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STABLE CAPILLARY HYPERSURFACES IN A WEDGE

JAIGYOUNG CHOE AND MIYUKI KOISO

Let 6 be a compact immersed stable capillary hypersurface in a wedge
bounded by two hyperplanes in Rn+1. Suppose that 6 meets those two
hyperplanes in constant contact angles ≥ π/2 and is disjoint from the edge
of the wedge, and suppose that ∂6 consists of two smooth components with
one in each hyperplane of the wedge. It is proved that if ∂6 is embedded
for n = 2, or if each component of ∂6 is convex for n ≥ 3, then 6 is part of
the sphere. The same is true for 6 in the half-space of Rn+1 with connected
boundary ∂6.

1. Introduction

The isoperimetric inequality says that among all domains of fixed volume in the
(n+ 1)-dimensional Euclidean space Rn+1 the one with least boundary area is the
round ball. What happens if the boundary area is a critical value instead of the
minimum? For this question the more general domains enclosed by the immersed
hypersurfaces have to be considered, hence one needs to introduce the oriented
volume (as defined in (1)). Then the answer to the question is that given a compact
immersed hypersurface 6 in Rn+1, its area is critical among all variations of 6
preserving the oriented volume enclosed by 6 if and only if 6 has constant mean
curvature (CMC).

So, H. Hopf [1989, p. 131] raised the question as to whether there exist closed
surfaces with CMC which are not spheres. To this question, W.-Y. Hsiang [1982]
obtained a counterexample, a CMC immersion of S3 in R4 which is not round, and
Wente [1986] constructed a CMC immersion of a torus in R3.

Is there an extra condition on a CMC surface 6 which guarantees that 6 is a
sphere? There are some affirmative results in this regard:

Choe supported in part by NRF, 2011-0030044, SRC-GAIA. Koiso supported in part by Grant-
in-Aid for Scientific Research (B) No. 25287012 and Grant-in-Aid for Challenging Exploratory
Research No. 26610016 of the Japan Society for the Promotion of Science, and the Kyushu University
Interdisciplinary Programs in Education and Projects in Research Development.
MSC2010: primary 49Q10; secondary 53A10.
Keywords: capillary surface, constant mean curvature, stable.

1

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2016.280-1
http://dx.doi.org/10.2140/pjm.2016.280.1


2 JAIGYOUNG CHOE AND MIYUKI KOISO

(i) Aleksandrov [1962a; 1962b] showed that every compact embedded hypersur-
face of CMC in Rn+1 is a sphere,

(ii) Hopf himself [1989] proved that an immersed CMC 2-sphere is round, and

(iii) Barbosa and do Carmo [1984] showed that the only compact immersed stable
CMC hypersurface of Rn+1 is the sphere.

A CMC hypersurface 6 is said to be stable if the second variation of the n-
dimensional area of 6 is nonnegative for all (n+1)-dimensional volume-preserving
perturbations of 6.

A CMC surface with nonempty boundary along which it makes a constant contact
angle with a prescribed supporting surface is called a capillary surface. It is an
equilibrium surface of the sum of the area and the wetting energy on the supporting
surface (we call it the total energy of the surface) for volume-preserving variations
(see Section 2). Such a surface is said to be stable if the second variation of the total
energy is nonnegative for all volume-preserving variations. In this paper, we prove
the following uniqueness result (Section 4, Theorem 1) which is a generalization of
the theorem by Barbosa and do Carmo [1984] mentioned above:

Let 6 be a compact immersed stable capillary hypersurface in a wedge
bounded by two hyperplanes in Rn+1, n ≥ 2. Suppose that 6 meets
those two hyperplanes in constant contact angles ≥ π/2 and does not hit
the edge of the wedge. We also assume that ∂6 consists of two smooth
embedded (n− 1)-dimensional manifolds, one in each hyperplane of the
wedge, and that each component of ∂6 is convex when n ≥ 3 (see figure).
Then 6 is part of the sphere. Also, the same conclusion holds if 6 is in
the half-space of Rn+1 and ∂6 is connected.
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We emphasize that there is a stable capillary surface between two parallel planes
which is not part of the sphere [Vogel 1989]. Our result shows that, if the initial
supporting surface is the union of two parallel planes and we consider a stable
nonspherical capillary surface, then the configuration changes discontinuously on
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infinitesimal tilting of one of the planes. Such discontinuity was pointed out already
in [Concus et al. 2001] without the stability of the surface.

The idea of our proof is motivated by Wente [1991]. He simplified Barbosa
and do Carmo’s proof by using the parallel hypersurfaces and the homothetic
contraction. We have found that Wente’s method carries over nicely to our capillary
hypersurfaces in a wedge and in the half-space. On the other hand, the Minkowski
inequality for ∂6 is indispensable in our arguments. Wente informed us that recently
Marinov [2012] obtained the same result when 6 is in R3 and ∂6 is in a plane.

