [M]`

1

Lip and any
continuous bounded volume class ωb,

〈ρ∗b (ωb), α〉 = 〈(c ◦ (i∗b )
−1
◦ ρ∗b )(ωb), [M, ∂M]〉.

Proof. When M is a 2-dimensional manifold, the proof is given in [Kim and Kim
2014]. Actually the proof in the general case is the same. We sketch the proof here
for the reader’s convenience. Let K be a compact core of M . Note that K is a
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compact submanifold with boundary that is a deformation retract of M . Consider
the following commutative diagram, where every map is the map induced from the
canonical inclusion:

C∗b (M,R) C∗b (M,R)
j∗b

oo C∗b (M, ∂M,R)
i∗b

oo

C∗b (M,M − K ,R)

l∗b

OO

q∗b

66

Every map in the diagram induces an isomorphism in bounded cohomology in ∗≥ 2.
Thus, there exists a cocycle zb ∈ Cn

b (M,M − K ,R) such that l∗b([zb])= ρ
∗

b (ωb).
Let c =

∑
∞

i=1 aiσi be a locally finite fundamental `1-cycle with finite Lipschitz
constant representing α ∈ [M]`

1

Lip. Then we have

〈ρ∗b (ωb), α〉 = 〈l∗b([zb]), α〉 = 〈zb, c〉.

Since zb vanishes on simplices with image contained in M−K , we have the equality
〈zb, c〉 = 〈zb, c|K 〉, where c|K =

∑
im σi∩K 6=∅ aiσi . It is a standard fact that the

sum c|K represents the relative fundamental class [M,M−K ] in Hn(M,M−K ,R)

(see [Löh 2007, Theorem 5.3]). On the other hand, we have

〈(c ◦ (i∗b )
−1
◦ ρ∗b )(ωb), [M, ∂M]〉 = 〈(c ◦ q∗b )([zb]), [M, ∂M])〉

= 〈[zb], q∗[M, ∂M]〉

= 〈[zb], [M,M − K ]〉 = 〈zb, c|K 〉. �

By Lemma 5.2 we can reformulate definition D3 as

Vol3(ρ)= inf
ωb
〈(c ◦ (i∗b )

−1
◦ ρ∗b )(ωb), [M, ∂M]〉,

where the infimum is taken over all continuous bounded volume classes. Noting
that [2]c,b ∈ H n

c,b(G,R) is a continuous bounded volume class, it is clear that

Vol3(ρ)≤ Vol2(ρ).

It is conjecturally true that the comparison map H n
c,b(G,R)→ H n

c (G,R) is an
isomorphism for any connected semisimple Lie group G with finite center. Hence,
conjecturally, Vol2(ρ)=Vol3(ρ). In spite of the absence of a proof of the conjecture,
we will give a proof for Vol2(ρ)= Vol3(ρ) by using definition D4.

Lemma 5.3. Let ωb ∈ H n
c,b(G,R) be a continuous bounded volume class, and

let fb : X n+1
→ R be a continuous bounded alternating G-invariant cocycle

representing ωb. Then fb is extended to a bounded alternating G-invariant cocycle
f̄b : X n+1

→ R. Furthermore, f̄b is uniformly continuous on X n
× {ξ} for any

ξ ∈ ∂X .
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Proof. For any (x̄0, . . . , x̄n) ∈ X n+1, define

f̄b(x̄0, . . . , x̄n)= lim
t→∞

fb(c0(t), . . . , cn(t)),

where each ci (t) is a geodesic ray toward x̄i . Here, for x ∈ X , we say that
c : [0,∞)→ X is a geodesic ray toward x if there exists a t ∈ [0,∞) such that the
restriction map c|[0,t] of c to [0, t] is a geodesic with c(t)= x and c|[t,∞) is constant
to x . Then it is clear that f̄b(x0, . . . , xn)= fb(x0, . . . , xn) for (x0, . . . , xn) ∈ X n+1.
To see the well-definedness of f̄b, we need to show that, for other geodesic rays
c′i (t) toward x̄i ,

(2) lim
t→∞

fb(c0(t), . . . , cn(t))= lim
t→∞

fb(c′0(t), . . . , c′n(t)).

Note that the limit always exists because fb is bounded. In the rank-1 case, the
distance between two geodesic rays with the same endpoint decays exponentially to
0 as they go to the endpoint. Moreover, since fb is G-invariant and G transitively
acts on X , we have that fb is uniformly continuous on X n+1. Thus, for any ε > 0,
there exists some number T > 0 such that

| fb(c0(t), . . . , cn(t))− fb(c′0(t), . . . , c′n(t))|< ε

for all t > T . This implies (2) and hence f̄b is well-defined.
The alternating property of f̄b actually comes from fb. Due to the alternating

property of fb, we have

f̄b(x̄0, . . . , x̄i , . . . , x̄ j , . . . , x̄n)= lim
t→∞

fb(c0(t), . . . , ci (t), . . . , c j (t), . . . , cn(t))

= lim
t→∞
− fb(c0(t), . . . , c j (t), . . . , ci (t), . . . , cn(t))

=− f̄b(x̄0, . . . , x̄ j , . . . , x̄i , . . . , x̄n).

Therefore, we conclude that f̄b is alternating. The boundedness and G-invariance
of f̄b immediately follows from the boundedness and G-invariance of fb. Further-
more, it is easy to check that f̄b is a cocycle by a direct computation.

Now it remains to prove that f̄b is uniformly continuous on X n
× {ξ}. It is

obvious that f̄b is continuous on X n
× {ξ}. Noting that the parabolic subgroup

of G stabilizing ξ acts on X transitively, it can be easily seen that f̄b is uniformly
continuous on X n

×{ξ}. �

The existence of f̄b allows us to reformulate Vol3 in terms of Vol4. Following
the proof of Proposition 3.3, we get

(3) 〈(c ◦ (i∗b )
−1
◦ ρ∗b )(ωb), [M, ∂M]〉 = 〈D̂∗[ f̄b], [M̂]〉.

The last term 〈D̂∗[ f̄b], [M̂]〉 above is computed by 〈D̂∗ f̄b, ĉ〉 for any equivariant
map D̂ and fundamental cycle ĉ of M̂ . By choosing the proper equivariant map



ON THE EQUIVALENCE OF THE DEFINITIONS OF VOLUME OF REPRESENTATIONS 65

and fundamental cycle, we will show that 〈D̂∗[ f̄b], [M̂]〉 does not depend on the
choice of continuous bounded volume class.

Proposition 5.4. Let ωb and ω′b be continuous bounded volume classes, and let
f̄b and f̄ ′b be the bounded alternating cocycles in Fn

alt(X;G,R) associated with
ωb and ω′b respectively, as in Lemma 5.3. Then

〈D̂∗[ f̄b], [M̂]〉 = 〈D̂∗[ f̄ ′b], [M̂]〉.

Proof. It suffices to prove that, for some ρ-equivariant map D̂ : ̂̃M → X and
fundamental cycle ĉ of M̂ ,

〈D̂∗ f̄b, ĉ〉 = 〈D̂∗ f̄ ′b, ĉ〉.

To show this, we will prove that, for some sequence (ĉk)k∈N of fundamental cycles
of M̂ ,

lim
k→∞

(〈D̂∗ f̄b, ĉk〉− 〈D̂∗ f̄ ′b, ĉk〉)= 0.

Let v1, . . . , vs be the ideal points of M . As in Section 4, fix a product structure
Tvi × [0,∞] on the end relative to vi for each i = 1, . . . , s and then lift such
structures to the universal cover. We stick to the notation used in Section 4. Set

Mk = M −
s⋃

i=1

Tvi × (k,∞].

Then (Mk)k∈N is an exhausting sequence of compact cores of M . The boundary
∂Mk of Mk consists of

⋃s
i=1 Tvi × {k}. Let T0 be a triangulation of M0. Then

we extend it to a triangulation on M̂ as follows. First note that T0 induces a
triangulation on each Tvi . Let τ be an (n− 1)-simplex of the induced triangulation
on Tvi for some i ∈ {1, . . . , s}. Then we attach π(τ × [0,∞]) to Tvi × {0} along
τ × {0}, where π : M → M̂ is the collapsing map. Since π is an embedding
on τ ×[0,∞) and π maps τ ×{∞} to the ideal point vi , it can be easily seen that
cone(τ ) := π(τ × [0,∞]) is an n-simplex. Hence we can obtain a triangulation
of M̂ by attaching each cone(τ ) to ∂M0, which is denoted by T̂0.

Next, we extend T0 to a triangulation of Mk . In fact, Mk is decomposed as

Mk = M0 ∪

s⋃
i=1

Tvi ×[0, k].

Hence we can attach each τ × [0, k] to M0 along τ × {0} and then triangulate
τ×[0, k] by using the prism operator [Hatcher 2002, Chapter 2.1]. Via this process,
we obtain a triangulation of Mk , denoted by Tk . Note that T0 and Tk induce the
same triangulation on each Tvi . In addition, one can obtain a triangulation T̂k of M̂
from Tk similarly to how T̂0 is obtained from T0 above.
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Let ck be the relative fundamental class of (Mk, ∂Mk) induced from Tk . Then it
can be seen that

ĉk = ck + (−1)n+1 cone(∂ck)

is the fundamental cycle of M̂ induced from T̂k . Any simplex occurring in ck is
contained in Mk . Now we choose a pseudodeveloping map D̂ : ̂̃M → X . Let ṽi

be a lift of vi to ̂̃M . Let Pṽi ×[0,∞] be the cone structure of a neighborhood of ṽi ,
where Pṽi covers Tvi and Pṽi ×{∞} is just the ideal point ṽi . We may assume that
D̂ is a cone map on each Pṽi ×[0,∞]. Let c̃k be a lift of ck to a cochain in M̃ and
let ∂̃ck be a lift of ∂ck . Let τ × {0} be an (n− 1)-simplex in Tvi × {0} occurring
in ∂c0 and let τ̃ be a lift of τ to Pṽi . Then τ̃ ×{k} is a lift of τ ×{k} ∈ ∂ck . Since
D̂ is a cone map on Pṽi ×[0,∞], we have that D(τ̃ ×[0,∞]) is the geodesic cone
over τ̃ × {0} with top point ṽi in X . Hence the diameter of D(τ̃ × {k}) decays
exponentially to 0 as k→∞ for each τ .

By a direct computation, we have

〈D̂∗ f̄b− D̂∗ f̄ ′b, ĉk〉 = 〈D̂∗ f̄b− D̂∗ f̄ ′b, c̃k〉+ (−1)n+1
〈D̂∗ f̄b− D̂∗ f̄ ′b, cone(∂̃ck)〉

= 〈 f̄b− f̄ ′b, D̂∗(c̃k)〉+ (−1)n+1
〈 f̄b− f̄ ′b, D̂∗(cone(∂̃ck))〉

= 〈 fb− f ′b, D∗(c̃k)〉+ (−1)n+1
〈 f̄b− f̄ ′b, D̂∗(cone(∂̃ck))〉.

The last equality comes from the fact that D̂∗(c̃k) is a singular chain in X . Since
fb and f ′b are continuous bounded alternating cocycles representing the continuous
volume class ωX ∈ H n

c (G,R), there is a continuous alternating G-invariant function
β : X n

→ R such that fb− f ′b = δβ. Hence

〈 fb− f ′b, D∗(c̃k)〉 = 〈δβ, D∗(c̃k)〉 = 〈β, ∂D∗(c̃k)〉 = 〈β, D∗(∂̃ck)〉.

As observed before, since the diameter of all simplices occurring in D∗(∂̃ck)

decays to 0 as k→∞ and, moreover, β is uniformly continuous on X , we have

lim
k→∞
〈β, D∗(∂̃ck)〉 = 0.

Note that D(cone(τ̃×{k})) is the geodesic cone over D(τ̃×{k})with top point ṽi .
By Lemma 5.3, both f̄b and f̄ ′b are uniformly continuous on X n

×{ṽi }. Since the
diameter of D(τ̃ ×{k}) decays to 0 as k→∞,

lim
k→∞
〈 f̄b, D(cone(τ̃ ×{k}))〉 = lim

k→∞
〈 f̄ ′b, D(cone(τ̃ ×{k}))〉 = 0.

Applying this to each τ , we can conclude that

lim
k→∞
〈 f̄b, D∗(cone(∂̃ck))〉 = lim

k→∞
〈 f̄ ′b, D∗(cone(∂̃ck))〉 = 0.
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In the end, it follows that

lim
k→∞
〈D̂∗ f̄b− D̂∗ f̄ ′b, ĉk〉 = 0.

As we mentioned, the value on the left-hand side does not depend on ĉk . Thus we
can conclude that 〈D̂∗ f̄b− D̂∗ f̄ ′b, ĉk〉 = 0. This implies that 〈D̂∗ f̄b, ĉ〉 = 〈D̂∗ f̄ ′b, ĉ〉
for any fundamental cycle ĉ of M̂ , which completes the proof. �

Combining Proposition 5.4 with (3), Proposition 2.2 immediately follows.

Proposition 5.5. The definitions of D3 and D4 are equivalent.

Proof. By Lemma 5.2 and Proposition 3.3, we have

Vol3(ρ)= inf{〈ρ∗b (ωb), α〉 | c(ωb)= ωX and α ∈ [M]`
1

Lip}

= inf{〈(c ◦ (i∗b )
−1
◦ ρ∗b )(ωb), [M, ∂M]〉 | c(ωb)= ωX }

= inf{〈D̂∗[ f̄b], [M̂]〉 | c(ωb)= ωX } = 〈D̂∗[2], [M̂]〉 = Vol4(ρ). �
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STRONGLY POSITIVE REPRESENTATIONS
OF EVEN GSPIN GROUPS

YEANSU KIM

We obtain a classification of strongly positive representations of split even
general spin groups over a p-adic field F using the Jacquet module method
(Tadić’s structure formula). Furthermore, we study discrete series represen-
tations of split even general spin groups over F.

1. Introduction

The classifications of (strongly positive) discrete series representations of meta-
plectic groups, classical groups, and odd GSpin groups over a p-adic field have
been studied by several authors [Kim 2015b; Matić 2011; Mœglin 2002; Mœglin
and Tadić 2002; Zelevinsky 1980]. The main purpose of this paper is to obtain a
classification of strongly positive representations of split even GSpin groups over
a nonarchimedean local field F of characteristic different from two, assuming the
uniqueness of the nonnegative rank one reducibility point (see Remark 1.2 for more
details about this assumption). Our results generalize Matić’s algebraic approach
[Matić 2011] to the case of even GSpin groups. Our results for even GSpin groups
can be applied to even special orthogonal groups to classify strongly positive repre-
sentations of SO2n . In addition, the results are parallel to those for odd GSpin groups
[Kim 2015b]. However, parts of their proofs are quite different because of differ-
ences in the group structures. For example, there are two nonconjugate standard par-
abolic subgroups whose Levi subgroups are of the form GLn1×GLn2× · · ·×GLnk

in the even case; therefore, we classify D(ρ; σcusp, c(σcusp)) instead of D(ρ; σcusp)

in Section 4B, where c is an outer automorphism on the Dynkin diagram of even
GSpin groups that permutes the last two simple roots.

To explain our results more precisely, let Gn :=GSpin2n denote the split even
general spin group of semisimple rank n over F , and GLm the general linear
group of semisimple rank m. Let Gn and GLm denote the groups of F-points of
Gn and GLm , respectively. Let R and RGL denote the Grothendieck groups of
the category of all admissible representations of finite length of even GSpin and
GL groups. Note that R contains two inequivalent representations of the group

MSC2010: primary 20C11; secondary 11F70.
Keywords: strongly positive representations, discrete series representations, Jacquet module.
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GLn1 ×GLn2 × · · ·×GLnk (e.g., ρ1⊗· · ·⊗ρk⊗(1⊗e) and ρ1⊗· · ·⊗ρk⊗(1⊗c),
following the notation in Section 2).

Let SP denote the set of all strongly positive representations in R, and let LJ
denote the set of pairs (Jord, σ ′), where

Jord=
k⋃

i=1

ki⋃
j=1

{
(ρi , b(i)j )

}
and σ ′ is an irreducible supercuspidal representation in R such that

• {ρ1, ρ2, . . . , ρk} ⊂ RGL is a (possibly empty) set of mutually nonisomorphic,
irreducible and essentially self-dual supercuspidal unitary representations such
that νaρi ρi o σ ′ is reducible for aρi > 0 (this defines aρi due to the uniqueness
of the reducibility point; see Remark 1.2 for more details),

• ki = daρi e, and

• for each i = 1, 2, . . . , k, the sequence b(i)1 , b(i)2 , . . . , b(i)ki
of real numbers is such

that −1< b(i)1 < b(i)2 < · · ·< b(i)ki
and aρi − b(i)j ∈ Z for each j = 1, . . . , ki .

Remark 1.1. In the set LJ, the condition of “being essentially self-dual” on the
representation ρi for each i = 1, . . . , k is due to certain Weyl group actions on the
induced representation νaρi o σ ′ (see Corollary 4.6). In the case of even special
orthogonal groups, after a minor change to the set LJ, we can construct an SO
version of LJ that corresponds to the set of strongly positive representations of
even SO. One minor change would be the condition of “being self-dual” on the
corresponding representation ρi in the case of even special orthogonal groups.

Remark 1.2 [Silberger 1980]. Let ρ and σ denote irreducible unitary supercuspidal
representations of GLn and Gn , respectively. In this paper, we assume that there
exists a unique nonnegative real number a such that νaρoσ reduces. This number
a is called the nonnegative rank one reducibility point determined by ρ and σ .

We construct a bijective mapping as follows (see Theorem 4.16).

Theorem A. There exists a bijective mapping8 between SP and LJ. More precisely,
consider σ ∈ SP to be the unique irreducible subrepresentation of the induced
representation of the form( k∏

i=1

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))
o σ ′.

Then, we may define 8(σ) as( k⋃
i=1

ki⋃
j=1

{
(ρi , b(i)j )

}
, σ ′

)
∈ LJ .
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To construct 8, we first classify the special case D(ρ; σcusp, c(σcusp)) (see
Section 4B), which is the set of strongly positive representations whose super-
cuspidal supports are the representations σcusp, c(σcusp) of Gn and twists of the
representation ρ of GL. More precisely, in Theorem 4.9 we construct a bijective map-
ping between D(ρ; σcusp, c(σcusp)) and the set of induced representations of the form

δ
(
[νa1ρ, νb1ρ]

)
× δ

(
[νa2ρ, νb2ρ]

)
× · · ·× δ

(
[νakρ, νbkρ]

)
o c′(σcusp),

where ai = a− k + i , b1 < · · · < bk , k ≤ dae and c′ ∈ C := {e, c}. Here, a is the
reducibility point determined by ρ and σcusp, i.e., νsρoσcusp is reducible if and only
if |s|=a. We then generalize this result to the set of strongly positive representations.
The classification for even GSpin groups needs more work than those for odd
GSpin groups since we consider two different representations σcusp, c(σcusp) in
D(ρ; σcusp, c(σcusp)). (In the odd case, we only need to consider D(ρ; σcusp).)

As an application, our main results give rise to a proof of the equality of L-
functions through the local Langlands correspondence in the case of GSpin groups
[Kim 2015a]. Furthermore, the equality of L-functions also has an application in
the proof of the generic Arthur packet conjecture in our case. Briefly, the generic
Arthur packet conjecture states that if the L-packet attached to the Arthur parameter
has a generic member, then it is tempered [Shahidi 2011]. This conjecture can be
considered a local version of the Generalized Ramanujan Conjecture.

The second purpose of the paper is to explicitly construct Tadić’s structure formula
for even GSpin groups. Tadić’s structure formula studies the Jacquet modules of
parabolically induced representations, and it is one of the main tools in the proof of
Theorem A. We apply and adapt the ideas from papers of Ban [1999a] and Jantzen
[2006] (Tadić’s structure formula for even special orthogonal groups) to our case.

The paper is organized as follows. In Section 2, we recall the standard notation
and preliminaries. In Section 3, we construct Tadić’s structure formula for Gn

(Theorem 3.4), which gives the explicit structure of the Jacquet modules of the
parabolically induced representations of Gn . In Section 4, we construct the classifi-
cation of strongly positive representations for Gn (Theorem A). In Section 5, we
describe embeddings of the general discrete series representations using Casselman’s
square integrability criterion [Kim 2009] (Theorem 5.1). This embedding of discrete
series representations, together with Theorem A, has an interesting application in
the proof of the equality of L-functions through the local Langlands correspondence
for GSpin groups [Kim 2015a].

2. Notation and preliminaries

Let F be a nonarchimedean local field of characteristic different from two. For a
connected reductive group G defined over F , we let G be the group of F-points of
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G. Let Gn be a split even general spin group of semisimple rank n defined over
F , as defined by Asgari [2002]. A split even GSpin group Gn := GSpin2n is a
split reductive linear algebraic group of type Dn whose derived group is a double
covering of a split special orthogonal group and whose connected component of
the Langlands dual group is L G0

= GSO2n(C). Therefore, the based root datum of
Gn is the dual based root datum of GSO2n .

The following proposition describes the structure of GSpin groups as studied by
Asgari [2002].

Proposition 2.1. The root datum (X∗, R∗, X∗, R∗) of Gn can be described as

X∗ = Ze0⊕Ze1⊕ · · ·⊕Zen,

X∗ = Ze∗0 ⊕Ze∗1 ⊕ · · ·⊕Ze∗n

(there is a standard Z-pairing 〈 , 〉 on X∗× X∗), with R∗ and R∗ generated by

1∗ = {α1 = e1− e2, α2 = e2− e3, . . . , αn−1 = en−1− en, αn = en−1+ en},

1∗ = {α
∨

1 = e∗1 − e∗2, α
∨

2 = e∗2 − e∗3, . . . , α
∨

n−1 = e∗n−1− e∗n, α
∨

n = e∗n−1+ e∗n − e∗0}.

Let s = (n1, n2, . . . , nk; n′) be an ordered partition of n. Let Ps = Ms Ns denote
the standard parabolic subgroup of Gn that corresponds to the partition s. The Levi
factor Ms is isomorphic to GLn1 ×GLn2 × · · ·×GLnk ×Gn′ [Asgari 2002, Theorem
2.7]. When n′ = 0 and nk > 0, we have two nonconjugate standard parabolic
subgroups whose Levi subgroups are of the form GLn1 ×GLn2 × · · · ×GLnk . In
this case, the corresponding set of simple roots contains exactly one of αn−1, αn . The
corresponding Levi factor is denoted by M(n1,...,nk ;0)=GLn1 ×GLn2 × · · ·×GLnk , if
the corresponding set of simple roots contains αn−1; or by c(M(n1,...,nk ;0)) otherwise.
Here, we let c be the outer automorphism on the Dynkin diagram of Gn that
permutes αn−1 and αn and fixes other simple roots.

For representations ρ1, . . . , ρk of GLn1, . . . ,GLnk , we let ρ1⊗· · ·⊗ρk⊗(1⊗e)
denote a representation of M(n1,...,nk ;0), and ρ1⊗· · ·⊗ρk⊗ (1⊗c)) a representation
of c(M(n1,...,nk ;0)). Let ν be a character of GLn defined by |det|F . We denote the
induced representation IndGn

P (ρ1⊗ · · ·⊗ ρk ⊗ σ) by

ρ1× · · ·× ρk o σ

where each ρi is a representation of some GLni , and σ is a representation of Gn .
We also write rs(σ ) for the normalized Jacquet module of the representation σ with
respect to Ps. In other words, rs is a functor from admissible representations of Gn

to admissible representations of Ms. In particular, for a subquotient σ of ρo σcusp,
where ρ is a representation of GLk and σcusp is a supercuspidal representation of
Gn , we define rGL(σ )= r(k;n)(σ ).



STRONGLY POSITIVE REPRESENTATIONS OF EVEN GSPIN GROUPS 73

In the case of GL, for P ′ = M ′N ′ the standard parabolic subgroup of GLn with
M ′∼=GLn1 ×GLn2 × · · ·×GLnk , we denote the induced representation IndGLn

P ′ (ρ1⊗

· · ·⊗ ρk) by

ρ1× · · ·× ρk,

with each ρi a representation of some GLni .
We also follow the notation introduced in [Bernstein and Zelevinsky 1977].

Let ρ be an irreducible unitary supercuspidal representation of some GLp. We
define the segment 1 := [νaρ, νa+kρ] = {νaρ, νa+1ρ, . . . , νa+kρ}, where a ∈ R

and k ∈ Z≥0. If a > 0, we call the segment 1 strongly positive. We note that
the induced representation νa+kρ× νa+k−1ρ× · · ·× νaρ has a unique irreducible
subrepresentation, which we denote by δ(1). Then δ(1) is an essentially square-
integrable representation attached to 1 (Section 3.1 of [Zelevinsky 1980]).

Let us briefly review the Langlands classification for general linear groups.
For every irreducible essentially square-integrable representation δ of some GLn ,
there exists a unique e(δ) ∈ R such that the representation ν−e(δ)δ is unitarizable.
When δ = δ(1), we simply denote e(δ(1)) by e(1). Suppose δ1, δ2, . . . , δk are
irreducible essentially square-integrable representations of GLn1,GLn2, . . . ,GLnk

with e(δ1)≤ e(δ2)≤ · · · ≤ e(δk). Then, the induced representation δ1×δ2×· · ·×δk

has a unique irreducible subrepresentation, which we denote by L(δ1, δ2, . . . , δk).
This irreducible subrepresentation is called the Langlands subrepresentation, and it
appears with the multiplicity one in δ1×δ2×· · ·×δk . Every irreducible representation
ρ of GLn is isomorphic to some L(δ1, δ2, . . . , δk). Given ρ, the representations
δ1, δ2, . . . , δk are unique up to a permutation. If i1, i2, . . . , ik is a permutation
of 1, 2, . . . , k such that the representations δi1 × · · · × δik and δ1 × · · · × δk are
isomorphic, we also write L(δi1, δi2, . . . , δik ) for L(δ1, δ2, . . . , δk).

The Grothendieck group of the category of all finite length admissible repre-
sentations of Gn (resp. GLn), a free abelian group over the set of all irreducible
representations of Gn (resp. GLn), is denoted by R(n) (resp. RGL(n)). We set

R =
⊕
n≥0

R(n),

RGL =
⊕
n≥0

RGL(n).

The strongly positive representations of Gn are defined as follows.

Definition 2.2 (strongly positive). An irreducible representation σ of Gn is called
strongly positive if for each representation νs1ρ1×ν

s2ρ2×· · ·×ν
skρkoσcusp, where

each ρi (i = 1, 2, . . . , k) is an irreducible supercuspidal unitary representation of
some GLni , σcusp ∈ R is an irreducible supercuspidal representation of Gn′ and
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si ∈ R (i = 1, 2, . . . , k) is such that

σ ↪→ νs1ρ1× ν
s2ρ2× · · ·× ν

skρk o σcusp,

we have si > 0 for each i .

Finally, the next proposition recalls the properties of discrete series representa-
tions studied in [Asgari 2002].

Proposition 2.3. Let M be GLn1 ×GLn2 × · · · × GLnk ×Gn′ ⊂ Gn . Let ρi be a
supercuspidal representation of GLni and σ a supercuspidal representation of Gn′ .
Write ρi=ν

e(ρi )ρu
i , where e(ρi )∈R and ρu

i is a unitary supercuspidal representation
for i = 1, . . . , k. If ρ1× · · ·× ρk o σ has a discrete series subrepresentation, then
ρu

i
∼= ρ̃u

i ⊗ (ωσ ◦ det) for i = 1, . . . , k.

3. Tadić’s structure formula for even GSpin groups

Tadić’s structure formulae for Sp2n , SO2n+1, SO2n and GSpin2n+1 in [Tadić 1995;
Jantzen 2006; Kim 2015b] are based on the geometric lemma (2.11 in [Bernstein
and Zelevinsky 1977] or Section 6 in [Casselman 1995]). Briefly, the geometric
lemma explicitly calculates the Jacquet modules of induced representations (rG,N ◦

iG,N in [Bernstein and Zelevinsky 1977]) and it depends on the double coset
representative Weyl group elements (W M,N in [Bernstein and Zelevinsky 1977])
and their actions on the simple roots and representations of Levi subgroups. In this
section, we explicitly construct the structure of Jacquet modules of parabolically
induced representations of Gn (Tadić’s structure formula for Gn , Theorem 3.4) using
the geometric lemma. We will adapt and follow the results in [Ban 1999a; Jantzen
2006], i.e., the case of SO2n . Ban characterizes the double coset representative Weyl
group elements ([W�i1

\W/W�i2
] in [Ban 1999a, Section 5]) and its action on the

simple roots in the cases of Dn-type groups, which include SO2n and Gn . Jantzen
[2006] constructs Tadić’s structure formula for SO2n using Ban’s results. Therefore,
once we calculate the Weyl group action on the representations in our case, we are
ready to adapt Jantzen’s calculation [2006] to construct Tadić’s structure formula
for Gn .

Let (p, ε) ∈ Sn o {±1}n be an element in the Weyl group WGn with ε =
(ε1, . . . , εn) ∈ {±1}n such that

∏n
i=1 εi = 1. We can identify (p, ε) ∈ WGn with

p · ε ∈WSO2n where the action by conjugation of p and ε ∈WSO2n on the standard
maximal torus in SO2n can be defined by

p ·diag(x1, . . . , xn, x−1
n , . . . , x−1

1 )= diag(x p−1(1), . . . , x p−1(n), x−1
p−1(n), . . . , x−1

p−1(1))

ε ·diag(x1, . . . , xn, x−1
n , . . . , x−1

1 )= diag(xε1
1 , . . . , xεn

n , x−εn
n , . . . , x−ε1

1 ).

We can get the action of those on the roots (see also [Hundley and Sayag 2012]).
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Lemma 3.1. Let e0, e1, . . . , en and e′0, e′1, . . . , e′n be the standard bases of the
character lattice and the cocharacter lattice of Gn as in Proposition 2.1. Let
(p, ε) ∈ Sn o {±1}n be as above.

Then

(p, ε) · ei =


ep(i) for i > 0, εi = 1,
−ep(i) for i > 0, εi =−1,
e0+

∑
εi=−1

ep(i) for i = 0,

(p, ε) · e′i =


e′p(i) for i > 0, εi = 1,
e′0− e′p(i) for i > 0, εi =−1,
e′0 for i = 0.

Proof. The calculations of (p, ε) · ei for i > 0 are done in [Ban 1999a, Section 5].
We can also calculate (p, ε) ·e′i directly from the matrix calculation since e′0, . . . , e′n
comprise the character lattice of GSO. For (p, ε) · e0, we need to use the duality of
ei and e′i . �

Let 1∗ = {α1 = e1−e2, α2 = e2−e3, . . . , αn−1 = en−1−en, αn = en−1+en} be
a simple root for Gn as explained in Section 2. From Lemma 3.1, we can calculate
the action of (p, ε) on the set of simple roots in R∗ (see also [Ban 1999a]).

Corollary 3.2. With notation as in Lemma 3.1,

(p, ε) ·αi =

{
εi ep(i)− εi+1ep(i+1) for 0≤ i ≤ n− 1,
εn−1ep(n−1)+ εnep(n) for i = n.

Now we are ready to construct Tadić’s structure formula for Gn . Let ρi be an
irreducible smooth representation of GLni for i = 1, 2, 3, 4. Let σ be an irreducible
smooth representation in R and let ωσ be the central character of σ . For any element
c1 ∈ C = {e, c}, we define õ as follows:

(3-1) (ρ1⊗ρ2⊗ρ3⊗ c1)õ(ρ4⊗σ)= (ρ̃1⊗ (ωσ ◦ det))×ρ2×ρ4⊗ρ3o c1(σ ).

One extends õ to a Z-bilinear mapping

õ : (RGL⊗ RGL⊗ RGL⊗Z[C])× (RGL⊗ R)→ RGL⊗ R.

We denote by m the linear extension to RGL⊗ RGL of parabolic induction from a
maximal parabolic subgroup.

Let

�k =


1 if k = 0,
1 \ {αk} if k ≤ n− 2,
1 \ {αn−1, αn} if k = n− 1,
1 \ {αn} if k = n.
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and �n =1 \ {αn−1} = c(�n). We define µ∗(σ ) as follows. For 0≤ k ≤ n, write

rM�k ,Gn
(σ )=

∑
i∈Ik

ρi,k ⊗ σi,k,

rM�n ,Gn
(σ )=

∑
j∈J

ρ j ⊗ (1⊗ c),

the normalized Jacquet modules of σ with respect to the standard maximal parabolic
subgroups P�k = M�k N�k and P�n

= M�n
N�n

, respectively. For such σ , we can
define µ∗(σ ) ∈ RGL⊗ R as

µ∗(σ )=

n∑
k=0

∑
i∈Ik

ρi,k ⊗ σi,k +
∑
j∈J

ρ j ⊗ (1⊗ c).

Using Jacquet modules with respect to the maximal parabolic subgroups of GLn ,
we can also define

m∗(ρ)=
n∑

k=0

s.s.(rk(ρ)) ∈ RGL⊗ RGL

for an irreducible representation ρ of GLn , and then extend m∗ linearly to the whole
of RGL. Here, rk(ρ) denotes the Jacquet module of the representation ρ with respect
to the parabolic subgroup whose Levi subgroup is GLk ×GLn−k , and s.s. denotes
so-called semisimplification, i.e., a canonical map from objects of the category
of all smooth finite length representations of GL into the Grothendieck group of
this category. We define s : RGL⊗ RGL→ RGL⊗ RGL by s(x ⊗ y) = y⊗ x . Let
M∗C : RGL→ RGL⊗ RGL⊗ RGL⊗Z[C] be the map (1⊗m∗C) ◦ s ◦m∗, where

1⊗m∗C : RGL⊗ RGL→ RGL⊗ RGL⊗ RGL⊗Z[C]

ρ1⊗ ρ2 7→ ρ1⊗m∗(ρ2)⊗ cn1,

for representations ρ1 of GLn1 and ρ2 of GLn2 .

Remark 3.3. In our case of even GSpin groups, we have cn1 when we calculate
µ∗, while we don’t have such action in the case of odd GSpin groups. This is due
to the differences of the Weyl group actions on the simple roots. In our case, the
corresponding Weyl group element acts on en by (−1)n1 . Therefore, if n1 is odd,
we need to permute αn−1 = en−1− en and αn = en−1+ en . In other words, we have
the outer automorphism c on the representation σ .

The following theorem is called Tadić’s structure formula for even GSpin groups.

Theorem 3.4. For ρ ∈ RGL(i) and σ ∈ R(n− i), we have

µ∗(ρo σ)=M∗C(ρ)õµ
∗(σ ).
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Proof. We sketch the proof and explain how we can adapt the approach in [Jantzen
2006] to our case. Let us explicitly calculate the left hand side of the equation
in the theorem. Since GSpin2n is also of Dn-type, we can apply the double coset
representative Weyl group elements, which are studied in [Ban 1999a], to our case.
Therefore, we have µ∗(ρoσ) as in [Jantzen 2006, pp. 811–812]. Now, we calculate
the action of the double coset representative Weyl group elements (qn in [Jantzen
2006]) on the representations. The actions of qn produce contragredient of τ (3)s (d)
with (ωθ ◦ det), i.e., (ωθ ◦ det)τ̃ (3)s (d) (see p. 812 for the notation of τ (3)s (d) and θ ).
Accordingly, we need to define õ as (3-1). This forces µ∗(ρo σ) to be equal to
M∗C(ρ)õµ∗(σ ) after changing index several times as in the proof of [Jantzen 2006,
Chapter 4]. �

4. Classification of strongly positive representations for even GSpin groups

We give the classification of strongly positive representations of even GSpin groups
in this section. We apply and adapt some proofs from Matić’s results [2011] for
metaplectic groups to our case. Therefore, we mostly focus on the following cases
which are quite different from [Matić 2011]. For example, when the reducibility
point is 1

2 , we follow the idea of [Kim 2015b] instead of [Matić 2011]. We also
emphasize the difference between the even case and the odd case, and omit the
proof if it is similar to the case of either metaplectic groups or odd GSpin groups.
For example, in the even case, we need to add c(σcusp) when we classify the special
case D(ρ; σcusp, c(σcusp)) (in the odd case, we classify D(ρ; σcusp)).

4A. Several lemmas. We recall several lemmas which are essential in this section.
Let us first recall the half integer conjecture in the case of GSpin groups. Let σ
be an irreducible supercuspidal representation of Gn′ and let ρ be an irreducible
supercuspidal unitary representation of GLk . The following is a recent result of
Mœglin which is called the half integer conjecture for GSpin groups [Mœglin 2014,
Theorem 3.1.1]:

Lemma 4.1 [Mœglin 2014]. Let a ∈ R be a nonnegative real number such that
νaρo σ reduces. Then, a ∈ 1

2 Z.

Remark 4.2. In [Kim 2015b], we classified the strongly positive representations
of odd GSpin groups assuming the half integer conjecture. Due to Mœglin’s results
(Lemma 4.1), we can completely remove the assumption in the odd case.

Remark 4.3. When we further assume that σ is a generic representation, Shahidi
[1990] proved that a ∈ {0, 1

2 , 1}.

Let us calculate µ∗
((∏n

j=1 δ
(
[νa jρ j , ν

b jρ j ]
))
o σ

)
, where each ρ j is an irre-

ducible supercuspidal representation of GLk , the real numbers a j and b j are such
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that b j − a j ∈ Z≥0 for each j = 1, . . . , n and σ is an irreducible supercuspidal
representation of finite length of Gn′ .

Example 4.4. Let us first calculate the case when n = 1. Since σ is supercuspidal,
µ∗(σ )= 1⊗ σ . Following the definition of M∗C , we have

M∗C
(
δ
(
[νaρ1, ν

bρ1]
))

=

b∑
i=a−1

b∑
j=i

δ
(
[νaρ1, ν

iρ1]
)
⊗ δ

(
[ν j+1ρ1, ν

bρ1]
)
⊗ δ

(
[νi+1ρ1, ν

jρ1]
)
⊗ ck(i−a+1).

Therefore,

µ∗
(
δ
(
[νaρ1, ν

bρ1]
)
o σ

)
=

b∑
i=a−1

b∑
j=i

δ
(
[ν−i ρ̃1⊗ (ωσ ◦ det), ν−aρ̃1⊗ (ωσ ◦ det)]

)
×δ
(
[ν j+1ρ1, ν

bρ1]
)
⊗ δ

(
[νi+1ρ1, ν

jρ1]
)
o ck(i−a+1)(σ ).

We omit δ
(
[νxρ1, ν

yρ1]
)

if x > y. Then, to calculate

µ∗
(( n∏

j=1

δ
(
[νa jρ j , ν

b jρ j ]
))
o σ

)
,

we use (1.3) of [Tadić 1998]:

m∗
( n∏

j=1

δ
(
[νa jρ j , ν

b jρ j ]
))
=

n∏
j=1

( b j∑
i j=a j−1

δ
(
[νi j+1ρ j , ν

b jρ j ]
)
⊗δ
(
[νa jρ j , ν

i jρ j ]
))
.

The Weyl group elements are essential objects when we define the intertwining
operators between two induced representations [Shahidi 2010, Chapter 4]. We
recall the action of the Weyl group elements on the induced representations. Let Mθ

be a Levi subgroup isomorphic to GLk ×Gn−k for θ =1 \αk . There is a unique
Weyl group element w0 such that w0(αk) < 0 and w0(θ)⊂1.

Lemma 4.5. Let ρ and σ be irreducible supercuspidal representations of GLk and
Gn−k , respectively. Then

(ρ⊗ σ)w0 = (ρ̃⊗ (ωσ ◦ det))⊗ ck(σ ),

where ωσ is the central character of σ .

Proof. Sincew0(αk)< 0 andw0(θ)⊂1, we can explicitly calculate its action on the
simple roots. Let us identifyw0 as (p, ε)∈ Sno{±1}n with ε= (ε1, . . . , εn)∈{±1}n

such that
∏n

i=1 εi = 1. Then
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p(i)=
{

k+ 1− i for 1≤ i ≤ k,
i for k+ 1≤ i ≤ n,

and εi =


−1 for 1≤ i ≤ k,
1 for k+ 1≤ i ≤ n,
(−1)k for i = n,

for k 6= n− 1, n, and

p(i)= n+ 1− i and εi =


(−1)k−1 for i = 1,
−1 for 2≤ i ≤ n− 1,
(−1)k+n−1 for i = n,

for k = n− 1, n. Using this identification, the lemma follows from Lemma 3.1. �

Corollary 4.6. Let ρ and σ be as in Lemma 4.5. Then ρoσ and (ρ̃⊗(ωσ ◦det))o
ck(σ ) are associate. Therefore, Lemma 5.4 (iii) of [Bernstein et al. 1986] implies
that the sets of irreducible composition factors of ρoσ and (ρ̃⊗(ωσ ◦det))ock(σ )

are the same. Furthermore, if we assume that ρ o σ is irreducible, then ρ o σ ∼=
(ρ̃⊗ (ωσ ◦ det))o ck(σ ).

Now we show that strongly positive representations can be embedded into
parabolically induced representations of special type. More precisely, we consider
parabolically induced representations of the form

(4-1) δ(11)× δ(12)× · · ·× δ(1k)o c′(σcusp),

where 11,12, . . . ,1k is a sequence of strongly positive segments satisfying
0 < e(11) ≤ e(12) ≤ · · · ≤ e(1k) (we allow k = 0 here), σcusp is an irreducible
supercuspidal representation of Gn′ and c′ ∈ C . Note that the idea of such embed-
dings of representations was initiated in [Muić 2006] and further refined in [Hanzer
and Muić 2008].

Lemma 4.7. Let 11, . . . ,1k and σcusp be as above. Then the induced representa-
tion δ(11)× δ(12)×· · ·× δ(1k)o c′(σcusp) has a unique irreducible subrepresen-
tation, which we denote by δ(11, . . . ,1k; c′(σcusp)).

Proof. We briefly explain the main ideas of the proof and how we adapt the proof
from [Matić 2011] to the case of even GSpin groups. The case k = 0 is clear. Let
j1 < j2 < · · ·< js be the positive integers such that

e(11)= · · · = e(1 j1) < e(1 j1+1)= · · · = e(1 j2) < · · ·< e(1 js+1)= · · · = e(1k).

Then Theorem 3.4 implies that an irreducible representation

δ(11)× · · ·× δ(1 j1)⊗ δ(1 j1+1)× · · ·× δ(1 j2)⊗ · · ·⊗ c′(σcusp)

appears with multiplicity one in the Jacquet module of δ(11)× δ(12)× · · · ×

δ(1k)o c′(σcusp) with respect to the appropriate parabolic subgroup. Therefore,
since this irreducible representation is contained in the Jacquet module of any
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subrepresentation of δ(11)× δ(12)× · · · × δ(1k)o c′(σcusp) with respect to the
appropriate parabolic subgroup, it follows that the induced representation δ(11)×

δ(12)× · · ·× δ(1k)o c′(σcusp) has a unique irreducible subrepresentation. �

Now, as in the odd case [Kim 2015b], we can show that strongly positive
representations can be embedded into induced representations of the form (4-1).

Lemma 4.8. Let σ ∈ R denote a strongly positive representation. Then σ can be
embedded into certain induced representations of the form (4-1).

4B. Classification of strongly positive representations: the D(ρ; σcusp, c(σcusp))

case. Let ρ be an essentially self-dual irreducible supercuspidal representation
of GLnρ and σcusp an irreducible supercuspidal representation of Gn′ . Also, let
D(ρ; σcusp, c(σcusp)) be the set of strongly positive representations whose supercus-
pidal supports are the representations σcusp, c(σcusp) and twists of the representation
ρ. We assume that there exists a unique nonnegative real number a such that
νaρoσcusp reduces [Silberger 1980]. The half integer conjecture for GSpin groups
(Lemma 4.1) implies that a ∈ 1

2 Z.
In this section, we construct the classification of strongly positive representations

in D(ρ; σcusp, c(σcusp)). Lemma 4.8 implies that there exists a mapping from the
set of strongly positive representations of Gn into the set of induced representations
of the form (4-1). We first refine the image of this map when we restrict the map to
D(ρ; σcusp, c(σcusp)).

Theorem 4.9. Suppose that σ is an irreducible strongly positive representation
in D(ρ; σcusp, c(σcusp)), taken as the unique irreducible subrepresentation of an
induced representation of the form (4-1). Write 1i = [ν

aiρ, νbiρ] for i = 1, . . . , k.
Then ai = a− k+ i for each i , b1 < · · ·< bk and k ≤ dae.

Proof. We consider the case when a = 1
2 . We first show, by induction on k, that

ai = a for each i = 1, . . . , k and that b1 ≤ · · · ≤ bk when a = 1
2 .

For the case k = 1, note that if ai 6= a, then

νaiρo σcusp ∼= (ν
−ai ρ̃⊗ (ωσcusp ◦ det))o cnρ (σcusp)∼= ν

−aiρo σcusp.

Therefore, we have the embedding

σ ↪→ νb1ρ× · · ·× νa1+1ρ× ν−a1ρo σcusp

which contradicts the strong positivity of σ .
Now suppose the theorem holds for all m ∈ Z such that 0 ≤ m < k. We prove

it for k. As in the case when k = 1, we show ak = a. We know that σ embeds in
δ(11)o δ(12, . . . ,1k; σcusp), since σ is the unique irreducible subrepresentation
of δ(11)× · · · δ(1k)o σcusp. This implies that each ai = a for 2 ≤ i ≤ k and
b2 ≤ · · · ≤ bk . It remains to show that a1 =

1
2 and b1 ≤ b2.
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Suppose that a1 /∈
1
2 +Z. Then νa1ρ× δ(1i ) is irreducible for i ≥ 2. Therefore,

we have the embedding

σ ↪→ δ
(
[νa1+1ρ, νb1ρ]

)
× νa1ρ× δ(12)× · · ·× δ(1k)o σcusp

∼= δ
(
[νa1+1ρ, νb1ρ]

)
× δ(12)× · · ·× δ(1k)× ν

a1ρo σcusp

∼= δ
(
[νa1+1ρ, νb1ρ]

)
× δ(12)× · · ·× δ(1k)× ν

−a1ρo σcusp

which contradicts the strong positivity of σ . Therefore, a1 ∈
1
2 + Z. If a1 6=

1
2 ,

then a1 ≥
3
2 . This implies that δ(11)× δ(1i ) is irreducible for i ≥ 2 since b1 ≤ bi .

Therefore, we have the embedding

σ ↪→ δ(12)× · · ·× δ(1k)× δ(11)o σcusp

∼= δ(12)× · · ·× δ(1k)× δ
(
[νa1+1ρ, νb1ρ]

)
× νa1ρo σcusp

∼= δ(12)× · · ·× δ(1k)× δ
(
[νa1+1ρ, νb1ρ]

)
× ν−a1ρo σcusp

which again contradicts the strong positivity of σ . Thus, a1 =
1
2 . Also, b1 ≤ b2

follows from e(11)≤ e(12). The following lemma finishes the proof of the theorem
in the case when a = 1

2 .

Lemma 4.10. The unique irreducible subrepresentation of

δ
(
[ν1/2ρ, νb′1ρ]

)
× δ

(
[ν1/2ρ, νb′2ρ]

)
× · · ·× δ

(
[ν1/2ρ, νb′kρ]

)
o σcusp,

denoted σ ∗
(b′1,...,b

′

k ;1/2)
, is not strongly positive when k ≥ 2.

Proof. We first show the case when k= 2. The embedding of ν1/2ρoδ(ν1/2ρ, σcusp)

into ν1/2ρ× ν1/2ρo σcusp implies the embedding

σ ∗(1/2,1/2;1/2) ↪→ ν1/2ρo δ(ν1/2ρ, σcusp).

Using Lemma 3.8 (b) as well as Remark 3.2 of [Tadić 1998], we can show that
δ
(
[ν−1/2ρ, ν1/2ρ]

)
o σcusp is a direct sum of two irreducible nonisomorphic repre-

sentations, say τ1 and τ2, in the same way as in the proof of Sublemma 5.8 of [Kim
2015b]. From Frobenius reciprocity and

rGL
(
δ
(
[ν−1/2ρ, ν1/2ρ]

)
o σcusp

)
=

2δ
(
[ν−1/2ρ, ν1/2ρ]

)
⊗ σcusp+ ν

1/2ρ× ν1/2ρ⊗ cnρ (σcusp),

it follows that rGL(τ1) = δ
(
[ν−1/2ρ, ν1/2ρ]

)
⊗ σcusp+ ν

1/2ρ × ν1/2ρ ⊗ cnρ (σcusp)

and rGL(τ2) = δ
(
[ν−1/2ρ, ν1/2ρ]

)
⊗ σcusp. We also obtain that σ ∗(1/2,1/2;1/2) ∼= τ1,

which is a subrepresentation of δ
(
[ν−1/2ρ, ν1/2ρ]

)
o σcusp, in the same way as in

the proof of Sublemma 5.9 of [Kim 2015b]. Therefore, we have the embedding

σ ∗(1/2,1/2;1/2) ↪→ δ
(
[ν−1/2ρ, ν1/2ρ]

)
o σcusp ↪→ ν1/2ρ× ν−1/2ρo σcusp.
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We conclude that σ ∗(1/2,1/2;1/2) is not strongly positive.
Next we consider the case k ≥ 2. Suppose that σ ∗

(b′1,...,b
′

k ;1/2)
is strongly positive.

Since each representation ν1/2ρ×δ
(
[ν1/2ρ, νb′iρ]

)
is irreducible for all i = 1, . . . , k,

we have an embedding of σ ∗
(b′1,...,b

′

k ;1/2)
into

δ
(
[ν3/2ρ, νb′1ρ]

)
× δ

(
[ν3/2ρ, νb′2ρ]

)
×

· · ·× δ
(
[ν3/2ρ, νb′kρ]

)
× ν1/2ρ× · · ·× ν1/2ρo σcusp.

Furthermore, since we know σ ∗(1/2,1/2;1/2) is the unique irreducible subrepresentation
of ν1/2ρ× ν1/2ρo σcusp, we have the embedding

σ ∗
(b′1,...,b

′

k ;1/2)
↪→ δ

(
[ν3/2ρ, νb′1ρ]

)
× · · ·× ν1/2ρo σ ∗(1/2,1/2;1/2).

This contradicts the strong positivity of σ ∗(1/2,1/2;1/2). �

Returning to the proof of Theorem 4.9, it remains to prove the case when a 6= 1
2 .

This case is similar to the proof in [Matić 2011] and we skip the proof here. �

We also show that the map from D(ρ; σcusp, c(σcusp)) to the set of induced
representations of the form (4-1) is well defined in the following theorem.

Theorem 4.11. Suppose that σ is an irreducible strongly positive representation
in D(ρ; σcusp, c(σcusp)). Then there exist a unique set of strongly positive segments
11,12, . . . ,1k with 0< e(11)≤ e(12)≤ · · · ≤ e(1k), and a unique irreducible
supercuspidal representation σ ′ ∈ R such that σ ' δ(11,12, . . . ,1k; σ

′).

Proof. We first show the uniqueness of the partial supercuspidal support σ ′. Sup-
pose that there are two sets of strongly positive segments and representations
in R, {11,12, . . . ,1k, σcusp} and {1′1,1

′

2, . . . ,1
′

l, c(σcusp)}, which satisfy the
conditions in Theorem 4.9. Then we have the two embeddings

σ ↪→

( k∏
i=1

δ(1i )

)
o σcusp,(4-2)

σ ↪→

( l∏
j=1

δ(1′j )

)
o c(σcusp).(4-3)

These embeddings imply that( l∏
j=1

δ(1′j )

)
⊗ c(σcusp)≤ rGL(σ )≤ rGL

(( k∏
i=1

δ(1i )

)
o σcusp

)
.