Here we mention some additional related results. McCuan [1997] and Park
[2005] proved that an embedded annular capillary surface in a wedge in R3 is
necessarily part of the sphere. The question then arises whether one can extend the
theorems of Aleksandrov, Hopf, and Barbosa–do Carmo to the case of capillary
surfaces in a wedge or in the half-space. That is:

(i) Does there exist no compact embedded capillary surface of genus ≥ 1 in a
wedge (or in the half-space) of R3?

(ii) Is there a compact immersed annular capillary surface of genus 0 (or higher)
in a wedge (or in the half-space) which is not part of the sphere?

(iii) Which hypothesis of McCuan’s and Park’s can be dropped or generalized if
the capillary surface is stable?

As mentioned above, in this paper we give an answer to (iii). To question (i),
McCuan [1997] gave an affirmative answer with the contact angle condition θi ≤π/2.
In relation to question (ii), Wente [1995] constructed noncompact capillary surfaces
bifurcating from the cylinder in a wedge.

Finally, it should be mentioned that the stable capillary surfaces in a ball also
have been studied very actively. To begin with, Nitsche [1985] showed that a
capillary disk in a ball ⊂ R3 is a spherical cap (for a simpler proof, see [Finn and
McCuan 2000, Appendix]). Ros and Souam [1997] proved that a stable capillary
surface of genus 0 in a ball in R3 is a spherical cap. They also proved that a
stable minimal surface with constant contact angle in a ball ⊂ R3 is a flat disk or a
surface of genus 1 with at most three boundary components. Moreover, Ros and
Vergasta [1995] showed that a stable minimal hypersurface in a ball B ⊂ Rn which
is orthogonal to ∂B is totally geodesic, and that a stable capillary surface in a ball
⊂ R3 and orthogonal to ∂B is a spherical cap or a surface of genus 1 with at most
two boundary components.

2. Preliminaries

Let 51 and 52 be two hyperplanes in Rn+1 containing the (n− 1)-plane {xn = 0,
xn+1 = 0} and making angles α and −α (with 0 < α < π/2) with the horizontal
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hyperplane {xn+1 = 0}, respectively. Let � ⊂ {xn > 0} be the wedge-shaped
domain bounded by 51 and 52. We denote by � the closure of �. Denote by
X : (6, ∂6) → (�, ∂�) an immersion of an n-dimensional oriented compact
connected C∞ manifold 6 with nonempty boundary into � such that X (6◦)⊂�
and X (∂6)⊂ ∂�, where 6◦ :=6− ∂6. The (n− 1)-plane

50 :=51 ∩52 = {xn = 0, xn+1 = 0}

is called the edge of the wedge �. In this paper we are concerned only with the
immersed surfaces X (6) which connect 51 to 52 without intersecting 50.

For the immersion X : (6, ∂6)→ (�, ∂�), the n-dimensional area Hn(X) is
written as

Hn(X)=
∫
6

d S,

where d S is the volume form of 6 induced by X . The (n+1)-dimensional oriented
volume V (X) enclosed by X (6) is defined by

(1) V (X)= 1
n+1

∫
6

〈X, ν〉 d S,

where the Gauss map ν is the unit normal vector field along X with orientation
determined as follows. Let {e1, . . . , en} be an oriented frame on the tangent space
Tp(6), p ∈6. Then {d X p(e1), . . . , d X p(en), ν} is a frame of Rn+1 with positive
orientation.

In this paper X (6) is immersed while X (∂6) is assumed to be embedded. X (∂6)
influences the area Hn(X) through the wetting energy. Set Ci = X (∂6)∩5i and let
Di ⊂5i be the domain bounded by Ci . The wetting energy W(X) of X is defined
by

W(X)= ω1Hn(D1)+ω2Hn(D2),

where ωi is a constant with |ωi |< 1 and Hn(Di ) is the n-dimensional area of Di .
Then we define the total energy E(X) of the immersion X by

E(X)=Hn(X)+W(X).

Note that 6 ∪ D1 ∪ D2 is a piecewise smooth hypersurface without boundary. We
can extend ν :6→ Sn to the Gauss map ν :6∪D1∪D2→ Sn . Since the origin of
Rn+1 is on the edge 50 of �, 〈X, ν〉 = 0 on D1 ∪ D2. Hence the oriented volume

(2) V̂ (X)= 1
n+1

∫
6∪D1∪D2

〈X, ν〉 d S

coincides with V (X).
Let X t : (6, ∂6)→ (�, ∂�) be a 1-parameter family of immersions with X0= X .

It is well known [Finn 1986, Chapter 1] that a necessary and sufficient condition for
X to be a critical point of the total energy for all variations X t for which the volume
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V̂ (X t) is constant is that the immersed surface have constant mean curvature H
and that the contact angle θi of X (6) with 5i (measured between X (6) and Di )
be constant along Ci (see figure on page 2). More precisely,

cos θi =−ωi on Ci .