However, Theorem 3.4 implies that rGL
((∏k

i=1 δ(1i )
)
o σcusp

)
can contain the

support c(σcusp) only if the corresponding GL part,
∏l

j=1 δ(1
′

j ), has negative
exponent. This is a contradiction since each 1′i is strongly positive for all i .
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It remains to show the uniqueness of strongly positive segments. The situation
becomes similar to the odd case [Kim 2015b] since we show the uniqueness of σ ′.
Therefore, we can apply the idea of [Matić 2011] (for a 6= 1

2) and [Kim 2015b] (for
a = 1

2 ) to complete the proof, which we omit here. �

In Theorem 4.9 and Theorem 4.11, we construct an injective mapping from
D(ρ; σcusp, c(σcusp)) into the set of induced representations of the form

δ
(
[νa−k+1ρ, νb′1ρ]

)
× δ

(
[νa−k+2ρ, νb′2ρ]

)
× · · ·× δ

(
[νaρ, νb′kρ]

)
o c′(σcusp)

((4-1) with refinement on the unitary exponents as in Theorem 4.9). In other words,
if we let Jordc′

(ρ,a) be the set of (c′; b1, b2, . . . , bkρ ), where c′ ∈ C and bi ∈ R are
such that bi − a+ kρ − i ∈ Z≥0 for i = 1, . . . , kρ and −1 < b1 < b2 < · · · < bkρ ,
we construct the injective mapping

D(ρ; σcusp, c(σcusp)) ↪→ Jorde
(ρ,a) ∪ Jordc

(ρ,a) .

It remains to show that this injective mapping is also surjective. For an element
(c′; b1, b2, . . . , bkρ )∈ Jorde

(ρ,a) ∪ Jordc
(ρ,a), let σ(c′;b1,...,bkρ ;a) be a unique irreducible

subrepresentation of

δ
(
[νa−kρ+1ρ, νb1ρ]

)
× δ

(
[νa−kρ+2ρ, νb2ρ]

)
× · · ·× δ

(
[νaρ, νbkρ ρ]

)
o c′(σcusp).

To show the surjectivity, we apply the induction argument in [Matić 2011] to show
that the above subrepresentation σ(c′;b1,...,bkρ ;a) is strongly positive. We don’t repeat
the argument here.

Theorem 4.12. The representation σ(c′;b1,...,bkρ ;a) is strongly positive.

Remark 4.13. In the case of odd GSpin groups, we classify the special case
D(ρ; σcusp) in [Kim 2015b]. In the even case, we need to consider c(σcusp) as
a support in D(ρ; σcusp, c(σcusp)) as well, since the action of certain Weyl group
elements makes σ into c(σ ) (e.g., Lemma 4.5).

4C. Classification of strongly positive representations. Let ρi be an essentially
self-dual irreducible supercuspidal representation of GLnρi

for i = 1, . . . , k, and
σcusp an irreducible supercuspidal representation of Gn′ . We consider the set
D(ρ1, ρ2, . . . , ρk; σcusp, c(σcusp)) of strongly positive representations whose su-
percuspidal supports are the representations σcusp, c(σcusp) and twists of the rep-
resentations ρ1, . . . , ρk . We assume that there exists a unique nonnegative real
number aρi such that νaρi ρi o σcusp reduces for each i [Silberger 1980]. The half
integer conjecture for GSpin groups (i.e., Lemma 4.1) implies that each aρi ∈

1
2 Z.
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Theorem 4.14. Let σ be a strongly positive representation in D(ρ1, ρ2, . . . , ρk;

σcusp, c(σcusp)). Then σ can be considered to be the unique irreducible subrepresen-
tation of the induced representation

(4-4)
( k∏

i=1

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))
o c′(σcusp),

where c′ ∈C = {e, c} and for i = 1, . . . , k and j = 1, . . . , ki , each ki ∈Z≥0 satisfies
ki ≤ daρi e and each b(i)j > 0 is such that b(i)j − aρi ∈ Z≥0. Also, b(i)j < b(i)j+1 for
1≤ j ≤ ki − 1.

Proof. The proof is exactly the same as the odd case, and so is omitted. �

We also show that the map from D(ρ1, ρ2, . . . , ρk; σcusp, c(σcusp)) to the set of
induced representations of the form (4-4) is well defined in the following theorem.

Theorem 4.15. Suppose that the representation σ is the unique irreducible subrep-
resentations of both representations( k∏

i=1

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))
o σcusp,

( k′∏
i=1

k′i∏
j=1

δ
(
[ν

aρ′i
−k′i+ j

ρ ′i , ν
c(i)j ρ ′i ]

))
o c′(σcusp)

as in Theorem 4.14. Then k = k ′, σcusp ∼= c′(σcusp) and{ ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
) ∣∣∣ i = 1, . . . , k

}
is a permutation of{ k′i∏

j=1

δ
(
[ν

aρ′i
−k′i+ j

ρ ′i , ν
c(i)j ρ ′i ]

) ∣∣∣ i = 1, . . . , k
}
.

Proof. The arguments of the proof follow the same lines as those in the proof of
Theorem 4.11. We, therefore, omit the proof here. �

Theorem 4.14 and Theorem 4.15 imply that there exists an injective mapping
from D(ρ1, ρ2, . . . , ρk; σcusp, c(σcusp)) into the set of induced representations of
the form (4-4). Finally, it remains to show that this mapping is surjective.

Theorem 4.16. The map described above gives a bijective correspondence between
the set D(ρ1, ρ2, . . . , ρk; σcusp, c(σcusp)) and the set of induced representations of
the form (4-4).
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Proof. Let σ be the unique irreducible subrepresentation of the form (4-4), i.e.,( k∏
i=1

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))
o c′(σcusp).

Since ρp � ρq for p 6= q , we have for any l = 1, . . . , k the embedding

σ ↪→

(∏
i 6=l

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))

oδ
(
[νaρl−kl+lρl, ν

b(l)l ρl], . . . , [ν
aρl ρl, ν

b(l)kl ρl]; c′(σcusp)
)
.

Theorem 4.12 implies that δ
(
[νaρl−kl+lρl, ν

b(l)l ρl], . . . , [ν
aρl ρl, ν

b(l)kl ρl]; c′(σcusp)
)

is strongly positive. Since l can be arbitrary, σ always has positive unitary exponents
in the Jacquet module with respect to the Levi subgroup GLnρ1

×GLnρ1
× · · · ×

GLnρk
×Gn′ . Therefore, σ is strongly positive. �

Since any strongly positive representation in R can be considered an element of
D(ρ ′1, ρ

′

2, . . . , ρ
′

k; σ
′
cusp, c′(σ ′cusp)) for some ρ ′i and σ ′cusp, we can extend the bijective

mapping constructed in Theorem 4.16 to any strongly positive representation in
R. In sum, let SP and LJ be as defined in Section 1. Then we have a bijective
correspondence between SP and LJ.

Remark 4.17. The ideas used in this section for the results of GSpin groups can
be applied to even special orthogonal groups. Let us also remark that it is easier
to work with even special orthogonal groups than even GSpin groups due to the
results of Ban [1999a; 1999b] and Jantzen [2006]. For example, in the case of even
special orthogonal groups, the Weyl group actions on the simple roots and induced
representations are studied in [Ban 1999a; 1999b] and Tadić’s structure formula
is constructed in [Jantzen 2006, Theorem 3.4] (see also [Jantzen and Liu 2014,
Theorem 3.1]). Let us remark that the classification of discrete series representations
of SO2n is first proved by C. Jantzen [2011] using the results for O2n in [Mœglin
2002; Mœglin and Tadić 2002]. Our approach is different from [Jantzen 2011] and
we generalize Matić’s idea to the case of even special orthogonal groups.

5. Applications

It is easy to see that the strongly positive representations are special kinds of discrete
series due to Casselman’s square integrability criterion in [Kim 2009]. Furthermore,
the strongly positive representations can be considered basic building blocks for
discrete series representations (Theorem 5.1). The proof of the following embedding
theorem is exactly the same as the case of odd GSpin groups, since the main idea of
the proof depends on a slight variation of Casselman’s square integrability criterion
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for even GSpin groups (Proposition 3.2 in [Kim 2009]). Hence the proof is omitted.
Let us remark that this idea originally comes from the results for metaplectic groups
by Matić and we adapt some proofs from [Matić 2012, Chapter 3] to our situation.

Theorem 5.1. Let σ denote a discrete series representation of Gn . Then there exists
an embedding of the form

σ ↪→ δ
(
[νa1ρ1, ν

b1ρ1]
)
× δ

(
[νa2ρ2, ν

b2ρ2]
)
× · · ·× δ

(
[νarρr , ν

brρr ]
)
o σsp

where ai ≤ 0, ai + bi > 0 and ρi ∈ RGL is an irreducible unitary supercuspidal
representation for i = 1, . . . , r (we allow r = 0); and σsp ∈ R is a strongly positive
representation.

Theorem 5.1, together with our main result Theorem 4.16 giving the classification
of strongly positive representations, imply the embedding

(5-1) σ ↪→ δ
(
[νa1ρ1, ν

b1ρ1]
)
× · · ·× δ

(
[νarρr , ν

brρr ]
)

×

( k∏
i=1

ki∏
j=1

δ
(
[ν

aρ′i
−ki+ j

ρ ′i , ν
b(i)j ρ ′i ]

))
o σcusp.

where ai , bi and ρi are as in Theorem 5.1; aρ′i , b(i)j , ki and ρ ′i are as in Theorem 4.14;
and σcusp is an irreducible supercuspidal representation of Gn .

This embedding has an interesting application in the proof of the equality of L-
functions from the Langlands–Shahidi method and Artin L-functions through local
Langlands correspondence (see [Shahidi 2010] for the Langlands–Shahidi method).
More precisely, in [Kim 2015a] we used the following filtration of admissible
representations to prove the equality of L-functions in the case of GSpin groups:

supercuspidal ⊆ discrete series ⊆ tempered ⊆ admissible.

We first showed the equality of L-functions in the supercuspidal case. Then, the
above embedding (5-1) was used to generalize that result to the case of discrete series
representations. Finally, that result was generalized via Langlands classification
and properties of tempered representations to the cases of tempered representations
and admissible representations. Furthermore, the equality of L-functions also has
an interesting application in the proof of the generic Arthur packet conjecture in the
case of GSpin groups [Shahidi 2011]. This conjecture can be considered a local
version of the generalized Ramanujan conjecture.
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[Matić 2012] I. Matić, “Theta lifts of strongly positive discrete series: the case of (S̃p(n), O(V ))”,
Pacific J. Math. 259:2 (2012), 445–471. MR 2988500 Zbl 1277.22017

http://dx.doi.org/10.4153/CJM-2002-025-8
http://msp.org/idx/mr/2003i:11062
http://msp.org/idx/zbl/1011.11034
http://msp.org/idx/mr/2001m:22033
http://msp.org/idx/zbl/0954.22013
http://msp.org/idx/mr/2002a:22022
http://msp.org/idx/zbl/0954.22012
http://www.numdam.org/item?id=ASENS_1977_4_10_4_441_0
http://www.numdam.org/item?id=ASENS_1977_4_10_4_441_0
http://msp.org/idx/mr/58:28310
http://msp.org/idx/zbl/0992.22015
http://dx.doi.org/10.1007/BF02792538
http://dx.doi.org/10.1007/BF02792538
http://msp.org/idx/mr/88g:22016
http://msp.org/idx/zbl/0634.22011
http://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
http://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
http://dx.doi.org/10.1016/j.jalgebra.2008.07.002
http://dx.doi.org/10.1016/j.jalgebra.2008.07.002
http://msp.org/idx/mr/2009k:20107
http://msp.org/idx/zbl/1166.22011
http://msp.org/idx/arx/1110.6788
http://dx.doi.org/10.1016/j.jalgebra.2005.12.026
http://dx.doi.org/10.1016/j.jalgebra.2005.12.026
http://msp.org/idx/mr/2007m:22014
http://msp.org/idx/zbl/1104.22019
http://dx.doi.org/10.4153/CJM-2011-003-2
http://dx.doi.org/10.4153/CJM-2011-003-2
http://msp.org/idx/mr/2012f:22030
http://msp.org/idx/zbl/1219.22016
http://dx.doi.org/10.1007/s11856-014-1091-2
http://dx.doi.org/10.1007/s11856-014-1091-2
http://msp.org/idx/mr/3273456
http://msp.org/idx/zbl/1303.22008
http://dx.doi.org/10.4153/CJM-2009-033-3
http://dx.doi.org/10.4153/CJM-2009-033-3
http://msp.org/idx/mr/2010e:11048
http://msp.org/idx/zbl/1258.11062
http://msp.org/idx/arx/1507.07156
http://dx.doi.org/10.1007/s00209-014-1367-6
http://dx.doi.org/10.1007/s00209-014-1367-6
http://msp.org/idx/mr/3299853
http://msp.org/idx/zbl/06393879
http://dx.doi.org/10.1016/j.jalgebra.2011.02.015
http://msp.org/idx/mr/2012d:20011
http://msp.org/idx/zbl/1254.22010
http://dx.doi.org/10.2140/pjm.2012.259.445
http://msp.org/idx/mr/2988500
http://msp.org/idx/zbl/1277.22017


88 YEANSU KIM

[Mœglin 2002] C. Mœglin, “Sur la classification des séries discrètes des groupes classiques p-adiques:
paramètres de Langlands et exhaustivité”, J. Eur. Math. Soc. 4:2 (2002), 143–200. MR 2003g:22021
Zbl 1002.22009

[Mœglin 2014] C. Mœglin, “Paquets stables des séries discrètes accessibles par endoscopie tordue;
leur paramètre de Langlands”, pp. 295–336 in Automorphic forms and related geometry: assessing
the legacy of I. I. Piatetski-Shapiro, edited by J. W. Cogdell et al., Contemp. Math. 614, American
Mathematical Society, Providence, RI, 2014. MR 3220932 Zbl 1298.22019
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SIMPLY CONNECTED 6-DIMENSIONAL TORUS MANIFOLDS
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Dedicated to Professor Mikiya Masuda on his 60th birthday.

The aim of this paper is to classify simply connected 6-dimensional torus
manifolds with vanishing odd-degree cohomology. It is shown that there
is a one-to-one correspondence between equivariant diffeomorphism types
of these manifolds and 3-valent labelled graphs, called torus graphs, in-
troduced by Maeda, Masuda and Panov. Using this correspondence and
combinatorial arguments, we prove that a simply connected 6-dimensional
torus manifold with Hodd(M) = 0 is equivariantly diffeomorphic to the
6-dimensional sphere S6 or an equivariant connected sum of copies of 6-
dimensional quasitoric manifolds or S4-bundles over S2.

1. Introduction

Let M be a 2n-dimensional closed, connected, oriented manifold with an effective
n-dimensional (i.e., half-dimensional) torus T n-action. We call M , or (M, T ), a
torus manifold if MT

6= ∅ (see [Hattori and Masuda 2003]), where MT is the
set of fixed points. A toric manifold (i.e., a nonsingular, complete toric variety
viewed as a complex analytic space) with restricted T n-action is a typical example
of a torus manifold. Recall that a toric manifold is a complex (C∗)n-manifold
with a dense orbit (see [Oda 1988; Fulton 1993]), and T n is the maximal compact
subgroup of (C∗)n . A fundamental result of toric geometry tells us that there is a one-
to-one correspondence between toric manifolds and combinatorial objects called
fans. Thus, topological (more precisely, geometric) invariants of toric manifolds
can be described in terms of combinatorial invariants of fans, such as equivariant
cohomology rings, equivariant characteristic classes and other topological invariants.
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Hattori and Masuda [2003] introduced a torus manifold as the topological gener-
alization of a toric manifold. They also introduced the combinatorial objects called
multifans (see [Masuda 1999; Hattori and Masuda 2003]), and computed topological
invariants (such as equivariant characteristic classes or Todd genus for unitary torus
manifolds) in terms of multifans. However, unlike the case for toric geometry,
a multifan does not contain enough information to determine some topological
invariants of torus manifolds (e.g., equivariant cohomology). So, in 2007, Maeda,
Masuda and Panov introduced combinatorial objects called torus graphs, which
were motivated by the GKM graphs introduced by Guillemin and Zara [2001]. The
combinatorial information of torus graphs can completely determine the equivariant
cohomology rings of torus manifolds with vanishing odd-degree cohomology, i.e.,
H odd(M;Z)= 0 (in this paper, we only consider integer coefficients); see [Masuda
and Panov 2006; Maeda et al. 2007], and see also Section 3 in this paper about
torus graphs. However, in general, there is no one-to-one correspondence between
torus manifolds with H odd(M)= 0 and torus graphs.

So, we are naturally led to ask the following two questions: (1) Which subclasses
of torus manifolds are completely determined by combinatorial objects (like mul-
tifans or torus graphs)? (2) If we find such a subclass of torus manifolds, how
can we classify such torus manifolds? Several mathematicians have answered the
first question: for example, Davis and Januszkiewicz [1991] for the subclass called
quasitoric manifolds (see [Buchstaber and Panov 2002] or Section 4C in this paper),
Ishida, Fukukawa and Masuda [2013] for the subclass called topological toric
manifolds, and Wiemeler [2013] for the class of simply connected 6-dimensional
torus manifolds with H odd(M)= 0 (see Theorem 2.7). The aim of this paper is to
answer the second question for the class of simply connected 6-dimensional torus
manifolds with H odd(M)= 0 using torus graphs.

Let us briefly recall the classification results for torus manifolds with lower
dimensions. If T 1 acts on a compact 2-dimensional manifold M , then M is the
2-dimensional sphere S2, the 2-dimensional real projective space RP2, the 2-
dimensional torus T 2 or the Klein bottle. Because MT

6=∅ and M is oriented, M
must be equivariantly diffeomorphic to S2 with T 1-action (see [Kawakubo 1991]).
When dim M = 4, by Orlik and Raymond’s theorem [1970], we have the following:

Theorem 1.1 (Orlik–Raymond). Let M be a 4-dimensional simply connected torus
manifold. Then, M is equivariantly diffeomorphic to the 4-sphere S4 or an equi-
variant connected sum of copies of complex projective spaces CP2, CP2 (reversed
orientation) or a Hirzebruch surface Hk .

Here a Hirzebruch surface Hk (k ∈ Z) is a manifold which is defined by the
projectivization of the complex 2-dimensional vector bundle γ⊗k

⊕ ε over CP1,
where γ and ε are the tautological and the trivial complex line bundles over CP1.
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In this paper, we prove an Orlik–Raymond type theorem similar to Theorem 1.1
for simply connected 6-dimensional torus manifolds with H odd(M) = 0. Before
we state our main results, we introduce the result for torus manifolds that are not
simply connected. One of the consequences of Masuda and Panov’s theorem (see
Theorem 2.2 in Section 2B) is the following proposition (see also [Wiemeler 2013]).

Proposition 1.2. Let W be a 6-dimensional torus manifold with H odd(W )= 0 (it
might not be simply connected). Then, there are a simply connected 6-dimensional
torus manifold M with H odd(M)= 0 and a homology 3-sphere hS3 such that

W ∼= M #T (hS3
× T 3)

up to equivariant diffeomorphism.

Here the product manifold hS3
×T 3 is the product of hS3 and the 3-dimensional

torus T 3 with the free T 3-action on the second factor, and the symbol #T represents
the equivariant gluing along two free orbits of M and hS3

× T 3.
In Proposition 1.2, because the fundamental groups π1(W ) and π1(hS3) are

isomorphic, W is simply connected if and only if hS3 is simply connected, i.e., the
standard sphere. Our main theorem is a classification of the simply connected torus
manifolds that appear in Proposition 1.2.

Theorem 1.3. Let M be a simply connected 6-dimensional torus manifold with
H odd(M) = 0. Then, M is equivariantly diffeomorphic to the 6-sphere S6 or
obtained by an equivariant connected sum of copies of 6-dimensional quasitoric
manifolds or S4-bundles over S2 equipped with the structure of a torus manifold.

This type of classification, i.e., classification by equivariant connected sum, may
be regarded as the 6-dimensional analogue of Orlik and Raymond’s classification
in Theorem 1.1. So, in this paper, we call this theorem an Orlik–Raymond type
classification (see [McGavran 1976; Kuroki 2008]).

Remark 1.4. Izmestiev [2001] proved an Orlik–Raymond type classification for a
class of 3-dimensional small covers (i.e., the real analogue of quasitoric manifolds;
see Section 4B), called a linear model (see also [Lü and Yu 2011; Nishimura 2012]).

The organization of this paper is as follows. In Section 2, we recall the basic facts
about torus manifolds. In Section 3, we do the same for torus graphs. In particular,
Corollary 3.5 is the key fact used to prove Theorem 1.3. In Section 4, we introduce
the torus graphs of S6, quasitoric manifolds and S4-bundles over S2. These torus
graphs will be the basic graphs used to classify simply connected 6-dimensional
torus manifolds with H odd(M)= 0. In Section 5, we introduce the “oriented” torus
graphs and translate the equivariant connected sum around fixed points of torus
manifolds to the connected sum around vertices of oriented torus graphs. In Sections
6 and 7, we prove Theorem 1.3. A brief outline of the proof is as follows. By
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Corollary 3.5, there is a one-to-one correspondence between 6-dimensional simply
connected torus manifolds with H odd(M)= 0 and 3-valent torus graphs. Therefore,
to prove Theorem 1.3, it is enough to prove that an (oriented) torus graph can be
decomposed into basic torus graphs in Section 4 by the connected sum. We prove
this using combinatorial arguments.

2. Orbit spaces of torus manifolds

In this section, we recall some basic facts about torus manifolds (see [Masuda 1999]
or [Hattori and Masuda 2003] for details).

2A. Torus manifolds. A 2n-dimensional torus manifold M is said to be locally
standard if every point in M has a T -invariant open neighborhood U which is
weakly equivariantly homeomorphic to an open subset �U ⊂Cn invariant under the
standard T n-action on Cn , where two group actions (U, T ) and (�U , T ) are said to
be weakly equivariantly homeomorphic if there is an equivariant homeomorphism
from U to �U up to an automorphism on T n (see, e.g., [Kuroki 2011, Section 2.1]
for details).

Let Mi , i = 1, . . . ,m, be a codimension-2 torus submanifold in a 2n-dimensional
torus manifold M which is fixed by some circle subgroup Ti in T . Such an Mi is
a (2n− 2)-dimensional torus manifold with T/Ti -action, called a characteristic
submanifold. Because a torus manifold M is compact, the cardinality of all charac-
teristic submanifolds in M is finite. If M is locally standard, each characteristic
submanifold is also locally standard.

An omniorientation O of M is a choice of orientation for the torus manifold M
as well as for each characteristic submanifold. If there are just m characteristic
submanifolds in M , there are exactly 2m+1 omniorientations (see [Buchstaber and
Panov 2002; Hattori and Masuda 2003]). If M has a T -invariant almost complex
structure J (in this case, M is automatically locally standard), then there exists the
canonical omniorientation OJ determined by J . We call the torus manifold M with
a fixed omniorientation O an omnioriented torus manifold and denote it by (M,O).

2B. Orbit spaces of locally standard torus manifolds. The orbit space M/T of a
locally standard torus manifold M naturally admits the structure of a “topological”
manifold with corners. We next recall the basic facts about a topological manifold
with corners (cf. the definition of a smooth manifold with corners in [Lee 2013])
and introduce the structure on M/T .

We will use the notation

[n] = {0, 1, . . . , n}
and

Rn
+
= {(x1, . . . , xn) ∈ Rn

| xi ≥ 0, i = 1, . . . , n}.
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Let Qn be an n-dimensional topological manifold with boundary. A chart with
corners for Qn is a pair (V, ψV ), where V is an open subset of Qn and

ψV : V → Rn
+

is homeomorphic from V to a (relatively) open subset �V ⊂ Rn
+

. Two charts
with corners (V, ψV ) and (W, ψW ) are said to be (topologically) compatible if
the composition of functions ψV ◦ψ

−1
W : ψW (V ∩W )→ ψV (V ∩W ) is a strata-

preserving homeomorphism. This implies that if ψW (p) ∈ Rn
+

contains exactly
k zero-coordinates then ψV (p) ∈ Rn

+
also contains exactly k zero-coordinates for

0 ≤ k ≤ n. We call the collection of compatible charts with corners {(V, ψV )}

whose domains cover Qn an atlas. Then, its maximal atlas is called a structure with
corners of Qn . A topological manifold with boundary together with a structure
with corners is called a (topological) manifold with corners. Let p ∈ Qn be a point
of an n-dimensional manifold with corners Qn . For a chart (V, ψV ) with corners
such that p ∈ V , we define d(p) ∈ [n] to be the number of zero-coordinates of
ψV (p) ∈ Rn

+
. By the compatibility of charts, this number is independent of the

choice of a chart with corners which contains p. Therefore, the map d : Qn
→ [n]

is well defined. The number d(p) is called the depth of p. We call the closure of a
connected component of d−1(k), 0≤ k ≤ n, a codimension-k face. In particular, the
codimension-0 face is Qn itself. Moreover, codimension-1, codimension-(n−1) and
codimension-n faces are called facets, edges and vertices, respectively. The set of all
edges and vertices is called a one-skeleton of Qn (or a graph of Qn). By restricting
the structure with corners on Qn to faces, we may regard each codimension-k face
as an (n− k)-dimensional (sub)manifold with corners.

Definition 2.1 (manifold with faces). An n-dimensional manifold with corners Q
is said to be a manifold with faces (or a nice manifold with corners) if Q satisfies
the following conditions:

(1) For every k ∈ [n], there exists a codimension-k face.

(2) For each codimension-k face H , there are exactly k facets F1, . . . , Fk such
that H is a connected component of

⋂k
i=1 Fi ; moreover, H ∩ F 6= H for any

facet F 6= Fi (i = 1, . . . , k).

Let (M, T ) be a torus manifold. When (M, T ) is locally standard, by the differ-
entiable slice theorem, the orbit space M/T has the structure of an n-dimensional
manifold with faces. On the other hand, when M satisfies H odd(M)= 0, its orbit
space M/T satisfies a stronger condition by the following theorem (see [Masuda
and Panov 2006, Lemma 2.1 and Theorem 2]).

Theorem 2.2 (Masuda–Panov). Let M be a 2n-dimensional torus manifold. Then,
the following conditions are equivalent:
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(1) H odd(M)= 0.

(2) The T -action on M is locally standard and its orbit space M/T has the
structure of an n-dimensional face acyclic manifold with corners.

Here, an n-dimensional face acyclic manifold with corners Q is an n-dimensional
manifold with faces such that all faces F of Q (including Q) are acyclic, i.e.,
H∗(F)' H0(F)' Z. For example, if Q is a simply connected 3-dimensional face
acyclic manifold with corners, then it is easy to check that the boundary of Q is
homeomorphic to the 2-sphere S2. Moreover, in this case, we can also check that
Q itself is homeomorphic to the 3-dimensional disk D3. Therefore, as one of the
consequences of Theorem 2.2, we have the following corollary.

Corollary 2.3. Let M be a simply connected 6-dimensional torus manifold with
H odd(M)= 0. Then, its orbit space M/T is homeomorphic to the 3-dimensional
disk.

By the definition of a manifold with faces Q, we can define a simplicial poset
(partially ordered set) P(Q), called a face poset of Q (see [Masuda 2005]), to be the
set of faces in Q with the empty set ∅ ordered by inclusion, where ∅ is the smallest
element under this ordering, say �. We often denote the face poset structure of
Q by (P(Q),�). Let Q1 and Q2 be n-dimensional manifolds with faces. We say
Q1 and Q2 are combinatorially equivalent if their face posets (P(Q1),�1) and
(P(Q2),�2) are isomorphic as posets (i.e., there is an order-preserving bijection
between them). We denote the equivalence by Q1 ≈c Q2. By the definition of
weakly equivariant homeomorphism, if two locally standard torus manifolds M1

and M2 are weakly equivariantly homeomorphic then M1/T ≈c M2/T .

2C. Characteristic functions. Let M be a 2n-dimensional locally standard torus
manifold. By the argument demonstrated in Section 2B, the orbit map π : M→
M/T = Q may be regarded as the projection onto some manifold with faces Q.
Let F(Q)= {F1, . . . , Fm} ⊂ P(Q) be the set of all facets in Q. By the definition
of facet Fi ∈ F(Q), its preimage π−1(Fi ) is a characteristic submanifold Mi .
Then, there exists the circle subgroup Ti (⊂ T ) fixing Mi = π

−1(Fi ) (recall that
dim Mi = 2n− 2). Recall that Ti is determined by a primitive element in tZ ' Zn

(the lattice of the Lie algebra of T ). Therefore, using this primitive element (up to
sign) in tZ, we can define the map

λ : F(Q)→ tZ/{±1},

where tZ/{±1} represents the quotient of tZ by signs. We call λ a characteristic
function.

Now the choice of omniorientation O of M determines the sign of λ as follows.
Fix an omniorientation O of M . Namely, we fix the orientation of the tangent bundle
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of M (resp. Mi ), say τ (resp. τi ). Restricting τ to the submanifold Mi , say τ |Mi ,
we obtain the T n-equivariant decomposition τ |Mi ' τi ⊕ νi , where νi is the Ti -
equivariant normal bundle of Mi . Therefore, because we fix the orientation of τ |Mi

(induced from the orientation of τ ) and that of τi , we may choose an orientation
of νi such that the orientation of τ |Mi coincides with that of τi ⊕ νi (thus, we may
regard νi as the complex line bundle over Mi ). Because Ti acts on νi , we may
choose an orientation of Ti such that the Ti -action preserves the orientation of νi .
This orientation of Ti determines the sign of λ(Fi ) for i = 1, . . . ,m. In this way,
we have the function

λO : F(Q)→ tZ.

In this paper, this is called an omnioriented characteristic function (of (M,O)).

Remark 2.4. The characteristic function defined in [Wiemeler 2013] may be re-
garded as the characteristic function λ above. On the other hand, the characteristic
function defined in [Davis and Januszkiewicz 1991] may be regarded as the char-
acteristic function λO above by taking an appropriate omniorientation (see also
[Buchstaber and Panov 2002, Section 5.2]).

Let p ∈ MT . We define the subset Ip ⊂ [m] by

Ip = {i ∈ [m] | p ∈ Mi }.

By the differentiable slice theorem around p ∈ MT , we have that its cardinality |Ip|

equals n for every p ∈ MT . Put Ip = {i1, . . . , in}. Because the T -action on M is
effective, {λ(Fi1), . . . , λ(Fin )} spans t∗Z/{±1}, i.e., the determinant of the induced
(n× n)-matrix

(λ(Fi1) · · · λ(Fin ))

satisfies

(2-1) det(λ(Fi1) · · · λ(Fin ))=±1.

Similarly, we have

(2-2) det(λO(Fi1) · · · λO(Fin ))=±1

for each set of n facets such that
⋂n

j=1 Fi j = {p} for some vertex p ∈ Q (called the
facets around a vertex).

Motivated by the above observations, we may abstractly define the characteristic
function on a manifold with faces as follows (see [Buchstaber and Panov 2002;
Davis and Januszkiewicz 1991] for simple polytopes and [Masuda and Panov 2006;
Wiemeler 2013] for manifolds with faces).

Definition 2.5. Let Q be an n-dimensional manifold with faces and F(Q) be the set
of its facets. Let tZ be the lattice of the Lie algebra of T n and tZ/{±1} be its quotient
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by {±1}. A function λ :F(Q)→ tZ/{±1} is said to be a characteristic function if λ
satisfies (2-1) for the facets around every vertex, and a function λO : F(Q)→ tZ is
said to be an omnioriented characteristic function if λO satisfies (2-2) for the facets
around every vertex.

We denote an n-dimensional manifold with faces Q with its characteristic func-
tion λ (resp. omnioriented characteristic function λO) by (Q, λ) (resp. (Q, λO)).

Let Q1 and Q2 be manifolds with faces, and let λ1 and λ2 be their characteristic
functions and λO1 and λO2 be their omnioriented characteristic functions, respectively.
Assume that Q1≈c Q2, induced by the bijective map f̃ :P(Q1)→P(Q2). Denote
its restriction onto the set of facets by

f = f̃ |F(Q1) : F(Q1)→ F(Q2).

We say that (Q1, λ1) and (Q2, λ2) are combinatorially equivalent if the following
diagram commutes:

F(Q1)

f
��

λ1
// tZ/{±1}

Id
��

F(Q2)
λ2
// tZ/{±1}

Similarly, (Q1, λO1) and (Q2, λO2) are combinatorially equivalent if the following
diagram commutes:

F(Q1)

f
��

λO1
// tZ

Id
��

F(Q2)
λO2
// tZ

Note that the characteristic function λ can be obtained by ignoring signs from the
omnioriented characteristic function λO; we call such a λ an induced characteristic
function from λO. On the other hand, by choosing a sign for each facet, we can
obtain an omnioriented characteristic function λO from the characteristic function λ;
we call such a λO an induced oriented characteristic function from λ.

Lemma 2.6. If (Q1, λO1) and (Q2, λO2) are combinatorially equivalent, then their
induced (Q1, λ1) and (Q2, λ2) are also combinatorially equivalent.

If (Q1, λ1) and (Q2, λ2) are combinatorially equivalent, then there are induced
omnioriented characteristic functions λO1 and λO2 such that (Q1, λO1) and (Q2, λO2)

are combinatorially equivalent.

We now introduce one of the key facts used to prove our main theorem (see
[Wiemeler 2013, Theorems 1.3 and 6.1]).

Theorem 2.7 (Wiemeler). Let M1 and M2 be 6-dimensional simply connected
torus manifolds with H odd(M1)= H odd(M2)= 0, and let (Q1, λ1) and (Q2, λ2) be
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their orbit spaces with characteristic functions. Then, the following statements are
equivalent:

(1) (Q1, λ1) and (Q2, λ2) are combinatorially equivalent.

(2) M1 and M2 are equivariantly homeomorphic.

(3) M1 and M2 are equivariantly diffeomorphic.

Therefore, by Corollary 2.3 and Theorem 2.7, to classify all 6-dimensional simply
connected torus manifolds with H odd(M)= 0, it is enough to classify all (Q, λ)’s
up to combinatorial equivalence, where Q is a 3-dimensional disk equipped with
the structure of a manifold with faces.

3. Torus graph induced from manifold with faces

Let (M,O) be an omnioriented locally standard 2n-dimensional torus manifold and
(Q, λO) be its orbit space with an omnioriented characteristic function. From the
one-skeleton of (Q, λO), we can define a labelled graph called a torus graph. One
of the key steps in proving the main theorem is to classify all possible torus graphs
(see Section 7). We first recall the definition of torus graph given by Maeda et al.
[2007].

Let 0 be the graph of Q. Let V (0) be its vertices and E(0) be its oriented edges,
i.e., we distinguish two edges pq and qp. For p ∈ V (0), we denote the set of
outgoing edges from p by E p(0). Because Q is an n-dimensional manifold with
faces, |E p(0)| = n and each edge e ∈ E(0) is a connected component of

⋂n−1
i=1 Fi

for some F1, F2, . . . , Fn−1 ∈ F(Q). Moreover, for a p ∈ V (0) which is one of
two vertices on e, there is another facet Fn ∈ F(Q) such that {p} is a connected
component of

⋂n
i=1 Fi . In other words, Fn may be regarded as a normal facet of

e ∈ E(0) on p ∈ V (0). Put λO(Fi ) = ai ∈ tZ ' Zn . Then, there exists a unique
α ∈ t∗Z such that

(3-1) 〈α, ai 〉 = 0 for i = 1, . . . , n− 1 and 〈α, an〉 = +1,

where 〈 · , · 〉 represents the pairing of t∗ and t. Therefore, in this way, we can define
a map A : E(0)→ t∗Z from the omnioriented characteristic function λO. This map A

is called an axial function on 0. We call the labelled graph (0,A) a torus graph
induced from (Q, λO) (or equivalently (M,O)). We denote such a torus graph by
0(Q, λO) (or (0M ,AM)). We can easily check the following proposition using the
definition of torus graph (see also [Maeda et al. 2007]).

Proposition 3.1. Let (0,A) be a torus graph induced from (Q, λO). Then, 0 is an
n-valent regular graph, i.e., |E p(0)| = n for all p ∈ V (0), and (0,A) satisfies the
following conditions:

(1) A(e)=±A(ē), where ē is the orientation-reversed edge of e.
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(2) {A(e) | e ∈ E p(0)} spans t∗Z for all vertices p ∈ V (0).

(3) There is a bijection ∇pq : E p(0)→ Eq(0) for all edges whose initial vertex is
p and terminal vertex is q such that

(a) ∇ē =∇
−1
e ,

(b) ∇e(e)= ē,
(c) A(∇pq(e))−A(e)≡ 0 mod A(pq) for all e ∈ E p(0).

We call ∇ = {∇e | e ∈ E(0)} a connection on (0,A).

Remark 3.2. The original definition of torus graph (induced from an omnioriented
torus manifold) uses tangential representations; see [Masuda and Panov 2006;
Maeda et al. 2007]. The definition of torus graph given above is essentially the
same as the original definition.

In [Maeda et al. 2007], motivated by the GKM graph introduced by Guillemin
and Zara [2001], an n-valent graph 0 with a label A : E(0)→ t∗Z which satisfies
the three conditions in Proposition 3.1 is called an (abstract) torus graph (i.e., there
might be no geometric objects which define (0,A)).

We next define the equivalence relation between two torus graphs. We call the
map f :01 = (V (01), E(01))→02 = (V (02), E(02)) a graph isomorphism if the
restricted maps f |V : V (01)→ V (02) and f |E : E(01)→ E(02) are bijective and
the following diagram commutes:

E(01)

πV1
��

f |E
// E(02)

πV2
��

V (01)
f |V
// V (02)

Here the map πV : E(0)→ V (0) is the projection onto the initial vertex, i.e.,
πV (pq)= p. In other words, the bijection f |V preserves the edges. Now we may
define the equivalence relation.

Definition 3.3. Let (01,A1) and (02,A2) be torus graphs. We say (01,A1) and
(02,A2) are equivalent if there is a graph isomorphism f : 01→ 02 such that the
following diagram commutes:

E(01)

f |E
��

A1
// t∗Z

Id
��

E(02)
A2
// t∗Z
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Assume (0,A)=0(Q, λO). Let Pk(0,A) be the set of k-valent torus subgraphs
in (0,A), i.e., k-valent subgraphs in 0 closed under the connection ∇, where
−1≤ k ≤ n and we define P−1(0,A)= {∅}. Then, the set

P(0,A)=

n⋃
k=−1

Pk(0,A)

admits the structure of a simplicial poset by inclusion (see [Maeda et al. 2007]).
We denote this structure by (P(0,A),�). Let P(Q) be the face poset of Q (see
Section 2B) and Pk(Q) be the set of all k-dimensional faces, where −1 ≤ k ≤ n
and P−1(Q)= {∅}. Then, each element of Pk(0,A) is nothing but the graph of
an element in Pk(Q). This implies that the poset (P(0,A),�) is equivalent to the
poset (P(Q),�). Therefore, we have the following lemma.

Lemma 3.4. The following two statements are equivalent:

(1) Two manifolds with faces with omnioriented characteristic functions (Q1, λO1)

and (Q2, λO2) are combinatorially equivalent.

(2) Their induced torus graphs 0(Q1, λO1) and 0(Q2, λO2) are equivalent.

By Lemma 2.6, Theorem 2.7 and Lemma 3.4, we have the following corollary.

Corollary 3.5. Let (M1, T ) and (M2, T ) be 6-dimensional simply connected torus
manifolds with vanishing odd-degree cohomology. Then, the following statements
are equivalent:

(1) (M1, T ) and (M2, T ) are equivariantly diffeomorphic.

(2) Their orbit spaces, i.e., 3-dimensional disks with the structures of manifolds
with faces, with characteristic functions (M1/T, λ1) and (M2/T, λ2) are com-
binatorially equivalent.

(3) There are omnioriented characteristic functions λO1 and λO2 such that their in-
duced 3-valent torus graphs 0(M1/T, λO1) and 0(M2/T, λO2) are equivalent.

Therefore, to prove our main theorem (Theorem 7.1), it is enough to classify all
3-valent torus graphs (0,A), induced from (M,O), up to equivalence.

4. Basic 6-dimensional torus manifolds

Let (M, T ) be a simply connected 6-dimensional torus manifold with H odd(M)= 0,
and let (0M ,AM) (= (0,A)) be its torus graph induced by some omniorientation.
As a preliminary to proving the main theorem (Theorem 7.1), in this section
we introduce some of the basic torus graphs (0,A) and their corresponding 6-
dimensional torus manifolds (M, T ).
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Figure 1. The torus graph (0sp,Aα,β,γ ), where α, β, γ ∈ t∗Z ' Z3

are a Z-basis.

4A. 6-sphere. Because the induced torus graphs from (M, T ) are 3-valent, if there
is a 3-multiple edge, i.e., three edges that are incident to the same two vertices, then
it follows from Proposition 3.1 that such a torus graph must be the torus graph in
Figure 1, denoted (0sp,Aα,β,γ ).

Put α= k11e1+k12e2+k13e3, β = k21e1+k22e2+k23e3 and γ = k31e1+k32e2+

k33e3, using the standard basis e1, e2, e3 in t∗Z ' Z3. Then, we have

(4-1) det

k11 k12 k13

k21 k22 k23

k31 k32 k33

=±1.

Let S6
⊂ C3

⊕R be the unit sphere, i.e., the set (z1, z2, z3, r) ∈ C3
⊕R such

that |z1|
2
+ |z2|

2
+ |z3|

2
+ r2
= 1. Define the T 3-action on the first three complex

coordinates in S6 by

(4-2) (t1, t2, t3)(z1, z2, z3, r) 7→ (ρ1(t)z1, ρ2(t)z2, ρ3(t)z3, r),

where t = (t1, t2, t3) ∈ T and ρi : T → S1, i = 1, 2, 3, is a 1-dimensional complex
representation defined by

ρi (t1, t2, t3)= tki1
1 tki2

2 tki3
3 .

Then, by choosing an appropriate omniorientation on S6, we have that its induced
torus graph is equivalent to (0sp,Aα,β,γ ). Therefore, using Corollary 3.5, we have
the following lemma.

Lemma 4.1. Let (M,O) be an omnioriented 6-dimensional simply connected torus
manifold with H odd(M)=0. If its induced torus graph is (0sp,Aα,β,γ ), then (M, T )
is equivariantly diffeomorphic to one of (S6, T ) defined by (4-2).

4B. S4-bundles over S2. Assume that a 3-valent torus graph (0,A) does not have
3-multiple edges but does have multiple edges, i.e., two edges that are incident to
the same two vertices. In this section, we classify the easiest case of such torus
graphs.

Because 0 is a one-skeleton of a 3-dimensional manifold with faces Q, we have
|V (0)| ≥ 4. Assume that |V (0)| = 4. Then, we can easily check that such a torus
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γ

γ
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γ + b α

β + a α

β + a α
β

Figure 2. The torus graph (0S,AS)= (0S,Aε,a,b
α,β,γ ), where ε=±1,

a, b ∈ Z, and α, β, γ ∈ t∗Z are a Z-basis of t∗Z.

manifold is the one-skeleton of the 3-simplex (see Figure 3 in Section 4C) or the
graph drawn in Figure 2, say 0S . It is well known that the torus manifold whose
torus graph is the one-skeleton of the 3-simplex is equivariantly diffeomorphic to the
complex projective space with some T -action (see, e.g., [Davis and Januszkiewicz
1991], and see also Figure 3 in Section 4C). So, we only study the torus manifold
which induces the graph 0S . Because Q is homeomorphic to D3, we may regard
a Q whose one-skeleton is 0S as the product D2

× I , where D2 is the 2-dimensional
disk and I is the interval. By considering all functions on facets of Q which satisfy
(2-2), we can classify all omnioriented characteristic functions λO on Q. Then, in
the same way we induced the axial function AS from (Q, λO) in Section 3, we can
obtain all possible axial functions on 0S , as shown in Figure 2.

The torus graph (0S,AS) in Figure 2 can be induced from an S4-bundle over S2

as follows. First, by choosing ε = ±1, we may define two free T 1-actions on
S3
⊂ C2:

(w, z) 7→ (t−1w, tεz).

We denote S3 with the above T 1-action by S3
ε . Note that S3

ε /T 1 is diffeomorphic
to the 2-sphere S2, and a complex line bundle over S2 can be denoted by

S3
ε ×T 1 Ck,

where Ck is the complex 1-dimensional T 1-representation space by k-times rotation
for some k ∈ Z. Let S3

ε ×T 1 R be the trivial real line bundle over S2. Take the unit
sphere bundle of the following Whitney sum of three vector bundles for a, b ∈ Z:

S3
ε ×T 1 (Ca ⊕Cb⊕R).

Then, we obtain the S4-bundle over S2 denoted by

M(ε, a, b)= S3
ε ×S1 S(Ca ⊕Cb⊕R),
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for ε =±1, a, b ∈ Z. Namely, we can identify elements in M(ε, a, b) by

[(w, z), (x, y, r)] = [(t−1w, tεz), (tax, tb y, r)]

for any t ∈ T 1 such that |w|2+|z|2= 1 and |x |2+|y|2+r2
= 1. Define a T 3-action

on M(ε, a, b) by

[(w, z), (x, y, r)] 7→ [(t1w, z), (t2x, t3 y, r)],

where (t1, t2, t3) ∈ T 3. Fix an omniorientation on M(ε, a, b) by the induced ori-
entations from S3

ε × S4
⊂ C2

× (C⊕ C⊕ R). Then, considering the tangential
representations around each fixed point, it is easy to check that the induced torus
graph is (0S,Aε,a,b

e1,e2,e3
), where e1, e2, e3 are the standard basis of tZ'Z3. Therefore,

by taking the appropriate automorphism of T 3, we can construct each torus graph
(0S,AS) in Figure 2 from M(ε, a, b). Note that if ε = −1 and a = b, then this
is nothing but one of the torus manifolds which appeared in the classifications of
torus manifolds with codimension-1 extended actions in [Kuroki 2011].

By the argument above and Corollary 3.5, we have the following lemma.

Lemma 4.2. Let (M,O) be an omnioriented 6-dimensional simply connected torus
manifold with H odd(M) = 0. If its induced torus graph has four vertices, then
(M, T ) is equivariantly diffeomorphic to one of the following:

(1) CP3 with the standard T 3-action up to automorphism of T 3;

(2) M(ε, a, b) for some ε =±1 and a, b ∈ Z.

4C. 6-dimensional quasitoric manifolds. Assume that there are no multiple edges
in a 3-valent torus graph (0,A), i.e., there are no two edges that are incident to the
same two vertices. A graph 0 is called simple if 0 does not have both multiple
edges and loops. In this section and in Section 5, we study simple torus graphs
which can be realized as the one-skeleton of a manifold with faces homeomorphic
to D3.

The typical example of such torus manifolds whose torus graphs are simple is
a quasitoric manifold (introduced by Davis and Januszkiewicz [1991]; see also
[Buchstaber and Panov 2002]). A quasitoric manifold is defined by a torus manifold
whose orbit space is a simple convex polytope, i.e., a convex polytope admitting the
structure of a manifold with faces. For example, the complex projective space CPn

with the standard T n-action is the quasitoric manifold whose orbit space is the
n-dimensional simplex. Figure 3 shows the torus graph induced from (CP3,OC),
i.e., the omniorientation OC induced from the standard complex structure on CP3

and the standard T -action on CP3.
We next characterize when torus graphs are induced from simple convex poly-

topes, i.e., induced from quasitoric manifolds. The Steinitz theorem (see [Ziegler
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Figure 3. The torus graph induced from (CP3,OC).

1995, Chapter 4]) tells us that a graph 0 is the one-skeleton of a 3-dimensional
convex polytope if and only if 0 is a simple, planar and 3-connected graph, where 0
is called a 3-connected graph if it remains connected whenever fewer than three
vertices are removed. It easily follows from the Steinitz theorem that we have the
following lemma.

Lemma 4.3. Let Q be a manifold with faces and 0 be its graph. Assume that Q is
homeomorphic to the 3-disk D3 and there are no multiple edges. Then, the following
statements are equivalent:

(1) Q is combinatorially equivalent to a 3-dimensional simple convex polytope P.

(2) 0 is a 3-connected graph.

Combining this result with Corollary 3.5, we have the following fact.

Lemma 4.4. Let (M,O) be an omnioriented 6-dimensional simply connected torus
manifold with H odd(M)= 0. Then, the following statements are equivalent:

(1) (M, T ) is equivariantly diffeomorphic to a quasitoric manifold.

(2) Its induced torus graph 0 is a 3-connected graph with no multiple edges.

5. Connected sum of torus graphs and other 6-dimensional torus manifolds

By the arguments in Section 4, only the following case remains: the simply con-
nected 6-dimensional torus manifolds with H odd(M) = 0 whose induced torus
graphs are simple but not 3-connected. Such torus manifolds can be constructed
using the connected sum of “oriented” torus graphs. The purpose of this section is
to introduce oriented torus graphs and their connected sum (see also [Darby 2015]).

We first recall the equivariant connected sum of torus manifolds. Let M1, M2

be 2n-dimensional torus manifolds and p ∈ MT
1 , q ∈ MT

2 be fixed points. Using
the slice theorem, we may take T -invariant open neighborhoods U1 ⊂ M1 of p
and U2 ⊂ M2 of q . Assume that U1 and U2 are equivariantly diffeomorphic. Then,
U1\{p} and U2\{q} are equivariantly diffeomorphic to S2n−1

× I , where S2n−1
⊂Cn

with some effective T n-action and I = (−ε, ε) with the trivial T n-action for some
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ε > 0. We glue these two neighborhoods by ϕ defined by the identity on S2n−1 and
the map r 7→ −r on I for r ∈ I . Namely, we can glue M1 \ {p} and M2 \ {q} by
the identification

(5-1) M1 \{p} ⊃U1 \{p}
'
−→ S2n−1

× I
ϕ
−→ S2n−1

× I
'
−→U2 \{q} ⊂ M2 \{q}.

The T n-manifold obtained in this way is denoted by M1 # M2 or M1 #(p,q) M2 (if
we emphasize fixed points p ∈ MT

1 and q ∈ MT
2 ). Because each torus manifold

has more than two fixed points, M1 # M2 is again a torus manifold. We call this
operation the equivariant connected sum.

Lemma 5.1. If two torus manifolds M1 and M2 are simply connected and H odd(M1)

= H odd(M2)= 0, then M1 # M2 is also simply connected and H odd(M1 # M2)= 0.

Proof. It is easy to check the statement using van Kampen’s theorem and the
Mayer–Vietoris exact sequence. �

Assume that (M1,O1) and (M2,O2) are 6-dimensional omnioriented simply
connected torus manifolds with H odd(M1) = H odd(M2) = 0. Let (01,A1) and
(02,A2) be their induced 3-valent torus graphs. Assume that we can glue p ∈ MT

1
and q ∈ MT

2 by the connected sum. Then, by considering the restriction of ϕ in
(5-1) onto S2n−1

⊂ Cn , i.e., the identity map, the axial functions around p ∈ V (01)

and q ∈ V (02) must satisfy

(5-2) {A1(e) | e ∈ E p(01)} = {A2(e) | e ∈ Eq(02)}.

However, at this stage, the torus graphs (01,A1) and (02,A2) do not contain
information about the orientations of M1 and M2. To do the connected sum, we
need the orientations around p ∈ MT

1 and q ∈ MT
2 . To encode the orientations

around fixed points, we need the following notion.

Definition 5.2. Let (0,A) be a torus graph. We call a triple (0,A, σ ) with a map
σ : V (0)→{+1,−1} an oriented torus graph if σ satisfies the following condition
for all e ∈ E(0):

σ(πV (e))A(e)=−σ(πV (ē))A(ē),

where πV (e) ∈ V (0) is the initial vertex of e ∈ E(0), i.e., for e = pq, πV (e)= p
and πV (ē)= q . We call such a map σ an orientation of (0,A).

Remark 5.3. Let (M,O) be an omnioriented torus manifold. The oriented torus
graph (0,A, σ ) of (M,O) is defined as follows. Let p ∈ MT . Then, there ex-
ist exactly n characteristic submanifolds M1, . . . ,Mn such that p is a connected
component of

⋂n
i=1 Mi . Now the fixed orientations of M1, . . . ,Mn determine the

decomposition of the tangential representation; i.e.,ψp :Tp M
'
→V (α1)⊕· · ·⊕V (αn)

is determined by fixing the orientations of M1, . . . ,Mn . On the other hand, the



ORLIK–RAYMOND CLASSIFICATION OF 6-DIMENSIONAL TORUS MANIFOLDS 105

orientation of M determines the orientation of Tp M . So, we define the map
σ : V (0)= MT

→ {+1,−1} by

σ(p)=
{
+1 if ψp preserves the orientations,
−1 if ψp reverses the orientations.

Let (01,A1, σ1) and (02,A2, σ2) be the induced oriented torus graphs from
(M1,O1) and (M2,O2). If we can glue p ∈ MT

1 and q ∈ MT
2 by the connected sum,

then both (5-2) and

(5-3) σ1(p) 6= σ2(q)

hold ((5-3) corresponds to the fact that the orientations on Tp M1 and Tq M2 are
different). The induced (oriented) torus graph by M1 #(p,q) M2 is nothing but the
one-skeleton of the connected sum Q1 #(p,q) Q2 of manifolds with faces, where Qi

is the orbit space of Mi , i = 1, 2 (see [Izmest′ev 2001, Definition 3; Kuroki
2010, Section 3.1] for details about the connected sum of polytopes). Therefore,
conversely, if p ∈ V (01) and q ∈ V (02) satisfy (5-2) and (5-3), then we can do the
connected sum of (oriented) torus graphs between (01,A1, σ1) and (02,A2, σ2),
say (0,A, σ ) = (01,A1, σ1) # (02,A2, σ2) or (01,A1, σ1) #(p,q) (02,A2, σ2) (if
we emphasize the vertices p ∈ V (01) and q ∈ V (02)). More precisely, (0,A, σ )=

(01,A1, σ1) # (02,A2, σ2) is defined as follows (see Figure 4).

(1) V (0)= V (01) \ {p} t V (02) \ {q}.

(2) E(0) is given by

(E(01) \ {pp1, pp2, pp3})t (E(02) \ {qq1, qq2, qq3})t {p1q1, p2q2, p3q3},

where A1(ppi )=A2(qqi ) for i = 1, 2, 3.

(3) A : E(0)→ (t3Z)
∗ is defined by A(e) = A1(e) and A( f ) = A2( f ) for e in

E(01) \ {pp1, pp2, pp3} and f in E(02) \ {qq1, qq2, qq3}, and A(pi qi ) =

A1(pi p) and A(qi pi )=A2(qi q).

(4) σ : V (0)→ {+1,−1} is defined by σ(r) = σ1(r) for r ∈ V (01) \ {p} and
σ(r ′)= σ2(r ′) for r ′ ∈ V (02) \ {q}.

a α a αa′α a′α

c′γ
c′γ

b′β b′βb β b ββ β
α α

γ γ
c γ

c γ

p q

Figure 4. The local figure of the connected sum #(p,q) of a
torus manifold (left to right) and its inverse #−1

(p,q) (right to left),
where σ1(p) 6= σ2(q). Here, α, β, γ are a Z-basis of (t3Z)

∗ and
a, a′, b, b′, c, c′ =±1.
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Figure 5. The torus graph (with appropriate orientations, e.g,
σ(p) = +1, σ(q) = −1, σ(r) = +1, σ(s) = −1) induced from
CP3 # (S2

× S4) # CP3.

Then, we can easily check that (0,A, σ ) is an oriented torus graph. Using
Corollary 3.5 and the arguments above, we have the following lemma.

Lemma 5.4. Let M1 and M2 be 6-dimensional simply connected torus mani-
folds with H odd(M1) = H odd(M2) = 0, and let (01,A1, σ1) and (02,A2, σ2) be
their respective induced oriented torus graphs from some omniorientations. If
(0,A, σ ) = (01,A1, σ1) #(p,q) (02,A2, σ2), then (0,A, σ ) is the oriented torus
graph induced from M = M1 #(p,q) M2 with some omniorientation.

Using the connected sum, we can construct the torus manifolds which do not
appear in Section 4. One such example is

CP3 # (S2
× S4) # CP3,

where CP3 is the reversed orientation of CP3. Figure 5 shows the torus graph
induced from CP3 # (S2

× S4)# CP3 (see the axial functions in Figures 2 and 3 for
details). We can easily check that this graph is 3-valent, simple and planar but not
3-connected; therefore, by Lemma 4.4, this manifold is not a quasitoric manifold.

6. Some combinatorial lemmas

To prove the main theorem (Theorem 7.1), we need the following two lemmas.
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1

1
p

p
FF

Γ

Figure 6. The figure explained in the proof of Lemma 6.1. The
facet F has a self-intersection on the edge p1 p.

Lemma 6.1. Let Q be a 3-dimensional manifold with faces which is homeomorphic
to D3 and 0 be its graph. Then, 0 \ {p} is connected for all vertices p ∈ V (0).

Proof. Because Q is homeomorphic to the 3-disk D3, 0 may be regarded as a
planar graph by the stereographic projection of ∂Q = S2. Assume 0 \ {p} is not
connected. Because Q is a 3-dimensional manifold with faces, there are exactly
three outgoing edges from p, say pp1, pp2 and pp3. Therefore, we may assume
that there exists a connected component 01 in 0 \ {p} such that p1 ∈ V (01) but
p2, p3 6∈ V (01) (see Figure 6). Since 01 is also a planar 3-valent graph except on
the vertex p1 (because p 6∈ V (01)), there is a 2-valent subgraph in 01, say ∂01,
such that ∂01 splits ∂Q = S2 into two connected components H+ and H−, where
01\∂01⊂ H+\∂01 but 01 6⊂ H−. This implies that there is a facet F in Q such that
∂F contains ∂01 and p1 p. However, in this case, p1 p must be a self-intersection
edge of F (see Figure 6). This contradicts that Q is a manifold with faces. �

By Lemma 6.1, if 0 is not 3-connected, then there are two vertices p, q ∈ V (0)
such that 0 \ {p, q} is not connected but both 0 \ {p} and 0 \ {q} are connected.
More precisely, we have the following lemma.

Lemma 6.2. Let Q be a 3-dimensional manifold with faces which is homeomorphic
to D3 and 0 be its graph. Assume that there are two vertices p, q ∈ V (0) such that
{p, q} 6⊂ V (F) for any facets F , i.e, p and q are not on the same facet F. Then,
0 \ {p, q} is connected.

Proof. Assume that p and q are not on the same facet of Q. Because Q is a
manifold with faces, there are mutually distinct facets F1, . . . , F6 such that {p} is a
component of F1∩F2∩F3 and {q} is a component of F4∩F5∩F6, and we can take
vertices p1, p2, p3 and q1, q2, q3 such that ppi and qqi are all outgoing edges from
p and q for i = 1, 2, 3. Take two vertices r and s from 0 \ {p, q}. By Lemma 6.1,
0 \ {q} is connected. So there is a path γ from r to s in 0 \ {q}. If γ does not go
through p, then r and s are connected in 0 \ {p, q}. Assume that this path γ goes
through p. Then γ goes through exactly two vertices pi , p j (we may assume p1

and p2). Moreover, one of the facets F1, F2, F3, say F1, contains both p1 and p2.
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Note that F1 corresponds to the 2-valent subgraph in 0. Therefore, we can take the
path γp connecting p1 and p2 on F1 which is not the path p1 pp2. Because p and q
are not on the same facet, in particular q 6∈ V (F1), the path γp does not contain q.
Hence, the connected subgraph γ ∪ γp contains both r and s but does not contain
both p and q. Thus, we can take the path γ ′ from r to s in γ ∪ γp ⊂ 0 \ {p, q}.
This establishes that 0 \ {p, q} is connected. �

In summary, by Lemmas 6.1 and 6.2, we have the following fact.

Corollary 6.3. Let 0 be a one-skeleton of a 3-dimensional manifold with faces Q.
Then, for all p ∈ V (0), 0 \ {p} is connected. Furthermore, if 0 \ {p, q} is not
connected, then p and q are on the same facet.

7. Proof of main theorem

The main theorem of this paper can be stated as follows:

Theorem 7.1. Let M be a simply connected 6-dimensional torus manifold with
H odd(M)= 0. Then, either M is equivariantly diffeomorphic to

(1) S6
⊂ C3

⊕R with a torus action induced from a (faithful) representation of T 3

on C3,

(2) a 6-dimensional quasitoric manifold X , or

(3) an S4-bundle over S2 which is equivariantly diffeomorphic to M(ε, a, b) for
some ε =±1, a, b ∈ Z;

or else there are some 6-dimensional quasitoric manifolds Xh for some h= 1, . . . , k,
and some S4-bundles over S2, say Si = M(εi , ai , bi ) (for some εi =±1, ai , bi ∈ Z

and i = 1, . . . , `), such that M is equivariantly diffeomorphic to( k

#
h=1

Xh

)
#
(

`

#
i=1

Si

)
,

where # represents the equivariant connected sum around fixed points, k+`≥ 2 for
k ≥ 0, `≥ 1, and the case k = 0 means that there is no Xh factor.

In this final section, we prove Theorem 7.1.
Let M be a simply connected 6-dimensional torus manifold with H odd(M)= 0,

Q be its orbit space which is homeomorphic to D3 and (0M ,AM) be its induced
oriented torus graph (we omit the orientation).

Because 0M is a one-skeleton of a manifold with faces which is homeomorphic
to D3, it is easy to check that |V (0M)| 6= 1, 3. If |V (0M)| = 2, by Lemma 4.1, we
have that M is equivariantly diffeomorphic to S6, i.e., statement (1). If |V (0M)|= 4,
it follows from Lemma 4.2 that M is equivariantly diffeomorphic to a quasitoric
manifold CP3 or M(ε, a, b) for some ε = ±1, a, b ∈ Z, i.e., statement (2) or (3)
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occurs. So we need only prove the case when |V (0M)| ≥ 5.
We first establish the following lemma.

Lemma 7.2. Assume that |V (0M)| ≥ 5 and there is a multiple edge in 0M . Then,
(0M ,AM) can be decomposed as

(0M ,AM)= (0X ,AX ) # (0S1,AS1) # · · · # (0S`′ ,AS`′ )

or
(0M ,AM)= (0S1,AS1) # · · · # (0S`′ ,AS`′ ),

where (0X ,AX ) is a torus graph without multiple edges and Si = M(εi , ai , bi ) for
i = 1, . . . , `′.

Proof. Assume two vertices p and q are connected by a multiple edge, i.e., two
edges (see the bottom graph in Figure 7). Then, by the connection of the torus
graph (see Proposition 3.1), it is easy to check that the axial functions around the

β β + a α

β + a α

β + a′ α γ + b′ α

β + a αβ

ε α

ε α

ε′ α
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ε αα

γ

γ

γ + b α

γ + b α

β + a α

β + a′ α γ + b′ α
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ε′ α

γ + b α

γ + b α

p

q

β

β

α

α

γ

γ

p

q

r

r

#

Figure 7. We may regard α, β, γ as any generators in (t3Z)
∗ and

a, a′, b, b′ ∈ Z and ε, ε′ = ±1. The bottom graph is (0M ,AM),
the upper-left graph is (0S1,AS1) and the upper-right graph is
(0M ′,AM ′). If we fix the orientation of (0M ,AM) then the orien-
tations of (0S1,AS1) and (0M ′,AM ′) are automatically determined.
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vertex r of the bottom graph in Figure 7 satisfy the axial functions expressed in that
figure, where we can take α, β, γ as a Z-basis of (t3Z)

∗. In this case, we can do an
(inverse) connected sum such as the one expressed in Figure 7 (from the bottom to
the top). Then, the induced torus graph (0M ,AM) is decomposed into two induced
torus graphs (0S1,AS1) and (0M ′,AM ′), where M ′ is some simply connected 6-
dimensional torus manifold with H odd(M ′)= 0 by Lemma 5.1. Namely, we have

(0M ,AM)= (0M ′,AM ′) # (0S1,AS1).

If there are no multiple edges in 0M ′ , then we may put 0M ′ = 0X . Assume that
there is a multiple edge in 0M ′ . If there are only four vertices in 0M ′ , then we
may put M ′ as S2 = M(ε2, a2, b2) by Lemma 4.2. When there are more than four
vertices in 0M ′ , we iterate the above argument, establishing the lemma. �

Therefore, to prove Theorem 7.1, it is enough to prove the following lemma.

Lemma 7.3. Assume that |V (0M)| ≥ 5 and there are no multiple edges in 0M .
Then, (0M ,AM) can be decomposed as

(0M ,AM)= (0X1,AX1) # · · · # (0Xk ,AXk ) # (0S1,AS1) # · · · # (0S`′′ ,AS`′′ ),

where (0Xh ,AXh ) for h = 1, . . . , k is the torus graph induced from a quasitoric
manifold Xh , and Si = M(εi , ai , bi ) for i = 1, . . . , `′′.

Proof. If 0M (= 0) is 3-connected, then it follows from Lemma 4.4 that the
statement holds, i.e., k= 1, `′′= 0. Therefore, we may assume 0 is not 3-connected.
In this case, by Corollary 6.3, there is a 2-valent torus subgraph F ⊂ 0 such that
0 \ {p, q} is not connected for some p, q ∈ V (F).

If F is a triangle (i.e., |V (F)| = 3), using a method similar to that demonstrated
in the proof of Lemma 6.1, we have that there is a face in Q which has a self-
intersection edge. This contradicts that Q is a manifold with faces. Therefore, we
may assume |V (F)| ≥ 4. We first assume that pq is an edge of F . Then, there are
two graphs 01 and 02 which are the connected components of 0 \ {p, q} expressed
in Figure 8. If we remove the two vertices r and q from 0 instead of p and q,
where r ∈ V (02) such that pr is an edge, then 0 \ {r, q} is also not connected (see
Figure 8). Therefore, we may assume that

1

p q

r

F

Γ

2Γ

Figure 8. If we remove r and q from 0 instead of p and q, the
graph is also disconnected.



ORLIK–RAYMOND CLASSIFICATION OF 6-DIMENSIONAL TORUS MANIFOLDS 111

(1) p, q ∈ V (0) are such that 0 \ {p, q} is not connected,

(2) pq 6∈ E(0),

(3) there is a 2-valent torus subgraph (facet) F with |V (F)| ≥ 4 in 0 such that
p, q ∈ V (F).

We call such a facet F a singular facet.
Let F be a singular facet. Assume |V (F)| ≥ 6. In this case, by an argument

similar to the one just before, we may take p and q to be in the position of Figure 9,
i.e., p and q are on two separated edges r p and sq which are common edges of
two facets F and F ′ in Figure 9 (note that r and s might be connected by an edge).
Moreover, by considering the omnioriented characteristic functions of the facets F
and F ′, we may take the axial functions around the facet F to be as in Figure 9.

By taking an appropriate orientation, we can do the connected sum as in Figure 10;
here we denote the (oriented) torus graph containing 01 by (0̃1, Ã1) and that
containing 02 by (0̃′2, Ã′2). The torus graph obtained by this connected sum is
nothing but the torus graph (0,A) in Figure 9. Note that 0̃1 is simple and planar,
while 0̃′2 is just planar. With a method similar to that demonstrated in Figure 7,
(0̃′2, Ã′2) can be obtained from the connected sum of (0S,AS) and the simple,
planar graph (0̃2, Ã2) (containing 02), where (0S,AS) is one of the torus graphs
(by taking the appropriate axial functions) in Figure 2. Namely, the torus graph in
Figure 9 can be obtained from the connected sum

(0,A)= (0̃1, Ã1) # (0S,AS) # (0̃2, Ã2).

Here, it is easy to check that 0̃i consists of 0i and the other two facets, say F̃(i)
and F̃ ′(i) (induced from F and F ′ in 0). Because of Figure 10, the number of

F

1

F'

p q

r s

ε α ε'' α

α ε' α

β + a α

Γ

2Γ

β β + c α

γ + b α

γ γ + d α

γ + f α
β + e α

Figure 9. The axial functions around F when |V (F)| ≥ 6, where
ε, ε′, ε′′ = ±1 and a, b, c, d, e, f ∈ Z. Here, F ′ is a facet which
intersects F on pr and qs.



112 SHINTARÔ KUROKI

1

p q

r

s
#

ε α

ε α

β + a α

Γ

2Γ

γ + b α

γ + b α

β + a α

Figure 10. The torus graph (0,A) in Figure 9 splits into two
torus graphs (0̃1, Ã1) (upper) and (0̃′2, Ã′2) (lower). Here, we omit
the axial functions around the vertices p, q, r, s because they are
exactly the same as those in Figure 9.

vertices of F̃(i) and F̃ ′(i) is reduced; in particular, the number of vertices of the
facet F̃(i) induced from the singular facet F is strictly less than 6. If both (0̃1, Ã1)

and (0̃2, Ã2) are 3-connected, then these torus graphs are induced from quasitoric
manifolds, i.e, the statements of Lemma 7.3 hold. Assume that (0̃1, Ã1) is not
3-connected. Then, by the above arguments, there is a singular facet F in (0̃1, Ã1).
If |V (F)| ≥ 6, then (0̃1, Ã1) also decomposes as

(0̃1, Ã1)= (0̃3, Ã3) # (0S′,AS′) # (0̃4, Ã4),

using arguments similar to those Figure 10. Iterating, we may reduce all singular
facets with |V (F)| ≥ 6. More precisely, we may decompose (0,A) in Figure 9 as

(0,A)=
`

#
i=1
{(0i ,Ai ) # (0Si ,ASi ) # (0i+`,Ai+`)},

where (0Si ,ASi ) for i = 1, . . . , ` is a torus graph in Figure 2 and (0h,Ah) for
h = 1, . . . , 2` is a 3-valent simple and planar torus graph such that either

• (0h,Ah) is 3-connected (in this case, induced from a quasitoric manifold), or

• all singular facets F satisfy |V (F)| = 4 or 5.

Assume that the number of vertices in every singular facet of the torus graph
(0,A) is less than or equal to 5. Then, such a torus graph is one of the torus graphs
expressed in Figure 11. However, because 0 is the one-skeleton of a manifold with
faces and is not 3-connected, it is easy to check that there exists a singular facet F ′

such that F ′ ∩ F = {pr, qs} and |V (F ′)| ≥ 6. This gives a contradiction. Hence,
this case does not occur. This establishes Lemma 7.3. �
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1

s

q

p

r

F'

Γ

2Γ

1

s

q

p

r

F'

Γ

2Γ

Figure 11. The singular facets F with |V (F)| = 5 or 4. Here, F ′

is a facet which intersects F on pr and qs.

Consequently, by Lemmas 5.4, 7.2 and 7.3, we have the statement of Theorem 7.1.
Finally, by Theorem 7.1 and the Mayer–Vietoris exact sequence, we also have

the following well-known result.

Corollary 7.4. Let M be a simply connected 6-dimensional torus manifold whose
cohomology ring is generated by the second-degree cohomology. Then, M is a
quasitoric manifold.
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SOLUTIONS WITH LARGE NUMBER OF PEAKS
FOR THE SUPERCRITICAL HÉNON EQUATION

ZHONGYUAN LIU AND SHUANGJIE PENG

This paper is concerned with the Hénon equation{
−1u = | y|αu p+ε, u > 0, in B1(0),
u = 0 on ∂B1(0),

where B1(0) is the unit ball in RN (N ≥ 4), p= (N+2)/(N−2) is the critical
Sobolev exponent, α > 0 and ε > 0. We show that if ε is small enough, this
problem has a positive peak solution which presents a new phenomenon:
the number of its peaks varies with the parameter ε at the order ε−1/(N−1)

when ε→ 0+. Moreover, all peaks of the solutions approach the boundary
of B1(0) as ε goes to 0+.

1. Introduction and main results

We study the existence of positive solutions to a type of nonlinear elliptic problem
whose typical form is the supercritical problem

(1-1)
{
−1u = |y|αu p+ε, u > 0, in B1(0),
u = 0 on ∂B1(0),

where p= (N +2)/(N −2), α > 0, ε > 0 and B1(0) is the unit ball in RN (N ≥ 4).
It is well known that the problem

(1-2)
{
−1u = |y|αuq , u > 0, in B1(0),
u = 0 on ∂B1(0),

was proposed by M. Hénon [1973] when he studied rotating stellar structures and
is hence called the Hénon equation, and it has attracted a lot of interest in recent
years. Ni [1982] first considered (1-2) and proved that it possesses a positive
radial solution when q ∈ (1, (N + 2+ 2α)/(N − 2)). Due to the appearance of the
weighted term |y|α , the classical moving plane method in [Gidas et al. 1979] cannot
be applied to problem (1-2). It is natural to ask whether problem (1-2) has nonradial
solutions. The existence of a nonradial solution for 1 < q < p was obtained by

MSC2010: primary 35J60; secondary 35J65, 58E05.
Keywords: peak solutions, supercritical Hénon equation, reduction method.
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Smets, Willem and Su [2002] provided α is large enough. When q = p− ε, Cao
and Peng [2003] showed that the ground state solution is nonradial and blows up
near the boundary of B1(0) as ε→ 0. Later on, Peng [2006] constructed multiple
boundary peak solutions for problem (1-2). When q = p, Serra [2005] proved that
problem (1-2) has a nonradial solution provided α is large enough. More recently,
Wei and Yan [2013] showed that there are infinitely many nonradial solutions for
problem (1-2) with α > 0. For other results related to Hénon type problems, see
[Byeon and Wang 2006; 2005; Cao et al. 2009; Hirano 2009; Pistoia and Serra
2007] and the references therein.

On the other hand, using the Pohozaev identity [1965], we know that for q ≥
N+2+2α

N−2 there are no solutions to problem (1-2) in star-shaped domains with respect
to the origin. So it seems more interesting to consider whether there are solutions
for q in the range

( N+2
N−2 ,

N+2+2α
N−2

)
. However, much less is known about that case.

When q = N+2+2α
N−2 − ε, Gladiali and Grossi [2012] showed that there exists one

solution concentrating at y = 0 provided 0<α ≤ 1. By the results in [Gladiali et al.
2013], the same results still hold when α is not an even integer. In [Li and Peng
2009], the asymptotic behavior of the radial solutions obtained by Ni [1982] was
analyzed as ε→ 0+.

The purpose of this paper is to study the supercritical problem (1-1) and try to
construct solutions whose number of peaks varies with ε as ε→ 0+. In fact, we
will consider the more general problem

(1-3)
{
−1u = K (|y|)u p+ε, u > 0, in B1(0),
u = 0 on ∂B1(0),

where K (r) ∈ C1
[0, 1] and K (1) > 0.

Without loss of generality, we can assume that

K (1)= 1.

The main result of this paper is as follows.

Theorem 1.1. Assume that N ≥ 4. If K (r) satisfies K (1) > 0 and K ′(1) > 0, then
there exists ε0 > 0 such that for ε ∈ (0, ε0), problem (1-3) has a solution uε whose
number of local maximal points is of the order ε−1/(N−1) as ε→ 0+. In particular,
problem (1-1) has solutions with a large number of peaks for small ε > 0.

Remark 1.2. For the case α = 0, the well-known Pohozaev identity [1965] implies
that (1-1) has no solutions for ε > 0. It was also shown in [Ben Ayed et al. 2003]
that problem (1-1) has no single-peak solutions for ε small enough. Our results
mean that the weight |y|α has a great influence on the existence of peak solutions
for problem (1-1).
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Let us outline the main idea in the proof of Theorem 1.1. We introduce some
notation first. For x ∈ RN and 3> 0, set

Ux,3(y)= CN

(
3

1+32 |y− x |2

)(N−2)/2

, CN = (N (N − 2))(N−2)/4.

It’s well known that Ux,3(y) are the only solutions of

−1u = u(N+2)/(N−2), u > 0, in RN .

Let
k = [ε−1/(N−1)

],

where [a] denotes the integer part of a real number a. By the transformation
u(y) 7→ ε2/(4+(N−2)ε)u(ε1/(N−2)y) and setting B∗ = Bε−1/(N−2) , we see that (1-3)
becomes

(1-4)
{
−1u = K (ε1/(N−2)

|y|)u p+ε, u > 0, in B∗(0),
u = 0 on ∂B∗(0).

We denote by PUx,3, the projection of Ux,3, the solution of the problem

(1-5)
{
1PUx,3 =1Ux,3 in B∗(0),
PUx,3 = 0 on ∂B∗(0).

Set y = (y′, y′′), y′′ ∈ RN−2. Define

Hs =

{
u : u ∈ H 1

0 (B∗(0)), u is even in yh, h = 2, 3, . . . , N ,

u(r cos θ, r sin θ, y′′)= u
(

r cos
(
θ +

2π j
k

)
, r sin

(
θ +

2π j
k

)
, y′′

)}
.

Let

x j =

(
r cos

2( j − 1)π
k

, r sin
2( j − 1)π

k
, 0
)
, j = 1, . . . , k,

where 0 is the zero vector in RN−2, and let

Wr,3(y)=
k∑

j=1

PUx j ,3.

In what follows, we always assume that

r ∈ [ε−1/(N−2)(1− r0ε
1/(N−1)), ε−1/(N−2)(1− r1ε

1/(N−1))]

for some constants r1 > r0 > 0, and that

L0 ≤3≤ L1

for some constants L1 > L0 > 0.
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We will prove Theorem 1.1 by verifying the following result.

Theorem 1.3. Under the same assumptions as Theorem 1.1, there exists ε0 > 0
such that for ε ∈ (0, ε0), problem (1-4) has a solution uε of the form

uε =Wrε,3ε +φε,

where φε ∈Hs , ‖φε‖L∞→ 0 as ε→ 0+, L0 ≤3ε ≤ L1 and

rε ∈ [ε−1/(N−2)(1− r0ε
1/(N−1)), ε−1/(N−2)(1− r1ε

1/(N−1))].

Remark 1.4. In our result, the number of peaks k of the solution uε varies with the
parameter ε at the order ε−1/(N−1) when ε→ 0+. This is a new phenomenon for
the Hénon equation and is in contrast to the subcritical or critical case. For example,
in [Peng 2006], where ε < 0, it was proved that for any prescribed integer k > 0,
there exists ε0 > 0 such that for any ε ∈ (−ε0, 0), problem (1-4) has a solution
which has exactly k peaks.

Remark 1.5. The results of this paper can be considered as a perturbation of those
in [Wei and Yan 2013]. In fact the number of bubbles k can be taken to be

k = [δ−1/(N−2)
]

for any |ε|< δ� 1. When ε = 0, we recover Wei and Yan’s result.

We use a reduction argument to prove Theorem 1.3. More precisely, we follow
the method in [Wei and Yan 2010b; 2013] to construct peak solutions for problem
(1-4). In those papers, where no parameter appears in the considered problem,
Wei and Yan used k, the number of peaks of the solutions, as the parameter to
construct infinitely many positive peak solutions. This idea is very novel and
effective for obtaining infinitely many solutions to several types of problems; see
[Peng and Wang 2013; Wei and Yan 2010a; 2011]. Unlike the situation in [Wei
and Yan 2010b; 2013], here we deal with the supercritical case; we cannot use
the variational argument. Instead, we will use the Fredholm theory of compact
operators in a suitable Banach space and will employ a direct technique to eliminate
the Lagrange multipliers caused from the reduction procedure. Another aspect that
differs from [Wei and Yan 2010b; 2013] is that, as we mentioned before, in our
proof, we use ε as the parameter in the construction of peak solutions, but in this
paper the number of peaks depends on the parameter ε. As a final remark, we point
out that for α= 0, del Pino, Felmer and Musso [2003] have constructed two-peaked
solutions for problem (1-1) in a special domain. Hence, we believe that the effect of
the weight |y|α on the existence of solutions is something like that of the domain.

This paper has the following structure. In Section 2, we carry out the finite-
dimensional reduction procedure. The main results will be proved in Section 3.
We put the energy expansion and some basic estimates used in Sections 2 and 3 in
Appendices A and B.
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2. Finite-dimensional reduction

In this section, we perform a finite-dimensional reduction. Let

(2-1) ‖u‖∗ = sup
y∈B∗(0)

( k∑
i=1

1

(1+ |y− xi |)
1
2 (N−2)+τ

)−1

|u(y)|

and

(2-2) ‖v‖∗∗ = sup
y∈B∗(0)

( k∑
i=1

1

(1+ |y− xi |)
1
2 (N+2)+τ

)−1

|v(y)|,

where τ = (N−2)/(N−1). We denote by L∞
∗

and L∞
∗∗

the function spaces defined
on B∗(0) with finite ‖·‖∗ and ‖·‖∗∗ norm, respectively.

Let

Zi,1 =
∂PUxi ,3

∂r
, Zi,2 =

∂PUxi ,3

∂3
.

First, we consider the linear problem

(2-3)


−1φ−(p+ε)K (ε

1
N−2 |y|)W p−1+ε

r,3 φ = h+
2∑

j=1
cj

k∑
i=1

U p−1
xi ,3

Zi, j in B∗(0),

φ ∈Hs,
〈 k∑

i=1
U p−1

xi ,3
Zi,l, φ

〉
= 0, l = 1, 2,

for some numbers ci , where

〈u, v〉 =
∫

B∗(0)
uv.

Lemma 2.1. Assume there is a sequence ε = εn→ 0 such that φε solves (2-3) for
h = hε. If ‖hε‖∗∗ goes to zero as ε goes to zero, so does ‖φε‖∗.

Proof. The proof of this lemma is very similar to the proof of Lemma 2.1 in [Wei
and Yan 2013].

We argue by contradiction. Suppose that there are ε→ 0, h = hε, 3ε ∈ [L0, L1]

and rε ∈ [ε−1/(N−2)(1−r0ε
1/(N−1)), ε−1/(N−2)(1−r1ε

1/(N−1))] such that φε solves
(2-3) for h = hε, 3 = 3ε, r = rε with ‖hε‖∗∗→ 0 and ‖φε‖∗ ≥ c > 0. Without
loss of generality, we may assume that ‖φε‖∗ = 1.

Now rewrite (2-3) in the following integral form:

φε(y)= (p+ ε)
∫

B∗(0)
Gε(y, z)K (ε−1/(N−2)

|z|)W p−1+ε
r,3 (z)φε(z) dz

+

∫
B∗(0)

Gε(y, z)
(

hε(z)+
2∑

j=1
c j

k∑
i=1

Zi, j (z)U
p−1
xi ,3

(z)
)

dz.
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By Lemma B.3, we find∣∣∣∣(p+ ε) ∫
B∗(0)

Gε(y, z)K (ε−1/(N−2)
|z|)W p−1+ε

r,3 (z)φε(z) dz
∣∣∣∣

≤ (p+ ε)
∫

B∗(0)

1
|y− z|N−2 K (ε−1/(N−2)

|z|)W p−1+ε
r,3 (z)|φε(z)| dz

≤ C‖φε‖∗

∫
B∗(0)

1
|y− z|N−2 W p−1+ε

r,3

k∑
j=1

1

(1+ |z− x j |)
1
2 (N−2)+τ

dz

≤ C‖φε‖∗
k∑

j=1

1

(1+ |z− x j |)
1
2 (N−2)+τ+ϑ

.

It follows from Lemma B.2 that∣∣∣∣∫
B∗(0)

Gε(y, z)hε(z) dz
∣∣∣∣≤ ∫

B∗(0)

1
|y− z|N−2 |hε(z)| dz

≤ C‖hε‖∗∗
k∑

j=1

1

(1+ |z− x j |)
1
2 (N−2)+τ

and ∣∣∣∣∫
B∗(0)

Gε(y, z)
k∑

j=1
Zi,l(z)U

p−1
xi ,3

(z) dz
∣∣∣∣≤ C

k∑
j=1

1

(1+ |z− x j |)
1
2 (N−2)+τ

.

Next, we estimate c`, `= 1, 2. Multiplying (2-3) by Z1,t and integrating, we obtain
that c` satisfies

(2-4)
2∑
`=1

k∑
i=1

〈U p−1
xi ,3

Zi,`, Z1,t 〉c`

=
〈
−1φε − (p+ ε)K (ε−1/(N−2)

|y|)W p−1+ε
r,3 φε, Z1,t

〉
−〈hε, Z1,t 〉.

It follows from Lemma B.1 that

|〈hε, Z1,`〉| ≤ C‖hε‖∗∗

∫
RN

1
(1+ |z− x1|)N−2

k∑
j=1

1

(1+ |z− x j |)
1
2 (N+2)+τ

dz

≤ C‖hε‖∗∗.

On the other hand, using Lemma B.3, we obtain〈
−1φε − (p+ ε)K (ε1/(N−2)

|y|)W p−1+ε
r,3 φε, Z1,`

〉
=
〈
−1Z1,`− (p+ ε)K (ε1/(N−2)

|y|)W p−1+ε
r,3 Z1,`, φε

〉
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=
〈
−1Z1,`− pK (ε1/(N−2)

|y|)W p−1
r,3 Z1,`, φε

〉
+ p

〈
K (ε1/(N−2)

|y|)(W p−1
r,3 −W p−1+ε

r,3 )Z1,`, φε
〉

− ε
〈
K (ε1/(N−2)

|y|)W p−1+ε
r,3 )Z1,`, φε

〉
= o(‖φε‖∗).

However, there is a constant c′ > 0 such that

k∑
i=1

〈U p−1
xi ,3

Zi,t , Z1,`〉 = (c′+ o(1))δt`.

Hence we find from (2-4) that

c` = o(‖φε‖∗)+ O(‖hε‖∗∗).

Therefore,

(2-5) ‖φε‖∗ ≤ o(1)+‖hε‖∗∗+

k∑
j=1

1

(1+ |y− x j |)
1
2 (N−2)+τ+ϑ

k∑
j=1

1

(1+ |y− x j |)
1
2 (N−2)+τ

.

Noting that ‖φε‖∗ = 1, we obtain from (2-5) that there is R > 0 such that

(2-6) ‖φε(y)‖L∞(BR(xi )) ≥ a > 0 for some i.

Furthermore, for this particular i , the translated version φ̄ε(y)=φε(y−xi ) converges
uniformly on any compact set to a solution u of

(2-7) −1u− pU p−1
0,3 u = 0 in RN

for some 3 ∈ [L0, L1]. Since u is perpendicular to the kernel of (2-7), we have
u ≡ 0, which contradicts ‖u(y)‖L∞(BR(xi )) ≥ a > 0. �

The following proposition is a direct consequence of combining Proposition 4.1
in [del Pino et al. 2003] with Lemma 2.1.

Proposition 2.2. There exists ε0 > 0 and a constant C > 0 such that for all ε ≤ ε0

and all hε ∈ L∞
∗∗

, problem (2-3) has a unique solution φε ≡Lε(hε)∈ L∞
∗

. Moreover,

(2-8) ‖Lε(hε)‖∗ ≤ C‖hε‖∗∗, |c`| ≤ C‖hε‖∗∗.
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In order to prove the main theorem, we will prove that problem (1-4) admits
a solution of the form u = Wr,3+ φ, where Wr,3 =

∑k
j=1 PUx j ,3 and φ ∈Hs is

small and satisfies 〈U p−1
xi ,3

Zi,l, φ〉 = 0, i = 1, 2, . . . , k, l = 1, 2.
We consider the perturbation problem

(2-9)


−1(Wr,3+φ)= K (ε

1
N−2 |y|)(Wr,3+φ)

p+ε
+

2∑̀
=1

c`
k∑

i=1
U p−1

xi ,3
Zi,` in B∗(0),

φ ∈Hs,
〈 k∑

i=1
U p−1

xi ,3
Zi,`, φ

〉
= 0, `= 1, 2.

Proposition 2.3. There is ε0 > 0 such that for any ε ≤ ε0, any 3 ∈ [L0, L1], and

r ∈
[
ε−

1
N−2 (1− r0ε

1
N−1 ), ε−

1
N−2 (1− r1ε

1
N−1 )

]
,

problem (2-9) has a unique solution φ = φr,3 satisfying

‖φ‖∗ ≤ Cε(
1
2+σ)/(N−2), |c`| ≤ Cε(

1
2+σ)/(N−2),

where σ > 0 is a small constant.

Let

Nε(φ)= K
(
ε

1
N−2 |y|

)(
(Wr,3+φ)

p+ε
−W p+ε

r,3 − (p+ ε)W
p−1+ε

r,3 φ
)
,

lε = K
(
ε

1
N−2 |y|

)
W p+ε

r,3 −

k∑
j=1

U p
x j ,3

.

Then problem (2-9) can be written as

(2-10)


−1φ− (p+ ε)K (ε

1
N−2 |y|)W p−1+ε

r,3 φ

= Nε(φ)+ lε +
2∑̀
=1

c`
k∑

i=1
U p−1

xi ,3
Zi,` in B∗(0),

φ ∈Hs,
〈 k∑

i=1
U p−1

xi ,3
Zi,`, φ

〉
= 0, `= 1, 2.

We will use the contraction mapping theorem to prove that problem (2-9) is
uniquely solvable under the condition that ‖φ‖∗ is small enough. So we need to
estimate Nε(φ) and lε.

Lemma 2.4. If N ≥ 4, then

‖Nε(φ)‖∗∗ ≤ C‖φ‖min{p+ε,2}
∗

.

Proof. We have

|Nε(φ)| ≤
{

C |φ|p+ε, N ≥ 7,
C(W p−2+ε

r,3 φ2
+ |φ|p+ε), N = 4, 5, 6.
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Firstly, we consider N ≥ 7. By the Hölder inequality, we have

|Nε(φ)| ≤ C‖φ‖p+ε
∗

( k∑
j=1

1

(1+ |y− x j |)
1
2 (N−2)+τ

)p+ε

≤ C‖φ‖p+ε
∗

( k∑
j=1

1

(1+ |y− x j |)
1
2 (N+2)+τ

)

×

( k∑
j=1

1

(1+ |y− x j |)
p+ε

p+ε−1 (
1
2 (N−2)+τ)− 1

p+ε−1 (
1
2 (N+2)+τ)

)p+ε−1

≤ C‖φ‖p+ε
∗

( k∑
j=1

1

(1+ |y− x j |)
1
2 (N+2)+τ

)
.

Thus, the result follows.
Suppose that N = 4, 5, 6. Using the fact that N − 2> 1

2(N − 2)+ τ , we get

|Nε(φ)| ≤ C‖φ‖2
∗

( k∑
j=1

1
(1+ |y− x j |)N−2

)p−2+ε( k∑
j=1

1

(1+ |y− x j |)
1
2 (N−2)+τ

)2

+C‖φ‖p+ε
∗

( k∑
j=1

1

(1+ |y− x j |)
1
2 (N+2)+τ

)

≤ C‖φ‖2
∗

( k∑
j=1

1

(1+ |y− x j |)
1
2 (N−2)+τ

)p+ε

+C‖φ‖p+ε
∗

( k∑
j=1

1

(1+ |y− x j |)
1
2 (N+2)+τ

)

≤ C‖φ‖2
∗

( k∑
j=1

1

(1+ |y− x j |)
1
2 (N+2)+τ

)
.

So we have proved that for N ≥ 4,

‖Nε(φ)‖∗∗ ≤ C‖φ‖min{p+ε,2}
∗

. �

Lemma 2.5. Assume that r ∈
[
ε−

1
N−2 (1− r0ε

1
N−1 ), ε−

1
N−2 (1− r1ε

1
N−1 )

]
. If N ≥ 4,

then
‖lε‖∗∗ ≤ Cε(

1
2+σ)/(N−2).

Proof. Define

� j =

{
y : y = (y′, y′′) ∈ Bε−1/(N−2)(0),

〈
y′

|y′|
,

x j

|x j |

〉
≥ cos

π

k

}
.
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We have

lε = K (ε1/(N−2)
|y|)(W p+ε

r,3 −W p
r,3)+ K (ε1/(N−2)

|y|)
(

W p
r,3−

k∑
j=1

PU p
x j ,3

)
+ K (ε1/(N−2)

|y|)
( k∑

j=1
PU p

x j ,3
−

k∑
j=1

U p
x j ,3

)
+

k∑
j=1

U p
x j ,3

(
K (ε1/(N−2)

|y|)− 1
)

=: J0+ J1+ J2+ J3.

Estimate of J0.

|J0| ≤ CεW p
r,3|ln Wr,3|

≤ Cε
( k∑

j=1

1
(1+ |y− x j |)N−2

)p

ln
k∑

j=1

1
(1+ |y− x j |)N−2

≤ Cε
( k∑

j=1

1

(1+ |y− x j |)
1
2 (N+2)+τ

)( k∑
j=1

1

(1+ |y− x j |)
N+2

4

(
N−2

2 −
N−2
N+2 τ

)) 4
N−2

≤ Cε
k∑

j=1

1

(1+ |y− x j |)
1
2 (N+2)+τ

.

Estimate of J1. From the symmetry, we can assume that y ∈�1. Then,

|y− x j | ≥ |y− x1|, y ∈�1, j 6= 1.

Firstly, we claim

(2-11)
1

1+ |y− x j |
≤

C
|x j − x1|

, y ∈�1, j 6= 1.

In fact, if |y− x1| ≤
1
2 |x1− x j |, then |y− x j | ≥

1
2 |x j − x1|. If |y− x1| ≥

1
2 |x j − x1|,

then |y− x j | ≥ |y− x1| ≥
1
2 |x j − x1|.

It’s easy to verify that

|J1| ≤ C
1

(1+ |y− x1|)4

k∑
j=2

1
(1+ |y− x j |)N−2 +C

( k∑
j=2

1
(1+ |y− x j |)N−2

)p

.

Using (2-11), taking 1< % ≤ N − 2, we obtain for y ∈�1,

1
(1+ |y− x1|)4

1
(1+ |y− x j |)N−2 ≤ C

1
(1+ |y− x1|)N+2−%

1
|x j − x1|%

, j 6= 1.



SOLUTIONS FOR THE SUPERCRITICAL HÉNON EQUATION 125

Take % >max
{1

2(N − 1), 1
}

satisfying N + 2− % ≥ 1
2(N + 2)+ τ . Then

1
(1+ |y− x1|)4

k∑
j=2

1
(1+ |y− x j |)N−2 ≤

C
(1+ |y− x1|)N+2−% (kε

1/(N−2))%

=
C

(1+ |y− x1|)N+2−% ε
%/((N−1)(N−2))

≤
C

(1+ |y− x1|)
1
2 (N+2)+τ

ε(
1
2+σ)/(N−2).

By the Hölder inequality, we find

( k∑
j=2

1
(1+ |y− x j |)N−2

)p

≤

k∑
j=2

1

(1+ |y− x j |)
1
2 (N+2)+τ

( k∑
j=2

1

(1+ |y− x j |)
N+2

4

(
N−2

2 −τ
N−2
N+2

)) 4
N−2

.

Noticing that N+2
N−2

(
N−2

2
− τ

N−2
N+2

)
>

N−1
2

if N ≥ 4, we deduce that

( k∑
j=2

1
(1+ |y− x j |)N−2

)p

≤ C
( k∑

j=2

1

|x j − x1|
N+2

4

(
N−2

2 −τ
N−2
N+2

)) 4
N−2

k∑
j=1

1

(1+ |y− x j |)
1
2 (N+2)+τ

≤ C(kε1/(N−2))
N+2
N−2

(
N−2

2 −τ
N−2
N+2

) k∑
j=1

1

(1+ |y− x j |)
1
2 (N+2)+τ

≤ Cε(
1
2+σ)/(N−2)

k∑
j=1

1

(1+ |y− x j |)
1
2 (N+2)+τ

.

Hence, we conclude that if N ≥ 4,

‖J1‖∗∗ ≤ Cε(
1
2+σ)/(N−2).

Estimate of J2. Let H(y, x) be the regular part of the Green function for −1 in
B1(0) with the zero boundary condition. Let x̄∗j be the reflection point of x̄ j with
respect to ∂B1(0). Then

εH(ȳ, x̄ j )=
Cε

|ȳ− x̄∗j |N−2 ≤
C

(1+ |y− x j |)N−2 .
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By direct calculation, we have

|J2| ≤ C
k∑

j=1

Cε
(1+ |y− x j |)4

H(ȳ, x̄ j )

≤

k∑
j=1

C
(1+ |y− x j |)4+(1−γ )(N−2) (εH(ȳ, x̄ j ))

γ

≤ Cεγ /(N−1)
k∑

j=1

C
(1+ |y− x j |)4+(1−γ )(N−2)

≤ Cε(
1
2+σ)/(N−2)

k∑
j=1

C

(1+ |y− x j |)
1
2 (N+2)+τ

,

where γ > 0 satisfies γ (N−2)/(N−1)> 1
2 and 4+(1−γ )(N−2)≥ 1

2(N+2)+τ .

Estimate of J3. For y ∈�1 and j > 1, using (2-11), we find

U p
x j ,3
≤

C

(1+ |y− x1|)
1
2 (N+2)+τ

1

|x j − x1|
1
2 (N+2)−τ

.

Thus, we have

∣∣∣∣ k∑
j=2

(
K (ε1/(N−2)

|y|)− 1
)
U p

x j ,3

∣∣∣∣≤ C

(1+ |y− x1|)
1
2 (N+2)+τ

k∑
j=2

1

|x j − x1|
1
2 (N+2)−τ

≤
C

(1+ |y− x1|)
1
2 (N+2)+τ

(kε1/(N−2))
1
2 (N+2)−τ

≤
C

(1+ |y− x1|)
1
2 (N+2)+τ

ε(
1
2+σ)/(N−2).

If y ∈�1 and
∣∣|y| − ε−1/(N−2)

∣∣≥ δε−1/(N−2), where δ > 0 is a fixed constant, then

∣∣|y| − |x1|
∣∣≥ ∣∣|y| − ε−1/(N−2)∣∣− ∣∣|x1| − ε

−1/(N−2)∣∣≥ 1
2δε
−1/(N−2).

So, we obtain

∣∣U p
x1,3

(
K (ε1/(N−2)

|y|)− 1
)∣∣≤ C

(1+ |y− x1|)
1
2 (N+2)+τ

ε(
1
2 (N+2)−τ)/(N−2).
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If y ∈�1 and
∣∣|y| − ε−1/(N−2)

∣∣≤ δε−1/(N−2), then∣∣K (ε1/(N−2)
|y|)− 1

∣∣≤ C
∣∣ε1/(N−2)

|y| − 1
∣∣

≤ Cε1/(N−2)(∣∣|y| − |x1|
∣∣+ ∣∣|x1| − ε

−1/(N−2)∣∣)
≤ Cε1/(N−2)∣∣|y| − |x1|

∣∣+Cε1/(N−1)

≤ Cε1/(N−2)∣∣|y| − |x1|
∣∣+Cε(

1
2+σ)/(N−2),

and ∣∣|y| − |x1|
∣∣≤ |y|∣∣−ε−1/(N−2)∣∣+ ∣∣|x1| − ε

−1/(N−2)∣∣≤ 2δε−1/(N−2).

Since

ε1/(N−2)
∣∣|y| − |x1|

∣∣
(1+ |y− x1|)N+2 ≤ Cε(

1
2+σ)/(N−2)

∣∣|y| − |x1|
∣∣ 1

2+σ

(1+ |y− x1|)N+2

≤
Cε(

1
2+σ)/(N−2)

(1+ |y− x1|)
N+ 3

2−σ
≤

Cε(
1
2+σ)/(N−2)

(1+ |y− x1|)
1
2 (N+2)+τ

,

we get ∣∣U p
x1,3

(
K (ε1/(N−2)

|y|)− 1
)∣∣≤ Cε(

1
2+σ)/(N−2)

(1+ |y− x1|)
1
2 (N+2)+τ

.

As a result, we deduce

‖J3‖∗∗ ≤ Cε(
1
2+σ)/(N−2). �

Proof of Proposition 2.3. Recall that

k = [ε−1/(N−1)
], N ≥ 4.

Let

E =
{
u ∈Hs ∩ L∞

∗
: ‖u‖∗ ≤ ε1/(2(N−2)) and∫

B∗(0)
U p−1

xi ,3
Zi,`u = 0, i = 1, . . . , k, `= 1, 2

}
.

Then, (2-10) is equivalent to

φ = Aε(φ)=: Lε(Nε(φ))+Lε(lε),

where Lε is defined in Proposition 2.2. We will prove that Aε is a contraction map
from E to E . First, Aε(E)⊂ E because

‖Aε(φ)‖∗ ≤ C‖Nε(φ)‖∗∗+C‖lε‖∗∗

≤ C‖φ‖min{p+ε,2}
∗

+C‖lε‖∗∗ ≤ Cε(
1
2+σ)/(N−2)

≤ ε1/(2(N−2)).
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Next we write

‖Aε(φ1)− Aε(φ2)‖∗ = ‖Lε(Nε(φ1))−Lε(Nε(φ2))‖∗ ≤ C‖Nε(φ1)− Nε(φ2)‖∗∗.

If N ≥ 7, then
|N ′ε(t)| ≤ C |t |p−1+ε.

Thus, we have

|Nε(φ1)− Nε(φ2)|

≤ C(|φ1|
p−1+ε

+ |φ2|
p−1+ε)|φ1−φ2|

≤ C(‖φ1‖
p−1+ε
∗

+‖φ2‖
p−1+ε
∗

)‖φ1−φ2‖∗

( k∑
j=1

1

(1+ |y− x j |)
1
2 (N−2)+τ

)p+ε

≤ C(‖φ1‖
p−1+ε
∗

+‖φ2‖
p−1+ε
∗

)‖φ1−φ2‖∗

k∑
j=1

1

(1+ |y− x j |)
1
2 (N+2)+τ

.

As a consequence,

‖Aε(φ1)− Aε(φ2)‖∗ ≤ C‖Nε(φ1)− Nε(φ2)‖∗∗

≤ C(‖φ1‖
p−1+ε
∗

+‖φ2‖
p−1+ε
∗

)‖φ1−φ2‖∗ ≤
1
2‖φ1−φ2‖∗.

For N = 4, 5, 6,
|N ′ε(t)| ≤ CW p−2+ε

r,3 |t | +C |t |p−1+ε.

So we have

|Nε(φ1)− Nε(φ2)|

≤ C(|φ1|
p−1+ε

+ |φ2|
p−1+ε)|φ1−φ2| +C(|φ1| + |φ2|)W

p−2+ε
r,3 |φ1−φ2|

≤ C(‖φ1‖
p−1+ε
∗

+‖φ2‖
p−1+ε
∗

)‖φ1−φ2‖∗

( k∑
j=1

1

(1+ |y− x j |)
1
2 (N−2)+τ

)p+ε

+C(‖φ1‖∗+‖φ2‖∗)‖φ1−φ2‖∗W
p−2+ε

r,3

( k∑
j=1

1

(1+ |y− x j |)
1
2 (N−2)+τ

)2

≤ C(‖φ1‖∗+‖φ2‖∗)‖φ1−φ2‖∗

k∑
j=1

1

(1+ |y− x j |)
1
2 (N+2)+τ

.

In either case, we see that Aε is a contraction map. By the contraction mapping
theorem, there is a unique φ ∈ E such that

φ = Aε(φ).
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Moreover, it follows from Proposition 2.2 that

‖φ‖∗ ≤ C‖lε‖∗∗+C‖Nε(φ)‖∗∗ ≤ C‖lε‖∗∗+C‖φ‖min{p+ε,2}
∗

,

which implies

‖φ‖∗ ≤ Cε(
1
2+σ)/(N−2), |c`| ≤ Cε(

1
2+σ)/(N−2). �

3. Proof of the main results

In this section, we will choose (r,3) such that Wr,3+φr,3 is a solution of (1-4),
where φr,3 is the map obtained in Proposition 2.3.

Lemma 3.1. If (r,3) satisfies
(3-1)∫

B∗(0)

(
∇(Wr,3+φr,3)∇

∂Wr,3

∂r
− K (ε1/(N−2)

|y|)(Wr,3+φr,3)
p+ε ∂Wr,3

∂r

)
= 0,

(3-2)∫
B∗(0)

(
∇(Wr,3+φr,3)∇

∂Wr,3

∂3
− K (ε1/(N−2)

|y|)(Wr,3+φr,3)
p+ε ∂Wr,3

∂3

)
= 0,

then Wr,3+φr,3 is a solution of (1-4).

Proof. It follows from Proposition 2.3 that if (3-1) and (3-2) hold, then by symmetry,

(3-3) c1

〈
U p−1

x1,3

∂PUx1,3

∂r
,
∂Wr,3

∂r

〉
= 0= c2

〈
U p−1

x1,3

∂PUx1,3

∂3
,
∂Wr,3

∂3

〉
,

which implies that c1 = c2 = 0. Hence Wr,3+φr,3 is a solution of (1-4). �

In the rest of this section, we need to solve (3-1) and (3-2).

Proposition 3.2. Equations (3-1) and (3-2) are equivalent to

(3-4) −
εH(x̄1, x̄1)

3N−1 +

k∑
i=2

εG(x̄i , x̄1)

3N−1 + O(ε(1+σ)/(N−2))= 0

and

(3-5)
B2ε

3N−2

∂H(x̄1, x̄1)

∂d
+ B3K ′(1)+

k∑
i=2

B2ε

3N−2

∂G(x̄i , x̄1)

∂d
+ O(εσ/(N−2))= 0,

respectively, where d= 1−ε1/(N−2)r , B1, B2 and B3 are the same positive constants
as in Proposition A.1 and σ > 0 is a small constant.

Proof. Here we prove only the first one. The second can be proved similarly by
noting that ∂/∂d =−ε−1/(N−2)∂/∂r .
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First, we see that∫
B∗(0)
∇(Wr,3+φr,3)∇

∂Wr,3

∂3
=

∫
B∗(0)
∇Wr,3∇

∂Wr,3

∂3
,

and∫
B∗(0)

K (ε1/(N−2)
|y|)(Wr,3+φr,3)

p+ε ∂Wr,3

∂3

=

∫
B∗(0)

K (ε1/(N−2)
|y|)W p+ε

r,3
∂Wr,3

∂3

+ (p+ ε)
∫

B∗(0)
K (ε1/(N−2)

|y|)W p−1+ε
r,3

∂Wr,3

∂3
φr,3

+ O
(∫

B∗(0)
W p−1+ε

r,3 |φr,3|
2
)
.

On the other hand, noticing that φr,3 ∈ E , we have∫
B∗(0)

K (ε1/(N−2)
|y|)W p−1+ε

r,3
∂Wr,3

∂3
φr,3

=

∫
B∗(0)

K (ε1/(N−2)
|y|)

(
W p−1+ε

r,3
∂Wr,3

∂3
−

k∑
j=1

U p−1
x j ,3

∂Ux j ,3

∂3

)
φr,3

+

k∑
j=1

∫
B∗(0)

(
K (ε1/(N−2)

|y|)− 1
)
U p−1

x j ,3

∂Ux j ,3

∂3
φr,3

= k
∫
�1

K (ε1/(N−2)
|y|)

(
W p−1+ε

r,3
∂Wr,3

∂3
−

k∑
j=1

U p−1
x j ,3

∂Ux j ,3

∂3

)
φr,3

+ k
∫
�1

(
K (ε1/(N−2)

|y|)− 1
)
U p−1

x1,3

∂Ux1,3

∂3
φr,3,

∣∣∣∣∫
�1

K (ε1/(N−2)
|y|)

(
W p−1+ε

r,3
∂Wr,3

∂3
−

k∑
j=1

U p−1
x j ,3

∂Ux j ,3

∂3

)
φr,3

∣∣∣∣
≤ C

∫
�1

(
U p−1

x1,3
(Ux1,3− PUx1,3)+U p−1

x1,3

k∑
j=2

Ux j ,3+

k∑
j=2

U p
x j ,3

)
|φr,3|

+ O
(
ε

∫
�1

W p−1
r,3 ln Wr,3

∂Wr,3

∂3
φr,3

)
≤ Cε1/(N−2)(1+σ),
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and∣∣∣∣∫
�1

(
K (ε1/(N−2)

|y|)− 1
)
U p−1

x1,3

∂Ux1,3

∂3
φr,3

∣∣∣∣
≤

∣∣∣∣∫∣∣|y|−ε−1/(N−2)
∣∣≤ε−1/(2(N−2))

(
K (ε1/(N−2)

|y|)− 1
)
U p−1

x1,3

∂Ux1,3

∂3
φr,3

∣∣∣∣
+

∣∣∣∣∫∣∣|y|−ε−1/(N−2)
∣∣≥ε−1/(2(N−2))

(
K (ε1/(N−2)

|y|)− 1
)
U p−1

x1,3

∂Ux1,3

∂3
φr,3

∣∣∣∣
≤ Cε1/(N−2)(1+σ).

So, we have proved∫
B∗(0)

(
∇(Wr,3+φr,3)∇

∂Wr,3

∂3
− K (ε1/(N−2)

|y|)(Wr,3+φr,3)
p+ε ∂Wr,3

∂3

)
=

∫
B∗(0)

(
∇Wr,3∇

∂Wr,3

∂3
− K (ε1/(N−2)

|y|)W p+ε
r,3

∂Wr,3

∂3

)
+ O(kε(1+σ)/(N−2)),

and the result follows from Proposition A.1. �

Proof of Theorem 1.3. Note (see [Wei and Yan 2013]) that

H(x̄1, x̄1)=
1

2N−2d N−2 (1+ O(d))

and
a0

j N + O
(

d
j N−2

)
≤

1
k N−2 G(x̄ j , x̄1)≤

a1

j N + O
(

d
j N−2

)
,

where a1 ≥ a0 > 0. Hence, we find that there is a constant B4 > 0 such that
k∑

j=2

G(x̄ j , x̄1)= k N−2
(

B4

|x̄1|N−2 + O
(

1
k N−1

)
+ O(d)

)
= B4k N−2

+ O(k N−2d).

Consequently, (3-4) and (3-5) are equivalent to

(3-6) −
A1ε

3N−1d N−2 +
A2k N−2ε

3N−1 + O(ε(1+σ)/(N−2))= 0

and

(3-7) −
A3ε

3N−2d N−1 + A4+ O(εσ/(N−2))= 0,

respectively, for positive constants Ai , i = 1, 2, 3, 4. Recall that d = 1− ε1/(N−2)r .
Define η = dk. Thus, (3-6) and (3-7) read

(3-8) −
A1

3N−1ηN−2 +
A2

3N−1 + O(εσ/(N−2))= 0
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and

(3-9) −
A3

3N−2ηN−1 + A4+ O(εσ/(N−2))= 0.

Let

f1(η,3)=−
A1

3N−1ηN−2 +
A2

3N−1

and

f2(η,3)=−
A3

3N−2ηN−1 + A4.

It is easy to check that f1 = 0 and f2 = 0 have a unique solution

η0 =

(
A1

A2

) 1
N−2

, 30 =

(
A3

A4η
N−1
0

) 1
N−2

.

On the other hand, we have

∂ f1(η0,30)

∂3
= 0,

∂ f2(η0,30)

∂η
> 0,

and
∂ f1(η0,30)

∂η
> 0,

∂ f2(η0,30)

∂3
> 0.

Hence the linear operator of f1 = 0 and f2 = 0 at (η0,30) is invertible. Therefore,
(3-8) and (3-9) have a solution near (η0,30). �

Appendix A: Energy expansion

Here and in Appendix B, we assume that

x j =

(
r cos

2( j − 1)π
k

, r sin
2( j − 1)π

k
, 0
)
, j = 1, . . . , k,

where r ∈
[
ε−

1
N−2 (1−r0ε

1
N−1 ), ε−

1
N−2 (1−r1ε

1
N−1 )

]
and 0 is the zero vector in RN−2.

Let
x̄ j = ε

1
N−2 x j .

Let G(x, y) be the Green function of −1 in B1(0) with the Dirichlet boundary and
let H(x, y) be the regular part of the Green function.

Recall that
k =

[
ε−

1
N−1
]

and

Wr,3(y)=
k∑

j=1

PUx j ,3(y),
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where PUx,3 is the solution of (1-5). Moreover,

(A-1) φx j ,3(y)=Ux j ,3(y)− PUx j ,3(y)=
εH(x̄ j , ȳ)

3
1
2 (N−2)

+ O
(
εN/(N−2)

d N

)
,

where d = 1− |x̄ j | = 1− ε1/(N−2)
|x j |.

Proposition A.1. We have∫
B∗(0)

(
∇Wr,3∇

∂Wr,3

∂3
− K (ε1/(N−2)

|y|)W p+ε
r,3

∂Wr,3

∂3

)

= k B1

(
−
εH(x̄1, x̄1)

3N−1 +

k∑
i=2

εG(x̄i , x̄1)

3N−1 + O(ε(1+σ)/(N−2))

)
,

and∫
B∗(0)

(
∇Wr,3∇

∂Wr,3

∂r
− K (ε1/(N−2)

|y|)W p+ε
r,3

∂Wr,3

∂r

)

= k
(

B2ε

3N−2

∂H(x̄1, x̄1)

∂r
− B3K ′(1)ε1/(N−2)

+

k∑
i=2

B2ε

3N−2

∂G(x̄i , x̄1)

∂r
+ O(ε(1+σ)/(N−2))

)
,

where B1, B2 and B3 are some positive constants.

Proof. The proof is quite standard now. Here we only prove the first equation. The
other one can be obtained similarly.

Using symmetry, we find

I :=
∫

B∗(0)

(
∇Wr,3∇

∂Wr,3

∂3
− K (ε1/(N−2)

|y|)W p+ε
r,3

∂Wr,3

∂3

)

= k
(

p
k∑

i=1

∫
B∗(0)

PU p−1
x1,3

∂PUx1,3

∂3
PUxi ,3−

∫
�1

K (ε1/(N−2)
|y|)W p+ε

r,3
∂Wr,3

∂3

)
.

It is easy to check that for y ∈�1,

∂

∂3
W p+1

r,3 =
∂

∂3
PU p+1

x1,3
+ (p+ 1)

∂

∂3

(
PU p

x1,3

k∑
i=2

PUxi ,3

)
+ O

(
U

1
2 (p+1)

x1,3

( k∑
i=2

Uxi ,3

)1
2 (p+1)

)
.
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Thus, we have

(p+ 1)
∫
�1

K (ε1/(N−2)
|y|)W p+ε

r,3
∂Wr,3

∂3

=

∫
�1

K (ε1/(N−2)
|y|)

∂W p+1
r,3

∂3
+ O

(
ε

∫
�1

W p+1
r,3 ln Wr,3

)
=

∫
�1

K (ε1/(N−2)
|y|)

∂

∂3
PU p+1

x1,3

+ (p+ 1)
∫
�1

K (ε1/(N−2)
|y|)

∂

∂3

(
PU p

x1,3

k∑
i=2

PUxi ,3

)
+ O

(∫
�1

U
1
2 (p+1)

x1,3

( k∑
i=2

Uxi ,3

)1
2 (p+1)

)
+ O

(
ε

∫
�1

W p+1
r,3 ln Wr,3

)
.

Note that for y ∈�1, |y− xi |≥ |y− x1|. Using (2-11), we see that for t ∈ (1, N−2),

k∑
i=2

Uxi ,3 ≤
C

(1+ |y− x1|)N−2−t

k∑
i=2

1
|xi − x1|t

.

If we take t close to N − 2, then∫
�1

U
1
2 (p+1)

x1,3

( k∑
i=2

Uxi ,3

)1
2 (p+1)

= O((kε1/(N−2))Nt/(N−2))= O(ε(1+σ)/(N−2)).

Moreover, it is easy to show that

ε

∫
�1

W p+1
r,3 ln Wr,3 = O(ε).

As a result, we obtain

I = k
(
−

∫
�1

K (ε1/(N−2)
|y|)PU p

x1,3

∂PUx1,3

∂3

−

k∑
i=2

∫
�1

K (ε1/(N−2)
|y|)PU p

x1,3

∂PUxi ,3

∂3

+ p
k∑

i=2

∫
�1

(
1− K (ε1/(N−2)

|y|)
)
PU p−1

x1,3

∂PUx1,3

∂3
PUxi ,3

+ p
k∑

i=2

∫
B∗(0)\�1

PU p−1
x1,3

∂PUx1,3

∂3
PUxi ,3+ O(ε(1+σ)/(N−2))

)
.
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On the other hand,∫
�1

K (ε1/(N−2)
|y|)PU p

x1,3

∂PUx1,3

∂3

=

∫
�1

PU p
x1,3

∂PUx1,3

∂3
+

∫
�1

(
K (ε1/(N−2)

|y|)− 1
)
PU p

x1,3

∂PUx1,3

∂3

=

∫
�1

PU p
x1,3

∂PUx1,3

∂3

+

∫
�1

(
K (|x̄1|)− 1

)
PU p

x1,3

∂PUx1,3

∂3
+ O(ε(1+σ)/(N−2))

=

∫
�1

PU p
x1,3

∂PUx1,3

∂3
− K ′(1)d

∫
�1

PU p
x1,3

∂PUx1,3

∂3
+ O(ε(1+σ)/(N−2))

=−

∫
�1

U p
x1,3

∂φx1,3

∂3
− p

∫
�1

U p
x1,3

∂Ux1,3

∂3
φx1,3+ O(ε(1+σ)/(N−2))

=
B1εH(x̄1, x̄1)

3N−1 + O(ε(1+σ)/(N−2))

and∫
�1

K (ε1/(N−2)
|y|)PU p

x1,3

∂PUxi ,3

∂3

=

∫
�1

PU p
x1,3

∂PUxi ,3

∂3
+

∫
�1

(
K (ε1/(N−2)

|y|)− 1
)
PU p

x1,3

∂PUxi ,3

∂3

=

∫
�1

U p
x1,3

∂Uxi ,3

∂3
−

∫
�1

U p
x1,3

∂φxi ,3

∂3
+ O(ε(1+σ)/(N−2))

=−
B1εG(x̄i , x̄1)

3N−1 + O(ε(1+σ)/(N−2)).

Other terms can be estimated similarly. Thus, the result follows. �

Appendix B: Basic estimates

In this section, we will give some basic estimates used in the reduction procedure.
We will use the same constant C > 0 to denote the different constants.

Lemma B.1. Let gi j = 1/((1+ |y− xi |)
α(1+ |y− x j |)

β) for each fixed i and j ,
i 6= j , where α ≥ 1 and β ≥ 1 are two constants. Then for any 0< σ ≤min(α, β),
there is a constant C > 0 such that

gi j (y)≤
C

|xi − x j |
σ

(
1

(1+ |y− xi |)α+β−σ
+

1
(1+ |y− x j |)α+β−σ

)
.
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Lemma B.2. For any constant 0< σ < N − 2, there is a constant C > 0 such that∫
RN

1
|y− z|N−2

1
(1+ |z|)2+σ

dz ≤
C

(1+ |y|)σ
.

The proofs of the above two lemmas can be found in [Wei and Yan 2010b].

Lemma B.3. Suppose that ε > 0 and N ≥ 4. Then there is a small ϑ > 0 such that∫
RN

1
|y− z|N−2 W p−1+ε

r,3 (z)
k∑

j=1

1

(1+ |z− x j |)
1
2 (N−2)+τ

dz

≤ C
k∑

j=1

1

(1+ |z− x j |)
1
2 (N−2)+τ+ϑ

.

Proof. This is similar to the proof of Lemma B.3 in [Wei and Yan 2010b]. So we
just sketch it. Note that

Wr,3(z)≤ C
k∑

j=1

1
(1+ |z− x j |)N−2 .

As in [Wei and Yan 2010b], for y ∈ �1 we have Wr,3(z) ≤
C

(1+|z−x1|)N−2−τ1
,

where 0< τ1 ≤
1
2(N − 2). Thus,

W p−1+ε
r,3 (z)≤

C

(1+ |z− x1|)
4− 4τ1

N−2+(N−2−τ1)ε
.

By virtue of Lemma B.1, for y ∈�1 we get

W p−1+ε
r,3 (z)

k∑
j=1

1

(1+ |z− x j |)
1
2 (N−2)+τ

≤
C

(1+ |z− x1|)
1
2 (N+6)+τ− 4τ1

N−2+(N−2−τ1)ε

+

k∑
j=2

C

(1+ |z− x1|)
4− 4τ1

N−2+(N−2−τ1)ε

1

(1+ |z− x j |)
1
2 (N−2)+τ

≤
C

(1+ |z− x1|)
1
2 (N+6)+τ− 4τ1

N−2+(N−2−τ1)ε

+
C

(1+ |z− x1|)
1
2 (N+6)+τ− N+2

N−2 τ1+(N−2−τ1)ε

k∑
j=2

1
|x j − x1|τ1

≤
C

(1+ |z− x1|)
1
2 (N+6)+τ− N+2

N−2 τ1+(N−2−τ1)ε
.
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Thus, we can obtain∫
�1

1
|y− z|N−2 W p−1+ε

r,3 (z)
k∑

j=1

1

(1+ |z− x j |)
1
2 (N−2)+τ

dz

≤

∫
�1

1
|y− z|N−2

C

(1+ |z− x1|)
1
2 (N+6)+τ− N+2

N−2 τ1+(N−2−τ1)ε
dz

≤
C

(1+ |z− x1|)
1
2 (N+2)+τ− N+2

N−2 τ1+(N−2−τ1)ε
.

As a result, for τ1 satisfying 2− (N + 2)/(N − 2)τ1 > 0, we find that∫
RN

1
|y− z|N−2 W p−1+ε

r,3 (z)
k∑

j=1

1

(1+ |z− x j |)
1
2 (N−2)+τ

dz

=

k∑
i=1

∫
�i

1
|y− z|N−2 W p−1+ε

r,3 (z)
k∑

j=1

1

(1+ |z− x j |)
1
2 (N−2)+τ

dz

≤

k∑
i=1

C

(1+ |z− x1|)
1
2 (N+2)+τ− N+2

N−2 τ1+(N−2−τ1)ε

≤ C
k∑

j=1

1

(1+ |z− x j |)
1
2 (N−2)+τ+ϑ

. �
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EFFECTIVE DIVISORS ON THE PROJECTIVE LINE HAVING
SMALL DIAGONALS AND SMALL HEIGHTS

AND THEIR APPLICATION TO ADELIC DYNAMICS

YÛSUKE OKUYAMA

We establish a quantitative adelic equidistribution theorem for a sequence
of effective divisors on the projective line over the separable closure of a
product formula field having small diagonals and small g-heights with re-
spect to an adelic normalized weight g in arbitrary characteristic and in a
possibly nonseparable setting. Applying this quantitative adelic equidistri-
bution result to adelic dynamics of f , we obtain local proximity estimates
between the iterations of a rational function f ∈ k(z) of degree > 1 and a
rational function a ∈ k(z) of degree > 0 over a product formula field k of
characteristic 0.

1. Introduction

Let k be a field and denote by ks the separable closure of k in an algebraic closure
k. For every d ∈N∪ {0}, let k[p0, p1]d be the set of all homogeneous polynomials
in two variables over k of degree d. A k-effective divisor Z on P1(k) is a divisor
on P1(k) defined by the zeros in P1(k) of some P ∈

⋃
d∈N k[p0, p1]d taking into

account their multiplicities, and is said to be on P1(ks) if suppZ ⊂ P1(ks). The
defining polynomial P(p0, p1) of Z is unique up to multiplication in k∗ (= k \{0}),
and is called a representative of Z. Effective divisors include Galois conjugacy
classes of algebraic numbers, and are also called Galois stable multisets in P1(k).

Our first aim in this article is to establish a quantitative adelic equidistribution
of sequences of k-effective divisors on P1(ks), where k is a product formula field,
having not only small g-heights (with respect to an adelic normalized weight g)
but also small diagonals in arbitrary characteristic and in a possibly nonseparable
setting. Secondly, we contribute to the study of the local proximities between the
iterations of a rational function f ∈ k(z) of degree > 1 and a rational function
a ∈ k(z) of degree > 0 on a chordal disk D of radius > 0 in the projective line
P1(Cv) for each place v of k, in the setting of adelic dynamics of characteristic 0.

MSC2010: primary 37P30; secondary 11G50, 37P50, 37F10.
Keywords: product formula field, effective divisor, small diagonals, small heights, quantitative

equidistribution, asymptotically Fekete configuration, local proximity sequence, adelic dynamics.
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1.1. Arithmetic over a product formula field. A field k is a product formula field
if k is equipped with

(i) a set Mk of all places of k, which are either finite or infinite,

(ii) a set {| · |v : v ∈ Mk}, where for each v ∈ Mk , | · |v is a nontrivial absolute value
of k representing v (and then by definition | · |v is nonarchimedean if and only
if v is finite), and

(iii) a set {Nv : v ∈ Mk}, where Nv ∈ N for every v ∈ Mk

such that the following product formula holds: if z ∈ k \ {0} then we have |z|v 6= 1
for at most finitely many v ∈ Mk and moreover

(PF)
∏
v∈Mk

|z|Nvv = 1.

Product formula fields include number fields and function fields over curves, and
a product formula field is a number field if and only if it has at least one infinite
place (see, e.g., the paragraph after Definition 7.51 of [Baker and Rumely 2010]).

Let k be a product formula field. For each v ∈ Mk , let kv be the completion of
k with respect to | · |v and Cv the completion of an algebraic closure of kv with
respect to (the extended) | · |v . We fix an embedding of k into Cv which extends that
of k into kv; by convention, the dependence on v ∈ Mk of a local quantity induced
by | · |v is emphasized by adding the suffix v to it. A family g = {gv : v ∈ Mk} is an
adelic continuous weight if

(i) for every v ∈ Mk , gv is a continuous function on the Berkovich projective line
P1(Cv) such that

µg
v :=1gv +�can,v

is a probability Radon measure on P1(Cv) (see (2-2) for the definition of the
probability Radon measure �can,v on P1(Cv), and (2-3) for the normalization
of the Laplacian 1 on P1(Cv)), and

(ii) there is a finite subset Eg in Mk such that gv ≡ 0 on P1(Cv) for all v ∈Mk \Eg.

Moreover, g is called an adelic normalized weight if, in addition,

(iii) the gv-equilibrium energy Vgv of P1(Cv) vanishes for every v ∈ Mk (see
Section 2.1 for the definition of Vgv ).

For an adelic continuous weight g = {gv : v ∈ Mk}, the family µg
:= {µ

g
v : v ∈ Mk}

is called an adelic probability measure (compare [Favre and Rivera-Letelier 2006,
Définition 1.1]). An adelic continuous weight g = {gv : v ∈ Mk} is said to be
placewise Hölder continuous if for every v ∈ Mk , gv is Hölder continuous on
P1(Cv) with respect to the small model metric dv on P1(Cv) (see (3-1) for the
definition of dv).
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Given P ∈
⋃

d∈N k[p0, p1]d and an adelic continuous weight g = {gv : v ∈ Mk},
the g-height of a k-effective divisor Z on P1(k) represented by P is

(1-1) hg(Z) :=
∑
v∈Mk

Nv
Mgv (P)
deg P

,

where, for every v ∈ Mk , Mgv (P) is the logarithmic gv-Mahler measure of P (see
(2-10) for the definition of Mgv (P) and Section 2.3 for a proof that hg(Z) ∈ R);
by (PF), hg(Z) is well defined. For every v ∈ Mk , letting δS be the Dirac measure
on P1(Cv) at a point S ∈ P1(Cv), a k-effective divisor Z on P1(k) is regarded as a
positive and discrete Radon measure

∑
w∈suppZ

(ordw Z)δw on P1(Cv), still denoted by
Z . Then the diagonal

(Z ×Z)(diagP1(k)) =
∑

w∈suppZ

(ordw Z)2

of Z is independent of v ∈Mk . For a sequence (Zn) of k-effective divisors on P1(k)
satisfying limn→∞ degZn =∞, we say (Zn) has small g-heights with respect to an
adelic normalized weight g if lim supn→∞ hg(Zn)≤ 0, and we say (Zn) has small
diagonals if limn→∞((Zn ×Zn)(diagP1(k)))/(degZn)

2
= 0.

1.2. Quantitative adelic equidistribution of effective divisors. The following is one
of our main results; for the Galois conjugacy class of an algebraic number, this was
due to Favre and Rivera-Letelier [2006, Théorème 7]. For the definitions of the C1-
regularity of a continuous test function φ on P1(Cv), the Lipschitz constant Lip(φ)v
on (P1(Cv), dv), and the Dirichlet norm 〈φ, φ〉v of φ for each v ∈Mk , see Section 7.

Theorem 1. Let k be a product formula field and ks the separable closure of k in k.
Let g = {gv : v ∈ Mk} be a placewise Hölder continuous adelic normalized weight.
Then for every v ∈ Mk , there is C > 0 such that for every k-effective divisor Z on
P1(ks) and every test function φ ∈ C1(P1(Cv)),

(1-2)
∣∣∣∣∫

P1(Cv)

φ d
( Z

degZ −µ
g
v

)∣∣∣∣≤
C ·max

{
Lip(φ)v, 〈φ, φ〉1/2v

}√
max

{
hg(Z), (log degZ)

(Z×Z)(diagP1(ks)
)

(degZ)2

}
.

In Theorem 1, if v ∈ Mk is an infinite place, or equivalently, Cv ∼= C, then the
estimate (1-2) gives a quantitative estimate of the Kantorovich–Wasserstein metric

W
( Z

degZ , µ
g
v

)
= sup

φ

∣∣∣∣∫
P1(C)

φ d
( Z

degZ −µ
g
v

)∣∣∣∣
between the probability Radon measures Z/degZ and µg

v on P1(Cv) ∼= P1(C),
where φ ranges over all Lipschitz continuous functions on P1(C) whose Lipschitz
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constants equal 1 with respect to the normalized chordal metric [z, w] on P1(C)

(see Remark 4.2). For the details of the metric W including its role in the optimal
transportation problems, see, e.g., [Villani 2009].

The next theorem is a qualitative version of Theorem 1. For a sequence of
Galois conjugacy classes of algebraic numbers, this was due to Baker and Rumely
[2006, Theorem 2.3], Chambert-Loir [2006, Théorème 4.2], and Favre and Rivera-
Letelier [2006, Théorème 2]; see also [Szpiro, Ullmo, and Zhang 1997; Bilu 1997;
Rumely 1999; Chambert-Loir 2000; Autissier 2001; Baker and Hsia 2005; Baker
and Rumely 2006; Chambert-Loir 2006; Favre and Rivera-Letelier 2006], and, most
recently, [Yuan 2008] on big line bundles over arithmetic varieties.

Theorem 2 (asymptotically Fekete configuration of effective divisors). Let k be a
product formula field and ks its separable closure in k. Let g = {gv : v ∈ Mk} be
an adelic normalized weight. If a sequence (Zn) of k-effective divisors on P1(ks)

satisfying limn→∞ degZn =∞ has both small diagonals and small g-heights, then
for every v ∈ Mk , (Zn) is an asymptotically gv-Fekete configuration on P1(Cv). In
particular, limn→∞ Zn/degZn = µ

g
v weakly on P1(Cv).

In Theorem 2, the assertion that (Zn) is an asymptotically gv-Fekete configu-
ration on P1(Cv) (see (2-7) for the definition), which is also called a gv-pseudo-
equidistribution on P1(Cv), is stronger than the final equidistribution assertion. For
a relationship between the Kantorovich–Wasserstein metric W and (asymptotically)
Fekete configurations on complex manifolds, see [Lev and Ortega-Cerdà 2012, §7].
For a recent result on the capacity and the transfinite diameter on complex manifolds,
see [Berman and Boucksom 2010] (on Cn , we also refer to the survey [Levenberg
2010]); for the convergence of (asymptotically) Fekete points on complex manifolds,
see [Berman, Boucksom, and Nyström 2011].

1.3. Quantitative equidistribution in adelic dynamics. For rational functions f, a
over a field k and for n ∈N, the divisor [ f n

= a] defined by the roots of the equation
f n
= a in P1(k) is a k-effective divisor on P1(k) if f n

6≡ a.
Let k be a product formula field. For a rational function f ∈ k(z) of degree d > 1,

let ĝ f := {g f ,v : v ∈ Mk} be the adelic dynamical Green function in the sense that
for every v ∈ Mk , g f ,v is the dynamical Green function of f on P1(Cv), so that
µ f ,v := µ

g f ,v is the f -equilibrium (or canonical) measure on P1(Cv) (see Section 9
for details). The family ĝ f is in fact an adelic normalized weight, and the ĝ f -height
function h ĝ f coincides with the Call–Silverman f -dynamical (or canonical) height
function. For every rational function a ∈ k(z), the sequence ([ f n

= a]) has strictly
small ĝ f -heights in that lim supn→∞(d

n
+deg a) ·h ĝ f ([ f

n
= a]) <∞ (Lemma 9.2).

Hence the following are consequences of Theorems 1 and 2, respectively.

Theorem 3. Let k be a product formula field and ks its separable closure in k. Let
f ∈ k(z) be a rational function of degree d > 1 and a ∈ k(z) a rational function.
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Then for every v ∈Mk , there exists a constant C > 0 such that for every test function
φ ∈ C1(P1(Cv)) and every n ∈ N,

(1-3)
∣∣∣∣∫

P1(Cv)

φ d
(
[ f n
= a]

dn+deg a
−µ f ,v

)∣∣∣∣
≤ C ·max

{
Lip(φ)v, 〈φ, φ〉1/2v

}√n ·([ f n
= a]×[ f n

= a])(diagP1(ks)
)

(dn+deg a)2

if f n
6≡ a and the divisor [ f n

= a] on P1(k) is on P1(ks).

Theorem 4. Let k be a product formula field and ks its separable closure in k. Let
f ∈ k(z) be a rational function of degree d > 1 and a ∈ k(z) a rational function.
If the sequence ([ f n

= a]) has small diagonals and the divisor [ f n
= a] is on

P1(ks) for every sufficiently large n ∈ N, then for every v ∈ Mk , ([ f n
= a]) is an

asymptotically g f ,v-Fekete configuration on P1(Cv). In particular,

lim
n→∞

[ f n
= a]

dn + deg a
= µ f ,v

weakly on P1(Cv).

The final equidistribution assertion in Theorem 4 has been established in [Brolin
1965; Ljubich 1983; Freire, Lopes, and Mañé 1983] in complex dynamics, and
in [Favre and Rivera-Letelier 2010] in (not necessarily adelic) nonarchimedean
dynamics (of characteristic 0 when deg a > 0). For every constant a ∈ P1(k), the
estimate (1-3) in Theorem 3 has been obtained in [Okuyama 2013b, Theorems
4 and 5] in complex and (not necessarily adelic) nonarchimedean dynamics of
characteristic 0. In complex dynamics, for every f ∈ C(z) of degree d > 1, every
constant a ∈ P1(C), and every φ ∈ C2(P1(C)), a finer estimate than (1-3) has been
obtained in [Drasin and Okuyama 2007, Theorem 2 and (4.2)].

1.4. Application to a motivating question. Let K be an algebraically closed field
that is complete with respect to a nontrivial absolute value | · |, and [z, w] be the
normalized chordal metric on P1

=P1(K ) (see (2-1)). A subset D in P1 is called a
chordal disk (in P1) if D = {z ∈ P1

: [z, w] ≤ r} for some w ∈ P1 and some radius
r ≥ 0. Even in the specific case a= Id (see, e.g., [Cremer 1928; Siegel 1942; Brjuno
1971; 1972; Herman and Yoccoz 1983; Yoccoz 1988; 1995; Pérez-Marco 1993;
2001]), which is one of the most interesting cases and is related to the difficulty
of small denominators in nonarchimedean and complex dynamics, the following
question has not been completely understood.

Question. How uniformly close on a chordal disk D of radius> 0 can the sequence
( f n) of the iterations of a rational function f ∈ K (z) of degree > 1 be to a rational
function a ∈ K (z) of degree > 0?
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For a study of this question on the projective space PN (K ), see [Okuyama 2010].
The following estimate of the local proximity sequence (supD[ f

n, a]v) is an appli-
cation of Theorem 3 to this question in the setting of adelic dynamics.

Theorem 5. Let k be a product formula field of characteristic 0. Let f ∈ k(z) be a
rational function of degree > 1 and a ∈ k(z) a rational function of degree> 0. Then
for every v ∈ Mk and every chordal disk D in P1(Cv) of radius > 0, as n→∞,

(1-4) log sup
D
[ f n, a]v = O

(√
n ·
(
[ f n = a]× [ f n = a]

)(
diagP1(k)

))
.

Here, the implicit constant in O( · ) possibly depends on f and a.

In the case that a= Id, we will see that
(
[ f n
= Id]×[ f n

= Id]
)(

diagP1(k)

)
=O(dn)

as n→∞ in Section 10. Hence Theorem 5 concludes the following.

Theorem 6. Let k be a product formula field of characteristic 0. Let f ∈ k(z) be a
rational function of degree d > 1. Then for every v ∈ Mk and every chordal disk D
in P1(Cv) of radius > 0,

(1-5) log sup
D
[ f n, Id]v = O

(√
ndn

)
as n→∞.

1.5. The unit D∗( p). The next result generalizes the obvious fact that the discrim-
inant of a polynomial in one variable over a field k is in k. The unit D∗(p) plays
an important role in the nonseparable case and might have been studied before, but
we could find no relevant literature.

Theorem 7. Let k be a field and ks the separable closure of k in an algebraic
closure k of k. For every p(z) ∈ k[z] of degree > 0, let {z1, . . . , zm} be the set of
all distinct zeros of p(z) in k so that p(z) = a ·

∏m
j=1(z − z j )

d j in k[z] for some
a ∈ k \ {0} and some sequence (d j )

m
j=1 in N. If {z1, . . . , zm} ⊂ ks , then

D∗(p) :=
m∏

j=1

∏
i :i 6= j

(z j − zi )
di d j ∈ k \ {0},

where, a priori, this D∗(p) is always in k \ {0}.

1.6. Organization of this article. In Section 2, we recall background from potential
theory and arithmetic on the Berkovich projective line. In Section 3, we extend
Favre and Rivera-Letelier’s regularization [ · ]ε of discrete Radon measures and
establish required estimates on them, and in Section 4 we see the negativity of
regularized Fekete sums and a Cauchy–Schwarz inequality. In Sections 5 and
6, we compute the g-Fekete sums (Z,Z)g and estimate the regularized g-Fekete
sums (Zε,Zε)g with respect to a k-effective divisor Z on P1(k). In Section 7, we
prove Theorems 1 and 2; the arguments are more or less adaptions of those in the
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proofs of [Favre and Rivera-Letelier 2006, Théorème 7] and [Baker and Rumely
2010, Theorem 10.24], respectively. In Section 8, we review background from
nonarchimedean and complex dynamics. Finally, we prove Theorems 3 and 4 in
Section 9, Theorems 5 and 6 in Section 10, and Theorem 7 in Section 11.

2. Background from potential theory and arithmetic

Notation 2.1. For a field k, the origin of k2 is also denoted by 0= 0k , and we write
π = πk : k2

\ {0} → P1
= P1(k) for the canonical projection, so that π(0, 1)=∞

and π(p0, p1) = p1/p0 if p0 6= 0. Set the wedge product (z0, z1)∧ (w0, w1) :=

z0w1− z1w0 on k2.

Let K be an algebraically closed field that is complete with respect to a nontrivial
absolute value | · |, which is said to be nonarchimedean if the strong triangle
inequality |z+w| ≤max{|z|, |w|} holds, and archimedean otherwise. On K 2, let
‖(p0, p1)‖ be either the maximal norm max{|p0|, |p1|} (for nonarchimedean K ) or
the euclidean norm

√
|p0|2+ |p1|2 (for archimedean K ). The normalized chordal

metric [z, w] on P1
= P1(K ) is the function

(2-1) (z, w) 7→ [z, w] = |p∧ q|/
(
‖p‖ · ‖q‖

)
≤ 1

on P1
×P1, where p∈π−1(z), q ∈π−1(w). The metric topology on P1 with respect

to [z, w] agrees with the relative topology on P1 from the Berkovich projective
line P1

= P1(K ), which is a compact augmentation of P1 containing P1 as a dense
subset, and is isomorphic to P1 if and only if K is archimedean (see Section 3.2
for more details when K is nonarchimedean). Letting δS be the Dirac measure on
P1 at a point S ∈ P1, set

(2-2) �can :=

{
δScan for nonarchimedean K ,
ω for archimedean K ,

where Scan is the canonical (or Gauss) point in P1 for nonarchimedean K (see
Section 3.2 for the definition), and ω is the Fubini–Study area element on P1

normalized as ω(P1)= 1 for archimedean K . For nonarchimedean K , the general-
ized Hsia kernel [S,S ′]can on P1 with respect to Scan is the unique (jointly) upper
semicontinuous and separately continuous extension of the normalized chordal
metric [z, w] on P1(×P1) to P1

×P1 (see (3-4) for a more concrete description). By
convention, for archimedean K , the kernel function [S,S ′]can is defined by [z, w]
itself. Let 1 = 1P1 be the distributional Laplacian on P1 normalized so that for
each S ′ ∈ P1,

(2-3) 1 log [ · ,S ′]can = δS ′ −�can on P1.



148 YÛSUKE OKUYAMA

For the construction of the Laplacian 1 in the nonarchimedean case, see [Baker
and Rumely 2010, §5; Favre and Jonsson 2004, §7.7; Thuillier 2005, §3] and also
[Jonsson 2015, §2.5]. In [Baker and Rumely 2010], the opposite sign convention
for 1 is adopted.

2.1. Potential theory on P1 with external fields. For the foundation of the potential
theory on the (Berkovich) projective line, see [Baker and Rumely 2010; Favre and
Rivera-Letelier 2010; Thuillier 2005], and also [Jonsson 2015; Tsuji 1959, III §11]
([Thuillier 2005] is on more general curves than lines and [Tsuji 1959, III §11] is
on P1(C)). We also refer to [Saff and Totik 1997] for the generalities of weighted
potential theory, i.e., logarithmic potential theory with external fields.

A continuous weight g on P1 is a continuous function on P1 such that

µg
:=1g+�can

is a probability Radon measure on P1. For a continuous weight g on P1, the g-
potential kernel on P1 (or the negative of an Arakelov Green kernel function on P1

relative to µg [Baker and Rumely 2010, §8.10]) is the function

(2-4) 8g(S,S ′) := log [S,S ′]can− g(S)− g(S ′) on P1
×P1,

and the g-potential of a Radon measure ν on P1 is the function

(2-5) Ug,ν( · ) :=

∫
P1
8g( · ,S ′) dν(S ′) on P1.

By Fubini’s theorem, 1Ug,ν = ν − ν(P
1)µg on P1. The g-equilibrium energy

Vg ∈ (−∞,+∞) of P1 is the supremum of the g-energy functional

(2-6) ν 7→

∫
P1×P1

8g d(ν× ν)=
∫
P1

Ug,ν dν

on the space of all probability Radon measures ν on P1; indeed, Vg >−∞ since
Vg ≥

∫
P1×P18g d(�can×�can) > −∞. A probability Radon measure µ on P1 at

which the g-energy functional (2-6) attains the supremum Vg is called a g-equi-
librium mass distribution on P1; in fact the unique g-equilibrium mass distribution
on P1 is µg, and moreover, Ug,µg ≡ Vg on P1 (for nonarchimedean K , see [Baker
and Rumely 2010, Theorem 8.67, Proposition 8.70]). For a discussion on such a
Gauss variational problem, see [Saff and Totik 1997, Chapter 1].

A normalized weight g on P1 is a continuous weight on P1 satisfying Vg = 0; for
every continuous weight g on P1, g := g+ Vg/2 is the unique normalized weight
on P1 such that µg

= µg.
For a continuous weight g on P1 and a Radon measure ν on P1, the g-Fekete
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sum with respect to ν is

(ν, ν)g :=

∫
P1×P1\diag

P1(K )

8g d(ν× ν),

which generalizes the classical Fekete sum associated with a finite subset in C (see
[Fekete 1930a; 1930b; 1933]). If supp ν is a discrete (so finite) subset in P1, i.e., if
ν is a discrete measure on P1, then (ν, ν)g is always finite (even if supp ν ⊂ P1).

For a continuous weight g on P1, a sequence (νn) of positive and discrete
Radon measures on P1 satisfying limn→∞ νn(P

1) = ∞ is called an asymptoti-
cally g-Fekete configuration on P1 if the sequence (νn) not only has small diag-
onals in that (νn × νn)(diagP1(K )) = o(νn(P

1)2) as n → ∞ but also satisfies
limn→∞(νn, νn)g/(νn(P

1))2 = Vg; under the former small diagonals condition,
the latter one is equivalent to the weaker

(2-7) lim inf
n→∞

(νn, νn)g

(νn(P1))2
≥ Vg,

since we always have

(2-8) lim sup
n→∞

(νn, νn)g

(νn(P1))2
≤ Vg

(see, e.g., [Baker and Rumely 2010, Lemma 7.54]). By a classical argument (see
[Saff and Totik 1997, Theorem 1.3 in Chapter III]), if (νn) is an asymptotically
g-Fekete configuration on P1, then limn→∞ νn/νn(P

1)= µg weakly on P1.

2.2. Local arithmetic on P1. Let k be a field.

Definition 2.2. A field extension K/k is an algebraic and metric augmentation
of k if K is algebraically closed and (topologically) complete with respect to a
nontrivial absolute value | · | (e.g., Cv is an algebraic and metric augmentation of a
product formula field k for every v ∈ Mk).

For every P ∈
⋃

d∈N k[p0, p1]d , there is a sequence (q P
j )

deg P
j=1 in k2

\ {0} giving
a factorization

(2-9) P(p0, p1)=

deg P∏
j=1

(
(p0, p1)∧ q P

j
)

of P in k[p0, p1]. Set z P
j :=π(q

P
j )∈P1(k) for each j ∈{1, 2, . . . , deg P}. Although

the sequence (q P
j )

deg P
j=1 is not unique, the sequence (z P

j )
deg P
j=1 in P1(k) is independent

of the choice of (q P
j )

deg P
j=1 up to permutations. Let in addition K be an algebraic

and metric completion of k. Then the sum M#(P) :=
∑ deg P

j=1 log ‖q P
j ‖ is also

independent of the choice of (q P
j )

deg P
j=1 , and for every continuous weight g on

P1
= P1(K ), the logarithmic g-Mahler measure of P is
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(2-10) Mg(P) :=
deg P∑
j=1

g(z P
j )+M#(P).

The function SP := |P( · /‖ · ‖)| on K 2
\ {0} descends to P1(K ) and in turn

extends continuously to P1 so that log SP =
∑ deg P

j=1 log [ · , z P
j ]can+M#(P) on P1,

which can be rewritten as log SP − (deg P)g =
∑ deg P

j=1 8g( · , z P
j )+ Mg(P) on

P1. Integrating both sides against dµg over P1, by Ug,µg ≡ Vg on P1, we have the
Jensen-type formula

(2-11) Mg(P)=
∫
P1

(
log SP − (deg P)g

)
dµg
− (deg P)Vg.

2.3. A lemma on global arithmetic. Let k be a product formula field. The proof
of the next result is not based on a field extension of k.

Lemma 2.3. For every P ∈
⋃

d∈N

k[p0, p1]d , we have
∑
v∈Mk

Nv ·M#(P)v ∈ R≥0.

Proof. Let (q P
j )

deg P
j=1 be a sequence in k2

\ {0} giving a factorization (2-9) of P ,
and let L(P(1, · )) ∈ k \ {0} be the coefficient of the maximal degree term of
P(1, z) ∈ k[z]. Setting q P

j = ((q
P
j )0, (q

P
j )1), for each j ∈ {1, 2, . . . , deg P}, we

have

L(P(1, · ))= (−1)deg P−deg∞ P
( ∏

j :π(q P
j )=∞

(q P
j )1

)( ∏
j :π(q P

j ) 6=∞

(q P
j )0

)
since for each j ∈ {1, 2, . . . , deg P},

q P
j =

{
(q P

j )0 · (1, π(q
P
j )) if π(q P

j ) 6= ∞,

(q P
j )1 · (0, 1) if π(q P

j )=∞.

Thus we have
∑

v∈Mk
Nv ·M#(P)v ≥

∑
v∈Mk

Nv log |L(P(1, · ))|v = 0, where the
final equality is by (PF).

For each i, j ∈ N ∪ {0} satisfying i + j = deg P , if the coefficient ai, j ∈ k of
the expansion P(p0, p1)=

∑
i+ j=deg P ai, j pi

0 p j
1 in k[p0, p1]deg P does not vanish,

then by (PF), there is a finite subset Ei, j in Mk such that |ai, j |v = 1 for every
v ∈ Mk \ Ei, j . Set EP := {infinite places of k} ∪

⋃
i, j∈N∪{0}:ai, j 6=0 Ei, j . For every

v ∈ Mk \ EP , by the strong triangle inequality, |P(p0, p1)|v is bounded above by

max{max{|p0|v, |p1|v}
i+ j
: i, j ∈ N∪ {0}, i + j = deg P} = ‖(p0, p1)‖

deg P
v

on C2
v , so that log SP,v ≤ 0 on P1(Cv) and in turn on P1(Cv). Set g0

:= {g0
v : v ∈Mk}

with g0
v ≡ 0 on P1(Cv) for every v ∈ Mk ; then g0 is an adelic continuous weight.

For every finite v ∈ Mk , we have µg0

v = δScan,v on P1(Cv) and moreover Vg0
v
=

log [Scan,v,Scan,v]can,v = 0, so that by the Jensen-type formula (2-11), we have
M#(P)v = Mg0

v
(P)= log SP,v(Scan,v). Hence, M#(P)v ≤ 0 for every v ∈ Mk \ EP ,

and we conclude that
∑

v∈Mk
Nv ·M#(P)v <∞ since #EP <∞. �
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3. Regularization of discrete Radon measures whose supports are in P1

Let K be an algebraically closed field complete with respect to a nontrivial absolute
value | · |.

3.1. The small model metric d and the Hsia kernel |S −S ′|∞. The kernel func-
tion [S,S ′]can is not necessarily a metric on P1

= P1(K ); indeed, for every S ∈ P1,
[S,S]can vanishes if and only if S ∈ P1

= P1(K ). The small model metric d on P1

is the function

(3-1) d(S,S ′) := [S,S ′]can−
[S,S]can+ [S ′,S ′]can

2
on P1

×P1,

which extends the normalized chordal metric [z, w] on P1 (but this d does not
induce the topology of P1; see [Baker and Rumely 2010, §2.7; Favre and Rivera-
Letelier 2006, §4.7] for details). On the other hand, the Hsia kernel |S −S ′|∞ on
the Berkovich affine line A1

= A1(K )= P1
\ {∞} is the function

(3-2) |S −S ′|∞ := [S,S ′]can · [S,∞]−1
can · [S

′,∞]−1
can on A1

×A1,

although the difference S−S ′ itself is not defined unless both S,S ′ ∈ K (for details,
see [Baker and Rumely 2010, Chapter 4]). The kernel |S − S ′|∞ is the unique
(jointly) upper semicontinuous and separately continuous extension of the function
|z−w| on K × K to A1

×A1.

3.2. A short description of P1 for nonarchimedean K. Suppose that K is non-
archimedean. A subset B in K is called a (K -closed) disk in K if it has the form
B={z∈K : |z−a|≤r} for some a∈K and some radius r ≥0. By the strong triangle
inequality, two disks in K either nest or are disjoint. This alternative extends to any
two decreasing infinite sequences of disks in K such that they either infinitely nest or
are eventually disjoint, and so induces a cofinal equivalence relation among them.

Example 3.1. Instead of giving a formal definition of the cofinal equivalence class
S of a decreasing infinite sequence (Bn) of disks in K , let us be practical: each
z ∈ K is regarded as the cofinal equivalence class of the constant sequence (Bn) of
the disks Bn ≡{z} in K (of radii≡ 0). More generally, for every cofinal equivalence
class S of a decreasing infinite sequence (Bn) of disks in K , the intersection
BS :=

⋂
n∈N Bn is independent of the choice of the representatives (Bn) of S, and

if BS 6= ∅, then BS is still a disk in K and the S is represented by the constant
sequence (B̃n) of the disks B̃n ≡ BS in K .

As a set, the set of all cofinal equivalence classes S of decreasing infinite
sequences (Bn) of disks in K and in addition∞∈P1 is nothing but P1 ([Berkovich
1990, p. 17]; see also [Baker and Rumely 2010, §2; Favre and Rivera-Letelier 2006,
§3; Benedetto 2010, §6.1]): for example, the canonical (or Gauss) point Scan in
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P1 is represented by the ring of K -integers OK := {z ∈ K : |z| ≤ 1}, which is a
disk in K . The above alternative induces a partial ordering � on P1 such that for
every S,S ′ ∈ P1 satisfying BS, BS ′ 6=∅, we have S � S ′ if and only if BS ⊃ BS ′

(the description is a little complicated when one of BS, BS ′ equals ∅). For every
S,S ′ ∈ P1 satisfying S � S ′, the segment between S and S ′ in P1 is the set of
all points S ′′ ∈ P1 satisfying S � S ′′ � S ′, which can be equipped with either the
ordering induced by � on P1 or its opposite. All those (oriented) segments make
P1 a tree in the sense of Jonsson [2015, §2, Definition 2.2]. The (Gelfand) topology
of P1 coincides with the (weak) topology of P1 as a tree.

For each S ∈ P1
\ {∞} represented by (Bn), set

diamS := lim
n→∞

diam Bn (= diam BS if BS 6=∅),

where diam B denotes the diameter of a disk B in K with respect to | · |; by
convention, for S = ∞, we set B∞ := K and diam∞ := +∞. The hyperbolic
space is H1

= H1(K ) := P1
\P1
= {S ∈ P1

: diamS ∈ (0,+∞)}. The big model (or
hyperbolic) metric ρ on H1 is a path metric on H1 (but does not induce the relative
topology of H1 induced by P1) so that for every S,S ′ ∈ H1 satisfying S � S ′,

(3-3) ρ(S,S ′)= log(diamS/ diamS ′)

(see, e.g., [Baker and Rumely 2010, §2.7]). In terms of ρ, the generalized Hsia
kernel [S,S ′]can with respect to Scan is interpreted as a Gromov product

(3-4) log [S,S ′]can =−ρ(S ′′,Scan) on H1
×H1,

where S ′′ is the unique point in H1 lying between S and S ′, between S ′ and Scan,
and between Scan and S (see [Favre and Rivera-Letelier 2006, §3.4]). Similarly, for
every S,S ′ ∈ A1,

(3-5) |S −S ′|∞ = diamS ′′,

where S ′′ is the smallest point in A1 satisfying both S ′′�S and S ′′�S ′ with respect
to the partial ordering � on P1.

For every ε > 0, a continuous mapping

πε : A
1
→ A1

is defined by πε(S) :=S ′′ for every S ∈A1, where S ′′ ∈ {S ∈P1
: diamS ∈ [ε,+∞)}

is the unique point between ∞ and S satisfying diamS ′′ = max{ε, diamS} (see
[Favre and Rivera-Letelier 2006, §4.6] for details).

3.3. Regularization on P1. When K is archimedean, fix a nonnegative smooth
decreasing function ξ : [0,∞)→[0, 1] such that supp ξ ⊂[0, 1] and

∫
∞

0 ξ(x) dx=1,
and set ξε(x) := ξ(x/ε)/ε on [0,+∞) for each ε > 0. For every z ∈ K and every
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ε > 0, the ε-regularization [z]ε of δz is the convolution ξε ∗ δz on P1, i.e., for any
continuous test function φ on P1,

(ξε ∗ δz)(φ)=

∫ ε

0
ξε(r) dr

∫ 2π

0
φ(z+ reiθ )

dθ
2π
.

When K is nonarchimedean, for every z ∈ K and every ε > 0, the ε-regularization
[z]ε of δz is defined by [z]ε := (πε)∗δz = δπε(z) on P1 [Favre and Rivera-Letelier
2006, p. 343]. In both cases, [z]ε is a probability Radon measure on P1, the chordal
potential P1

3 S 7→
∫
P1 log [S,S ′]can d[z]ε(S ′) of [z]ε is a continuous function on

P1, and for every z, w ∈ K and every ε > 0, the estimate

(3-6)
∫
A1×A1

log |S −S ′|∞ d([z]ε ×[w]ε)(S,S ′)≥
{

log |z−w| if z 6= w,
Cabs+ log ε if z = w

holds, where Cabs≤0 is an absolute constant and in fact Cabs=0 for nonarchimedean
K [Favre and Rivera-Letelier 2006, Lemmes 2.10, 4.11, and their proofs].

Let us extend the ε-regularization [ · ]ε and the estimate (3-6) to P1. Set ι(z) :=
1/z ∈ PGL(2, K ), which extends to an automorphism on P1 (see Fact 8.2), so that
ι2 = Id on P1 and [ι(S), ι(S ′)]can = [S,S ′]can (so d(ι(S), ι(S ′)) = d(S,S ′)) on
P1
×P1. For every ε > 0, set [∞]ε := ι∗[0]ε .
For every z ∈ P1 and every ε > 0, we have

(3-7) supp [z]ε ⊂ {S ∈ P1
: d(S, z)≤ ε},

as follows immediately from the definitions of |S −S ′|∞ (and (3-5)), d, and [z]ε
when z ∈ K , and from (3-7) applied to z = 0 and the invariance of d under ι when
z =∞. Moreover, for every z ∈ K and every ε > 0,

(3-8) sup
S∈supp [z]ε

| log [S,∞]can− log [z,∞]| ≤ ε

by a direct computation of log [ · ,∞]can− log [z,∞] on K , using that supp [z]ε ⊂
{S ∈ P1

: |S − z|∞ ≤ ε} and the density of K in A1.

Lemma 3.2. Let g be a continuous weight on P1 having a modulus of continuity η
on (P1, d). Then for every ε > 0 and every z, w ∈ P1,

(3-9)
∫
P1×P1

8g d([z]ε ×[w]ε)

≥


8g(z, w)− 2ε− 2η(ε) if z 6= w,
Cabs+ log ε− 2ε+ 2 log [z,∞]− 2η(ε)− 2g(z) if z = w ∈ K ,
Cabs+ log ε− 2ε− 2η(ε)− 2g(∞) if z = w =∞.

Proof. Since 8g(S,S ′) = log [S,S ′]can− g(S)− g(S ′) on P1
×P1, by (3-7), we

can assume g ≡ 0 (and η≡ 0) on P1 without loss of generality. For every z, w ∈ K ,
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by the definition (3-2) of |S −S ′|∞ and (3-8),∫
P1×P1

log [S,S ′]can d([z]ε ×[w]ε)(S,S ′)

≥

∫
A1×A1

log |S −S ′|∞ d([z]ε ×[w]ε)(S,S ′)− 2ε+ log [z,∞]+ log [w,∞],

which with the estimate (3-6) yields (3-9) (for g ≡ η ≡ 0) in this case. The
estimate (3-9) (for g ≡ η ≡ 0) in the case z = w =∞ follows from [∞]ε = ι∗[0]ε ,
[ι(S), ι(S ′)]can = [S,S ′]can, and the estimate (3-9) for z = w = 0.

There remains the case that z=∞ andw∈K (so z 6=w). If K is nonarchimedean,
then for every w ∈ K and ε > 0, the equalities [∞]ε = ι∗[0]ε and [ι(S), ι(S ′)]can =

[S,S ′]can, together with the interpretation (3-4) of [S,S ′]can, yield∫
P1×P1

log [S,S ′]can d([∞]ε ×[w]ε)(S,S ′)

=

∫
P1×P1

log [S,S ′]can d([0]ε × ι∗[w]ε)(S,S ′)= log [πε(0), ι(πε(w))]can

≥ log [0, ι(w)] = log [∞, w] ≥ log [∞, w] − 2ε,

which implies the estimate (3-9) (for g ≡ η ≡ 0) in the case z =∞ and w ∈ K
when K is nonarchimedean. If K is archimedean, then for every w ∈ K and every
r, r ′ > 0, we have∫ 2π

0

dφ
2π

∫ 2π

0
log
∣∣∣(0+ reiθ )−

1
w+r ′eiφ

∣∣∣ dθ
2π

=

∫ 2π

0
max

{
− log |w+ r ′eiφ

|, log r
} dφ

2π
≥−

∫ 2π

0
log
∣∣(w+ r ′eiφ)− 0

∣∣ dφ
2π
,

so that for every w ∈ K ∼= A1 and every ε > 0,∫
A1×A1

log |S −S ′|∞ d([0]ε × ι∗[w]ε)(S,S ′)

=

∫
A1×A1

log |S − ι(S ′)|∞ d([0]ε ×[w]ε)(S,S ′)≥−
∫
A1

log |S ′− 0|∞ d[w]ε(S ′).

On the other hand, for every w ∈ K and every ε > 0, by the definition (2-1) of the
chordal metric [z, w] on P1 ∼= P1 (and [0,∞] = 1),∫
P1

log [S ′,∞]can d(ι∗[w]ε)(S ′)=
∫
P1

log [S ′, 0]can d[w]ε(S ′)

=

∫
A1

log |S ′− 0|∞ d[w]ε(S ′)+
∫
P1

log [S ′,∞]can d[w]ε(S ′).

From these computations and (3-8), for every w ∈ K and every ε > 0, we get
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P1×P1

log [S,S ′]can d([∞]ε ×[w]ε)(S,S ′)

=

∫
P1×P1

log [S,S ′]can d([0]ε × ι∗[w]ε)(S,S ′)

≥

∫
P1

log [S,∞]can d[0]ε(S)+
∫
P1

log [S ′,∞]can d[w]ε(S ′)

≥ log [0,∞]+ log [w,∞]− 2ε = log [w,∞]− 2ε,

which implies the estimate (3-9) (for g ≡ η ≡ 0) in the case z =∞ and w ∈ K
when K is archimedean. �

4. The negativity of regularized Fekete sums
and a Cauchy–Schwarz inequality

Let K be an algebraically closed field that is complete with respect to a nontrivial
absolute value | · |. For every ε > 0 and every discrete measure ν on P1

= P1(K )
whose support is in P1

= P1(K ), the ε-regularization of ν is

νε :=
∑

w∈supp ν

ν({w})[w]ε on P1.

For every continuous weight g on P1, let us call (νε, νε)g the ε-regularized g-Fekete
sum with respect to this ν.

4.1. C1-regularity and the Dirichlet norm. Recall the description of P1 given in
Section 3.2. For nonarchimedean K , a function φ on P1

= P1(K ) is in C1(P1) if

(i) φ is continuous on P1 and locally constant except for a union T of at most
finitely many segments in H1

= H1(K ), which are oriented by the partial
ordering � on P1, and

(ii) the derivative φ′ with respect to the length parameter induced by the hyperbolic
metric ρ on each segment in T exists and is continuous on T .

The Dirichlet norm of φ ∈C1(P1) is defined by 〈φ, φ〉1/2 :=
(∫

T (φ
′)2 dρ

)
1/2, where

dρ is the 1-dimensional Hausdorff measure on H1 with respect to ρ (for details, see
[Favre and Rivera-Letelier 2006, §5.5]). When K is archimedean, the C1-regularity
and the Dirichlet norm of a function φ on P1 ∼= P1 is defined with respect to the
complex (or differentiable) structure of P1. For completeness, we include a proof
of the following.

Proposition 4.1. Every φ in C1(P1) is Lipschitz continuous on (P1, d).

Proof. When K is archimedean, this is obvious. Suppose that K is nonarchimedean
and let φ ∈ C1(P1). By definition, φ is locally constant on P1 except for a union
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T of at most finitely many segments in H1, and is Lipschitz continuous on T with
respect to ρ. The set T is compact in (H1, ρ), and for every S,S ′ ∈ H1, by the
definition (3-1) of d, (3-4), and (3-3), if Scan � S � S ′, then

d(S,S ′)= diamS − diamS+diamS ′
2

=
diamS−diamS ′

2
≥

diamS ′
2

ρ(S,S ′),

and similarly, if Scan � S � S ′, then d(S,S ′) ≥ ρ(S,S ′)/(2 diamS ′). Hence we
conclude that φ is also Lipschitz continuous on T with respect to d, and in turn on
the whole P1 with respect to d. �

The Lipschitz constant of a Lipschitz continuous function φ on (P1, d) is denoted
by Lip(φ).

Remark 4.2. When K is archimedean (so P1∼=P1), we have 〈φ, φ〉1/2≤Lip(φ) for
every φ ∈C1(P1). Moreover, every Lipschitz continuous function φ on (P1, [z, w])
is approximated by functions in C1(P1) in the Lipschitz norm.

4.2. The negativity of (νε, νε)g and a Cauchy–Schwarz inequality. For every Ra-
don measure µ on P1 satisfying µ(P1)= 0, if the chordal potential of µ, which is
defined by S 7→

∫
P1 log [S,S ′]can dµ(S ′), is continuous on P1, then we have the

positivity property
∫
P1×P1(− log |S − S ′|∞) d(µ×µ)(S,S ′) ≥ 0 (see [Favre and

Rivera-Letelier 2006, §2.5 and §4.5]) and in fact the Cauchy–Schwarz inequality

(4-1)
∣∣∣∣∫

P1
φ dµ

∣∣∣∣2≤ 〈φ, φ〉 ·∫
P1×P1

(− log |S −S ′|∞) d(µ×µ)(S,S ′)

for every test function φ ∈ C1(P1) (see [Favre and Rivera-Letelier 2006, (32) and
(33)]).

In particular, for every ε > 0, every normalized weight g on P1, every test
function φ ∈ C1(P1), and every discrete measure ν on P1 whose support is in P1,
the computation

0≤
∫
P1×P1

(− log |S −S ′|∞) d((νε − (ν(P1))µg)× (νε − (ν(P
1))µg))(S,S ′)

=

∫
P1×P1

(−8g) d((νε − (ν(P1))µg)× (νε − (ν(P
1))µg))=−(νε, νε)g

(recalling Ug,µg ≡ 0 on P1) yields not only the negativity (νε, νε)g ≤ 0 but, with
the Cauchy–Schwarz inequality (4-1) and the triangle inequality, also the estimate

(4-2)
∣∣∣∣∫

P1
φ d
(
ν− ν(P1)µg)∣∣∣∣= ∣∣∣∣∫

P1
φ d
(
(ν− νε)+ (νε − (deg ν)µg)

)∣∣∣∣
≤ (deg ν)Lip(φ)ε+〈φ, φ〉1/2 · (−(νε, νε)g)1/2.
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5. Computations of Fekete sums (Z,Z)g

Let k be a field. For a k-effective divisor Z on P1(k), set

D∗(Z|k) :=
∏

w∈suppZ\{∞}

∏
w′∈suppZ\{w,∞}

(w−w′)(ordw Z)(ordw′ Z) ∈ k \ {0},

which is in fact in k \ {0} by Theorem 7 if Z is on P1(ks). For every P ∈⋃
d∈N k[p0, p1]d , let L(P(1, · )) ∈ k \ {0} be the coefficient of the maximal degree

term of P(1, z) ∈ k[z] (appearing in Section 2.3).

Lemma 5.1. Let k be a field. Let Z be a k-effective divisor on P1(k) represented
by P ∈

⋃
d∈N k[p0, p1]d , and let (q P

j )
deg P
j=1 be a sequence in k2

\ {0} giving a
factorization (2-9) of P. For each j ∈ {1, 2, . . . , deg P}, set q P

j = ((q
P
j )0, (q

P
j )0)

and z j := π(q P
j ) ∈ P1(k). Suppose (q P

j )
deg P
j=1 is normalized with respect to a

distinguished zero w0 ∈ P1(k) of P so that for each j ∈ {1, 2, . . . , deg P},

(5-1)
{
(q P

j )0 = 1 if z j 6∈ {w0,∞},

(q P
j )1 = 1 if w0 6= z j =∞.

Then

(5-2) L(P(1, · ))= (−1)deg P−deg∞ P
·

{∏
j :z j=w0

(q P
j )0 if w0 6= ∞,∏

j :z j=w0
(q P

j )1 if w0 =∞,

and

(5-3)
deg P∏
j=1

∏
i :zi 6=z j

(q P
i ∧ q P

j )

= (−1)deg∞ P(deg P−deg∞ P)
· L(P(1, · ))2(deg P−degw0

P)
· D∗(Z|k).

Proof. Without normalizing the sequence (q P
j )

deg P
j=1 we have, by direct computation,

(5-4)
deg P∏
j=1

∏
i :zi 6=z j

(q P
i ∧ q P

j )

=

∏
j :z j=∞
i :zi 6=∞

(
(q P

i )0(q
P
j )1
)
·

∏
j :z j 6=∞
i :zi=∞

(
−(q P

i )1(q
P
j )0)

)
·

∏
j :z j 6=∞

i :zi 6∈{z j ,∞}

(
(q P

i )0(q
P
j )0(z j−zi )

)

= (−1)deg∞ P(deg P−deg∞ P)
·

( ∏
j :z j=∞

(
(q P

j )
deg P−deg∞ P
1 ·

∏
i :zi 6=∞

(q P
i )0

))2

·

( ∏
j :z j 6=∞

(
(q P

j )
deg P−deg∞ P−degz j

P

0 ·

∏
i :zi 6∈{z j ,∞}

(q P
i )0

))
· D∗(Z|k).

Let us normalize (q P
j ) so that the normalization (5-1) holds with respect to a
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distinguished zero w0 ∈ P1(k) of P . Then (5-2) follows from

L(P(1, · ))= (−1)deg P−deg∞ P
·

( ∏
j :z j=∞

(q P
j )1

)( ∏
j :z j 6=∞

(q P
j )0

)
and the normalization (5-1).

Let us show (5-3). If w0 =∞, then under the normalization (5-1), the equality
(5-4) yields
deg P∏
j=1

∏
i :zi 6=z j

(q P
i ∧ q P

j )

= (−1)deg∞ P(deg P−deg∞ P)
·

( ∏
j :z j=∞

(q P
j )1

)2(deg P−deg∞ P)

· 1 · D∗(Z|k),

which with (5-2) implies (5-3) when w0 =∞. If w0 6= ∞, then under the normal-
ization (5-1), the equality (5-4) yields
deg P∏
j=1

∏
i :zi 6=z j

(q P
i ∧ q P

j )

= (−1)deg∞ P(deg P−deg∞ P)
·

( ∏
i :zi=w0

(q P
i )0

)2 deg∞ P

·

( ∏
j :z j=w0

(
(q P

j )
deg P−deg∞ P−degz j

P

0 · 1
))

·

( ∏
j :z j 6∈{w0,∞}

(
1 ·

∏
i :zi=w0

(q P
i )0

))
· D∗(Z|k)

= (−1)deg∞ P(deg P−deg∞ P)
·

( ∏
i :zi=w0

(q P
i )0

)2 deg∞ P+2(deg P−deg∞ P−degw0
P)

· D∗(Z|k),

which with (5-2) implies (5-3) when w0 6= ∞. �

Lemma 5.2 (local computation). Let k be a field and K an algebraic and metric
augmentation of k (see Section 2.2). For every continuous weight g on P1

= P1(K )
and every k-effective divisor Z on P1(k) represented by a homogeneous polynomial
P ∈

⋃
d∈N k[p0, p1]d , we have

(5-5) (Z,Z)g + 2 ·
∑

w∈suppZ\{∞}

(ordw Z)2 log [w,∞]− 2 ·
∑

w∈suppZ

(ordw Z)2g(w)

= 2(degZ) log |L(P(1, · ))| + log |D∗(Z|k)| − 2(degZ)Mg(P).

Proof. Let Z and P be as in the statement and let (q P
j )

deg P
j=1 be a sequence in

k2
\{0} giving a factorization (2-9) of P and satisfying the normalization (5-1) with
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respect to a distinguished zero w0 ∈ P1(k) of P . Set z j := π(q P
j ) ∈ P1(k) for each

j ∈ {1, 2, . . . , deg P}. Since by definition

8g(z, z′)= log [z, z′] − g(z)− g(z′)

on P1(K )×P1(K ), we have

(Z,Z)g = log
( deg P∏

j=1

∏
i :zi 6=z j

|q P
i ∧ q P

j |

)
− 2 ·

deg P∑
j=1

∑
i :zi 6=z j

(g(zi )+ log ‖q P
i ‖);

by (5-3),

log
( deg P∏

j=1

∏
i :zi 6=z j

|q P
i ∧q P

j |

)
=2(deg P−degw0

P) log
∣∣L(P(1, · ))∣∣+log

∣∣D∗(Z|k)∣∣,
and we also have
deg P∑
j=1

∑
i :zi 6=z j

(
g(zi )+ log ‖q P

i ‖
)

=

deg P∑
j=1

deg P∑
i=1

(
g(zi )+ log ‖q P

i ‖
)
−

deg P∑
j=1

∑
i :zi=z j

(
g(zi )+ log ‖q P

i ‖
)

= (deg P)Mg(P) −
deg P∑
j=1

(degz j
P)g(z j ) −

deg P∑
j=1

∑
i :zi=z j

log ‖q P
i ‖,

where the final equality is by the definition (2-10) of Mg(P). Hence

(Z,Z)g = 2(deg P) log
∣∣L(P(1, · ))∣∣+ log

∣∣D∗(Z|k)∣∣− 2(deg P)Mg(P)

+ 2
∑

w∈suppZ

(ordw Z)2g(w)− 2
(
(degw0

P) log |L(P(1, · ))| −
deg P∑
j=1

∑
i :zi=z j

log ‖q P
i ‖

)
.

For each j ∈ {1, 2, . . . , deg P}, also set q P
j = ((q

P
j )0, (q

P
j )0). If∞ 6∈ suppZ , then

w0 6= ∞, and by the normalization (5-1) and the equality (5-2),

(degw0
P) log

∣∣L(P(1, · ))∣∣− deg P∑
j=1

∑
i :zi=z j

log ‖q P
i ‖

= −

deg P∑
j=1

∑
i :zi=z j

(
log ‖q P

i ‖− log |(q P
i )0|

)
=

deg P∑
j=1

∑
i :zi=z j

log [zi ,∞]

=

∑
w∈suppZ

(ordw Z)2 log [w,∞] =
∑

w∈suppZ\{∞}

(ordw Z)2 log [w,∞].
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If∞∈ suppZ, then we can set w0 =∞, and by the normalization (5-1) and the
equality (5-2) (and q P

i = (q
P
i )1 · (0, 1) when zi =∞),

(degw0
P) log

∣∣L(P(1, · ))∣∣− deg P∑
j=1

∑
i :zi=z j

log ‖q P
i ‖

= −

∑
j :z j=∞

∑
i :zi=z j

(
log ‖q P

i ‖− log |(q P
i )1|

)
−

∑
j :z j 6=∞

∑
i :zi=z j

(
log ‖q P

i ‖− log |(q P
i )0|

)
=

∑
j :z j 6=∞

∑
i :zi=z j

log [zi ,∞] =
∑

w∈suppZ\{∞}

(ordw Z)2 log [w,∞].

This completes the proof. �

Lemma 5.3 (global computation). Let k be a product formula field and ks the
separable closure of k in k. Then for every adelic continuous weight g={gv :v∈Mk}

and every k-effective divisor Z on P1(ks),

(5-6)
∑
v∈Mk

Nv

(
(Z,Z)gv + 2

∑
w∈suppZ\{∞}

(ordw Z)2 log [w,∞]v

)
=−2(degZ)2hg(Z)+ 2

∑
v∈Mk

Nv
∑

w∈suppZ

(ordw Z)2gv(w).

Proof. Let P ∈
⋃

d∈N k[p0, p1]d be a representative of Z . Summing up the product
of Nv and (5-5) (for this P) over all v ∈ Mk , we have∑
v∈Mk

Nv

(
(Z,Z)gv+ 2

∑
w∈suppZ\{∞}

(ordw Z)2 log [w,∞]v − 2
∑

w∈suppZ

(ordw Z)2gv(w)
)

=−2(degZ)2hg(Z)

by the product formula (PF) (since L(P(1, · )) ∈ k \ {0} and, under the assumption
that Z is on P1(ks), D∗(Z|k) ∈ k \ {0}) and the definition (1-1) of hg(Z). �

6. Estimates of regularized Fekete sums (Zε,Zε)g

6.1. Local estimate. Let k be a field and K an algebraic and metric augmentation
of k. Let Z be a k-effective divisor on P1(k), which we regard as the Radon measure∑

w∈suppZ

(ordw Z)δw

on P1
= P1(K ), and let g be a continuous weight on P1 such that g is a 1/κ-Hölder

continuous function on (P1, d) for some κ ≥ 1 having the 1/κ-Hölder constant
C(g)≥ 0.
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Lemma 6.1. For every ε > 0,

(Zε,Zε)g≥ (Z,Z)g + 2
∑

w∈suppZ\{∞}

(ordw Z)2 log [w,∞]− 2
∑

w∈suppZ

(ordw Z)2g(w)

+ (Cabs+ log ε) · (Z ×Z)(diagP1(k))− 2(degZ)2(ε+C(g)ε1/κ).

Proof. Set η(ε)= C(g)ε1/κ . For every ε > 0, using (3-9),

(Zε,Zε)g − (Z,Z)g

=

∫
P1×P1

8g d(Zε ×Zε)−
∫
P1×P1\diag

P1(K )

8g d(Z ×Z)

=

∑
w∈suppZ

(ordw Z)2
∫
P1×P1

8g d([w]ε ×[w]ε)

+

∑
(z,w)∈P1×P1\diag

P1

(∫
P1×P1

8g(S,S ′) d([z]ε ×[w]ε)(S,S ′)−8g(z, w)
)

≥

∑
w∈suppZ\{∞}

(ordw Z)2
(
Cabs+ log ε− 2ε+ 2 log [w,∞]− 2η(ε)− 2g(w)

)
+
(
Z({∞})

)2
(Cabs+ log ε− 2ε− 2η(ε)− 2g(∞))

+
(
(degZ)2− (Z ×Z)(diagP1(k))

)
(−2ε− 2η(ε))

=
(
(Z ×Z)(diagP1(k))

)(
Cabs+ log ε− 2ε− 2η(ε)

)
+ 2

∑
w∈suppZ\{∞}

(ordw Z)2 log [w,∞]− 2
∑

w∈suppZ

(ordw Z)2g(w)

+
(
(degZ)2− (Z ×Z)(diagP1(k))

)
(−2ε− 2η(ε)),

which completes the proof. �

6.2. Global estimate. Let k be a product formula field, and Z a k-effective divisor
on P1(ks). Let g={gv :v∈Mk} be a placewise Hölder continuous adelic normalized
weight, so for every v ∈ Mk , gv is a normalized weight on P1(Cv) and is a 1/κv-
Hölder continuous function on (P1(Cv), dv) for some κv≥ 1 having the 1/κv-Hölder
constant C(gv)≥ 0.

Lemma 6.2. For every v0 ∈ Mk and every ε > 0,

Nv0(Zε,Zε)gv0
≥−2(degZ)2hg(Z)+(Cabs+log ε)·(Z×Z)(diagP1(ks)

) ·
∑

v∈Eg∪{v0}

Nv

− 2(degZ)2
∑

v∈Eg∪{v0}

Nv(ε+C(gv)ε1/κv0 ).

Proof. Fix v0 ∈ Mk . We use, for every v ∈ Mk , the notation
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Wv := (Z,Z)gv + 2
∑

w∈suppZ\{∞}

(ordw Z)2 log [w,∞]v − 2
∑

w∈suppZ

(ordw Z)2gv(w).

Since (Zε,Zε)gv ≤ 0 for every ε > 0 and every v ∈ Mk (see Section 4.2), using also
Lemma 6.1, we have

Nv0(Zε,Zε)gv0
≥

∑
v∈Eg∪{v0}

Nv(Zε,Zε)gv0

≥

∑
v∈Eg∪{v0}

NvWv + (Cabs+ log ε) · (Z ×Z)(diagP1(ks)
) ·

∑
v∈Eg∪{v0}

Nv

− 2(degZ)2
∑

v∈Eg∪{v0}

Nv(ε+C(gv)ε1/κv0 ).

Moreover, since for every v ∈ Mk \ Eg, gv ≡ 0 on P1(Cv) and (Z,Z)gv ≤ 0, using
also (5-6), we have∑

v∈Eg∪{v0}

NvWv ≥

∑
v∈Mk

NvWv = −2(degZ)2hg(Z),

which completes the proof. �

7. Proofs of Theorems 1 and 2

Proof of Theorem 1. Fix v0 ∈Mk . For every v ∈Mk , gv is a 1/κv-Hölder continuous
function on (P1(Cv), dv) for some κv≥1 having the 1/κv-Hölder constant C(gv)≥0.
Set ε = 1/(degZ)2κv0 . For every test function φ ∈ C1(P1(Cv0)), by (4-2) and
Lemma 6.2,

∣∣∣∣∫
P1(Cv0 )

φ d
( Z

degZ −µ
g
v0

)∣∣∣∣≤ Lip(φ)v0

(degZ)2κ0
+
〈φ, φ〉

1/2
v0

N 1/2
v0

·

(
2 · hg(Z)+ (−Cabs+ 2κv0 log degZ) ·

(Z ×Z)(diagP1(ks)
)

(degZ)2
·

∑
v∈Eg∪{v0}

Nv

+ 2
∑

v∈Eg∪{v0}

Nv

(
1

(degZ)2κ0
+

C(gv)
(degZ)2

))1/2

,

which completes the proof. �

Proof of Theorem 2. Fix v0 ∈ Mk . For every n ∈ N, we have (Zn,Zn)gv ≤ 0 if
v ∈ Mk \ Eg. Hence by (2-8), (5-6), and the assumption that Vgv = 0 for every
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v ∈ Mk , we obtain

Nv0

(Zn,Zn)gv0

(degZn)2
+ #Eg · o(1) ≥

∑
v∈Mk

Nv
(Zn,Zn)gv

(degZn)2

≥−2 · hg(Zn)− 2
(Zn ×Zn)(diagP1(ks)

)

(degZn)2

∑
v∈Eg

Nv sup
P1(Cv)

|gv| as n→∞;

thus, under the assumption that (Zn) has both small diagonals and small g-heights,
we have lim infn→∞(Zn,Zn)gv0

/(degZn)
2
≥ 0 = Vgv0

. Hence (2-7) holds for gv0

and (Zn), and the proof is complete. �

8. Nonarchimedean and complex dynamics

Fact 8.1. Let k be a field. For a rational function φ ∈ k(z), we call

Fφ = ((Fφ)0, (Fφ)1) ∈
⋃

d∈N∪{0}

(k[p0, p1]d × k[p0, p1]d)

a lift of φ if π ◦Fφ =φ◦π on k2
\{0} and, in addition, F−1

φ (0)={0} when degφ > 0.
The latter nondegeneracy condition is equivalent to the nonvanishing of Res(Fφ) :=
Res((Fφ)0, (Fφ)1); for the definition of the homogeneous resultant Res(P, Q) ∈ k
for P, Q ∈

⋃
d∈N∪{0} k[p0, p1]d , see, e.g., [Silverman 2007, §2.4]. Such a lift Fφ of

φ is unique up to multiplication in k∗, and is in fact in k[p0, p1]degφ×k[p0, p1]degφ .

Let K be an algebraically closed field that is complete with respect to a nontrivial
absolute value | · |.

8.1. The dynamical Green function g f on P1. For the foundation of a potential-
theoretical study of dynamics on the Berkovich projective line, see [Baker and
Rumely 2010; Favre and Rivera-Letelier 2010] for nonarchimedean K and, e.g.,
[Berteloot and Mayer 2001, §VIII] for archimedean K (∼= C).

Fact 8.2. Let φ ∈ K (z) be a rational function of degree d0 ∈N∪{0}. The action of
φ on P1

= P1(K ) uniquely extends to a continuous endomorphism on P1
= P1(K ).

When d0 > 0, the extended φ is surjective, open, and discrete and preserves P1

and H1
= H1(K ), the local degree function z 7→ degz φ on P1 also canonically

extends to P1, and the (mapping) degree of the extended φ : P1
→ P1 still equals

d0 (see [Baker and Rumely 2010, §2.3, §9; Benedetto 2010, §6.3]): in particular,
the extended action of φ on P1 induces a push-forward φ∗ and a pullback φ∗ on the
spaces of continuous functions and of Radon measures on P1. When d0 = 0, the
extended φ is still constant, and we set φ∗µ := 0 on P1 for every Radon measure µ
on P1 by convention. Let Fφ ∈ K [p0, p1]degφ × K [p0, p1]degφ be a lift of φ. The
function



164 YÛSUKE OKUYAMA

(8-1) TFφ := log
∥∥Fφ( · /‖ · ‖)

∥∥= log ‖Fφ‖− (degφ) log ‖ · ‖

on K 2
\ {0} descends to P1 and in turn extends continuously to P1, satisfying

1TFφ = φ
∗�can− (degφ)�can on P1 (see, e.g., [Okuyama 2013a, Definition 2.8]).

Moreover, φ is a Lipschitz continuous endomorphism on (P1, d) and TFφ is a
Lipschitz continuous function on (P1, d) (for nonarchimedean K , see [Baker and
Rumely 2010, Proposition 9.37]). For every n ∈N, the homogeneous polynomial
Fn
φ ∈ K [p0, p1]degφn × K [p0, p1]degφn is a lift of φn .

Let f ∈ K (z) be a rational function of degree d > 1, and consider a lift
F ∈ K [p0, p1]d × K [p0, p1]d of f . The uniform limit gF := limn→∞ TFn/dn on
P1 exists, and more precisely, for every n ∈ N,

(8-2) sup
P1

∣∣∣∣gF −
TFn

dn

∣∣∣∣≤ supP1 |TF |

dn(d − 1)
.

The limit gF is called the dynamical Green function of F on P1 and is a continuous
weight on P1. The probability Radon measure

µ f := µ
gF =1gF +�can = lim

n→∞

( f n)∗�can
dn weakly on P1

is independent of the choice of F and satisfies f ∗µ f = d ·µ f on P1. It is called the
f -equilibrium (or canonical) measure on P1. Moreover, gF is a Hölder continuous
function on (P1, d) (for nonarchimedean K , see [Favre and Rivera-Letelier 2006,
§6.6]). The remarkable energy formula

(8-3) VgF =−
log |Res F |

d(d−1)

was first established by DeMarco [2003] for archimedean K and was generalized to
rational functions defined over a number field by Baker and Rumely [2006] (for a
simple proof of (8-3) which also works for general K , see [Baker 2009, Appendix
A] or [Okuyama and Stawiska 2011, Appendix]). The dynamical Green function
g f of f on P1 is the unique normalized weight on P1 such that µg f = µ f , i.e., for
any lift F of f , g f ≡ gF + VgF /2 on P1.

8.2. A Berkovich space version of the quasiperiodicity region E f . For nonarchi-
medean dynamics, see [Baker and Rumely 2010, §10; Favre and Rivera-Letelier
2010, §2.3; Benedetto 2010, §6.4]. For complex dynamics, see, e.g., [Milnor 2006].

Let f ∈K (z) be a rational function of degree>1. The Berkovich Julia set of f is

J( f ) :=
{
S ∈P1

:
⋂

U open in P1 containing S

( ⋃
n∈N

f n(U )
)
=P1
\ E( f )

}
,

where E( f ) :=
{
a ∈P1

: #
⋃

n∈N f −n(a)<∞
}

is the exceptional set of f . The
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Berkovich Fatou set is F( f ) :=P1
\ J( f ). By definition, J( f ) is closed and F( f )

is open in P1, both J( f ) and F( f ) are totally invariant under f , and J( f ) has
no interior point unless J( f )=P1. The classical Julia set J( f ) ∩ P1 (resp. the
classical Fatou set F( f )∩P1) coincides with the set of all nonequicontinuity points
(resp. the region of local equicontinuity) of the family { f n

: n ∈N} as a family of
endomorphisms on (P1, [z, w]).

A component U of F( f ) is called a Berkovich Fatou component of f , and is said
to be cyclic under f if f n(U )=U for some n ∈ N, which is called a period of U
under f . Following [Fatou 1920, §28], a cyclic Berkovich Fatou component U of
f having a period n ∈N is called a singular domain of f if f n

:U→U is injective.
Let E f be the set of all points S ∈ P1 having an open neighborhood V in P1 such
that lim infn→∞ supV∩P1[ f n, Id] = 0, which is a Berkovich space version of Rivera-
Letelier’s quasiperiodicity region of f . When K is archimedean, E f coincides with
the union of all singular domains of f , and when K is nonarchimedean, E f is still
open and forward invariant under f and is contained in the union of all singular
domains of f (see [Okuyama 2013a, Lemma 4.4]).

The following function T∗ is Rivera-Letelier’s iterative logarithm of f on E f ∩P1,
which is a nonarchimedean counterpart of the uniformization of a Siegel disk or a
Herman ring of f .

Theorem 8.3 ([Rivera-Letelier 2003, §3.2, §4.2]. See also [Favre and Rivera-Lete-
lier 2010, Théorème 2.15]). Suppose that K is nonarchimedean and has character-
istic 0 and residual characteristic p. Let f ∈ K (z) be a rational function on P1 of
degree > 1 and suppose that E f 6= ∅, which implies p > 0 by [Favre and Rivera-
Letelier 2010, Lemme 2.14]. Then for every component Y of E f not containing∞,
there are k0 ∈N, a continuous action T : Zp× (Y ∩K ) 3 (ω, y) 7→ T ω(y) ∈ Y ∩K ,
and a nonconstant K -valued holomorphic function T∗ on Y ∩ K such that for every
m ∈ Z, ( f k0)m = T m on Y ∩ K , that for every ω ∈ Zp, T ω is a biholomorphism on
Y ∩ K , and that for every ω0 ∈ Zp,

(8-4) lim
Zp3ω→ω0

T ω
−T ω0

ω−ω0
= T∗ ◦ T ω0 locally uniformly on Y ∩ K .

8.3. The fundamental relationship between µ f and J( f ). If K is archimedean,
the inclusion suppµ f ⊂ J( f ) is classical, but it is not trivial from the definition of
J( f ) when K is nonarchimedean. For an elementary proof, see [Okuyama 2013a,
proof of Theorem 2.18]. Actually the equality suppµ f = J( f ) holds, but we will
dispense with the reverse (and easier) inclusion J( f )⊂ suppµ f .

9. Proofs of Theorems 3 and 4

Let k be a product formula field. The proof of the following is based not only on
(PF) but also on elimination theory (and the strong triangle inequality).
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Theorem 9.1 [Baker and Rumely 2006, Lemma 3.1]. Let k be a product formula
field. For every φ ∈ k(z) and every lift Fφ ∈ k[p0, p1]degφ × k[p0, p1]degφ of φ,
there exists a finite subset EFφ in Mk containing all the infinite places of k such that
for every v ∈ Mk \ EFφ , we have |Res Fφ|v = 1 and ‖Fφ( · )‖v = ‖ · ‖

degφ
v on C2

v.

Let f ∈ k(z) be a rational function of degree> 1 and F ∈ k[p0, p1]d×k[p0, p1]d

a lift of f . Then the family ĝ f = {g f ,v : v ∈ Mk} is an adelic normalized weight,
where g f ,v is the dynamical Green function of f on P1(Cv) for every v∈Mk . Indeed,
letting gF,v be the dynamical Green function of F on P1(Cv) for each v∈Mk and EF

be a finite subset in Mk obtained by Theorem 9.1 applied to F , for every v∈Mk\EF

we have TFn,v ≡ 0 on P1(Cv) for every n ∈ N, giving g f ,v ≡ gF,v ≡ 0 on P1(Cv).
We call the adelic normalized weight ĝ f = {g f ,v : v ∈Mk} and the adelic probability
measure µ̂ f := µ

ĝ f the adelic dynamical Green function of f and the adelic f -
equilibrium (or canonical) measure, respectively. Here, for every v ∈ Mk , µ f ,v :=

µg f ,v =µ
ĝ f
v (as in Section 1) is the f -equilibrium (or canonical) measure on P1(Cv).

Lemma 9.2. Let k be a product formula field. Let f, a ∈ k(z) be rational functions
and suppose d := deg f > 1. Then the sequence ([ f n

= a]) of k-effective divisors
on P1(k) has strictly small ĝ f -heights in that

lim sup
n→∞

(dn
+ deg a) · h ĝ f ([ f

n
= a]) <∞.

Proof. Let F ∈ k[p0, p1]d × k[p0, p1]d and A ∈ k[p0, p1]deg a × k[p0, p1]deg a be
lifts of f and a, respectively. Then Fn

∧ A ∈ k[p0, p1]dn+deg a × k[p0, p1]dn+deg a

is a representative of [ f n
= a] for every n ∈ N such that f n

6≡ a. Let EF , E A be
finite subsets in Mk obtained by applying Theorem 9.1 to F, A, respectively, so
that for every v ∈ Mk \ (EF ∪ E A) and every n ∈ N, we have TFn,v ≡ TA,v ≡ 0
and gF,v ≡ 0 on P1(Cv). For every v ∈ Mk and every sufficiently large n ∈ N,
since |Fn

∧ A|v ≤ ‖Fn
‖v‖A‖v on C2

v \ {0}, we have log SFn∧A,v ≤ TFn,v+ TA,v on
P1(Cv) and in turn on P1(Cv) (recalling that SFn∧A,v = |(Fn

∧ A)( · /‖ · ‖v)|v on
P1(Cv)), so using also g f ,v ≡ gF,v + VgF,v/2 on P1(Cv), we obtain

log SFn∧A,v

dn + deg a
− g f ,v ≤

TFn,v + TA,v

dn + deg a
−

(
gF,v +

1
2

VgF,v

)
on P1(Cv).

Hence, by the definition (1-1) of h ĝ f , the Jensen-type formula (2-11), the energy
formula (8-3) (with Res F ∈ k \ {0}), and (PF), we have

h ĝ f ([ f
n
= a])≤

∑
v∈Mk

Nv

∫
P1(Cv)

(TFn,v+TA,v
dn+deg a

− gF,v

)
dµ f ,v −

3
2

∑
v∈Mk

Nv · VgF,v

=

∑
v∈EF∪E A

Nv

∫
P1(Cv)

(TFn,v+TA,v
dn+deg a

− gF,v

)
dµ f ,v

= O(d−n) as n→∞,
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where the final order estimate is by (8-2) and #(EF ∪ E A) <∞. �

With the help of Lemma 9.2, Theorems 3 and 4 follow from Theorems 1 and 2,
respectively.

We omit the proof of the following characterization of h ĝ f , which we will
dispense with in this article.

Lemma 9.3. Let k be a product formula field. Then for every rational function
f ∈ k(z) of degree d > 1, the ĝ f -height function h ĝ f coincides with the Call–
Silverman f -dynamical (or canonical) height function in that for every k-effective
divisor Z on P1(k), ( f∗Z is also a k-effective divisor on P1(k), and) the equality
(h ĝ f ◦ f∗)(Z)= (d · h ĝ f )(Z) holds.

10. Proofs of Theorems 5 and 6

Let K be an algebraically closed field that is complete with respect to a nontrivial
absolute value | · |. For subsets A, B ⊂ P1, set [A, B] := infz∈A,z′∈B[z, z′].

Let f, a ∈ K (z) be rational functions and suppose that d := deg f > 1. Let
N ∈N be so large that f n

6≡ a if n > N . Then
(⋃

n>N supp [ f n = a] ∪ J( f )
)
∩ P1

is closed in P1.

Lemma 10.1. Suppose that K has characteristic 0. Let D be a chordal disk in P1

of radius > 0 satisfying lim infn→∞ supD[ f
n, a] = 0. Then:

(i) a(D)⊂ E f .

(ii) D \
(⋃

n>N supp [ f n = a] ∪ J( f )
)
6=∅.

(iii) There is a chordal disk D′ in P1
\ J( f ) of radius > 0 such that

lim inf
n→∞

[ f n(D′), a(D′)]> 0.

Proof of (i). Since lim infn→∞ supD[ f
n, a] = 0, there is a sequence (n j ) in N

such that lim j→∞ supD[ f
n j , a] = 0 and lim j→∞(n j+1 − n j ) = ∞. For every

z ∈ D, set D′′ := {w ∈ P1
: [w, a(z)] ≤ r} in a(D) for r > 0 small enough.

Then lim inf j→∞ supD′′[ f
n j+1−n j , Id] ≤ lim sup j→∞ supD[ f

n j+1, f n j ] = 0, so that
a(z) ∈ E f . Hence a(D)⊂ E f . �

Proof of (ii). When K is archimedean, let Y be the component of E f containing
a(D), which is by the first assertion either a Siegel disk or a Herman ring of f .
Setting k0 := min{n ∈ N : f n(Y ) = Y }, there are a sequence (n j ) and an N in
N with the properties that f nN (D) ⊂ Y , that k0 | (n j − nN ) for every j ≥ N , and
that a = lim j→∞( f k0)(n j−nN )/k0 ◦ f nN uniformly on D. Then D ∩ J( f )=∅. Let
λ ∈ C be the rotation number of Y , so that there exists a holomorphic injection
h : Y→C such that h◦ f k0 = λ ·h on Y . Then |λ| = 1 but λ is not a root of unity (by
d > 1). Choosing a subsequence of (n j ) if necessary, λa := lim j→∞ λ

(n j−nN )/k0 ∈C
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exists. For every n ≥ nN , if k0 -(n− nN ), then D ∩ supp [ f n
= a] = ∅, whereas

if k0 | (n − nN ), then h ◦ f n
− h ◦ a = (λ(n−nN )/k0 − λa) · (h ◦ f nN ) on D, so(

D \ (h ◦ f nN )−1(0)
)
∩ supp [ f n

= a] =∅ if n is large enough.
When K is nonarchimedean, let Y be the component of E f containing a(D).

Without loss of generality, we assume that∞6∈Y , and then applying Theorem 8.3 to
this Y , we obtain p ∈N, k0 ∈N, T , and T∗ as in the theorem. There are a sequence
(n j ) and an N in N such that f nN (D) ⊂ Y , k0 | (n j − nN ) for every j ≥ N , and
a = lim j→∞( f k0)(n j−nN )/k0 ◦ f nN uniformly on D. Then D∩ J( f )=∅. Choosing
a subsequence of (n j ) if necessary, ωa := lim j→∞(n j − nN )/k0 ∈ Zp exists. For
every n≥ nN , if k0 -(n−nN ), then D∩supp [ f n

= a] =∅, whereas if k0 | (n−nN ),
then

(10-1) f n
− a = (T (n−nN )/k0 − T ωa ) ◦ f nN

on D. Choose b ∈ D \ {∞} and r ∈ |K ∗| small enough that the (K-closed) disk
B = {z ∈ K : |z − b| ≤ r} is contained in D, and fix ε ∈ |K ∗| so small that
for Zε :=

⋃
w∈B∩(T∗◦T ωa ◦ f nN )−1(0){z ∈ B : |z−w|< ε}, we have B \ Zε 6=∅. The

maximum modulus principle from rigid analysis (see [Bosch, Güntzer, and Remmert
1984, §6.2.1, §7.3.4]) gives minz∈ f nN (B\Zε) |T∗◦T ωa (z)|> 0, so that by the uniform
convergence (8-4) and the equality (10-1), (B \ Zε)∩ supp [ f n

= a] = ∅ if n is
large enough. �

Proof of (iii). By the first assertion, there is a unique singular domain U of f
containing a(D). Fix n0 ∈ N such that f n0(U ) = U , and set C :=

⋃n0−1
j=0 f j (U ).

Then there is a component V of f −1(C) \ C since f : C → C is injective and
d > 1. Fix a chordal disk D′′ of radius > 0 in a−1(V ) ∩ (P1

\ J( f )), so that
a(D′′) ⊂ V ⊂ f −1(C) \ C. If a(D′′) ∩

⋃
n∈N∪{0} f n(D′′) = ∅, then we are done

by setting D′ = {z ∈ P1
: [z, b] ≤ r} for some b ∈ D′′ and r > 0 small enough.

But if there is N ∈ N ∪ {0} such that a(D′′) ∩ f N (D′′) 6= ∅, then by setting
D′ := {z ∈P1

: [z, b] ≤ r} for some b ∈ D′′∩ f −N (a(D′′)) and r > 0 small enough,
we get lim infn→∞[a(D′), f n(D′)]> 0 from

a(D′)∩
⋃

n≥N+1

f n(D′)⊂ a(D′′)∩
⋃
n∈N

f n(a(D′′))⊂ V ∩ C =∅. �

Lemma 10.2. For everyw0 ∈P1
\
(⋃

n>N supp [ f n = a]∪J( f )
)
, there is a function

φ0 ∈ C1(P1) such that φ0 ≡ log [w0, · ]can on
⋃

n>N supp [ f n
= a] ∪ J( f ).

Proof. Fix w0 ∈ P1
\
(⋃

n>N supp [ f n = a] ∪ J( f )
)
. Without loss of generality, we

can assume that w0 6= ∞, and fix ε > 0 so small that{
S ∈ P1

: |S −w0|∞ ≤ ε
}
⊂ P1
\

( ⋃
n>N

supp [ f n
= a] ∪ J( f )

)
(recall Sections 3.1 and 3.2 here).
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When K is nonarchimedean, by the definition of the map πε : A1
→ A1, we have

{S ∈ P1
: S � πε(w0)} = {S ∈ P1

: |S −w0|∞ ≤ ε}. The function

S 7→ φ0(S) :=
{

log [w0, πε(w0)]can if S � πε(w0),

log [w0,S]can otherwise
on P1

is in C1(P1) since it is continuous on P1, locally constant on P1 except for the
segment I in H1 joining πε(w0) and Scan, and linear on I with respect to the length
parameter induced by the hyperbolic metric ρ on H1. When K is archimedean (so
P1 ∼= P1), there is a function φ0 ∈ C1(P1) satisfying

z 7→ φ0(z)=
{∫

P1 log [w0, w] d[z]ε/2(w) if |z−w0| ≤ ε/2,
log [w0, z] if |z−w0| ≥ ε or z =∞.

In both cases, the given φ0 ∈ C1(P1) satisfies the desired property. �

Fact 10.3. For rational functions φ,ψ ∈ K (z), the chordal proximity function

S 7→ [φ,ψ]can(S) on P1

between φ andψ is the unique continuous extension of the function z 7→[φ(z), ψ(z)]
on P1 to P1 (see [Okuyama 2013a, Proposition 2.9] for its construction, as well as
Remark 2.10 of the same paper), and for every continuous weight g on P1, we also
define its weighted version by 8(φ,ψ)g := log [φ,ψ]can− g ◦ φ− g ◦ψ on P1.

For every n ∈ N such that f n
6≡ a, recall the Riesz decomposition

(10-2) 8( f n, a)g f =Ug f ,[ f n=a]−(dn+deg a)µ f −Ug f ,a∗µ f +

∫
P1
8( f n, a)g f dµ f

on P1, and also Ug f ,a∗µ f = g f ◦ a+Ug f ,a∗�can −
∫
P1(g f ◦ a) dµ f on P1 [Okuyama

2013a, Lemma 2.19].

Proof of Theorem 5. Let k be a product formula field of characteristic 0. Let
f ∈ k(z) be a rational function of degree d > 1 and a ∈ k(z) a rational function of
degree > 0. Let N ∈ N be so large that f n

6≡ a if n > N . Fix v ∈ Mk . Let D be a
chordal disk in P1(Cv) of radius>0, and assume that lim infn→∞ supD[ f

n, a]v=0;
otherwise we are done. By Lemma 10.1, there are not only a point w0 ∈ D \(⋃

n>N [ f n = a] ∪ J( f )v
)

but also a chordal disk D′ in P1(Cv) \ J( f )v of radius
> 0 such that lim infn→∞[ f n(D′), a(D′)]v > 0. Fix a point w1 ∈ D′. Then also
w1 ∈ P1

\
(⋃

n>N [ f n = a] ∪ J( f )v
)
.

For every n ∈ N large enough and every j ∈ {0, 1}, by (10-2),

(10-3) log [ f n(w j ), a(w j )]v − g f ,v( f n(w j ))− g f ,v(a(w j ))

=Ug f ,v,[ f n=a]−(dn+deg a)µ f ,v (w j )−Ug f ,v,a∗µ f ,v (w j )+

∫
P1(Cv)

8( f n, a)g f ,v dµ f ,v,
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so that taking the difference of both sides in (10-3) for each j ∈ {0, 1} and noting
that g f ,v and Ug f ,v,a∗µ f ,v are bounded on P1(Cv), we have

log [ f n(w0), a(w0)]v − log [ f n(w1), a(w1)]v

=

∫
P1(Cv)

log [w0,S ′]can,v d([ f n
= a] − (dn

+ deg a)µ f )(S ′)

−

∫
P1(Cv)

log [w1,S ′]can,v d([ f n
= a] − (dn

+ deg a)µ f )(S ′)+ O(1)

as n→∞. In the left hand side, by the choice of w0 and w1, we have

log sup
D
[ f n, a]v ≥ log [ f n(w0), a(w0)]v

and

lim inf
n→∞

log [ f n(w1), a(w1)]v ≥ lim inf
n→∞

log [ f n(D′), a(D′)]v >−∞,

so that as n→∞,

log sup
D
[ f n, a]v + O(1)≥ log [ f n(w0), a(w0)]v − log [ f n(w1), a(w1)]v.

In the right hand side, for each j ∈ {0, 1}, by Lemma 10.2 applied to w j , the
inclusion suppµ f ⊂ J( f ), and Theorem 3 (and ks = k in the characteristic 0 case),
we have∫
P1(Cv)

log [w j ,S ′]can,v d
(
[ f n
= a] − (dn

+ deg a)µ f
)
(S ′)

= O
(√

n ·
(
[ f n = a]× [ f n = a]

)(
diagP1(k)

))
as n→∞.

These estimates complete the proof of (1-4) for this v ∈ Mk . �

Fact 10.4. For a rational function f (z) ∈ k(z) over a field k, a point w ∈ P1(k) is
called a multiple periodic point of f if [ f n

= Id]({w}) > 1 for some n ∈ N. For
a rational function f (z) ∈ k(z) over a field k of characteristic 0, there are at most
finitely many multiple periodic points of f in P1(k); this is well known in the case
that k = C (see, e.g., [Milnor 2006, §13]), and holds in general by the Lefschetz
principle (see, e.g., [Eklof 1973]).

Proof of Theorem 6. As noted above, f has at most finitely many multiple
periodic points in P1(k), and for every multiple periodic point w of f , setting
p= pw :=min{n ∈N : [ f n

= Id]({w})> 1}, by the (formal) power series expansion
f p(z)= w+ (z−w)+C(z−w)[ f

p
=Id]({w})

+ · · · of f p around w, we also have
supn∈N[ f

n
= Id]({w}) ≤ [ f p

= Id]({w}) under the characteristic 0 assumption.



EFFECTIVE DIVISORS ON THE PROJECTIVE LINE AND ADELIC DYNAMICS 171

Hence supn∈N

(
supw∈supp [ f n=Id][ f

n
= Id]({w})

)
<∞, so that(

[ f n
= Id]×[ f n

= Id]
)(

diagP1(k)

)
≤ (dn

+1) · sup
w∈supp [ f n=Id]

[ f n
= Id]({w})= O(dn)

as n→∞. Now (1-5) follows from (1-4). �

11. Proof of Theorem 7

Let k be a field and ks the separable closure of k in k. Let p(z)∈k[z] be a polynomial
of degree > 0 and {z1, . . . , zm} the set of all distinct zeros of p(z) in k so that
p(z)= a ·

∏m
j=1(z−z j )

d j in k[z] for some a ∈ k \{0} and some sequence (d j )
m
j=1 in

N. For a while, we do not assume {z1, . . . , zm}⊂ ks . Let {p1(z), p2(z), . . . , pN (z)}
be the set of all mutually distinct, nonconstant, irreducible, and monic factors of
p(z) in k[z], so that p(z)= a ·

∏N
`=1 p`(z)s` in k[z] for some sequence (s`)N

`=1 in
N. For every ` ∈ {1, 2, . . . , N }, by the irreducibility of p`(z) in k[z], p`(z) is the
unique monic minimal polynomial in k[z] of each zero of p`(z) in k, so p`(z) and
pn(z) have no common zeros in k if ` 6= n. Hence for each j ∈ {1, 2, . . . ,m}, there
is a unique `=: `( j) ∈ {1, 2, . . . , N } such that p`(z j )= 0.

Now suppose that {z1, z2, . . . , zm} ⊂ ks . Then for every ` ∈ {1, 2, . . . , N },
p`(z)=

∏
i :`(i)=`(z− zi ) in k[z], so that

(11-1) di = s`(i)

for every i ∈ {1, 2, . . . ,m}. For every distinct `, n ∈ {1, 2, . . . , N },

(11-2)
∏

j :`( j)=`

∏
i :`(i)=n

(z j − zi ) =
∏

j :`( j)=`

pn(z j ) = R(p`, pn),

where R(p, q)∈ k is the (usual) resultant of p(z), q(z)∈ k[z]. The derivation p′`(z)
of p`(z) in k[z] satisfies

p′`(z)=
∑

h:`(h)=`

( ∏
i :i 6=h,
`(i)=`

(z− zi )

)

in k[z]. Hence for every ` ∈ {1, 2, . . . , N },

(11-3)
∏

j :`( j)=`

∏
i :i 6= j,
`(i)=`

(z j − zi ) =
∏

j :`( j)=`

p′`(z j ) = R(p`, p′`).

By (11-1), (11-3), and (11-2), we have
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D∗(p) :=
m∏

j=1

∏
i :i 6= j

(z j − zi )
di d j =

m∏
j=1

∏
i :i 6= j

(z j − zi )
s`(i)s`( j)

=

N∏
`=1

( ∏
j :`( j)=`

(( ∏
i :i 6= j,
`(i)=`

(z j − zi )
s2
`

)( ∏
n:n 6=`

∏
i :`(i)=n

(z j − zi )
sns`

)))

=

N∏
`=1

(
R(p`, p′`)

s2
` ·

∏
n:n 6=`

R(p`, pn)
sns`

)
,

which is in k \ {0}. Now the proof is complete. �
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COMPUTING HIGHER FROBENIUS–SCHUR
INDICATORS IN FUSION CATEGORIES

CONSTRUCTED FROM
INCLUSIONS OF FINITE GROUPS

PETER SCHAUENBURG

We consider a subclass of the class of group-theoretical fusion categories:
To every finite group G and subgroup H one can associate the category
of G-graded vector spaces with a two-sided H-action compatible with the
grading. We derive a formula that computes higher Frobenius-Schur indi-
cators for the objects in such a category using the combinatorics and repre-
sentation theory of the groups involved in their construction. We calculate
some explicit examples for inclusions of symmetric groups.

1. Introduction

Higher Frobenius–Schur indicators are invariants of an object in a pivotal fusion
category (and hence also invariants of that category). They generalize the degree two
Frobenius-Schur indicator — which was originally defined for a representation of a
finite group by its namesakes in 1906 — to higher degrees and more general objects.
Categorical versions of degree two indicators were studied by Bantay [1997], as
well as Fuchs, Ganchev, Szlachányi, and Vescernyés [Fuchs et al. 1999]; indicators
for modules over semisimple Hopf algebras were introduced by Linchenko and
Montgomery [2000] and studied in depth by Kashina, Sommerhäuser, and Zhu
[2006]. The degree two indicators for modules over semisimple quasi-Hopf algebras
were treated by Mason and Ng [2005]. The higher indicators for pivotal fusion
categories that we deal with in the present paper were introduced in [Ng and
Schauenburg 2008; 2007b; 2007a].

Frobenius–Schur indicators have become a tool for the structure theory and
classification of fusion categories. The problem we deal with here, however, is
simply how to calculate them in very specific examples. More concretely we will
deal with a specific class of group-theoretical fusion categories [Ostrik 2003; Etingof,
Nikshych and Ostrik 2005]. Degree two indicators for Hopf algebras associated
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with such categories have been studied in [Kashina, Mason and Montgomery
2002; Jedwab and Montgomery 2009]. In [Kashina, Sommerhäuser and Zhu 2006]
formulas for higher indicators of smash product Hopf algebras associated to a group
acting by automorphisms on another group were given. This class of examples
includes the Drinfeld double of a finite group. For such doubles, the explicit
formulas were used to study the question of integrality of the indicators in [Iovanov,
Mason and Montgomery 2014]. Extensive computer calculations, in particular with
a view towards the question of whether the indicators of the doubles of symmetric
groups are positive, were conducted in [Courter 2012]; examples for certain other
groups can be found in [Keilberg 2014; 2012].

Natale [2005] has derived formulas for the degree two Frobenius–Schur indicators
of the objects in general group-theoretical fusion categories. Her approach is based
on the fact that a group-theoretical fusion category can be written as the module
category over a quasi-Hopf algebra which is known explicitly. Then the explicit
definition of degree two indicators of modules over quasi-Hopf algebras in [Mason
and Ng 2005] can be applied.

In principle the same approach, now using the higher indicator formula for
quasi-Hopf algebras from [Ng and Schauenburg 2008], could be used to obtain
higher indicator formulas for group-theoretical categories. However, those formulas
involve iterated applications of the associator elements of the relevant quasi-Hopf
algebra dealing with the parentheses of iterated tensor products in the category.
Applying them with the explicit quasi-Hopf structure deriving from the data of a
group-theoretical fusion category seems a formidable task.

We will take an entirely different approach. The formula from [Ng and Schauen-
burg 2007a, Theorem 4.1], generalizing the “third formula” from [Kashina, Som-
merhäuser and Zhu 2006], links higher Frobenius–Schur indicators in a spherical
fusion category C to the ribbon structure of the Drinfeld center Z(C) and the functor
from C to Z(C) adjoint to the underlying functor. The “third formula” was used in
[Shimizu 2011] to calculate indicators in Tambara–Yamagami categories; in our
context the approach is aided by the fact that the centers of group-theoretical fusion
categories are easy to determine: a group-theoretical fusion category is the monoidal
category of bimodules over the (twisted) group algebra of a subgroup H of a finite
group G inside the category VectG of G-graded vector spaces (twisted by a three-
cocycle on G). By [Schauenburg 2001], the Drinfeld center of such a bimodule
category is equivalent to the Drinfeld center of the “ambient” category. In different
language this means that group-theoretical fusion categories are Morita equivalent
to the category of graded vector spaces with twisted associativity; see the survey
[Nikshych 2013]. We will treat the case of a group-theoretical fusion category
defined without cocycles. Thus C = G

HMH , the center is Z(GHMH ) = Z(VectG),
equivalent to the category of modules over the Drinfeld double of G.
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In a sense, the underlying functor Z(VectG) →
G
HMH is already known ex-

plicitly from [Schauenburg 2001], but we need to do more. Simple objects in
G
HMH are parametrized by group-theoretical data, namely (equivalence classes
of) pairs consisting of an element of G and an irreducible representation of a
certain stabilizer subgroup of H. Simple objects of Z(VectG) are also classified by
group-theoretical data, (equivalence classes of) pairs consisting of an element of
G and an irreducible representation of its centralizer. In Section 3, we will describe
the underlying functor Z(VectG) →

G
HMH on the level of simple objects by a

formula involving only the combinatorics and representation theory of subgroups
of G. Given this description, one can turn things around and describe the adjoint
functor G

HMH →Z(VectG) equally explicitly. Admittedly the resulting description,
while completely explicit and entirely on the level of groups, subgroups, and
group representations, is quite unwieldy — this is perhaps natural, since one has
to deal with how conjugacy classes and centralizers (involved in the description of
modules over the Drinfeld double) relate to double cosets of a chosen subgroup, and
stabilizers of one-sided cosets under the regular action (involved in the description
of G

HMH ).
In Section 4, we will use the description of the adjoint functor and the “third

formula” to obtain a formula for the higher indicators of the simple objects of
G
HMH . Luckily we do not need complete information about the adjoint, but only
the traces of the ribbon structure on the images under the adjoint. This allows us to
dramatically simplify the immediate result based on the complicated description of
the adjoint to obtain a surprisingly simple-looking formula for the higher indicators.
It is in fact even simpler than Natale’s formula for second indicators, and uses
only group characters and the combinatorics of group elements and subgroups,
without mentioning the associated quasi-Hopf algebra and its characters at all. One
should admit, though, that characters of the associated quasi-Hopf algebra are in
turn described in more “basic” terms in [Natale 2005]. Also, our results are marred
by the obvious limitation that they do not treat general group-theoretical categories,
but only those in whose definition the relevant group cocycles are trivial — we have
amended this limitation in [Schauenburg 2015].

We also treat variants of the indicator formula that are more complicated, involv-
ing passing to orbits under the action of auxiliary subgroups, but computationally
advantageous for the same reason that they pass from sums over the entire group H
to sums over certain orbits.

In Section 5, we will explicitly calculate indicators in several examples of fusion
categories associated to an inclusion of symmetric groups Sn−2 ⊂ Sn . We use the
“simple” version of our indicator formula for the cases n = 4, 5. The cases n = 6, 7
illustrate how the more complicated versions reduce the size of the calculations
needed down to a manageable size.
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2. Preliminaries

Throughout the paper, G is a finite group, and H ⊂ G a subgroup. We denote the
adjoint action of G on itself by x F g= xgx−1. If V is a representation of a subgroup
K ⊂ G, and x ∈ G, we denote by x F V the twisted representation of x F K with
the same underlying vector space V on which y ∈ x F K acts like x−1

F y ∈ K .
We work over the field C of complex numbers; representations are complex

representations; and characters are ordinary characters.
The category G

HMH :=
CG
CHMCH is defined as the category of CH -bimodules over

the group algebra of H, considered as an algebra in the category of CG-comodules,
that is, of G-graded vector spaces. Thus, an object of G

HMH is a G-graded vector
space M ∈ VectG with a two-sided H -action compatible with the grading in the
sense that |hmk| = h|m|k for h, k ∈ H and m ∈ M .

The category G
HMH is a fusion category. The tensor product is the tensor product

of CH -bimodules. Simple objects are parametrized by irreducible representations
of the stabilizers of right cosets of H in G. More precisely, let D ∈ H\G/H be
a double coset of H in G, let d ∈ D, and let S = StabH (d H) = H ∩ (d F H)
be the stabilizer in H of the right coset d H under the action of H on its right
cosets in G. Then the subcategory D

HMH ⊂
G
HMH , defined to contain those objects

the degrees of all of whose homogeneous elements lie in D, is equivalent to the
category Rep(S) of representations of S. The equivalence D

HMH → Rep(S) takes
M to (Md H )/H ∼= (M/H)d H/H , the space of those vectors in the quotient of M
by the right action of H whose degrees lie in the right coset of d. Details are
in [Zhu 2001; Schauenburg 2002a]. We will denote the inverse equivalence by
Fd : Rep(StabH (d H))→ Hd H

HMH , so that we have a category equivalence⊕
d

Rep(StabH (d H))
(Fd )d
−−−→

G
HMH

in which the sum runs over a set of representatives of the double cosets of H in G.
Of course D

HMH can be described by choosing a different representative of D. If
h ∈ H, then dh has the same right coset as d , and Fdh = Fd , while StabH (hd H)=
h F StabH (d H) and Fd(W )= Fhd(h FW ) for W ∈ Rep(StabH (dh)).

In the special case H = G, the above description, with the neutral element
representing the sole class of G in G, amounts to the (well-known) equivalence
Rep(G)∼= G

GMG sending V ∈ Rep(G) to V ⊗CG with the regular right G-action
and the diagonal left G-action. This is a monoidal category equivalence.

The category G
GYD = CG

CGYD of (left-left) Yetter–Drinfeld modules over CG has
objects the G-graded vector spaces with a left G-action compatible with the grading
in the sense that |gv| = g|v|g−1 for g ∈G and v ∈ V ∈ G

GYD. The category G
GYD is

the (right) center of the category GM of G-graded vector spaces: the half-braiding
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c : U ⊗ V → V ⊗ U between a graded vector space U and a Yetter–Drinfeld
module V is given by u⊗ v 7→ |u|v⊗ u. To calculate indicators using the “third
formula” we also need the fact that the canonical pivotal structure of G

GYD is given
by the ordinary vector space isomorphism V → V ∗∗, so that pivotal trace and
ordinary trace coincide. Finally, the ribbon automorphism θ of an object V ∈ G

GYD
is given by θ(v)= |v|v.

Simple objects of G
GYD are parametrized by irreducible representations of the

centralizers in G of elements of G. (In fact, this can be viewed as a special case
of the description of graded bimodules above, as we shall review in Example 4.7
below). More precisely, let g ∈ G and CG(g), the centralizer of g in G. Then, a
functor

Gg : Rep(CG(g))→ G
GYD

can be defined by sending V ∈ Rep(CG(g)) to the CG-module

IndG
CG(g)V = CG⊗CCG(g) V,

endowed with the grading given by |x ⊗ v| = xgx−1 for x ∈ G and v ∈ V. We
note the special case g = 1 which recovers the canonical (monoidal) inclusion
functor Rep(G)→ G

GYD. Summing over different elements, we obtain a category
equivalence ⊕

g

Rep(CG(g))
(Gg)g
−−−→

G
GYD.

The sum runs over a set of representatives of the conjugacy classes of G, and the
image of the functor Gg consists of those Yetter–Drinfeld modules, the degrees of
whose homogeneous elements lie in the conjugacy class of g. We note for later use
that the ribbon automorphism of Gg(V ) is θ(x⊗v)= (x Fg)(x⊗v)= xg⊗v= x⊗gv;
the trace of θm is therefore [G : CG(g)]χ(gm), where χ denotes the character of V.

As a final piece of notation, we will write 〈M, N 〉 := dimC(HomC(M, N )) for
objects M, N in a semisimple category.

3. The center and the adjoint

By a result of Müger [2003], the Drinfeld center Z(C) of a pivotal fusion category
C is a modular category, and the underlying functor Z(C)→ C has a two-sided
adjoint K. To handle the center of G

HMH and the adjoint functor K we use the fact
[Schauenburg 2001] that the center of a category of bimodules in a tensor category
C coincides, in many cases including the present one, with the center of C itself.

To be precise, we will use the “right center” Z(C) whose objects are pairs (V, c)
in which c : X ⊗ V → V ⊗ X is a half-braiding defined for any X ∈ C, and we
denote by K the adjoint functor of the underlying functor Z(C)→ C.
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Then, writing C = GM= VectG for the category of G-graded vector spaces, we
have a category equivalence

G
GYD ∼= Z(C)−→ Z(CHCCH )= Z

(G
HMH

)
which sends (N , c) ∈ Z(C) to an object of Z(CHCCH ) whose underlying right
CH -module is N ⊗CH, whose left CH -module structure is given by

CH ⊗ N ⊗CH
c⊗CH
−−−→ N ⊗CH ⊗CH

N⊗∇
−−−→ N ⊗CH,

and whose half-braiding (which we do not need) is induced by the half-braiding
of N.

Thus, we identify Z(GHMH ) =
G
GYD, and we identify the underlying functor

Z(GHMH )→
G
HMH with the functor

U : G
GYD 3 N −→ N ⊗CH ∈ G

HMH ,

where the obvious right CH -module N ⊗CH has left module structure given by
a(n⊗ b)= an⊗ ab and grading given by |n⊗ b| = |n|b.

Next, let g ∈ G, set C := CG(g), and let V ∈ Rep(C). We consider

UGg(V )= CG ⊗
CC

V ⊗CH ∈ G
HMH .

Let Xg be a set of representatives of the double cosets in H\G/C , giving the
decomposition G =

⊔
x∈Xg

H xC . Then each CH xC⊗
CC

V ⊗CH ⊂ CG⊗
CC

V ⊗CH
is a subobject in G

HMH , and we have

UGg(V )=
⊕
x∈Xg

CH xC ⊗
CC

V ⊗CH.

Note that the degrees of the homogeneous elements of CH xC ⊗CC V ⊗ H lie
in the double coset H(x F g)H, so that CH xC ⊗CC V ⊗ CH is in the image
of the functor FxFg. To calculate the preimage, observe first that the degree of
hxc⊗ v⊗ h′ ∈ CH xC ⊗CC V ⊗CH is (hx F g)h′, and thus is in (x F g)H if and
only if h ∈ StabH ((x F g)H)=: J. Hence

CH xC ⊗
CC

V ⊗CH = FxFg(CJ xC ⊗
CC

V ).

Next, observe that for j, ̃ ∈ J and c, c̃ ∈ C , we have j xc = ̃ xc̃ if and only if
̃−1 j = x F (c̃c−1), which implies that we have an isomorphism

CJ xC ⊗
CC

V 3 j xc⊗ v 7→ j ⊗ cv ∈ CJ ⊗
C[J∩(xFC)]

(x F V ).

Note that J∩(x FC)=StabH ((x F g)H)∩CG(x F g)= H∩CG(x F g)= H∩x FC .
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We have shown:

CH xC ⊗
CC

V ⊗CH = FxFg
(
IndStabH ((xFg)H)

H∩(xFC) ResxFC
H∩(xFC))(x F V )

)
,

whence

UGg(V )=
⊕
x∈Xg

FxFg
(
IndStabH ((xFg)H)

H∩(xFC) ResxFC
H∩(xFC)(x F V )

)
.

Let d ∈G and S = StabH (d H). Let Hd be a set of representatives of H/S. Thus
the double coset Hd H is the disjoint union Hd H =

⊔
h∈Hd

hd H; that is, Hdd is a
set of representatives of the right cosets contained in Hd H.

If x F g ∈ Hd H, then there is a unique h ∈ Hd such that (x F g)H = hd H;
thus, StabH ((x F g)H) = StabH (hd H) = h F S, and for a representation N of
StabH ((x F g)H) we have FxFg N = Fhd N = Fd(h−1

F N ). Again H ∩ (x F C)=
(h F S)∩ (x F C). Therefore,

(UGg(V ))Hd H =
⊕

Fhd
(
IndhFS

(hFS)∩(xFC) ResxFC
(hFS)∩(xFC)(x F V )

)
=

⊕
Fd
(
h−1
F
(
IndhFS

(hFS)∩(xFC) ResxFC
(hFS)∩(xFC)(x F V )

))
,

where the sum is over all x ∈ Xg and h ∈ Hd such that x F g ∈ hd H , and if
W ∈ Irr(S), then〈

UGg(V ),Fd(W )
〉
=

∑〈
h−1
F
(
IndhFS

(hFS)∩(xFC) ResxFC
(hFS)∩(xFC)(x F V )

)
,W

〉
=

∑〈
IndhFS

(hFS)∩(xFC) ResxFC
(hFS)∩(xFC)(x F V ), h FW

〉
.

For the adjoint K of U , this implies, by Frobenius reciprocity:〈
KFd(W ),Gg(V )

〉
=

∑〈
x−1
F
(
IndxFC

(hFS)∩(xFC) ReshFS
(hFS)∩(xFC)(h FW )

)
, V
〉
.

This means that we have calculated a formula for the adjoint K: denoting by C a
system of representatives for the conjugacy classes of G, we have

KFd(W )=
∑

Gg
(
x−1
F
(
IndxFCG(g)

(hFS)∩(xFCG(g)) ReshFS
(hFS)∩(xFCG(g))(h FW )

))
=

∑
GxFg

(
IndxFCG(g)

(hFS)∩(xFCG(g)) ReshFS
(hFS)∩(xFCG(g))(h FW )

)
,

where the sum is over all g ∈ C, x ∈Xg, and h ∈Hd such that x F g ∈ hd H . While
this is clearly not a particularly pleasant or practical formula, we can say something
in its favor: It expresses the functor K entirely in terms of the groups involved and
their representations, using, of course, the translation of group representations to
objects in the two categories involved via the functors F and G.
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4. Indicator formulas for group inclusions

We retain the notations of the previous section, and proceed to calculate the higher
Frobenius–Schur indicators of objects in G

HMH . This is based on the categorical
version of the “third formula” in [Kashina, Sommerhäuser and Zhu 2006, §6.4] that
calculates indicators in a fusion category C through the adjoint K.

The formula obtained above for the adjoint K : G
HMH →

G
GYD yields, via [Ng

and Schauenburg 2007a, Theorem 4.1], a formula for the higher indicators of the
simple objects of G

HMH . Since we are dealing with the right center, the relevant
formula [op. cit., Remark 4.3] is

νm(X)=
1
|G|

Tr
(
θ−m
K(X)

)
.

We proceed to use the information available on K to apply it.
First, let η′ be a character of (h F S)∩ (x FC), and χ = IndxFC

(hFS)∩(xFC)(η
′). Then

by a standard formula for induced characters,

χ(x F gm)=
1

|(h F S)∩ (x F C)|

∑
y∈xFC

yFxFgm
∈hFS

η′(y F x F gm)

=

{
[x F C : (h F S)∩ (x F C)]η′(x F gm) if x F gm

∈ h F S,
0 otherwise,

as elements in x F C commute with x F gm.
Let η be the character of W ∈ Rep(S), and let χ be the character of V :=

IndxFC
hFS∩xFC ReshFS

hFS∩xFC(h F η). Then

Tr
(
θm
GxFg(V )

)
= [G : x F C]χ(x F gm)

=

{
[G : (h F S)∩ (x F C)]η(h−1x F gm) if x F gm

∈ h F S,
0 otherwise.

By the formula for K(Fd(W )) obtained in the previous section, this finally implies
(using |(h F S)∩ (x F CG(g))| = |S ∩ (h−1x F CG(g)| = |S ∩CG(h−1x F g)|) that

νm(Fd(W ))=
∑ 1
|S ∩CG(h−1x F g)|

η(h−1x F gm),(1)

where the sum is over g ∈ C, x ∈ Xg, and h ∈ Hd such that x F g ∈ hd H and
x F gm

∈ h F S. Surely this sum is not pleasant to work with; it involves summing
over all conjugacy classes of the group and all representatives of certain double
cosets, as well as over the coset representatives in Hd , albeit that last sum involves
either no summand (for many combinations of g and x we might have x F g 6∈Hd H ),
or just one summand (the representative of the unique right coset containing x F g).
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We shall process it further using the observation

(2) Hd H =
⊔

g∈C, x∈Xg
xFg∈Hd H

H F (x F g)=
⊔

g∈C, x∈Xg
h∈Hd

xFg∈hd H

H F (h−1x F g).

For the first equality, one has to check when x F g and y F g, for x, y ∈ G, are in
the same orbit of the action of H on G by conjugation:

∃h ∈ H : h F (x F g)= y F g ⇐⇒ ∃h ∈ H : hxgx−1h−1
= ygy−1

⇐⇒ ∃h ∈ H : y−1hx ∈ CG(g)

⇐⇒ x ∈ H yCG(g),

while the second is an obvious reparametrization.
Thus, the set

(3) Rd = {h−1x F g | g ∈ C, x ∈ Xg, h ∈ Hd , x F g ∈ hd H}

is a set of representatives of the orbits of the action of H on Hd H by conjugation.
Moreover, Rd ⊂ d H. Thus, Rd is a set of representatives of the orbits of the action
of S on d H by conjugation. We have very nearly proved the main result of the
paper:

Theorem 4.1. Let G be a finite group, H ⊂G a subgroup, d ∈G, S = StabH (d H),
W ∈ Rep(S) with character η, and Fd(W ) the object of G

HMH corresponding to W.
Then

(4) νm(Fd(W ))=
1
|S|

∑
r∈d H
rm
∈S

η(rm)=
1
|S|

∑
h∈H

(dh)m∈S

η((dh)m).

Proof. Substituting (3) in the indicator formula (1) yields

(5) νm(Fd(W ))=
∑

r∈Rd
rm
∈S

1
|S∩CG(r)|

η(rm).

But for s ∈ S we have (s F r)m ∈ S⇐⇒ rm
∈ S, and η((s F r)m)= η(rm) whenever

rm
∈ S. Since S∩CG(r) is the stabilizer of r under the adjoint action of S, the first

equality in (4) follows. The second equality is a trivial reparametrization. �

In the following we keep the notations of Theorem 4.1.

Remark 4.2. Note that for r ∈ d H we have rm
∈ S⇐⇒ rm

∈ H. Thus we could
modify the conditions in the sums (4) and subsequent similar sums, but in the
examples that we treated, it seemed easier to check whether an element is in S than
to check whether it is in H.
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Remark 4.3. For m ∈ N, the elements

(6) µm(d) :=
1
|S|

∑
r∈d H
rm
∈S

rm
=

1
|S|

∑
h∈H

(dh)m∈S

(dh)m ∈ CS

are central in the group algebra CS, and νm(Fd(W ))= η(µm(d)).

Remark 4.4. If d ∈CG(H), then S=H, and for h ∈H we have (dh)m=dmhm
∈H

if and only if dm
∈ H, so that

(7) µm(d)=

dm 1
|H |

∑
h∈H

hm if dm
∈ H,

0 otherwise,

and therefore, since dm
∈ H is in the center of H ,

(8) νm(Fd(W ))=

{η(dm)

η(1)
νm(W ) if dm

∈ H,

0 otherwise.

The most obvious case of this is when d = 1; the image of F1 is the monoidal
subcategory H

HMH ⊂
G
HMH , which is monoidally equivalent to Rep(H). The

formula (8) can also be used to easily obtain examples where the higher indicators
are not real: the cyclic group G of order 9, its generator d , its subgroup H of order 3,
and a nontrivial irreducible character of the latter will do to obtain ν3(Fd(W )), a
nontrivial third root of unity.

Lemma 4.5. Let y ∈ S. Then

(9)
∑

χ∈Irr(S)

νm(Fd(χ))χ(y)= |{h ∈ H | (dh)m = y}|.

In fact the function ζm(y) = |{h ∈ H | (dh)m = y}| is easily seen to be a class
function on S, so one can verify (9) by taking its scalar product with an irreducible
character η. The left hand side gives the m-th indicator by the orthogonality relations,
the right hand side by (4).

Remark 4.6. Assume that H ⊂ G is part of an exact factorization, i.e., there
exists a subgroup L ⊂ G such that L H = G and L ∩ G = {1}. As pointed out
in [Schauenburg 2002b], the category G

HMH is then equivalent to the category of
modules over a bismash product Hopf algebra CL # CH. Thus, our results comprise
a method to calculate indicators for bismash product Hopf algebras (of which the
double below is a special case).

Example 4.7. Let 0 be a finite group, G = 0 × 0 with diagonal embedding
1 : 0→ 0×0, and H =1(0). It is well known that the category G

HMH
∼=
0
0M

0
0

is equivalent to the module category of the Drinfeld double of 0 (in fact this is a
special case of [Schauenburg 1994]).
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Let G be a cross section of the conjugacy classes of 0. Then {(γ, 1) | γ ∈G} is a
cross section of the double cosets of H in G. Let d= (γ, 1). Then S=StabH (d H)=
1(C0(γ )). Let h =1(θ) ∈ H and m ∈N. Then (dh)m = (γ θ, θ)m = ((γ θ)m, θm),
thus (dh)m ∈ S if and only if (γ θ)m = θm. Therefore, our indicator formula yields

(10) νm(Fd(W ))=
1

|C0(γ )|

∑
θ∈0

(γ θ)m=θm

η(θm).

This formula was obtained in [Kashina, Sommerhäuser and Zhu 2006]; see also
[Iovanov, Mason and Montgomery 2014], where the corresponding special case of
(9) can be found. Note that we can replace η by η since the indicators in this case
are known to be real.

In the proof of Theorem 4.1 we have obtained the simple looking indicator
formula (4) via the more complicated formula (5). But in fact the latter is, in some
respects, better than the former: it involves a sum over fewer terms, namely orbits
of the adjoint action of S instead of individual elements of d H. Of course, for
this simplification we could have taken any section of the orbits on d H instead of
Rd . In fact, we can also pass to orbits over a group different from S; also, it may
be convenient to take orbits in H of the action on H corresponding to the adjoint
action on d H :

Proposition 4.8. In the notation of Theorem 4.1, set E=CG(d)∩SCG(S)∩NG(H).
Then, SE = E S is a subgroup of G. Let S′ ⊂ SE be a subgroup, and let R′d be a
section of the orbits of d H under the adjoint action of S′ on d H. Then,

(11) νm(Fd(W ))=
1
|S|

∑
r∈R′d
rm
∈S

|S′|
|S′ ∩CG(r)|

η(rm).

Alternatively, let S′ act on H by “twisted conjugation” defined by the formula
s F̃ h = (d−1

F s)hs−1. Let T′d be a system of representatives of the orbits. Then,

(12) νm(Fd(W ))=
1
|S|

∑
h∈T′d

(dh)m∈S

|S′|
|S′ ∩CG(dh)|

η((dh)m).

Proof. Let x ∈ E and u ∈ S = H ∩ (d F H). Then x F u ∈ (x F H)∩ (xd F H) =
H ∩d F H = S since x F H = H and xd = dx by hypothesis. Thus E normalizes S,
and SE = E S is a subgroup of G. Now let x ∈ E and h ∈ H. Since x ∈ SCG(S),
we have (dh)m ∈ S if and only if x F (dh)m ∈ S; in fact, these two elements are
then conjugate in S. The condition x ∈ CG(d) implies x F (dh)m = (d(x F h))m,
and x ∈ NG(H) implies x F h ∈ H. Thus the action of S′ on d H is well defined,
and the condition rm

∈ S is invariant along the orbits, as well as the values η(rm)
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along those orbits where rm
∈ S. This implies (11), since S′∩CG(r) is the stabilizer

of r . Since s F (dh) = d(s F̃ h) for s ∈ S and h ∈ H, we obtain (12) by a simple
reparametrization. �

Remark 4.9. The previous result is perhaps the most useful if S′ ⊂ CG(d), so that
the twisted adjoint action coincides with the adjoint action. At any rate, it allows
us to replace H by a set of orbit representatives before passing to the nastier part of
the calculations involved in applying the indicator formula to concrete examples.

To set notation for subsequent calculations, let G be the set of orbits of G
under the adjoint action of S′, and S the image of S in G. We do not distinguish
notationally elements of G from those of G. We also let H̃ be the set of orbits of
the twisted adjoint action of S′ on H, and Q(d) :=

∑
h∈H h ∈ CH̃. Set

(13) T (d) :=
∑
h∈T′d

[S′ : S′ ∩CG(dh)]dh = d Q(d) ∈ CG.

Let CG 3 x 7→ x [m] ∈ CG be the linear map induced by taking m-th powers of
group elements. Let π :CG→CS be the linear projection annihilating G \ S. Then

(14) νm(Fd(W ))= η(µm(d)) with µm(d)=
1
|S|
π(T (d)[m]).

Of course µm(d) is just the image of µm(d) in CS.

5. Example calculations

Consider the symmetric group Sn and the subgroup Sm ⊂ Sn for m < n. For d ∈ Sn

the stabilizer StabSm (d Sn) = Sm ∩ d F Sm consists of those permutations σ ∈ Sm

for which d−1
F σ ∈ Sm . For d−1

F σ to fix every element greater than m it is
necessary and sufficient that σ fix every element k with d−1(k) 6∈ {1, . . . ,m}. Thus
StabSm (d Sm) = S{1,...,m}∩{d(1),...,d(m)} is a symmetric group. We have seen that in
general higher indicators for the objects of G

HMH are nonnegative rational linear
combinations of character values of the stabilizers StabH d H . Moreover, higher
indicators for any pivotal fusion category are cyclotomic integers.

Proposition 5.1. Let m < n. Then all values of the higher Frobenius–Schur indica-
tors for the objects of Sn

Sm
MSm

are integers.

The following example shows that this can fail if we embed Sm into Sn in a
different fashion.

Example 5.2. Consider

G = S9 ⊃ H = {σ ∈ S9 | i ≡ j (mod 3) ⇒ σ(i)≡ σ( j) (mod 3)},
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so H is the subgroup of those permutations in S9 that preserve conjugacy modulo 3.
Thus H ∼= S3 is generated by t = (123)(456)(789) and s = (12)(45)(78).

The element d = (147258369) ∈ S9 satisfies d3
= t , so in particular d−1

F t ∈ H.
On the other hand d−1

F s = (12)(45)(79), so d−1
F s 6∈ H because 1≡ 7 (mod 3)

while 2 6≡ 9 (mod 3). It follows that S = StabH (d H)= 〈t〉.
To compute µ3(d), first observe that d3

= (dt)3 = (dt2)3 = t . The computation
ds = (157369)(248) and (ds)3 = (13)(56)(79) 6∈ S shows that (dh)3 6∈ S for
h ∈ H \ {1, t, t2

}, since such h are conjugate to s by powers of t , which commute
with d . Thus µ3(d)= t .

In particular ν3(Fd(η))= ζ
−1 is not real when η(t)= ζ is a nontrivial third root

of unity.

We will now compute some of the indicator values for the canonically embedded
subgroups Sn−2 ⊂ Sn (as we shall see, this contains, in a sense, the case Sn−1 ⊂ Sn ,
or rather Sn−2 ⊂ Sn−1). We note already that all the indicator values we will find
are nonnegative.

For n ≥ 4, it is easy to check that Sn−2 has seven double cosets in Sn:

{σ ∈ Sn | σ(n−1)= n−1, σ (n)= n)} = Sn−2,

{σ ∈ Sn | σ(n−1) 6= n−1, σ (n)= n)},

{σ ∈ Sn | σ(n−1)= n−1, σ (n) 6= n)},

{σ ∈ Sn | σ(n−1)= n, σ (n)= n−1)},

{σ ∈ Sn | σ(n−1)= n, σ (n) 6= n−1)},

{σ ∈ Sn | σ(n−1) 6= n, σ (n)= n−1)},

{σ ∈ Sn | {σ(n−1), σ (n)}∩{n−1, n} =∅}.

A convenient set of double coset representatives is d1 = ( ), d2 = (n − 2, n − 1),
d3 = (n− 2, n), d4 = (n− 1, n), d5 = (n− 2, n− 1, n), d6 = (n− 2, n, n− 1), and
d7 = (n− 3, n− 1)(n− 2, n).

Note that d2 and d3 are conjugate by (n− 1, n). The same holds for d5 and d6.
We have StabSn−2(d2Sn−2) = StabSn−2(d5Sn−2) = Sn−3, StabSn−2(d7Sn−2) = Sn−4,
and StabSn−2(d4Sn−2)= Sn−2.

Note that every di commutes with the elements in StabSn−2(di Sn−2); this is
particular to our choice of representatives. It implies that the twisted conjugation
action of the stabilizers on the group Sn−2 from Proposition 4.8 is the ordinary
adjoint action.

Note further that d4 commutes with the elements of Sn−2. By Remark 4.4 it
follows that

(15) νm(F(n−1,n)(W ))=

{
νm(W ) if m is even,
0 if m is odd,
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for any W ∈ Rep(Sn−2), while νm(F( )(W ))= νm(W ).
Note also that d2 ∈ Sn−1. Thus, the indicators for objects in Fd2(Rep(Sn−2))

can also be viewed as indicators in the subcategory Sn−1
Sn−2

MSn−2
. The subgroup

Sn−2 ⊂ Sn−1 is part of an exact factorization, Sn−1 = Cn−1 · Sn−2, where Cn−1

denotes the cyclic group generated by the (n − 1)-cycle (1, 2, . . . , n − 1). As
remarked already, these indicators are indicators for modules over a bismash product
Hopf algebra CCn−2 #CSn−1. Observe that the exact factorization suggests a different
choice of coset representative, namely the (n− 1)-cycle instead of d2. We have the
feeling that d2 is the better choice since the (n− 1)-cycle does not commute with
elements in the corresponding stabilizer.

Since the images of Fd2 and Fd3 are mapped to each other by an autoequivalence,
as well as the images of Fd5 and Fd6 , we can concentrate on the indicators of the
objects in the images of Fdi for i = 2, 5, 7. We will treat some of them below for
small values of n.

S2 ⊂ S4. Consider H = 〈(1 2)〉 ⊂ G = S4. We have the following double coset
representatives, with their right cosets and double cosets:

i di di H \ {di } Hdi H \ di H StabH (di H)

1 ( ) (1 2) H
2 (2 3) (1 2 3) (1 3), (1 3 2) {( )}

3 (2 4) (1 2 4) (1 4), (1 4 2) {( )}

4 (3 4) (1 2)(3 4) H
5 (2 3 4) (1 2 3 4) (1 3 4), (1 3 4 2) {( )}

6 (2 4 3) (1 2 4 3) (1 4 3), (1 4 3 2) {( )}

7 (2 3)(1 4) (1 4 2 3) (1 4 2 3), (1 3 2 4) {( )}

We proceed to list the sequences of the higher Frobenius–Schur indicators for all
the simple objects of G

HMH in the images of the functors Fdi . These sequences are
periodic, and we list them for one complete period.

For d1, they are the sequences of the higher Frobenius–Schur indicators of the
representations of H, namely (1, . . . ) with period one for the trivial representation,
and (1, 0, . . . ) with period two for the nontrivial representation.

In all other cases, the only powers of the elements of di H that lie in the stabilizer
StabH (di H) are identity elements. (This requires only a glance for d4, as the
stabilizer itself is trivial in the other cases.) Thus, regardless of the choice of
representation also in the d4 case, the indicator νm counts how many of the two
m-th powers of the two elements of di H are trivial; the count is then divided by
two in the d4 case. Thus the indicator sequences, up to a full period, are
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(νm(Fdi (W )))m =


(0, 1, 1, 1, 0, 2, . . . ) for i = 2, 3,
(0, 1, . . . ) for i = 4,
(0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 2, . . . ) for i = 5, 6,
(0, 1, 0, 2, . . . ) for i = 7.

(Note that the case d4 was already treated above using Remark 4.4.)

S3 ⊂ S5. In this case we have the right cosets

i di di S3 \ {di }

1 () (12), (13), (23), (123), (132)
2 (34) (12)(34), (143), (243), (1243), (1432)
3 conjugate preceding row by (45)
4 (45) (12)(45), (13)(45), (23)(45), (123)(45), (132)(45)
5 (345) (12)(345), (1453), (2453), (12453), (14532)
6 conjugate preceding row by (45)
7 (2435) (14352), (15243), (25)(34), (143)(25), (152)(34)

We have

StabS3(di S3)=


S3 for i = 1, 4,
S2 = 〈(1 2)〉 for i = 2, 3, 5, 6,
{( )} for i = 7.

As indicated above, we will only treat the indicators for d2, d5, and d7.
One sees that for i = 2, the only possibility for a power of an element of di S3 to

be in StabS3(di S3) is if that power is trivial. The same is of course true for i = 7.
So the m-th indicators for the simple objects in the images of Fdi for i = 2, 7 do not
“see” the representations of StabS3(di S3), but only count the number of elements
whose orders divide m; the count has to be divided by 2 if i = 2. We have

νm(Fd2(W ))=


0, (m, 12)= 1,
1, (m, 12)= 2, 3,
2, (m, 12)= 4, 6,
3, (m, 12)= 12;

νm(Fd7(W ))=



0, (m, 60)= 1, 3,
1, (m, 60)= 2,
2, (m, 60)= 4, 5, 15,
3, (m, 60)= 6, 10,
4, (m, 60)= 12, 20,
5, (m, 60)= 30,
6, (m, 60)= 60.

Finally d5S3 contains one element, (1 2)(3 4 5), whose third power is in
StabS3(d5S3) \ {( )}. Powers of the other elements are only in the stabilizer when
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they are trivial. Thus, we obtain

µm(d5)= µm(d6)=



0 when (m, 60)= 1, 2,
1
2(( )+ (1 2)) when (m, 60)= 3,
( ) when (m, 60)= 4, 5, 6, 10,
2( ) when (m, 60)= 12, 20, 30,
1
2(3( )+ (1 2)) when (m, 60)= 15,
3( ) when (m, 60)= 60.

For the trivial representation W0 of 〈(1 2)〉, this yields

νm(Fd5(W0))= νm(Fd6(W0))=


0 when (m, 60)= 1, 2,
1 when (m, 60)= 3, 4, 5, 6, 10,
2 when (m, 60)= 12, 15, 20, 30,
3 when (m, 60)= 60.

For the nontrivial irreducible representation W1 of 〈(1 2)〉, we obtain

νm(Fd5(W1))= νm(Fd6(W1))=


0 when (m, 60)= 1, 2, 3,
1 when (m, 60)= 4, 5, 6, 10, 15,
2 when (m, 60)= 12, 20, 30,
3 when (m, 60)= 60.

S4 ⊂ S6. Since |S4| = 24, it seems worth reducing the size of calculations in
this case by considering orbits of S4 as outlined in Proposition 4.8. We will use
S′ = StabS4(di S4).

For i = 2, 5 the stabilizer is S3. The orbits of S4 under the adjoint action of S3

are obtained by subdividing the well-known conjugacy classes of S4 according to
the placement of the letter 4 in the respective cycle structure. Trusting details to the
reader, we state:

Q(di )= ( )+ 3(12)+ 3(14)

+ 2(123)+ 6(124)

+ 3(12)(34)

+ 6(1234).

From this we obtain

T ((45))= (45)Q((45))= (45)+ 3(12)(45)+ 3(154)

+ 2(123)(45)+ 6(1254)

+ 3(12)(354)

+ 6(12354)
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and
T ((456))= (456)Q((456))= (456)+ 3(12)(456)+ 3(1564)

+ 2(123)(456)+ 6(12564)

+ 3(12)(3564)

+ 6(123564).

Thus (omitting the neutral element and writing 3 := 3( ) ∈ CS, etc.),

µ2((45))= 1
6(1+ 3+ 2(123))= 1

3(2+ (123)),

µ3((45))= 1
6(3+ 3(12))= 1

2(1+ (12)),

µ4((45))= 1
6(1+ 3+ 2(123)+ 6)= 1

3(5+ (123)),

µ5((45))= 1,

µ6((45))= 1
6(1+ 3+ 3+ 2+ 3)= 2,

µ10((45))= 1
6(1+ 3+ 2(123)+ 6)= 1

3(5+ (123))= µ4((45)),

µ12((45))= 1
6(1+ 3+ 3+ 2+ 6+ 3)= 3,

µ15((45))= 1
6(3+ 3(12)+ 6)= 1

2(3+ (12)),

µ30((45))= 1
6(1+ 3+ 3+ 2+ 3+ 6)= 3= µ12((45)),

µ20((45))= 1
6(1+ 3+ 2(123)+ 6+ 6)= 1

3(8+ (123)),

µ60((45))= 4,

µ2((456))= 0,

µ3((456))= 1
6(1+ 3(12)+ 2)= 1

2(1+ (12)),

µ4((456))= 1
6(3+ 3)= 1,

µ5((456))= 1,

µ6((456))= 1
6(1+ 3+ 2+ 6)= 2,

µ10((456))= 1,

µ12((456))= 1
6(1+ 3+ 3+ 2+ 3+ 6)= 3,

µ15((456))= 1
6(1+ 3(12)+ 2+ 6)= 1

2(3+ (12)),

µ20((456))= 1
6(3+ 6+ 3)= 2

µ30((456))= 1
6(1+ 3+ 2+ 6+ 6)= 3,

µ60((456))= 4.

For d7, the calculations are even more tedious; we now need the S2-orbits of S4,
that is, the subdivision of the conjugacy classes of S4 according to the placement of
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the letters 3, 4 in the cycle structure. Thus,

Q((35)(46))= ( )+ (12)+ 2(13)+ 2(14)+ (34)

+ 2(123)+ 2(124)+ 2(134)+ 2(143)

+ (12)(34)+ 2(13)(24)

+ 2(1234)+ 2(1243)+ 2(1324)
and

T ((35)(46))= (35)(46)+ (12)(35)(46)+ 2(153)(46)+ 2(164)(35)+ (3645)

+ 2(1253)(46)+ 2(1264)(35)+ 2(15364)+ 2(16453)

+ (12)(3645)+ 2(153)(264)

+ 2(125364)+ 2(126453)+ 2(153264),
giving

µ2((35)(46))= µ3((35)(46))= 1,

µ4((35)(46))= 4,

µ5((35)(46))= 2,

µ6((35)(46))= 7,

µ10((35)(46))= 3,

µ12((35)(46))= 10,

µ15((35)(46))= 3,

µ20((35)(46))= 6,

µ30((35)(46))= 9,

µ60((35)(46))= 12.

In particular, the indicators of the two simples in the image of F(35)(46) are identical;
while for the other cases, we have to distinguish between the three irreducible
representations of S3, to wit, the trivial representation W0, the sign representation
W1, and the two-dimensional irreducible W2. We obtain:

object m (for νm)

di W j 2 3 4 5 6 10 12 15 20 30 60

W0 1 1 2 1 2 2 3 2 3 3 4
(45) W1 1 0 2 1 2 2 3 1 3 3 4

W2 1 1 3 2 4 3 6 3 5 6 8

W0 0 1 1 1 2 1 3 2 2 3 4
(456) W1 0 0 1 1 2 1 3 1 2 3 4

W2 0 1 2 2 4 2 6 3 4 6 8

(35)(46) any 1 1 4 2 7 3 10 3 6 9 12

S5 ⊂ S7. If we want to deal with the representations associated to d7 = (46)(57) as
in the preceding example, we calculate with a sum Q((46)(57)) with as many terms
as there are orbits in S5 of the adjoint action of S3. One can check that there are 28
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orbits. But we can reduce the task considerably (if not quite by half) by extending
the stabilizer to a larger group S′ as indicated in Proposition 4.8. As the element
(45)(67) commutes with d7 and StabS5(d7S5), and normalizes S5, we can choose
S′ = S3 · 〈(45)(67)〉. Thus, we get

Q((46)(57))= ( )+ 3(12)+ 6(14)+ (45)

+ 2(123)+ 12(124)+ 6(145)

+ 6(12)(34)+ 3(12)(45)+ 6(14)(25)

+ 12(1234)+ 12(1245)+ 6(1425)

+ 6(12)(345)+ 12(14)(235)+ 2(45)(123)

+ 12(12345)+ 12(12435)

with “only” 18 terms. We calculate

T ((46)(57))= (46)(57)+ 3(12)(46)(57)+ 6(164)(57)+ (4756)

+ 2(123)(46)(57)+ 12(1264)(57)+ 6(16475)

+ 6(12)(364)(57)+ 3(12)(4756)+ 6(164)(275)

+ 12(12364)(57)+ 12(126475)+ 6(164275)

+ 6(12)(36475)+ 12(164)(2375)+ 2(4756)(123)

+ 12(1236475)+ 12(1264375).

From here, we can go through all the divisors m of the exponent 420 of S7 to obtain
the elements µm and the indicators for the three irreducible representations of S3.
The Table 1 calculates µm in two stages, giving first an “unsimplified” version of
π(T [m]) in an attempt to hint at how this intermediate result can really be read off
quite directly from the expression for T obtained above.

For good measure, we shall also finish the calculations for d2 = (56) and d5 =

(567). In each case StabS5(di S5)= S4, and

Q(di )= ( )+ 6(12)+ 4(15)+ 8(123)+ 12(125)

+ 3(12)(34)+ 12(12)(35)+ 6(1234)+ 24(1235)

+ 8(123)(45)+ 12(125)(34)+ 24(12345).

Thus,

T ((56))= (56)+ 6(12)(56)+ 4(165)+ 8(123)(56)+ 12(1265)

+ 3(12)(34)(56)+ 12(12)(365)+ 6(1234)(56)+ 24(12365)

+ 8(123)(465)+ 12(1265)(34)+ 24(123465),
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8
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6
11
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12
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6
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6
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3
+

6
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+
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+

6
+

6
+
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+

2
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1
+

3
+

2(
12

3)
+

6
+

12
+

6
+

12
+

12
1 3
(2

6
+
(1

23
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9
9
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84

1
+

3
+

6
+

1
+

2
+

12
+

6
+

3
+

6
+

12
+

6
+

12
+

2
+

12
+

12
16

16
16

32
10

5
6
+

6
+

6(
12
)
+

12
+

12
6
+
(1

2)
7

5
12

14
0

1
+

3
+

1
+

2(
12

3)
+

12
+

6
+

3
+

12
+

6
+

2(
12

3)
+

12
+

12
1 3
(3

4
+

2(
12

3)
)

12
12

22
21

0
1
+

3
+

6
+

2
+

6
+

6
+

6
+

12
+

12
+

6
+

6
+

12
+

12
15

15
15

30
42

0
20

20
20

40

Table 1. Indicator calculations on Im(F(46)(57))⊂
S7
S5
MS5

.
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and

T ((567))= (567)+ 6(12)(567)+ 4(1675)+ 8(123)(567)+ 12(12675)

+ 3(12)(34)(567)+ 12(12)(3675)+ 6(1234)(567)+ 24(123675)

+ 8(123)(4675)+ 12(12675)(34)+ 24(1234675).

Thus, we obtain the elements µm((56)) and µm((567)) listed in Table 2.
From this information, together with the character table of S4 given in Table 3,

one can then calculate all the indicator values for the simples in the images of F(56)

and F(567); see Table 4.

m µm((56)) µm((567))

2 1
14(5+ 4(123)+ 3(12)(34)) 0

3 1
2(1+ (12)) 1

8(3+ 2(12)+ (12)(34)+ 2(1234))
4 1

3(5+ (123)) 1
6(4+ 2(123))

5 1 1
2(1+ (12))

6 1
4(11+ (12)(34)) 1

4(7+ (12)(34))
7 0 1

10 1
12(17+ 4(123)+ 3(12)(34)) 1

12 4 3
14 1

12(5+ 4(123)+ 3(12)(34)) 1
15 1

2(3+ (12)) 1
8(7+ 6(12)+ (12)(34)+ 2(1234))

20 1
3(8+ (123)) 1

6(10+ 2(123))
21 1

2(1+ (12)) 1
8(11+ 2(12)+ (12)(34)+ 2(1234))

28 1
6(10+ 2(123)) 1

3(5+ (123))
30 1

4(15+ (12)(34)) 1
4(11+ (12)(34))

35 1 1
2(3+ (12))

42 1
4(11+ (12)(34)) 1

4(11+ (12)(34))
60 5 4
70 1

12(17+ 4(123)+ 3(12)(34)) 2
84 4 4

105 1
2(3+ (12)) 1

8(15+ 6(12)+ (12)(34)+ 2(1234))
210 1

4(15+ (12)(34)) 1
4(15+ (12)(34))

420 5 5

Table 2. µm((56)), µm((567)) ∈ CS4 for indicators in S7
S5
MS5

.
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( ) (12) (123) (12)(34) (1234)

η0 1 1 1 1 1
η1 1 −1 1 1 −1
η2 2 0 −1 2 0
η3 3 1 0 −1 −1
η4 3 −1 0 −1 1

Table 3. Character table of S4.

νm(F(56)(Wi )) νm(F(567)(Wi ))

m W0 W1 W2 W3 W4 W0 W1 W2 W3 W4

2 1 1 1 1 1 0 0 0 0 0
3 1 0 1 2 1 1 0 1 1 1
4 2 2 3 5 5 1 1 1 2 2
5 1 1 2 3 3 1 0 1 2 1
6 3 3 6 8 8 2 2 4 5 5
7 0 0 0 0 0 1 1 2 3 3

10 2 2 3 4 4 1 1 2 3 3
12 4 4 8 12 12 3 3 6 9 9
14 1 1 1 1 1 1 1 2 3 3
15 2 1 3 5 4 2 0 2 3 2
20 3 3 5 8 8 2 2 3 5 5
21 1 0 1 2 1 2 1 3 4 4
28 2 2 3 5 5 2 2 3 5 5
30 4 4 8 11 11 3 3 6 8 8
35 1 1 2 3 3 2 1 3 5 4
42 3 3 6 8 8 3 3 6 8 8
60 5 5 10 15 14 4 4 8 12 12
70 2 2 3 4 4 2 2 4 6 6
84 4 4 8 12 12 4 4 8 12 12

105 2 1 3 5 4 3 1 4 6 5
210 4 4 8 11 11 4 4 8 11 11
420 5 5 10 15 15 5 5 10 15 15

Table 4. Indicators on Im(F(56)), Im(F(567))⊂
S7
S5
MS5

.

The GAP [2014] code on the next page can be used to calculate the higher
indicators for objects in G

HMH for any finite group G and subgroup H available to
GAP. It uses the simple but inefficient formula (4). Moreover it is written in the most
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IndicatorForOneRep:=function(m,G,H,d,S,eta)
local h,sum;
sum:=0;
for h in H do

if (d*h)^m in S
then sum:=sum+((d*h)^(-m))^eta;

fi;
od;
return(sum/Size(S));

end;

IndicatorsForDoubleCoset:=function(G,H,d)
local S,eta,irreps,m;
S:=Intersection(H,H^(d^(-1)));
irreps:=Irr(S);
for m in DivisorsInt(Exponent(G)) do

Print(m,":");
for eta in irreps do

Print(IndicatorForOneRep(m,G,H,d,S,eta),",");
od;
Print("\n");

od;
end;

GAP code to compute indicators in G
HMH .

straightforward manner, makes hardly any attempt to reduce the load of calculations,
and blindly repeats the same steps several times instead. For the moment, we do
not pursue the quest to write better code (storing intermediate results such as the
elements µm instead of recalculating them for each representation), nor the task
to make use of the improved formula in Proposition 4.8 to speed up matters. The
clumsy code is sufficient to do any of the calculations done above “by hand” again
in seconds. Thus it could have been used to verify these results if the author had
had any reason to mistrust his capability to perform flawless computations. Also, if
the original calculations had contained errors, the GAP code could have been used
to track those down and possibly correct them.

As it stands, the code was also sufficiently efficient to check that the inclusions
S6 ⊂ S8 as well as S7 ⊂ S9 continue to produce only nonnegative indicator values.
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CHORDAL GENERATORS AND
THE HYDRODYNAMIC NORMALIZATION

FOR THE UNIT BALL

SEBASTIAN SCHLEISSINGER

Let c � 0 and denote by K.H; c/ the set of all infinitesimal generators
G W H! C on the upper half-plane H such that lim supy!1 y � jG.iy/j � c.
This class is related to univalent functions f W H! H with hydrodynamic
normalization and appears in the so-called chordal Loewner equation.

In this paper, we generalize the class K.H; c/ and the hydrodynamic
normalization to the Euclidean unit ball in Cn. The generalization is based
on the observation that G 2K.H; c/ can be characterized by an inequality
for the hyperbolic length of G.z/.
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1. Introduction

One-parameter semigroups. Let Bn D fz 2 Cn j kzk < 1g be the Euclidean unit
ball in Cn. In one dimension we write D WD B1 for the unit disc.

Definition 1.1. A continuous one-real-parameter semigroup of holomorphic func-
tions on Bn is a map Œ0;1/ 3 t 7! ˆt 2 H.Bn;Bn/ satisfying the following
conditions:

(1) ˆ0 is the identity.

(2) ˆtCs Dˆt ıˆs for all t; s � 0.

(3) ˆt tends to the identity locally uniformly in Bn, when t tends to 0.
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Keywords: semigroups of holomorphic mappings, infinitesimal generators, hydrodynamic

normalization, chordal Loewner equation.
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Given such a semigroup fˆtgt�0 and a point z 2 Bn, the limit

G.z/ WD lim
t!0

ˆt .z/� z

t

exists and the vector field G W Bn! Cn, called the infinitesimal generator1 of ˆt ,
is a holomorphic function (see, e.g., [Abate 1992]). We denote by Inf.Bn/ the
set of all infinitesimal generators of semigroups in Bn. For any z 2 Bn, the map
w.t/ WDˆt .z/ is the solution of the initial value problem

(1-1)
dw.t/

dt
DG.w.t//; w.0/D z:

There are various characterizations of holomorphic functions G W Bn! Cn that
are infinitesimal generators; see [Reich and Shoikhet 2005, Section 7.3], [Bracci
et al. 2010, Theorem 0.2], [Bracci et al. 2014, p. 193].

The set Inf.D/, i.e., all infinitesimal generators in the unit disc, can be character-
ized completely by the Berkson–Porta representation formula [1978]

(1-2) Inf.D/D fz 7! .� � z/.1� N�z/p.z/ � 2 D;p 2H.D;C/
with Re.p.z//� 0 for all z 2 Dg:

Remark 1.2. Let F WD!D be a holomorphic self-map. Recall the Denjoy–Wolff
theorem (see, e.g., [Reich and Shoikhet 2005, Theorem 5.1]): If F is not an elliptic
automorphism (i.e., an automorphism with exactly one fixed point in D), then there
exists one point � 2 D (the Denjoy–Wolff point of F ) such that the iterates Fn

converge locally uniformly in D to the constant map � .
If fˆtgt�0 is a semigroup on D, then we call � 2 D the Denjoy–Wolff point of

fˆtgt�0 if � is the Denjoy–Wolff point ofˆ1, which is equivalent to limt!1ˆt D �

locally uniformly.
If an infinitesimal generator in the unit disc does not generate a semigroup of

elliptic automorphisms of D, then the point � 2D from formula (1-2) is exactly the
Denjoy–Wolff point of the semigroup.

There are two special cases of infinitesimal generators in D that have been studied
intensively and turned out to be quite useful in Loewner theory and its applications.
The two different cases arise from certain normalizations of the Berkson–Porta
data � and p from formula (1-2). In the radial case, one considers those elements
G 2 Inf.D/ whose Berkson–Porta data � and p satisfy

� D 0 and p.0/D 1;

i.e., G.z/D�zp.z/.

1There is no standard convention in the literature and often �G is called the infinitesimal generator
of the semigroup.
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This class plays a central role in studying the class S of all univalent functions
f W D ! C with f .0/ D 0, f 0.0/ D 1, via the powerful tools of Loewner’s
theory, which considers a nonautonomous version of (1-1); see, e.g., [Pommerenke
1975, Chapter 6]. The class of radial generators as well as the class S have been
generalized in this context to the polydisc Dn (see [Poreda 1987a; 1987b]), and to
the unit ball Bn (see [Graham and Kohr 2003] for a collection of several results
and references).

The second class, the set of all chordal generators2, consists of all G 2 Inf.D/
whose Berkson–Porta data � and p satisfy

� D 1 and † lim
z!1

p.z/

z� 1
is finite:

The aim of this paper is to introduce a generalization of the chordal class for the
unit ball Bn.

The hydrodynamic normalization in one dimension. Instead of fixing an interior
point, like in the class S , it can be of interest to investigate univalent self-mappings
of D that fix a boundary point. In this case, one usually passes from D to the upper
half-plane HD fz 2 C j Im.z/ > 0g.

A class of such mappings that is easy to describe and that appears in several
applications is the set of all univalent mappings f WH!H that fix the boundary
point1 and have the so-called hydrodynamic normalization. Basic properties of
this class can be found in [Goryaı̆nov and Ba 1992]; see also [Bauer 2005; Contreras
et al. 2010]. One of its main applications is the chordal Loewner equation; see
[Abate et al. 2010, Section 4] for further references.

A univalent function f W H! H has hydrodynamic normalization (at1) if f
has the expansion

f .z/D z�
c

z
C  .z/;

where c � 0, which is usually called half-plane capacity, and  satisfies

† lim
z!1

z �  .z/D 0:

We denote by P the set of all these functions. Then P is a semigroup and the
functional l WP! Œ0;1/, l.f /D c, is additive: if f1; f2 2P, then f1 ı f2 2P

and l.f1 ıf2/D l.f1/C l.f2/.

Remark 1.3. Let f 2 P with l.f / D c. If we transfer f to the unit disc by
conjugation by the Cayley transform, then we obtain a function Qf W D! D having

2 Note that there is no standard use of the words “radial” and “chordal” in the literature. In
[Contreras et al. 2010], e.g., an element G 2 Inf.D/ is called radial if � 2 D and chordal if � 2 @D.
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the expansion
Qf .z/D z�

c

4
.z� 1/3C Q .z/;

where † limz!1 Q .z/=.z� 1/3 D 0.

If fˆtgt�0 is a one-real-parameter semigroup contained in P with l.ˆ1/D a,
then it is easy to see that l.ˆt /D a � t . If H is the generator of this semigroup, then
we also define l.H / WD a.

We will be interested in the following set of chordal generators.

Definition 1.4. By K.H; c/ we denote the set of all infinitesimal generators H of
one-real-parameter semigroups fˆtgt�0 contained in P with l.H /� c.

Remark 1.5. The set K.H; c/ can be characterized in various ways; see [Goryaı̆nov
and Ba 1992, Section 1] and [Maassen 1992, Proposition 2.2].

It is known that H 2K.H; c/ for some c � 0 if and only if H maps H into H and

(1-3) lim sup
y!1

yjH.iy/j � c:

In fact, l.H /D lim supy!1 yjH.iy/j.
Furthermore, this is equivalent to H maps H into H and

(1-4) jH.z/j �
c

Im.z/

for all z 2 H. The number l.H / is the smallest constant such that this inequality
holds.

Finally, it is known that this property is equivalent to the fact that �G is the
Cauchy transform of a finite, nonnegative Borel measure � on R, i.e.,

(1-5) H.z/D

Z
R

�.du/

u� z
:

The number l.H / can be calculated by l.H /D �.R/.

Remark 1.6. It is easy to see that the following holds: if f 2 P with c D l.f /,
then H WD f � id 2 K.H; c/ with l.H /D c.

Let C WH!D, C.z/D .z�i/=.zCi/, be the Cayley map. We define K.D; c/ by

K.D; c/D fC 0.C�1/ � .H ıC�1/ jH 2 K.H; c/g:3

The rest of this paper is organized as follows: In Section 2 we look for an invariant
characterization of chordal generators, i.e., of the sets K.H; c/ and K.D; c/, and we
introduce the class K.Bn; c/ for the higher-dimensional unit ball. It will turn out to
be quite useful to study “slices” of this class, which is done in Section 3. In Section 4
we introduce and study the class Pn, a higher-dimensional analog of the class P.

3If fˆt gt�0 is a semigroup in H with generator H , then fC ıˆt ıC�1gt�0 is a semigroup in D

and its generator is given by C 0.C�1/ � .H ıC�1/.
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2. Chordal generators in higher dimensions

Invariant formulation for K.D; c/ and K.H; c/. For R> 0, we let ED.1;R/ be
the horodisc in D with center 1 and radius R, i.e.,

ED.1;R/D

�
z 2 D

ˇ̌̌
1

juD.z/j
<R

o
;

where uD.z/D�.1� jzj
2/=j1� zj2 is the Poisson kernel in D with respect to 1.

By using the Cayley map, we define analogously

EH.1;R/D C�1.ED.1;R//D
n
z 2 H

ˇ̌̌
1

Im.z/
<R

o
:

For z 2 D and a tangent vector v 2 C, we denote by jvjD;z the hyperbolic length
of v, i.e.,

jvjD;z WD
2jvj

1� jzj2
:

Furthermore, we let RD.z/ be the radius R of the horodisc ED.1;R/ that satisfies
z 2 @E.1;R/; in short, RD.z/D 1=juD.z/j. Analogously, for z 2H and v 2 C, we
define RH.z/ WD 1= Im.z/ and the hyperbolic length jvjH;z WD jvj= Im.z/.

According to (1-4), we know that H 2 K.H; c/ if and only if H maps H into H

and jH.z/j � c= Im.z/ for all z 2 H. By using the Berkson–Porta formula, it is
easy to see that we can rephrase this to: H 2K.H; c/ if and only if H 2 Inf.H/ and
jH.z/j � c= Im.z/ for all z 2 H.

The last inequality is equivalent to jH.z/j= Im.z/� c= Im.z/2 or

jH.z/jH;z �
c

Im.z/2
D c �RH.z/

2:

If we pass from H to D and transform H into G D C 0.C�1/ � .H ı C�1/,
then G satisfies jG.C.z//jD;C.z/DjH.z/jH;z and we immediately get the following
characterization.

Proposition 2.1. Let G 2 Inf.D/. Then

G 2 K.D; c/ () jG.z/jD;z � c �RD.z/
2 for all z 2 D:

Let H 2 Inf.H/. Then

H 2 K.H; c/ () jH.z/jH;z � c �RH.z/
2 for all z 2 H:

Chordal generators in the unit ball. For n2N, let un be the pluricomplex Poisson
kernel in Bn with pole at e1 WD .1; 0; : : : ; 0/, i.e.,

uBn;p D�
1�kzk2

j1� z1j
2
:
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The level sets of uBn
are exactly the boundaries of horospheres with center e1;

more precisely, the set

EBn
.e1;R/ WD fz 2 Bn j juBn

.z/j�1 <Rg; R> 0;

is the horosphere with center e1 and radius R.
Furthermore, for z 2 Bn and v 2 Cn, we denote by kvkBn;z the Kobayashi-

hyperbolic length of the vector v with respect to z.
Motivated by Proposition 2.1, we make the following definition.

Definition 2.2. Let c � 0. We define the class K.Bn; c/ to be the set of all infini-
tesimal generators G on Bn such that, for all z 2 Bn,

(2-1) kG.z/kBn;z �
c

uBn
.z/2

:

Remark 2.3. K.Bn; c/ is a compact family: Montel’s theorem and the definition
of K.Bn; c/ immediately imply that it is a normal family. If a sequence .Gn/ �

K.Bn; c/ converges locally uniformly to G W Bn! Cn, then G is holomorphic and
also an infinitesimal generator, which can be seen by using the characterization
given in [Bracci et al. 2010, Theorem 0.2]. Of course, G also satisfies (2-1) and we
conclude G 2 K.Bn; c/.

Just as we passed from D to H in one dimension, we can pass from the unit
ball Bn to the Siegel upper half-space HnD f.z1; Qz/ 2Cn j Im.z1/ > kQzk

2g in order
to get simpler formulas:

The Cayley map

C W Hn! Bn; C.z/D .C1.z/; : : : ;Cn.z//D

�
z1� i

z1C i
;

2z2

z1C i
; : : : ;

2zn

z1C i

�
;

maps Hn biholomorphically onto Bn. It extends to a homeomorphism from the
one-point compactification bHnDHn[@Hn[f1g of Hn[@Hn to the closure of Bn.

The pluricomplex Poisson kernel transforms as follows:

uHn
.z/ WD uBn

.C.z//D� Im.z1/CkQzk
2:

Thus, we define the horosphere EHn
.1;R/ with center1 and radius R> 0 by

EHn
.1;R/ WD

n
z 2 Hn

ˇ̌̌
Im.z1/�kQzk

2 >
1

R

o
:

For v 2 Cn and z 2 Hn, we let kvkHn;z be the Kobayashi hyperbolic length of v.
Let c�0. We define the class K.Hn; c/ to be the set of all infinitesimal generators

H on Hn satisfying the inequality

kH.z/kHn;z �
c

uHn
.z/2
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for all z 2 Hn. Then we have

K.Bn; c/D
˚
C 0.C�1/ � .H ıC�1/ jH 2 K.Hn; c/

	
:

From now on we will stay in the upper half-space Hn, where most of the compu-
tations we need take a simpler form.

3. Slices

Normalized geodesics and slices. For any H 2 Inf.Hn/, one can consider one-
dimensional slices by using the so-called Lempert projection devices; see [Bracci
and Shoikhet 2014, Section 3].

If w 2Hn, then there exists a unique complex geodesic passing through w and1.
Let us choose a parametrization ' WH!Hn of this geodesic. There exists a unique
holomorphic map P WHn!Hn with P2DP and P ı' D '. Define zP D '�1 ıP .
Then

h' W H! C; h'.�/D d zP .'.�// �H.'.�//;

is an infinitesimal generator on H; see [Bracci and Shoikhet 2014, p. 6].
We will need special parametrizations of these geodesics: In [Bracci and Patrizio

2005, p. 516], it is shown that for any complex geodesic ' WH!Hn with '.1/D1,
there exists a' > 0 such that

uHn
.'.�//D a' �uH.�/

for all � 2 H. Call a geodesic ' W H! Hn normalized if '.1/D1 and a' D 1.

Lemma 3.1. Let a 2 C and  2 Cn�1 such that .a;  / 2 Hn. Then the map

' W H! Hn; ' .�/ WD .�C ikk2;  /;

is a normalized geodesic through .a;  /. Furthermore, if H D .H1; zH / 2 Inf.Hn/,
then the slice h WD h'

of H with respect to ' is given by

(3-1) h .�/DH1.' .�//� 2i NT
� zH .' .�//:

Proof. Let  WD!Bn be a complex geodesic with  .1/D e1. As a parametrization
for  , one can choose (see [Bracci and Shoikhet 2014, Section 3])

 .�/D .˛2.� � 1/C 1; ˛.� � 1/ˇ/;

where ˛ > 0 and ˇ 2 Cn�1 such that kˇk2 D 1�˛2. Then

C�1. .�//D

�
i
2C˛2.� � 1/

˛2.1� �/
; iˇ=˛

�
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and

� 7! C�1
�
 .C1.�//

�
D

�
�i C

�C i

˛2
; iˇ=˛

�
D

�
�

˛2
C i

1�˛2

˛2
; iˇ=˛

�
D

�
�

˛2
C i

ˇ˛
2

; iˇ=˛

�
is a complex geodesic from H to Hn. A reparametrization (�=˛2 to �) and setting
 D iˇ=˛ gives the geodesic

(3-2) ' .�/D .�C ikk2;  /:

This complex geodesic is normalized because it satisfies ' .1/D1 and

uHn
.' .�//D Im.�C ikk2/�kk2 D Im.�/D uH.�/:

The projection onto ' .H/ is given by

(3-3) P .z1; Qz/D .z1� 2i NT
� QzC 2ikk2;  /:

Clearly, P is holomorphic and maps Hn onto ' .H/ because

Im.z1� 2i NT
� QzC 2ikk2/D Im.z1/� 2 Im.i NT

� Qz/C 2kk2

� kQzk2� 2kkkQzkCkk2Ckk2

D .kk�kQzk/2Ckk2 � kk2:

Furthermore,

.P ıP /.z1; Qz/D .z1� 2i NT
QzC 2ikk2� 2i NT  C 2ikk2;  /

D .z1� 2i NT
QzC 2ikk2;  /D P .z1; Qz/:

Thus, the inverse zP W H2! H; zP D '�1
 ıP , is given by

zP .z1; Qz/D .z1� 2i NT
QzC ikk2/:

If H.z/D .H1.z/; zH .z// is a generator on Hn, we get the slice reduction

h'
.�/D d zP .' .�// �H.' .�//

DH1.' .�//� 2i NT
� zH .' .�//: �

Some explicit formulas. Later on we will need explicit formulas of the Kobayashi
norms of dP .z/H.z/ and H.z/�dP .z/ �H.z/. The following lemma is proven in
the Appendix.
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Lemma 3.2. Let a 2 C;p; v 2 Cn�1 and z D .z1; Qz/ 2 Hn. Then the following
formulas hold: �a

0

�
Hn;z
D

jaj

juHn
.z/j

;(3-4)

�2i NpT v

v

�
Hn;z

D 2

q
kvk2 juHn

.z/jC j.p� Qz/T vj2

juHn
.z/j

;(3-5)

�a�2i QzT v

0

�
C

�
2i QzT v

v

�2

Hn;z

D

�a�2i QzT v

0

�2

Hn;z

C

�2i QzT v

v

�2

Hn;z

:

(3-6)

By using Lemma 3.2 we obtain the following explicit expressions.

Lemma 3.3. Let H D .H1; zH / 2 Inf.Hn/ and fix z 2 Hn. Denote by P the
projection onto the complex geodesic through z and1. Then the following formulas
hold:

(3-7)
dP .z/ �H.z/D .H1.z/� 2i QzT zH .z/; 0/;

H.z/� dP .z/ �H.z/D .2i QzT zH .z/; zH .z//:

Furthermore,

kH.z/k2Hn;z
D kdP .z/ �H.z/k2Hn;z

CkH.z/� dP .z/ �H.z/k2Hn;z
;(3-8)

kdP .z/H.z/kHn;z D
jH1.z/� 2i QzT zH .z/j

juHn
.z/j

;(3-9)

kH.z/� dP .z/ �H.z/kHn;z D 2
k zH .z/kp
juHn

.z/j
:(3-10)

Proof. The formulas for dP .z/H.z/ and H.z/ � dP .z/H.z/ follow from the
explicit form (3-3).

Equation (3-8) follows from (3-6) with aDH1.z/ and v D zH .z/.
Furthermore, (3-9) follows directly from (3-4) with aDH1.z/�2i QzT zH .z/ and

(3-10) from (3-5) by setting p D Qz and v D zH . �

Slices of generators in K.Hn; c/ and examples.

Proposition 3.4. Let c � 0 and H 2 K.Hn; c/. Then every normalized slice h
of H belongs to K.H; c/.

Proof. Fix  2 Cn�1 and � 2 H and let z D ' .�/.
Furthermore, let P be the projection onto ' .H/. Now we write H.z/ as

H.z/D dP .z/ �H.z/C .H.z/� dP .z/H.z//:
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As H 2 K.Hn; c/, equation (3-8) implies

kH.z/k2Hn;z
D kdP .z/ �H.z/k2Hn;z

CkH.z/� dP .z/H.z/k2Hn;z
�

c2

uHn
.z/4

:

In particular,

(3-11) kdP .z/ �H.z/kHn;z �
c

uHn
.z/2

:

By the definition of the slice h , we have

dP .' .�// �H.' .�//D .d' /.�/ � h .�/;

and consequently

kdP .' .�// �H.' .z//kHn;' .�/ D k.d' /.�/ � h .�/kHn;' .�/ D jh .�/jH;� :

The last equality holds as ' is a complex geodesic. Equation (3-11) implies

jh .�/jH;� �
c

uHn
.' .�//2

D
c

uH.�/2
;

where the last equality holds as ' is normalized. Hence, h 2 K.H; c/. �

Remark 3.5. If two holomorphic functions H1;H2 WHn!Cn have the same slices,
i.e., dP .z/H1.z/D dP .z/H2.z/ for all z 2 Hn, then H1 DH2; see the proof of
Theorem 3.2 in [Casavecchia 2010].

Example 3.6. The family fˆt .z/D .z1; e
�it=z1z2/gt�0 is a semigroup on H2. Its

generator H is given by

H.z1; z2/D

�
0;�i

z2

z1

�
:

Thus, for  2 C, the slice h has the form

h .z/D�2i N � �i


zC i j j2
D
�2j j2

zC i j j2
:

Consequently, the limit limy!1 y � jh.iy/j D 2j j2 exists, but does not have an
upper bound that is independent of  . Proposition 3.4 implies that for any c � 0,
H 62 K.H2; c/.

Example 3.7. Let

H W H2! C2; H.z1; z2/D

�
�1=z1

z2=2z2
1

�
:
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For  2 C, the slice h is given by

h .�/D
�1

�C i j j2
� 2i N �



2.�C i j j2/2

D
�� � 2i j j2

.�C i j j2/2
D
.�� � 2i j j2/. N�2� 2i j j2 N� � j j4/ˇ̌

�C i j j2
ˇ̌4 :

Let us write � D xC iy, x 2 R, y 2 .0;1/. Then a small calculation gives

Im.h .�//D
y.x2Cy2/C 4y2j j2C 5yj j4C 2j j6ˇ̌

�C i j j2
ˇ̌4 > 0:

Furthermore,
lim sup
y!1

yjh .iy/j D 1:

Hence, h 2K.H; 1/. So each slice is an infinitesimal generator in H and by [Bracci
and Shoikhet 2014, Proposition 3.8], the function H is an infinitesimal generator
in H2.

Now let .z1; z2/ 2 H2 and write z1 D xC iy, x;y 2 R. Then we get

uH2
.z/4 � kH.z/k2H2;z

D .y � jz2j
2/2 �

x2Cy2C 3jz2j
2y

.x2Cy2/2

�
y�jz2j

2

y2
�
x2Cy2C 3y2

.x2Cy2/2
�

x2C 4y2

x2Cy2
� 4

(an explicit formula of the Kobayashi metric is given in the Appendix). Consequently,
H 2 K.H2; 2/.

Question 3.8. Let H W Hn ! Cn be an infinitesimal generator. Assume there
exists c � 0 such that h 2 K.H; c/ for every  2 Cn�1. Does this imply that
H 2 K.Hn;C / for some C � c?

4. Univalent functions with hydrodynamic normalization

Motivated by Remark 1.6, we define the following generalization of the class P,
where id stands for the identity mapping on Hn.

Definition 4.1.

Pn WD
˚
f W Hn! Hn j f is univalent and f � id 2 K.Hn; c/ for some c � 0

	
:

Remark 4.2. It is important to note that if f W Hn ! Hn is a holomorphic self-
mapping, then the map f� id is automatically an infinitesimal generator; see [Reich
and Shoikhet 2005, p. 207].
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Basic properties of Pn. The following proposition summarizes some basic prop-
erties of Pn.

Proposition 4.3. (a) Pn contains no automorphism of Hn except the identity.

(b) Let ˛ WHn!Hn be an automorphism of Hn with ˛.1/D1. If f 2Pn, then
˛�1 ıf ı˛ 2Pn.

(c) Let f 2Pn. Then f .EHn
.1;R//�EHn

.1;R/ for every R> 0.

(d) Let f 2Pn and write f .z/D zCH.z/ with H D .H1; zH / 2K.Hn; c/. Then

(4-1) k zH .z/k2 � jH1.z/� 2i QzT zH j for all z D .z1; Qz/ 2 Hn:

(e) Let f 2Pn. Then there exists R> 0 such that EHn
.1;R/� f .Hn/.

Proof. The statements (a) and (b) can easily be shown by using the explicit form of
automorphisms of Hn; see [Abate 1989, Proposition 2.2.4].

The statement (c) is just Julia’s lemma: Write f .z/D zCH.z/ and let us pass
to the unit ball and define Qf W Bn! Bn; Qf D C ıf ıC�1. Then

Qf D
1

2i CH1.C�1.z//� z1H1.C�1.z//

��
.1� z1/H1.C

�1.z//

2.1� z1/ zH .C�1.z//

�
C 2iz

�
:

By taking the sequence zn D .1� 1=n; 0/, it is easy to see that

lim
n!1

Qf .zn/D e1 and lim
n!1

1�k Qf .zn/k

1�kznk
D 1,

i.e., e1 is a boundary regular fixed point of Qf with boundary dilatation coefficient�1.
Julia’s lemma (see [Abate 1989, Theorem 2.2.21]) implies that Qf .EBn

.e1;R//�

EBn
.e1;R/ for any R> 0.

Inequality (d) follows directly from (c): Let zD.z1; Qz/2Hn. Another formulation
of (c) is �uHn

.zCH.z//� �uHn
.z/, or more explicitly

Im.z1/CIm.H1.z//�kQzC zH .z/k2 � Im.z1/�kQzk
2

() Im.H1.z//� kQzC zH .z/k2�kQzk2 D 2Re.QzT zH .z//Ck zH .z/k2

() Im.H1.z/�2i QzT zH .z//� k zH .z/k2:

From this inequality it follows that k zH .z/k2 � jH1.z/� 2i QzT zH j for all z 2Hn.
Finally we prove (e):
Let f 2Pn and write f .z/D zCH.z/ with H 2 K.Hn; c/. Because of (c), f

maps the horosphere EHn
.1; 1/ into itself. Hence the statement is proven if we

can show that uHn
is bounded on f .@EHn

.1; 1//.
Let z 2 Hn with z 2 @EHn

.1; 1/, i.e., juHn
.z/j D 1. Furthermore, we choose

� 2 H and  2 C such that ' .�/D z. Note that this implies juH.�/j D Im.�/D 1.
Let P be the projection onto ' .H/.
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Then we have

juHn
.f .z//j D juHn

.zCH.z//j D
ˇ̌
uHn

.zC dP .z/H.z/„ ƒ‚ …
DW w

CH.z/� dP .z/H.z/„ ƒ‚ …
DW v

/
ˇ̌
:

As dP .z/ � dP .z/D dP .z/, we have dP .z/ � v D 0. A small calculation (see also
[Casavecchia 2010, Lemma 3.1]) gives v 2 T C

z @EHn
.1; 1/. Furthermore, also

w 2 ' .H/ and dP .z/ D dP .w/ and we get v 2 T C
w@EHn

.1; juHn
.w/j�1/. As

EHn
.1; juHn

.w/j�1/D
˚
z 2 Hn j juHn

.z/j> juHn
.w/j

	
is convex, this implies

juHn
.wCv/j � juHn

.w/j D juHn
.zCdP .z/H.z//j D

Lemma 3.3
juHn

.zC.h .�/; 0//j

D Im.z1/�kQzk
2
CIm.h .�//� Im.z1/�kQzk

2
Cjh .�/j

D juHn
.z/jCjh .�/j D 1Cjh .�/j � 1C

c

Im.�/
D 1Cc:

Consequently, f .Hn/� f .EHn
.1; 1//�EHn

.1; 1C c/. �

Theorem 4.4. Pn is a semigroup: if f;g 2Pn, then f ıg 2Pn.

Proof. Let f;g 2Pn with F D .F1; zF / WD f � id;G D .G1; zG/ WD g� id and

kF.z/kHn;z �
c

uHn
.z/2

; kG.z/kHn;z �
d

uHn
.z/2

for all z 2 Hn. Let z D .z1; Qz/ 2 Hn and p D .p1; Qp/ WD zCG.z/.
From Remark 4.2, we know that f ıg� id is an infinitesimal generator on Hn.

It remains to estimate the hyperbolic metric of this generator. We have

k.f ıg/.z/�zkHn;z D kG.z/CF.zCG.z//kHn;z

� kG.z/kHn;zCkF.zCG.z//kHn;z �
d

uHn
.z/2
CkF.p/kHn;z

�
d

uHn
.z/2
Ck.F1.p/�2i QpT zF .p/;0/kHn;zCk.2i QpT zF .p/; zF .p//kHn;z :

Note that F1.p/� 2i QpT zF .p/ corresponds to the slice of F with respect to the
geodesic through p and infinity. Because of Proposition 3.4, we know that

jF1.p/� 2i QpT zF .p/j �
c

juHn
.p/j
�

c

juHn
.z/j

;

where the second inequality follows from Proposition 4.3 (c). Together with (3-4),
this implies

(4-2) k.F1.p/� 2i QpT zF .p/; 0/kHn;z D
j.F1.p/� 2i QpT zF .p/j

juHn
.z/j

�
c

uHn
.z/2

:
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It remains to show that there exists a constant C > 0 such that

k.2i QpT zF .p/; zF .p//kHn;z �
C

uHn
.z/2

:

First, (3-5) gives
(4-3)

k.2i QpT zF .p/; zF .p//kHn;z D 2

q
k zF .p/k2 juHn

.z/jC j. Qp� Qz/T zF .p/j2

juHn
.z/j

� 2

q
k zF .p/k2 juHn

.z/jC k. Qp� Qz/k2 � k zF .p/k2

juHn
.z/j

D 2
k zF .p/k

juHn
.z/j

q
juHn

.z/jC k zG.z/k2:

Now we differentiate between two cases.

Case 1: juHn
.z/j � 1. The equations (3-8) and (3-10) imply

2
k zF .p/kp
juHn.p/j

� k zF .p/kHn;p �
c

uHn
.p/2
I

thus

(4-4) k zF .p/k �
c

2juHn
.p/j3=2

�
c

2juHn
.z/j3=2

:

In the same way, we get

(4-5) k zG.z/k �
d

2juHn
.z/j3=2

:

Combining (4-4) with (4-3) gives

k.2i QpT zF .p/; zF .p//kHn;z �
c

juHn
.z/jjuHn

.z/j3=2

q
juHn

.z/jC k zG.z/k2

D
c

juHn
.z/j2

s
1C
k zG.z/k2

juHn
.z/j

�
(4-5)

c

juHn
.z/j2

s
1C

d2

4juHn
.z/j4

�
c
p

1C d2=4

juHn
.z/j2

:
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Case 2: juHn
.z/j�1. From (4-2) we know that jF1.p/�2i QpT zF .p/j� c=juHn

.z/j,
and (4-1) implies

k zF .p/k �

p
cp

juHn
.z/j

:

Similarly we get

k zG.z/k �

p
dp

juHn
.z/j

:

Hence, with (4-3) we obtain

k.2i QpT zF .p/; zF .p//kHn;z � 2

p
c

juHn
.z/j3=2

q
juHn

.z/jC k zG.z/k2

� 2

p
c

juHn
.z/j3=2

s
juHn

.z/jC
d

juHn
.z/j

D 2

p
c

juHn
.z/j2

q
uHn

.z/2C d

� 2

p
c

juHn
.z/j2

p
1C d : �

On the Loewner equation with a K.Hn; c/-Herglotz vector field. Let fˆtgt�0 be
a semigroup on Hn with generator H 2 K.Hn; c/. Next we will show that this
implies ˆt 2Pn for every t � 0.

In fact we can prove a little more by considering a nonautonomous version
of (1-1). To this end, let fHt W Hn! Cngt�0 be a K.Hn; c/-Herglotz vector field,
i.e., Ht 2 K.Hn; c/ for almost every t � 0 and the map t 7!Ht .z/ is measurable
for every z 2 Hn; see [Arosio and Bracci 2011, Definition 1.2]. In this case, one
can solve the nonautonomous version of (1-1), namely the Loewner equation

(4-6)
@'t .z/

@t
DHt .'t .z//; '0.z/D z 2 Hn;

which gives a family f'tgt�0 of univalent self-mappings of Hn; see [Arosio and
Bracci 2011, Theorem 1.4].

Theorem 4.5. If fHtgt�0 is a K.Hn; c/-Herglotz vector field and f'tgt�0 the
solution to (4-6), then 't 2Pn for every t � 0.

Proof. Firstly, for every t � 0 and R > 0, the map 't maps the horosphere
EHn

.1;R/ into itself, i.e.,

(4-7) juHn
.'t .z//j � juHn

.z/j

for every z 2 Hn. This can be seen as follows:
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First, consider the autonomous case Ht .z/ D J.z/ for every t � 0 and some
J 2 K.Hn; c/. Let G be the corresponding generator in the unit ball, i.e., G D

C 0.C�1/ � .J ıC�1/. Then G satisfies the inequality

kG.z/k � kG.z/kBn;z �
c

uBn
.z/2
D

cj1� z1j
4

.1�kzk2/2
:

Putting z D r � e1 gives

kG.re1/k �
c.1� r/4

.1� r2/2
D

c.1� r/2

.1C r/2
:

From this it follows immediately that

lim
.0;1/3r!1

G.re1/D 0 and lim
.0;1/3r!1

G1.re1/

r � 1
D 0:

Theorem 0.3 in [Bracci et al. 2010] implies that e1 is a boundary regular fixed point
for the generated semigroup with boundary dilatation coefficient 1. Hence we can
apply Julia’s lemma and obtain (4-7).

Now assume that Ht .z/ is piecewise constant with respect to time. By using the
previous case, we see that (4-7) also holds in this case.

Finally, for a general K.Hn; c/-Herglotz vector field Ht .z/, we can approximate
the solution 't by a sequence 't;n such that for each n, the family f't;ngt�0

solves (4-6) with a piecewise constant K.Hn; c/-Herglotz vector field. By using the
continuity of uHn

.z/, we see that (4-7) also holds for 't .
Let zD .z1; z2/2Hn and write 'tD .'1;t ; Q't /, HtD .H1;t ; zHt /. The mapping 't

satisfies the integral equation

't .z/D zC

Z t

0

Hs.'s.z// ds:

Similarly to the proof of Theorem 4.4, (4-4), we deduce from the fact that Ht 2

K.Hn; c/ for almost every t � 0 and equations (3-8) and (3-10) that

(4-8) k zHt .'t .z//k �
c

2juHn
.z/j3=2

for every z 2 Hn and almost every t � 0, and similarly to (4-2), we deduce that

(4-9)
.H1;t .'t .z//� 2i Q't

T
zHt .'t .z//; 0/


Hn;z
�

c

uHn
.z/2

for every z 2 Hn and almost every t � 0.
First we get

(4-10) k Q's � Qzk �

Z s

0

k zH� .'� .z//k d� �

Z s

0

c

2juHn
.z/j3=2

d� D
cs

2juHn
.z/j3=2

:
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Suppose juHn
.z/j � 1. Then we have

k't .z/�zkHn;z �

Z t

0

kHs.'s.z//kHn;z ds

�

Z t

0

�H1;s.'s.z//�2i Q's
T
zHs.'s.z//

0

�
Hn;z

ds

C

Z t

0

�2i Q's
T
zHs.'s.z//

zHs.'s.z//

�
Hn;z

ds

�
(4-9);(3-5)

Z t

0

c

uHn
.z/2

dsC

Z t

0

2
k zHs.'s.z//k

juHn
.z/j

q
juHn

.z/jCk Q's�Qzk2 ds

�
(4-8);(4-10)

Z t

0

c

uHn
.z/2

dsC

Z t

0

c

juHn
.z/j5=2

s
juHn

.z/jC
c2s2

4juHn
.z/j3

ds

D
ct

uHn
.z/2
C

Z t

0

c

juHn
.z/j2

s
1C

c2s2

4juHn
.z/j4

ds

�
ct

uHn
.z/2
C

Z t

0

c

juHn
.z/j2

p
1Cc2s2 ds

D c�
tC
R t

0

p
1Cc2s2 ds

uHn
.z/2

:

The case juHn
.z/j � 1 is treated similarly, compare with the proof of Theorem 4.4,

and we conclude that for every t � 0, there exists C > 0 such that k't .z/� zkHn
�

C=uHn
.z/2 for all z 2Hn. Together with Remark 4.2, this implies that 't 2Pn. �

Question 4.6. Let f 2P1. In [Goryaı̆nov and Ba 1992, Section 4], it is shown that
there exists a K.H; c/-Herglotz vector field Ht and a time T � 0 such that f D 'T ,
where f'tgt�0 is the solution of (4-6). What can be said in the higher-dimensional
case?

On the behavior of iterates. Let F WBn!Bn be holomorphic. We say that p 2Bn

is the Denjoy–Wolff point of F if Fn! p for n!1 locally uniformly. The basic
results about the behavior of the iterates Fn for n!1 can be found in [Abate
1989, Chapter 2.2]. In particular we have (Theorem 2.2.31)
(4-11)

F has a Denjoy–Wolff point on the boundary @Bn ” F has no fixed points.

Now let f 2Pn. For nD 1, f has the Denjoy–Wolff point1 if f is not the
identity: As f is not an elliptic automorphism, the classical Denjoy–Wolff theorem
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implies that f has a Denjoy–Wolff point. This point has to be1, e.g., because of
Proposition 4.3 (c).

Next we will show that this is also true in higher dimensions, provided that f
extends smoothly to the boundary point1. There are different possible definitions
of smoothness of f near1. We will use the following one: Let H.z/D f .z/� z,
and denote by G W Bn! Cn the corresponding generator on Bn; i.e., we have

H.z/D .C�1/0.C.z// �G.C.z//

and a small computation shows

H1.z/D�
i

2
.z1C i/2 �G1.C.z//:

Our smoothness condition will be that G1 has a C 3-extension to e1; i.e., we can
write

G1.z/D
X

k1C���Ckn�3
k1;:::;kn�0

ak1;:::;kn
.z1� 1/k1 � z

k2

2
� � � � � zkn

n CO.kz� e1k
3/;

which translates to

H1.z/D�
i

2
.z1C i/2�

X
k1C���Ckn�3

ak1;:::;kn

�
�2i

z1C i

�k1

�

�
2z2

z1C i

�k2

�� � ��

�
2zn

z1C i

�kn

CO.kC.z/�e1k
3/;

or
(4-12)
H1.z/D b0;:::;0�.z1Ci/2C.z1Ci/ �

X
k1C���CknD1

bk1;:::;kn
z

k2

2
�� � ��zkn

n

C

X
k1C���CknD2

bk1;:::;kn
z

k2

2
�� � ��zkn

n C.z1Ci/�1
�

X
k1C���CknD3

bk1;:::;kn
z

k2

2
�� � ��zkn

n

CO
�
jz1Ci j�1

�k.1;z2; : : : ;zn/k
3
�

for some coefficients bk1;:::;kn
2 C.

Theorem 4.7. Let f 2Pn; f 6D id, and assume that (4-12) is satisfied. Then1 is
the Denjoy–Wolff point of f .

Proof. Write f .z/ D z CH.z/, where H 2 K.Hn; c/ and H D .H1; zH /. Let
 2 Cn�1. If we can show that the slice h .�/DH1.'.�//� 2i NT zH .' .�// has
no zeros, then we are done:
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This implies that H has no zeros because of (3-7) and (3-8). Hence, f has no
fixed points and (4-11) implies that f has a Denjoy–Wolff point. This point has to
be1 because of Proposition 4.3 (c).

Similarly to the proof of Theorem 4.4, (4-4), we have

k zH .z/k �
c

2juHn
.z/j3=2

;

and thus

k zH .' .�//k �
c

2juHn
.' .�//j3=2

D
c

2 Im.�/3=2
:

Consequently,

lim
y!1

yj NT zH .' .iy//j D 0:

On the other hand, we know from Proposition 3.4 that h 2K.H; c/, which implies
(see Remark 1.5)

lim sup
y!1

yjh .iy/j D lim sup
y!1

y
ˇ̌
H1.'.iy//� 2i NT zH .' .iy//

ˇ̌
� c;

which gives us

(4-13) lim sup
y!1

jiy �H1.' .iy//j � c:

Now we use the assumption of the smoothness of H1:
Because of (4-13), all coefficients bk1;:::;kn

from (4-12) with k1C � � �C kn � 2

have to be 0. Thus,

lim
y!1

iy �H1.' .iy//DWK. /

exists and is a polynomial in  D .2; : : : ; n/:

K. /D
X

k1C���CknD3

bk1;:::;kn


k2

2
� � � � �  kn

n :

As K. / is bounded, it has to be constant.
If K. /� 0, then all slices of H are zero; hence H D 0 by Remark 3.5 and f

is the identity, a contradiction.
Hence K. / is a nonzero constant and h .�/ is not identically zero, which

implies (e.g., by using the representation (1-5)) that h .�/ has no zeros. �

Question 4.8. Is1 the Denjoy–Wolff point for every f 2Pn?
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Appendix: Proof of Lemma 3.2

Lemma 3.2. Let a 2 C;p; v 2 Cn�1 and z D .z1; Qz/ 2 Hn. Then the following
formulas hold: �a

0

�
Hn;z
D

jaj

juHn
.z/j

;(3-4)

�2i NpT v

v

�
Hn;z

D 2

q
kvk2 juHn

.z/jC j.p� Qz/T vj2

juHn
.z/j

;(3-5)

�a� 2i QzT v

0

�
C

�
2i QzT v

v

�2

Hn;z

D

�a� 2i QzT v

0

�2

Hn;z

C

�2i QzT v

v

�2

Hn;z

:

(3-6)

Proof. We write Qz D .z2; : : : ; zn/; v D .v2; : : : ; vn/;p D .p2; : : : ;pn/.
An explicit formula of the Kobayashi metric for the unit ball is given in [Abate

2004, Theorem 3.4].4 It coincides with the Bergman metric and by using the Cayley
map, we get the following formula for the upper half-space:

kwk2Hn;z
D wT

� .gj ;k/j ;k � Nw;

where w 2 Cn and .gj ;k/j ;k is an n� n-matrix with

gj ;k D�4
@2

@zj @Nzk

log
�

Im.z1/�

nX
lD2

jzl j
2

�
;

and we get for j ; k � 2,

g1;1 D
1

uHn
.z/2

; g1;k D
2izk

uHn
.z/2

; gj ;1 D
�2i Nzj

uHn
.z/2

;

gj ;j D 4
Im.z1/�

Pn
lD2;l 6Dj jzl j

2

uHn
.z/2

; gj ;k D
4zk Nzj

uHn
.z/2

; k 6D j:

The formulas (3-4) and (3-5) are now straightforward calculations. We obtain

k.a; 0/kHn;z D

q
.a; 0/ � .gj ;k/j ;k � .a; 0/

T D
p

a �g1;1 � NaD
jaj

juHn
.z/j

;

4Note, however, that the Kobayashi metric in [Abate 2004] differs by a factor of 2 from the one
we are using here.
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and

uHn
.z/2�k.2i NpT v;v/k2Hn;z

DuHn
.z/2�.2i NpT v;vT /�.gj ;k/j ;k �.2i NpT v;vT /T

DuHn
.z/2�

� nX
jD2

gj ;j jvj j
2
Cg1;1j2i NpT vj2

C

nX
jD2

gj ;1vj 2i NpT vC

nX
kD2

g1;k Nvj 2i NpT vC

nX
j ;k�2;j 6Dk

gj ;kvj Nvk

�

D 4

nX
jD2

.Im.z1/�kQzk
2/�jvj j

2
C4

nX
jD2

jzj j
2
�jvj j

2
C4

nX
j ;k�2

pj Npkvj Nvk

�4

nX
j ;k�2

Nzj pkvj Nvk�4

nX
j ;k�2

zj Npk NvjvkC4

nX
j ;k�2;j 6Dk

Nzj zkvj Nvk

D 4kvk2�juHn
.z/jC4

nX
jD2

zj Nzjvj Nzj

C4

nX
j ;k�2

.pj Npkvj Nvk�Nzj pkvj Nvk�zj Npk Nvjvk/C4

nX
j ;k�2;j 6Dk

Nzj zkvj Nvk

D 4kvk2�juHn
.z/jC4

nX
j ;k�2

.pj Npkvj Nvk�Nzj pkvj Nvk�zj Npk NvjvkCNzj zkvj Nvk/

D 4kvk2�juHn
.z/jC4j.p�Qz/T vj2:

For formula (3-6) we just need to show that

.2i QzT v; vT / � .gj ;k/j ;k � .a� 2i QzT v; 0/T D 0:

Indeed, we have

uHn
.z/2 � .gj ;k/j ;k � .a� 2i QzT v; 0/T

D . NaC 2i QzT
Nv;�2i Nz2 NaC 4Nz2 Qz

T
Nv; : : : ;�2i Nzn NaC 4Nzn Qz

T
Nv/T

and

.2i QzT v; vT /. NaC 2i QzT
Nv;�2i Nz2 NaC 4Nz2 Qz

T
Nv; : : : ;�2i Nzn NaC 4Nzn Qz

T
Nv/T

D 2i NaQzT v� 4jQzT
Nvj2� 2i NaQzT vC 4jQzT

Nvj2 D 0: �
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ON A QUESTION OF A. BALOG

ILYA D. SHKREDOV

We give a partial answer to a conjecture of A. Balog concerning the size of
AA + A, where A is a finite subset of real numbers. We also prove several
new results on the cardinality of A : A + A, AA + AA and A : A + A : A.

1. Introduction

Let A ⊂ R be a finite set. Define the sumset, and respectively the product set, by

A+ A := {a+ b : a, b ∈ A}
and

AA := {ab : a, b ∈ A}.

The Erdős–Szemerédi conjecture [1983] states that for all ε > 0,

max{|A+ A|, |AA|} � |A|2−ε.

Loosely speaking, the conjecture says that any set of reals (or integers) cannot be
highly structured in both a multiplicative and an additive sense. The best result in
this direction is due to Solymosi [2009].

Theorem 1. Let A ⊂ R be a set. Then

max{|A+ A|, |AA|} � |A|4/3 log−1/3
|A|.

If one considers the set

AA+ A = {ab+ c : a, b, c ∈ A}

then the Erdős–Szemerédi conjecture implies that AA+A has size at least |A|2−ε (we
assume for simplicity that 1 ∈ A). Balog [2011] formulated the weaker hypothesis
that for all ε > 0 one has

|AA+ A| � |A|2−ε.

In that paper he proved the following result, which implies, in particular, that
|AA+ A| � |A|3/2 and |AA+ AA| � |A||A : A|1/2.
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MSC2010: 11B13, 11B75.
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Theorem 2. For every finite set of reals A, B,C, D ⊂ R, we have

(1) |AC + A||BC + B| � |A||B||C |

and

(2) |AC + AD||BC + B D| � |B : A||C ||D|.

More precisely (see [Schoen and Shkredov 2013]),

|(A× B) ·1(C)+ A× B| � |A||B||C |
and

|(A× B) ·1(C)+ (A× B) ·1(D)| � |B : A||C ||D|,
where

1(A) := {(a, a) : a ∈ A}.

Murphy et al. [2015] obtained a partial answer to a “dual” question on the size
of A(A+ A). The main result of this paper is the following new bound for A : A+ A
and AA+ A, stated more precisely in Theorem 12.

Theorem 3. Let A be a finite subset of positive reals. Then there is ε1 > 0 such that

(3) |A : A+ A| � |A|3/2+ε1 .

Moreover, if |A : A| � |AA| then there exists ε2 > 0 such that

(4) |AA+ A| � |A|3/2+ε2 .

We also prove several results on the cardinality of AA+ AA and A : A+ A : A;
see Theorem 14 and Proposition 15 below.

Roche-Newton and Zhelezov [2015] conjectured there exist absolute constants c
and c′ such that for any finite A ⊂ C,∣∣∣∣ A+A

A+A

∣∣∣∣≤ c|A|2 =⇒ |A+ A| ≤ c′|A|.

Similar conjectures were made for the sets (A− A)/(A− A), (A− A)(A− A),
A(A+ A+ A+ A) and so on. We conclude this paper by giving a partial answer to
a variant of Roche-Newton and Zhelezov’s conjecture:

|(A+ A)(A+ A)+ (A+ A)(A+ A)| � |A|2 =⇒ |A± A| � |A| log|A|;

see Corollary 17.
The main idea of the proof of Theorem 3 is the following. We need to estimate

from below the sumset of two sets A and A : A. As in many problems of this type,
the usual applications of the Szemerédi–Trotter theorem [Tao and Vu 2006] or Soly-
mosi’s method [Balog 2011] give us a lower bound of the form |A : A+ A|� |A|3/2.
In [Schoen and Shkredov 2011] the exponent 3/2 was improved in the particular
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case of sumsets of convex sets. After that the method was developed by several
authors; see, e.g., [Konyagin and Rudnev 2013; Li 2011; Li and Roche-Newton
2012; Schoen 2014; Schoen and Shkredov 2013; Shkredov 2013a; 2013b; 2015].
In [Shkredov 2015] it was proved that the bound |A+ B| � |A|3/2+c, c > 0, holds
for a wide class of different sets having roughly comparable sizes. For example,
such a bound holds if A and B have small multiplicative doubling. It turns out that
if (3) cannot be improved then there is some large set C such that |AC |� |A|. This
allows us to apply results from [Shkredov 2015].

2. Notation

Let G be an abelian group and + be the group operation. We use the same letter to
denote a set S ⊆ G and its characteristic function S : G→ {0, 1}. By |S| denote
the cardinality of S.

Let f, g : G→ C be two functions with finite supports. Put

(5) ( f ∗ g)(x) :=
∑
y∈G

f (y)g(x − y) and ( f ◦ g)(x) :=
∑
y∈G

f (y)g(y+ x).

Let A ⊆ G be a set. For any real α > 0 let

(6) E+α (A)=
∑
x∈G

(A ◦ A)α(x)

be the higher energy of A. In the particular case α= 2 we write E+(A)=E+2 (A) and
E(A, B) for

∑
x∈G(A◦ A)(x)(B ◦ B)(x). The quantity E+(A) is called the additive

energy of a set; see, e.g., [Tao and Vu 2006]. For a sequence s = (s1, . . . , sk−1) put
A+s = A∩ (A− s1)∩ · · · ∩ (A− sk−1). Then

E+k (A)=
∑

s1,...,sk−1∈G

|A+s |
2.

If we have a group G with multiplication instead of addition, then we use the
symbol E×α (A) for the corresponding energy of a set A and we write A×s for
A∩ (As−1

1 )∩ · · · ∩ (As−1
k−1). In the case of a unique operation we write just Ek(A),

E(A) and As .
Let A, B⊆G be two finite sets. The magnification ratio RB[A] of the pair (A, B)

(see, e.g., [Tao and Vu 2006]) is defined by

(7) RB[A] = min
∅6=Z⊆A

|B+ Z |
|Z |

.

A beautiful result on the magnification ratio was proven by Petridis [2012].
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Theorem 4. For any A, B,C ⊆ G, we have

(8) |B+C + X | ≤ RB[A] · |C + X |,

where X ⊆ A and |B+ X | = RB[A]|X |.

We conclude the section with Ruzsa’s triangle inequality; see, e.g., [Tao and Vu
2006]. Interestingly, our proof (developing some ideas of [Schoen and Shkredov
2013; Murphy et al. 2015]) describes the situation when the triangle inequality is
sharp, namely, when |B ∩ (A− z)−C | ≈ |C | for many z ∈ A− B.

Lemma 5. Let A, B,C ⊆ G be any sets. Then

(9) |C ||A− B| ≤ |A× B−1(C)| ≤ |A−C ||B−C |.

Proof. We have

|A× B−1(C)| =
∑

z∈A−B

|B ∩ (A− z)−C | ≥ |A− B||C |.

The inequality above is trivial and the identity follows by the projection of points
(x, y) ∈ A × B − 1(C), (x, y) = (a − c, b − c), a ∈ A, b ∈ B, c ∈ C , onto
z := x − y = a− b ∈ A− B. If z is fixed we see that the result of the projection is
the intersection of the line z = x − y with our set and moreover the ordinates of the
points from the intersection belong to B ∩ (A− z)−C . It is easy to check that the
converse is also true. �

All logarithms are base 2. The signs� and� are the usual Vinogradov symbols.

3. Preliminaries

As we discussed in the introduction our proof uses some notions from [Shkredov
2015]. So, let us recall the main definition of that paper.

Definition 6. A set A ⊂ G has SzT-type (in other words, A is called a Szemerédi–
Trotter set) with parameter α ≥ 1 if for any set B ⊂ G and an arbitrary τ ≥ 1,

(10) |{x ∈ A+ B : (A ∗ B)(x)≥ τ }| � c(A)|B|α · τ−3,

where c(A) > 0 is a constant that depends on the set A only.

Simple calculations (or see [Shkredov 2015, Lemma 7]) give us some connections
between various energies of SzT-type sets. Formula (11) below is due to Li [2011].

Lemma 7. Suppose that A, B,C ⊆ G have SzT-type with the same parameter α.
Then

(11) E3(A)� E2
3/2(A)c(A)|A|

α,
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(12) E(A)� c1/2(A)|A|1+α/2,

and

(13)
∑

x

(A ◦ A)(x)(B ◦ B)(x)(C ◦C)(x)

�
(
c(A)c(B)c(C)

)1/3(
|A||B||C |

)α/3
× log

(
min{|A|, |B|, |C |}

)
.

Proof. We prove just (11); estimates (12) and (13) can be established by similar
arguments.

Let us arrange the convolutions (A ◦ A)(x) in decreasing order: (A ◦ A)(x1)≥

(A ◦ A)(x2) ≥ · · · . By assumption A has SzT-type with parameter α, which
implies that (A ◦ A)(x j ) � (c(A)|A|α j−1)1/3. Choosing the parameter 13/2

=

c(A)|A|αE−1
3/2(A) and applying the obtained bound, we get

E(A)=
|A−A|∑

j=1

(A ◦ A)2(x j )≤1
1/2E3/2(A)+

∑
j :(A◦A)(x j )≥1

(c(A)|A|α j−1)2/3.

The condition (A ◦ A)(x j ) ≥ 1 implies j1/3
� (c(A)|A|α)1/31−1. Thus by our

choice of 1, we have

E(A)�11/2E3/2(A)+ c(A)|A|α1−1
� E

2/3
3/2(A)(c(A)|A|

α)1/3

as required. �

We need Lemma 7 from [Raz et al. 2015] (see also Lemma 27 from [Schoen
and Shkredov 2013]).

Lemma 8. Any set A⊂R, R= (R,+), has SzT-type with α=2 and c(A)=|A|d(A),
where

(14) d(A) := min
C 6=∅

|AC |2

|A||C |
.

So, any set with small multiplicative doubling or, more precisely, with small
quantity (14) has SzT-type, relative to addition, in an effective way. The interested
reader can check that the minimum in (14) is actually attained. Careful analysis of
our proof shows that we do not need this. Other examples of SzT-type sets can be
found in [Shkredov 2015].

Now let us prove a simple result on d(A) that follows from Petridis’s Theorem 4.

Lemma 9. Let A ⊆ R+ be a set. Then d(A) = d(A−1), and for any nonempty C
we have

(15) d(AA)≤
|AC |4

|AA||C |3
, d(A : A)≤

|AC |4

|A : A||C |3
.
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In particular,

(16) d(AA)≤
|A|2d2(A)
|AA||C |

, d(A : A)≤
|A|2d2(A)
|A : A||C |

,

where C is a set where the minimum in (14) is attained.

Proof. The identity d(A)= d(A−1) is obvious. Let us prove (16). By Theorem 4
there is X ⊆ C such that |AAX | ≤ R|AX |, where R = RA[C] is defined by
formula (7). We have

(17) d(AA)≤
|AAX |2

|AA||X |
≤ R2 |AX |2

|AA||X |
=
|AX |4

|AA||X |3
≤
|AC |4

|AA||C |3

and the first bound of (15) is obtained. Similarly, let Y ⊆C be as given by Theorem 4
and put R= RA[C−1

]. Then |(A : A)Y |≤ R|A−1Y |≤ R|A−1C |, R=|AY−1
|/|Y |≤

|AC−1
|/|C |, and arguments similar to (17) can be applied. �

Finally, we formulate a full version of Theorem 1.

Theorem 10. Let A, B ⊆ R be sets, and let τ > 0 be a real number. Then

(18)
∣∣{x : |A∩ x B| ≥ τ }

∣∣� |A+ A||B+ B|
τ 2 .

In particular,

(19) E×(A, B)� |A+ A||B+ B| · log
(
min{|A|, |B|}

)
.

4. Proof of the main results

Our proof relies on a partial case of Theorem 14 from [Shkredov 2015].

Theorem 11. Suppose A, A∗ ⊂ R have SzT-type with the same parameter α = 2.
Then

(20) |A± A∗| �

max
{

d(A∗)−1/3d(A)−2/9
|A∗|8/9|A|2/3, d(A)−1/3d(A∗)−2/9

|A|8/9|A∗|2/3,

min
{
d(A∗)−2/27d(A)−13/27

|A∗|14/9, d(A)−2/27d(A∗)−13/27
|A|14/9}}

×(log(|A||A∗|))−2/9.

Now we can prove the main result of the paper.

Theorem 12. Let A be a finite subset of positive reals. Then

(21) |A : A+ A| � |A|3/2+1/82
· (log|A|)−2/41,

and

(22) |AA+ A| � |AA|11/41
|A : A|−11/41

|A|3/2+1/82(log|A|)−2/41.
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Proof. Put l = log|A|. We will assume that |A : A+ A| � M |A|3/2 and that
|AA+ A| � M |A|3/2, where M is a small power of |A|, that is, M = |A|ε, and
obtain a contradiction. Let us begin with (21) because the proof of the second
inequality requires some additional steps.

Recall the arguments from [Balog 2011] or see the proof of Theorem 31 from
[Schoen and Shkredov 2013]. Let li be the line y = qi x . Thus, (x, y) ∈ li ∩ A2 if
and only if x ∈ A×q . Let q1, . . . , qn ∈5 ⊆ A : A be such that q1 < q2 < · · · < qn .
Here 5 is a set which can vary, in principle, and at the moment we choose 5
such that |A×qi

| ≥ 2−1
|A|2/|A : A| for all qi ∈5. Thus,

∑
qi∈5
|A×qi
| ≥

1
2 |A|

2. We
multiply all points of A2 lying on the line li by 1(A−1), so we obtain |A×qi

: A|
points still belonging to the line li , and then we consider the sumset of the resulting
set with li+1 ∩ A2. Clearly, we get |A×qi

: A||A×qi+1
| points from the set (A : A+ A)2

lying between the lines li and li+1. Put

(23) d(A)≤ d̃(A) := min
i=2,...,n

|AA×qi
|
2

|A||A×qi |
.

Therefore, using the definition of d̃(A), we have

(24) M2
|A|3� |A : A+ A|2

≥

n−1∑
i=1

|A×qi
||A×qi+1

: A|

≥ |A|1/2d̃1/2(A)
n−1∑
i=1

|A×qi
||A×qi+1

|
1/2

� |A|3/2d̃1/2(A)|A : A|−1/2
n−1∑
i=1

|A×qi
|

� |A|7/2d̃1/2(A)|A : A|−1/2.

Thus,

(25) d(A)≤ d̃(A)= min
i=2,...,n

|AA×qi
|
2

|A||A×qi |
�

M4
|A : A|
|A|

.

To estimate d(A : A) and d(AA) we use Lemma 9. In other words, taking our
C = A×qi

to minimize (25), we get

(26) d(AA)≤
|AA×qi

|
4

|AA||A×qi |
3
, d(A : A)≤

|AA×qi
|
4

|A : A||A×qi |
3
�

M8
|A : A|
|C |

.
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Applying the first inequality of Theorem 11 with A= A and A∗ = A : A, we obtain

M |A|3/2 ≥ |A : A+ A|

� |A : A|8/9|A|2/3d−2/9(A)
(

M8
|A : A|
|C |

)−1/3

l−2/9

= |A : A|5/9|A|2/3d−2/9(A)|C |1/3 M−8/3l−2/9

� |A|14/9 M−32/9l−2/9,

and hence M � l−2/41
|A|1/82. This implies (21).

It remains to prove (22). In this case we multiply all points of A2 lying on
the line li by 1(A), so we obtain |AA×qi

| points still belonging to the line li , and
then we consider the sumset of the resulting set with li+1 ∩ A2. Clearly, we obtain
|AA×qi

||A×qi+1
| points from the set (AA+ A)2. Thus,

(27) M2
|A|3� |AA+ A|2 ≥

n−1∑
i=1

|A×qi
||AA×qi+1

|,

and we repeat the arguments above. The proof gives us

(28) |AA+ A| � |AA|11/41
|A|−4/41(E×3/2(A))

22/41l−2/41.

Here we have chosen the set 5 as
∑

q∈5|A
×
q |

3/2
� E×3/2(A) or, in other words,

|A×q | � (E×3/2(A))
2
|A|−4. Using the Hölder inequality, combined with (28), we get

|AA+ A| � |AA|11/41
|A : A|−11/41

|A|62/41l−2/41. �

Remark 13. Using the full power of Theorem 14 from [Shkredov 2015], one
can obtain further results connecting |AA : A| and |A : AA| with |AA+ A| and
|A : A+ A| and so on. We do not make such calculations.

The same method allows us to improve the result of Balog concerning the size
of AA+ AA and A : A+ A : A.

Theorem 14. Let A ⊂ R be a set. Then

(29) |A : A+ A : A| � |A : A|14/29
|A|30/29(log|A|)−2/29,

and

(30) |AA+ AA| � |AA|19/29
|A : A|−5/29

|A|30/29(log|A|)−2/29.

Proof. As in the proof of Theorem 12, we define li to be the line y = qi x and let
q1, . . . , qn ∈5⊆ A : A be such that q1 < q2 < · · ·< qn and |A×qi

| ≥ 2−1
|A|2/|A : A|

for any qi ∈ 5. Thus,
∑

i |A
×
qi
| ≥

1
2 |A|

2. We multiply all points of A2 lying on
the line li by 1(A−1), so we obtain |A×qi

: A| points still belonging to the line li ,
and then we consider the sumset of the resulting set with itself. Clearly, we get
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|A×qi
: A||A×qi+1

: A| points from the set (A : A+ A : A)2 lying between the lines li

and li+1. Therefore, we have

(31) σ 2
:= |A : A+ A : A|2

≥

n−1∑
i=1

|A×qi
: A||A×qi+1

: A|

≥ d̃(A)|A|
n−1∑
i=1

|A×qi
|
1/2
|A×qi+1

|
1/2

� |A|3d̃(A),

where

(32) d̃(A) := min
i=1,...,n

|A×qi
: A|2

|A||A×qi |
.

This gives us d(A)≤ d̃(A)� σ 2
|A|−3. Using Theorem 11 with A = A∗ = A : A,

we obtain

(33) σ � |A : A|14/9
(

σ 4

|A|4|A : A||C |

)−5/9

l−2/9

� |A : A|19/9
|A|20/9

|C |5/9σ−20/9l−2/9

� |A : A|14/9σ−20/9
|A|10/3l−2/9.

After some calculations, we get σ � |A : A|14/29
|A|30/29l−2/29.

To obtain (30) we use the previous arguments. We have

(34) σ 2
:= |AA+ AA|2

≥

∑
i∈5

|AA×qi
||AA×qi+1

|

≥ d(A)|A|
∑
i∈5

|A×qi
|
1/2
|A×qi+1

|
1/2

� d(A)|A||5|1,

choosing 5 ⊆ A : A such that for any q ∈ 5 one has |A|2/|A : A| � 1 ≤ |A×q |.
Clearly, such a set 5 exists by simple average arguments. Calculations like those
in (33) give us

σ � |AA|14/9
(

σ 4

|AA||5|213

)−5/9

l−2/9
� |AA|19/9(|5|13/2)10/9σ−20/9l−2/9.

After some computations, we obtain

σ � |AA|19/29
|A : A|−5/29

|A|30/29l−2/29. �
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Finally, let us obtain a result on AA+ A and AA+ AA of another type.

Proposition 15. Let A ⊂ R be a set. Then

(35) |AA+ A|4, |A : A+ A|4� |A|−2(E×3/2(A))
2E+3 (A) log−3

|A|,

and

(36) |AA+ AA|2, |A : A+ A : A|2� E+3 (A) log−3
|A|.

Moreover,

(37) |AA+ A|4, |A : A+ A|4�
|A|10

|A : A||A− A|2
,

and

(38) |AA+ AA|2, |A : A+ A : A|2�
|A|6

|A− A|2
.

Proof. Put l = log|A|. Using Lemma 7, we obtain that for any A, B and C

(39)
∑

x

(A ◦ A)(x)(B ◦ B)(x)(C ◦C)(x)

� |A||B||C |
(
d(A)d(B)d(C)

)1/3 log
(
|A||B||C |

)
.

In the particular case A = B = C , the definition of d(A) gives us

(40) |AA×s |
2, |A : A×s |

2
� |A|−2

|A×s |E
+

3 (A)l
−1

for any s ∈ A : A. Using pigeonholing, choose 5⊆ A : A such that |A×q | differs at
most twice from5 and such that

∑
q∈5|A

×
q |

3/2
�E×3/2(A)l

−1. Applying (24), (27),
(40) and the last bound, we obtain (35). Using (40) one more time and Katz–Koester
inclusion [2010], namely,

(41) AA×s ⊆ AA∩ s AA, A : A×s ⊆ (A : A)∩ s−1(A : A),

as well as formula (18) of Solymosi’s result, we get (36). Another way to prove
(36) is just to use formulas (31) and (34), combined with (40).

Inequalities (37) and (38) follow similarly to (35) and (36) from a direct applica-
tion of Definition 6 and the Hölder inequality. For example, let us show how to get
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the first estimate of (37). Taking B =−A and the parameter τ = |A|2/(2|A− A|)
in Definition 6, we obtain

d(A)�
|A|3

|A− A|2
.

Applying (24) and the lower bound for d(A), we get

|A : A+ A|2 ≥
n−1∑
i=1

|A×qi
||A×qi+1

: A|

≥ |A|1/2d1/2(A)
n−1∑
i=1

|A×qi
||A×qi+1

|

� |A|1/2(|A|3|A− A|−2)1/2(|A|2/|A : A|)1/2
n−1∑
i=1

|A×qi
|

� |A|5/2(|A|3|A− A|−2)1/2(|A|2/|A : A|)1/2

as required. �

Remark 16. Applying arguments in the proof of (36) as well as formula (12) of
Lemma 7, we obtain a similar bound, namely,

E+(A)� |A||AA+ AA|

(actually, using methods from [Shkredov 2013a] one can improve the inequality).
It is interesting to compare this estimate with Solymosi’s upper bound for the
multiplicative energy (19). Using formula (11) of Lemma 7, we also have

(E+(A))3/2E×3/2(A)� E+3/2(A)|A||AA+ A|2.

Combining inequality (36) with some estimates from [Shkredov 2014], we obtain
a result in the spirit of [Roche-Newton and Zhelezov 2015].

Corollary 17. Let A ⊂ R be a set. Suppose that

(42) |(A+ A)(A+ A)+ (A+ A)(A+ A)| � |A|2 and E+(A)|A− A| � |A|4.

Then

(43) |A− A| � |A| log12/7
|A|.

The same holds if one replaces addition with subtraction and multiplication with
division in the first condition of (42).
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If just the first condition of (42) holds (with plus) then

(44) |A± A| � |A| log3
|A|,

and if it holds with minus then

(45) |A− A| � |A| log3
|A|.

Again, one can replace multiplication with division in the first condition of (42).

Proof. Let us deal with the situation of the sum and the product. Other cases can
be considered similarly. By Theorem 30 from [Shkredov 2014] and our second
condition, one has

E+3 (A± A)≥ |A|45/4
|A− A|−1/2(E+(A))−9/4

� |A|9/4|A− A|7/4.

On the other hand, using formula (36) from Proposition 15 and our first condition,
we get

|A|4 log3
|A| � E+3 (A± A)� |A|9/4|A− A|7/4

as required.
Finally, using the additive variant of Katz–Koester inclusion (41) (or see Propo-

sition 29 from [Shkredov 2014]), we obtain

|A|3|A± A| ≤ E+3 (A+ A)� |A|4 log3
|A|,

and

|A|3|A− A| ≤ E+3 (A− A)� |A|4 log3
|A|. �

A simpler proof of a stronger result was kindly pointed out to the author by
Oliver Roche-Newton. Indeed applying estimate (2) with A = B = A+ A, C = A
and D = A+ A, we obtain

|A|4� |(A+ A)A+ (A+ A)(A+ A)|2

� |(A+ A) : (A+ A)||A||A+ A|

� |A|3|A+ A|,

and the result follows. Here we have used the estimate |(A+ A) : (A+ A)| ≥ |A|2

from [Balog and Roche-Newton 2015]. Applying the well-known Ungar bound
|(A− A) : (A− A)| ≥ |A|2 and taking C = A−1 and D = (A + A)−1, one can
replace division with multiplication.
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UNIQUENESS RESULT ON NONNEGATIVE SOLUTIONS
OF A LARGE CLASS OF DIFFERENTIAL INEQUALITIES

ON RIEMANNIAN MANIFOLDS

YUHUA SUN

We consider a large class of differential inequalities on complete connected
Riemannian manifolds and provide a sufficient condition in terms of vol-
ume growth for the uniqueness of nonnegative solutions to the differential
inequalities.

1. Introduction

The purpose of this paper is to give a sufficient condition for the uniqueness of
nonnegative solutions to a large class of the differential inequalities

(1-1) Lu+ V (x)uσ ≤ 0

on a connected geodesically complete noncompact N-dimensional Riemannian
manifold MN with N ≥ 2. Here the operator L is defined by

(1-2) Lu = div(A(x, u,∇u)),

where A(x, η, ξ) = (Ai (x, η, ξ)) is a vector field on MN , and for i = 1, . . . , N
the Ai (x, η, ξ) are Carathéodorian functions defined on MN

×[0,∞)× TMN , and
TMN is the tangent bundle of MN . The function V is positive, measurable, and
locally integrable on MN .

Let m ≥ 1 be an arbitrary given number. We say that the operator L belongs to
the class A(m) if there exists a positive constant C such that, for almost all x ∈ MN ,
all η ∈ [0,∞), and all ξ, ζ ∈ Tx MN , the following conditions hold:

(1-3)
{
(A(x, η, ξ), ξ)≥ 0,
|(A(x, η, ξ), ζ )| ≤ C(A(x, η, ξ), ξ)

m−1
m |ζ |,

where ( · , · ) is the inner product given by the Riemannian metric, and |ζ | is the
norm of ζ in Tx MN .
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Keywords: differential inequalities, Riemannian manifolds, volume growth, uniqueness.
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The definition of such a class operator A(m) was first introduced by Mı̄klyukov
[1979; 1980]. Actually, the operators of such a class are quite common. Let us
mention some examples:

(1) m-Laplacian operator:

(1-4) L1u = div(|∇u|m−2
∇u), m > 1.

(2) Mean curvature type operators:

(1-5) L2u = div
(
|∇u|m−2

∇u
√

1+ |∇u|m

)
, m > 1.

and

(1-6) L3u = div
(
|∇u|m−2

∇u√
1+ |∇u|2

)
, m > 1.

(3) Nonlinear operator:

(1-7) L4u = div(a(x, u,∇u)|∇u|m−2
∇u), m > 1.

The definition of L in (1-3) is less restrictive than the one defined by

(1-8) |A(x, η, ξ)| ≤ C1|ξ |
m−1, |(A(x, η, ξ), ξ)| ≥ C2|ξ |

m,

for some positive constants C1, C2. For example, by choosing a(x, η, ξ) of (1-7)
appropriately, the operator L4 belongs to A(m) but does not necessarily satisfy (1-8).

Generally speaking, the operator Lu defined by (1-3) may meanwhile belong
to several classes denoted by A(m1), . . . , A(mk), where m1 ≤ m2 ≤ · · · ≤ mk . For
example, the operators of L2, L3 belong to both A(m− 1) and A(m). Throughout
the paper, when we say that L belongs to the class of A(m), we always mean m is
the largest value mk .

The purpose of this paper is to provide a very simple geometric condition of
volume growth on MN to suffice that the only nonnegative solution u of (1-1)
is identically zero. Let us emphasize that there is no curvature assumption on
manifolds throughout the paper.

First, let us give our setting on manifolds. Let MN be a connected geodesically
complete noncompact Riemannian manifold. Denote by µ the Riemannian measure,
and by B(x, r) the geodesic ball on MN of radius r centered at x ∈ MN . Given
that d( · , · ) is the geodesic distance and that x0 is a reference point on M , define
Br := B(x0, r) for simplicity, where r = d(x, x0). Assume also throughout the
paper that V (x) ∈ L∞loc(M

N ).
The problem of investigating the uniqueness of nonnegative solutions has attracted

a lot of attention, especially in the Euclidean space. For example, if MN
=RN with

N ≥ 2, in the case of V (x)≡ 1, the problem (1-1) was systematically investigated by
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Kurta [1999]. By using the nonlinear capacity arguments, he obtained nonexistence
results concerning different differential inequalities. For a specific operator L ,
let us recommend a series of papers of Mitidieri and Pokhozhaev [1998; 1999;
2001] for a more comprehensive description. Related problems have also been
studied in massive literatures; see [Caristi et al. 2008; Caristi and Mitidieri 1997;
D’Ambrosio 2009; D’Ambrosio and Mitidieri 2010; Ni and Serrin 1985; 1986] and
the references therein.

Let us turn to the results in the Riemannian manifolds setting. The celebrated
idea of studying the uniqueness of nonnegative solutions in terms of the volume of
the geodesic ball was due to Cheng and Yau [1975]. They obtained the following
marvelous result: if the volume estimate

µ(Br )≤ Cr2

holds for all large enough r , then any positive solution to 1u ≤ 0 is identically
constant.

The amazing point of Cheng and Yau’s result is that there is no assumption
on either curvature or the behavior of the solution near infinity, only in terms of
volume growth.

Very recently, this idea was used and developed in [Grigor’yan and Kondratiev
2010; Grigor’yan and Sun 2014; Sun 2014] to investigate the differential inequality
of the form

(1-9) div(A(x)∇u)+ V (x)uσ ≤ 0,

where σ > 1. Particularly, when A(x)= Id and V (x)= 1, (1-9) becomes

(1-10) 1u+ uσ ≤ 0.

In [Grigor’yan and Sun 2014] it is proved that if

µ(Br )≤ Cr
2σ
σ−1 ln

1
σ−1 r

holds for all large enough r , then the only nonnegative solution of (1-10) is identi-
cally zero. Moreover, the exponents 2σ/(σ −1) and 1/(σ −1) are sharp and cannot
be relaxed.

Let us define the weak nonnegative solution of (1-1). For convenience, we
introduce the notation

(1-11) Au = (A(x, u,∇u),∇u)

and

(1-12) W 1,m
loc (M

N ) := { f | f ∈ Lm
loc(M

N ), ∇ f ∈ Lm
loc(M

N )},
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and denote by W 1,m
c (MN ) the subspace of W 1,m

loc (M
N ) of functions with compact

support.

Definition 1.1. A function u on MN is called a weak nonnegative solution of
(1-1) if u ∈ W 1,m

loc (M
N ) and Au ∈ L1

loc(M
N ) and if, for any nonnegative function

ψ ∈W 1,m
c (MN ), the following inequality holds:

(1-13) −

∫
MN
(A(x, u,∇u),∇ψ) dµ+

∫
MN

V (x)uσψ dµ≤ 0,

where ( · , · ) is the inner product in Tx(MN ) given by a Riemannian metric.

Remark 1.2. If u is a weak nonnegative solution of (1-1), and the operator L
belongs to the class A(m), we know∫

MN
(A(x, u,∇u),∇ψ) dµ≤ C

∫
MN
|∇ψ |A

m−1
m

u dµ

≤ C
(∫

MN
|∇ψ |m dµ

)1
m
(∫

supp(ψ)
Au dµ

)m−1
m

<∞.

Hence, by the definition of the solution, we know the second integral in (1-13) is
bounded.

Define

(1-14) p =
mσ

σ −m+ 1
, q =

m− 1
σ −m+ 1

,

and introduce a new measure ν defined by

(1-15) dν = V−
m−1

σ−m+1 dµ.

Assume that V satisfies the following condition: for some nonnegative constants
δ1, δ2, the estimate

(V) cr−δ1 ≤ V (x)≤ Cr δ2

holds for all large enough r .

Theorem 1.3. Assume that operator L in (1-1) belongs to the class of A(m) with
1< m < σ + 1. Assume also that (V) holds with δ1, δ2 ≥ 0. If the inequality

(1-16) ν(Br \ B1)≤ Cr p lnq r

holds for all large enough r , then the only nonnegative solution of (1-1) is identically
zero.

Remark 1.4. It is not clear that the sharpness of exponents p and q in (1-16) holds
for all the operators of the class A(m). However, in many specific cases, the expo-
nents p, q are sharp; one can refer to [Grigor’yan and Sun 2014; Sun 2014; 2015].
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Notation. The letters C,C ′,C0,C1, . . . denote positive constants whose values are
unimportant and may vary at different occurrences.

In Section 2, we show the proof of Theorem 1.3. In Section 3, we present two
examples to show that our result is very inclusive.

2. Proof of Theorem 1.3

Let u be a nonnegative solution of (1-1). Fix some ball BR , where R > 0 is to be
chosen later. Take a Lipschitz function ϕ on MN with compact support, such that
0 ≤ ϕ ≤ 1 and ϕ ≡ 1 in a neighborhood of BR . Particularly, ϕ ∈ W 1,m

c (MN ). We
use the following test function for (1-13):

(2-1) ψρ(x)= ϕ(x)s(u+ ρ)−t ,

where ρ > 0 is a parameter near zero, and s will be chosen to be a large enough
fixed constant, and t will take arbitrarily small positive values near zero.

Since 1/(u+ρ) is bounded, ψρ has compact support and is bounded. The identity

∇ψρ =−tϕs(u+ ρ)−t−1
∇u+ sϕs−1(u+ ρ)−t

∇ϕ

implies that ∇ψρ ∈ Lm(MN ), hence, ψρ ∈W 1,m
c (MN ). We obtain from (1-13) that

(2-2) t
∫

MN
ϕs(u+ ρ)−t−1 Au dµ+

∫
MN
ϕs V uσ (u+ ρ)−t dµ

≤ s
∫

MN
ϕs−1(u+ ρ)−t(A(x, u,∇u),∇ϕ) dµ.

Estimate the right-hand side of (2-2) by the Young inequality

(2-3)
∫

MN
f g dµ≤ ε

∫
MN
| f |p0 dµ+Cε

∫
MN
|g|p

′

0 dµ,

where 1/p0+ 1/p′0 = 1. Letting p0 = m/(m− 1), and using (1-3), we obtain

s
∫

MN
ϕs−1(u+ ρ)−t(A(x, u,∇u),∇ϕ) dµ

≤ Cs
∫

MN
ϕs−1(u+ ρ)−t A

m−1
m

u |∇ϕ| dµ

= C
∫

MN

[
t

1
p0 ϕ

s
p0 (u+ ρ)−

t+1
p0 A

m−1
m

u

][ s
t p0
ϕ

s
p′0
−1
(u+ ρ)

1− t+1
p′0 |∇ϕ|

]
dµ

≤
t
2

∫
MN
ϕs(u+ ρ)−t−1 Au dµ+C

sm

tm−1

∫
MN
ϕs−m(u+ ρ)m−t−1

|∇ϕ|m dµ.
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Substituting the above into (2-2), and canceling out half of the first term in (2-2),
we obtain

(2-4)
t
2

∫
MN
ϕs(u+ ρ)−t−1 Au dµ+

∫
MN
ϕs V uσ (u+ ρ)−t dµ

≤ C
sm

tm−1

∫
MN
ϕs−m(u+ ρ)m−t−1

|∇ϕ|m dµ.

Using the Young inequality again in the right-hand side of (2-4) with

p1 =
σ − t

m− t − 1
, p′1 =

σ − t
σ −m+ 1

,

we obtain

(2-5)
sm

tm−1

∫
MN
ϕs−m(u+ ρ)m−t−1

|∇ϕ|m dµ

=

∫
MN

[
ϕ

s
p1 V

1
p1 (u+ ρ)

σ−t
p1

][ sm

tm−1ϕ
s

p′1
−m

V−
1
p1 |∇ϕ|m

]
dµ

≤
1
2

∫
MN
ϕs V (u+ ρ)σ−t dµ

+C
(

sm

tm−1

) σ−t
σ−m+1

∫
MN
ϕs− m(σ−t)

σ−m+1 V−
m−t−1
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1 dµ.

Using in the right-hand side of (2-5) the simple inequality(
sm

tm−1

) σ−t
σ−m+1

≤

(
sm

tm−1

) σ
σ−m+1

and combining (2-5) with (2-4), we obtain that

(2-6)
t
2

∫
MN
ϕs(u+ ρ)−t−1 Au dµ+

∫
MN
ϕs V uσ (u+ ρ)−t dµ

≤
1
2

∫
MN
ϕs V (u+ ρ)σ−t dµ

+Ct−
σ(m−1)
σ−m+1

∫
MN
ϕs− m(σ−t)

σ−m+1 V−
m−t−1
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1 dµ,

where the value of s is absorbed into the constant C .
It is easy to obtain from the definition of the solution the boundedness of the term∫

MN
ϕs V uσ (u+ ρ)−t dµ.

Then the boundedness of
∫

MN ϕ
s V (u+ ρ)σ−t dµ follows by the boundedness of∫

MN
ϕs V uσ (u+ ρ)−t dµ,
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and by the fact that V ∈ L1
loc(M

N ).
By the dominated convergence theorem, we know

lim
ρ↓0

∫
MN
ϕs V (u+ ρ)σ−t dµ=

∫
MN
ϕs V uσ−t dµ.

Letting ρ ↓ 0 in (2-6) and applying the monotone convergence theorem, we have

t
2

∫
MN
ϕsu−t−1 Au dµ+

∫
MN
ϕs V uσ−t dµ

≤
1
2

∫
MN
ϕs V uσ−t dµ+Ct−

σ(m−1)
σ−m+1

∫
MN
ϕs− m(σ−t)

σ−m+1 V−
m−t−1
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1 dµ,

which is

(2-7)
t
2

∫
MN
ϕsu−t−1 Au dµ+

1
2

∫
MN
ϕs V uσ−t dµ

≤ Ct−
σ(m−1)
σ−m+1

∫
MN
ϕs− m(σ−t)

σ−m+1 V−
m−t−1
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1 dµ.

Applying (1-13) once more, using another test function ψ = ϕs , we obtain

(2-8)
∫

MN
ϕs V uσ dµ

≤ s
∫

MN
ϕs−1(A(x, u,∇u),∇ϕ) dµ

≤ Cs
∫

MN
ϕs−1 A

m−1
m

u |∇ϕ| dµ

≤ Cs
(∫

MN
ϕsu−t−1 Au dµ

)m−1
m
(∫

MN
ϕs−mu(t+1)(m−1)

|∇ϕ|m dµ
)1

m

.

From (2-7), we obtain∫
MN
ϕsu−t−1 Au dµ≤ Ct−1− σ(m−1)

σ−m+1

∫
MN
ϕs− m(σ−t)

σ−m+1 V−
m−t−1
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1 dµ.

Substituting into (2-8) yields

(2-9)
∫

MN
ϕs V uσ dµ≤ C

[
t−1− σ(m−1)

σ−m+1

∫
MN
ϕs− m(σ−t)

σ−m+1 V−
m−t−1
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1 dµ

]m−1
m

×

[∫
MN
ϕs−mu(t+1)(m−1)

|∇ϕ|m dµ
] 1

m

.

Recalling that ∇ϕ = 0 on BR and applying the Hölder inequality to the last term of
(2-9) with the Hölder couple

p2 =
σ

(t + 1)(m− 1)
, p′2 =

σ

σ − (t + 1)(m− 1)
,
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we obtain

(2-10)
∫

MN
ϕs−mu(t+1)(m−1)

|∇ϕ|m dµ

=

∫
MN \BR

(
ϕ

s
p2 V

1
p2 u(t+1)(m−1))(ϕ s

p′2
−m

V−
1
p2 |∇ϕ|m

)
dµ

≤

(∫
MN \BR

ϕs V uσ dµ
)(t+1)(m−1)

σ

×

(∫
MN \BR

ϕ
s− mσ

σ−(t+1)(m−1) V−
(t+1)(m−1)

σ−(t+1)(m−1) |∇ϕ|
mσ

σ−(t+1)(m−1) dµ
)σ−(t+1)(m−1)

σ

.

Substituting (2-10) into (2-9), choosing s large enough, and noting that ϕ ≤ 1, we
obtain

(2-11)
∫

MN
ϕs V uσ dµ≤ Ct−

m−1
m −

σ(m−1)2
m(σ−m+1)

(∫
MN

V−
m−1−t
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1 dµ

)m−1
m

×

(∫
MN

V−
(t+1)(m−1)

σ−(t+1)(m−1) |∇ϕ|
mσ

σ−(t+1)(m−1) dµ
)σ−(t+1)(m−1)

mσ

×

(∫
MN \BR

ϕs V uσ dµ
)(t+1)(m−1)

mσ

.

From the definition of the solution, we know
∫

MNϕ
s V uσ dµ is finite. It follows

from (2-11) that

(2-12)
(∫

MN
ϕs V uσ dµ

)1− (t+1)(m−1)
mσ

≤ Ct−
m−1

m −
σ(m−1)2

m(σ−m+1)

(∫
MN

V−
m−1−t
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1 dµ

)m−1
m

×

(∫
MN

V−
(t+1)(m−1)

σ−(t+1)(m−1) |∇ϕ|
mσ

σ−(t+1)(m−1) dµ
)σ−(t+1)(m−1)

mσ

.

Note that the first integral in the right-hand side of (2-12) has the estimate

(2-13)
∫

MN
V−

m−1−t
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1 dµ≤

∫
MN
|∇ϕ|

m(σ−t)
σ−m+1 V

t
σ−m+1 dν,

where we have used that dν = V−
m−1

σ−m+1 dµ. Similarly, the second integral in the
right-hand side of (2-12) can be estimated as follows:

(2-14)
∫

MN
V−

(t+1)(m−1)
σ−(t+1)(m−1) |∇ϕ|

mσ
σ−(t+1)(m−1) dµ

≤

∫
MN
|∇ϕ|

mσ
σ−(t+1)(m−1) V−

tσ(m−1)
[σ−(t+1)(m−1)](σ−m+1) dν.
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Substituting (2-13) and (2-14) into (2-11), we have

(2-15)
∫

MN
ϕs V uσ dµ

≤ Ct−
m−1

m −
σ(m−1)2

m(σ−m+1)

(∫
MN
|∇ϕ|

m(σ−t)
σ−m+1 V

t
σ−m+1 dν

)m−1
m

×

(∫
MN
|∇ϕ|

mσ
σ−(t+1)(m−1) V−

tσ(m−1)
[σ−(t+1)(m−1)](σ−m+1) dν

)σ−(t+1)(m−1)
mσ

×

(∫
MN \BR

ϕs V uσ dµ
)(t+1)(m−1)

mσ

.

Substituting (2-13) and (2-14) into (2-12), we obtain

(2-16)
(∫

MN
ϕs V uσ dµ

)1− (t+1)(m−1)
mσ

≤ Ct−
m−1

m −
σ(m−1)2

m(σ−m+1)

(∫
MN
|∇ϕ|

m(σ−t)
σ−m+1 V

t
σ−m+1 dν

)m−1
m

×

(∫
MN
|∇ϕ|

mσ
σ−(t+1)(m−1) V−

tσ(m−1)
[σ−(t+1)(m−1)](σ−m+1) dν

)σ−(t+1)(m−1)
mσ

.

Let {ϕ̃k}k∈N be a sequence for which each ϕ̃k is a Lipschitz function such that
supp(ϕ̃k)⊂ B2k , and ϕ̃k = 1 in a neighborhood of B2k−1 , and

(2-17) |∇ϕ̃k |

{
≤

C
2k−1 for x ∈ B2k \ B2k−1,

= 0 otherwise,

where C does not depend on k.
Fix some n ∈ N and set

(2-18) t =
1
n

and

(2-19) ϕn =

∑2n
k=n+1 ϕ̃k

n
.

Note that ϕn = 1 on B2n , and ϕn = 0 outside B22n , and 0 ≤ ϕn ≤ 1 on MN . Note
that, for any a ≥ 1, using that supp(∇ϕ̃k) are disjoint, we have

(2-20) |∇ϕn|
a
=

∑2n
k=n+1 |∇ϕ̃k |

a

na .

It is easy to see that
ϕn ∈W 1,m

loc (M
N ).
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Consider the integral

(2-21) Jn(a, b)=
∫

MN
|∇ϕn|

a V b dµ,

where a, b are taking values from

(2-22) (a, b)=

{( m(σ−t)
σ−m+1 ,

t
σ−m+1

)
,( mσ

σ−(t+1)(m−1) ,−
tσ(m−1)

[σ−(t+1)(m−1)](σ−m+1)

)
.

We write a in the form

(2-23) a = p+ lt,

with the corresponding two values of l,

(2-24) l1 =−
m

σ −m+ 1
, l2 =

mσ(m− 1)
[σ − (t + 1)(m− 1)](σ −m+ 1)

,

where p = mσ/(σ −m+ 1).
For b ≥ 0, we know

(2-25) Jn(a, b)=
∫

MN
|∇ϕn|

a V b dν

=

∫
MN

∑2n
k=n+1 |∇ϕ̃k |

a

na V b dν

≤

2n∑
k=n+1

∫
B2k \B2k−1

|∇ϕ̃k |
a

na V b dν

≤ C
2n∑

k=n+1

∫
B2k \B2k−1

(
21−k

n

)a

r δ2b dν

≤ C
2n∑

k=n+1

(
21−k

n

)a

(2k)δ2bν(B2k \ B1)

Note that a = p+ lt , and n+ 1≤ k ≤ 2n, and

(2-26)
(

21−k

n

)a

(2k)δ2b
=

(
2−k

n

)p(2−k

n

)lt

(2k)δ2b

≤

(
2−k

n

)p

(2k)δ2b sup
n+1≤k≤2n

(
2−k

n

)lt

≤ C
(

2−k

n

)p

(2k)δ2b.
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Substituting (2-26) into (2-25), and using the volume growth (1-16), we obtain

(2-27) Jn(a, b)≤ C
2n∑

k=n+1

(
2−k

n

)p

(2k)δ2bν(B2k \ B1)

≤ C
2n∑

k=n+1

(
2−k

n

)p

(2k)δ2b(2k)p lnq(2k)

≤ C
1

n p

2n∑
k=n+1

kq2kδ2b
≤ Cnq+1−p22nδ2b

≤ Cn−
σ(m−1)
σ−m+1 22nδ2b.

Similarly, for the case of b ≤ 0, we obtain

(2-28) Jn(a, b)≤ Cn−
σ(m−1)
σ−m+1 2−2nδ1b.

Taking the sequence {ϕn} in (2-16), we obtain

(2-29)(∫
MN
ϕs

nV uσ dµ
)1− (t+1)(m−1)

mσ

≤ Ct−
m−1

m −
σ(m−1)2

m(σ−m+1)

(
Jn

(
m(σ − t)
σ −m+ 1

,
t

σ −m+ 1

))m−1
m

×

(
Jn

(
mσ

σ − (t + 1)(m− 1)
,

−tσ(m− 1)
[σ − (t + 1)(m− 1)](σ −m+ 1)

))σ−(t+1)(m−1)
mσ

.

Substituting (2-27) and (2-28) and noting that t = 1/n, we obtain

(2-30)
(∫

MN
ϕs

nV uσ dµ
)1− (

1
n +1)(m−1)

mσ

≤ Cn
m−1

m +
σ(m−1)2

m(σ−m+1)

(
n−

σ(m−1)
σ−m+1 22nδ2

1
n

σ−m+1

)m−1
m

×

(
n−

σ(m−1)
σ−m+1 2

2nδ1
1
n σ(m−1)

[σ−( 1
n +1)(m−1)](σ−m+1)

)σ−( 1
n +1)(m−1)

mσ

≤ Cn
(m−1)2

n(σ−m+1) 2
2(δ1+δ2)(m−1)

m(σ−m+1) .

Noting that ϕn = 1 on B2n and taking the lim sup of both sides in (2-30) as n→∞,
we obtain

(2-31)
∫

MN
V uσ dµ≤ C <∞.
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Applying similar arguments to (2-15), we obtain that

(2-32)
∫

MN
ϕs

nV uσ dµ≤ C
(∫

MN \B2n

ϕs
nV uσ dµ

)( 1
n +1)(m−1)

mσ

.

Since ϕn = 1 on B2n , we have

(2-33)
∫

B2n

V uσ dµ≤ C
(∫

MN \B2n

ϕs
nV uσ dµ

)( 1
n +1)(m−1)

mσ

.

Combining this with (2-31) and letting n→∞, we obtain that∫
MN

V uσ dµ= 0,

since V > 0 for almost all x ∈ MN . Thus u ≡ 0. �

3. Examples

Our result can cover many known results in the case of MN
= RN . Let us mention

two of these examples.

Example 1. Let us investigate the inequality

(3-1) div(|∇u|m−2
∇u)+ V (x)uσ ≤ 0, in RN ,

where V (x)= 1/|x |γ for |x | ≥ 1, and N > m >max{1, γ }, and σ > m− 1.
By [Filippucci 2009, Corollary 1.5], we know if

(3-2) σ ≤
(N − γ )(m− 1)

N −m
,

then (3-1) has no positive solutions in some natural class. Compared to our result
of Theorem 1.3, we know for large r

(3-3) ν(Br \ B1)=

∫
Br\B1

V−
m−1

σ−m+1 dµ= ωN

∫ r

1
s
γ (m−1)
σ−m+1 s N−1 ds ≈ Cr N+ γ (m−1)

σ−m+1 ,

where ωN is the surface area of the unit ball in RN , and µ is the Lebesgue measure,
and the sign ≈ means that both the inequalities ≤ and ≥ are satisfied but with
different values of different constants c, C .

By (3-3), it follows that the condition (1-16) is equivalent to

(3-4) N +
γ (m− 1)
σ −m+ 1

≤ p =
mσ

σ −m+ 1
,

which in turn is equivalent to (3-2).
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Example 2. Consider the differential inequality

(3-5) div
(

∇u√
1+ |∇u|2

)
+ uσ ≤ 0, in RN ,

where N > 2, σ > 1. This problem was investigated in [Mitidieri and Pokhozhaev
1999]. They obtained that if

(3-6) σ ≤
N

N − 2
,

then (3-5) has no positive solutions. Note that the operator in (3-5) belongs to the
class of A(2), and that ν(Br \B1)=µ(Br \B1)≈Cr N . By Theorem 1.3, we know if

(3-7) N ≤
2σ
σ − 1

,

then (3-5) has no positive solution. It is easy to check that (3-6) and (3-7) are
equivalent.
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CORRECTION TO THE ARTICLE
CLOSED ORBITS OF A CHARGE IN

A WEAKLY EXACT MAGNETIC FIELD

WILL J. MERRY

Volume 247:1 (2010), 189–212

Theorem 5.1 of the titular article is incorrect, as pointed out by Gabriele
Benedetti. We describe the error and supply an alternative proof for the
article’s main result (Theorem 5.8).

1. Introduction

In this erratum I use the notation and numbering from [Merry 2010]. The problem,
pointed out to me by G. Benedetti, resides in its Theorem 5.1; embarrassingly, the
function f : R+→ R defined by f (x) := e−x already provides a counterexample.
One can take Fn to be the set of singletons {x} for x ∈ (0, n). Theorem 5.1 then
erroneously concludes that f has a critical point x∞ with f (x∞)= 0, which is, of
course, incorrect.

Luckily, the error in Theorem 5.1 does not affect the main result (Theorem 5.8).
In fact, whilst attempting to salvage the proof of Theorem 5.8, I realised that the
entire argument could be dramatically simplified by the following observation:
Theorem 3.2 still holds in the case c(g, σ ) = ∞. The proof of this statement is
explained below. Once this is established, Contreras’ original argument [2006,
Proposition 7.1] can be used directly to obtain [Merry 2010, Theorem 5.8].

L. Asselle and G. Benedetti [2015, Lemma 3.5] independently noticed that
Theorem 5.8 could be proved by making use of this observation. In their paper,
however, they take these ideas considerably further and extend the main result of
[Merry 2010] to cover cases in which the magnetic form is not weakly exact.

2. The correction

All references in this section are to [Merry 2010]. Let us explain why Theorem 3.2
continues to hold even in the case c(g, σ ) = ∞. We need only verify that the

MSC2010: 37J45, 70H12.
Keywords: magnetic flow, twisted geodesic flow, periodic orbits, Mañé critical value.
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additional hypothesis in Proposition 3.7 — which deals specifically with the case
c(g, σ ) = ∞— is superfluous. More precisely, we show that the hypotheses of
Theorem 3.2 automatically imply that the hypotheses of Proposition 3.7 are satisfied,
which therefore implies that Theorem 3.2 continues to hold in the case c(g, σ )=∞.

Thus, we are given a sequence (xn, Tn)⊂D(A, B, k, 0), and we must show that
there always exists a compact subset K ⊂ M̃ such that xn ∈ 3

K
0 for all n ∈ N.

For this it is enough to show that the energy en of (xn, Tn) (defined on the bottom
of page 197) is uniformly bounded. This then implies that the length ln of xn is
bounded (compare Equation (3-1)), which immediately implies that such a compact
set K ⊂ M̃ exists. To see that en is bounded, we use Equation (2-6), which tells us

1
n
≥

∣∣∣∣ ∂∂T
Sk(xn, Tn)

∣∣∣∣= ∣∣∣∣ 1
Tn

∫ Tn

0
(k− E(yn, ẏn)) dt

∣∣∣∣= ∣∣∣∣k− en

Tn

∣∣∣∣.
Since |Tn| ≤ B by assumption, en is necessarily bounded, as required.
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