The hypersurface X (6) of constant mean curvature with constant contact angle
along Ci will be called a capillary hypersurface. A capillary hypersurface is said to
be stable if the second variation of E(X t) at t = 0 is nonnegative for all volume-
preserving perturbations X t : (6, ∂6)→ (�, ∂�) of X (6).

A capillary hypersurface X (6) in � has a nice property called the balancing
formula [Choe 2002; Concus et al. 2001; Korevaar et al. 1989]:

Lemma 1. We have

(3) nHHn(Di )=−(sin θi )H
n−1(Ci ), i = 1, 2.

Proof. We first remark the following fact. Let 6̂ be an m-dimensional oriented
compact connected C∞ manifold, and Y : 6̂→ Rm+1 a continuous map which is a
piecewise C∞ immersion. Also let ν̂ be the Gauss map of Y . Then, by using the
divergence theorem, we obtain ∫

6̂

ν̂ d S = 0.

Now integrate
16X = nHν

on 6 to get
2∑

i=1

∫
Ci

η ds = nH
∫
6

ν d6,

where η is the outward-pointing unit conormal to ∂6 on X . Then, use the above
remark to obtain

(4)
2∑

i=1

∫
Ci

η ds =−nH
2∑

i=1

∫
Di

ν d S.

Denote by Ni the unit normal to 5i that points outward from �. Denote by ni the
inward pointing unit normal to Ci in 5i . Set

(5) εi :=

{
1 if ν = Ni on Di ,
−1 if ν =−Ni on Di .
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Then from (4) we obtain

2∑
i=1

∫
Ci

(
(sin θi )εi Ni − (cos θi )ni

)
ds+

2∑
i=1

nHHn(Di )εi Ni = 0,

that is, for the (n− 1)-dimensional area Hn−1(Ci ),
2∑

i=1

(sin θi )εi H
n−1(Ci )Ni −

2∑
i=1

(cos θi )

∫
Ci

ni ds+
2∑

i=1

nHHn(Di )εi Ni = 0.

Using the above remark again, we obtain
2∑

i=1

(
nHHn(Di )+ (sin θi )H

n−1(Ci )
)
Ni = 0.

Since N1 and N2 are linearly independent, we obtain the formula (3). �

Another tool that will be essential in this paper is the formula for the volume
of tubes due to H. Weyl [1939]. Given an immersion X of a compact oriented
n-manifold M into Rn+1, let X t = X + tν be the one-parameter family of parallel
hypersurfaces to X . Thanks to the parallelness of X t one can easily see that X t has
the same unit normal vector field as X and that the area Hn(X t) is a polynomial of
degree n in t . Namely, if k1, . . . , kn are the principal curvatures of X , then

(6) Hn(X t)=

∫
M

n∏
i=1

(1− ki t) d S

= a0+ a1t + a2t2
+ · · ·+ antn,

a0 =Hn(X0),

a1 =−

∫
M

nH d S,

a2 =

∫
M

∑
i< j

ki k j d S,

a` = (−1)`
∫

M

∑
i1<···<i`

ki1ki2 · · · ki` d S.

Moreover, the oriented volume V (X t) satisfies

d
dt

V (X t)=Hn(X t).

Hence

V (X t)= v0+ v1t + v2t2
+ · · ·+ vn+1tn+1,

v1 = a0, 2v2 = a1, . . . .
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3. Admissible variations

Here we assume that our capillary hypersurface X : (6, ∂6)→ (�, ∂�) has a
nonempty boundary component on each 5i , i = 1, 2. But the case when 6 is in
the half-space and ∂6 is connected can be treated similarly.

To check the stability of X one needs to deal with its volume-preserving variations
X t : (6, ∂6)→ (�, ∂�). The specific variation that we use arises from the parallel
hypersurfaces

X1
t = X + tν.

But X1
t does not satisfy the boundary condition X1

t (∂6)⊂ ∂� unless θi = π/2. To
move the boundary to a desired place in ∂�, we apply a translation

X2
t (p)= p + ta

for some a ∈ Rn+1. The vector a is determined in such a way that

X2
t ◦ X1

t (∂6)⊂ ∂�.

Clearly such a vector uniquely exists as can be seen in the figure.

Π
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However, X2
t ◦ X1

t is not volume-preserving. One way of making it into a
volume-preserving variation is to deform it by a homothetic contraction

(7) X t := s(t)X2
t ◦ X1

t ,

where s(t) satisfies

(8) V̂ (X t)= V̂ (X0)= v0.

In order to compute V̂ (X t)we first must consider the oriented volume V̂ (X2
t ◦X1

t )

enclosed by X2
t ◦ X1

t (6) ∪ Dt
1 ∪ Dt

2, where Dt
i ⊂ 5i is the domain bounded by

5i∩X2
t ◦X1

t (∂6). Note here that since X2
t ◦X1

t (6)∪Dt
1∪Dt

2 is closed, the oriented
volume V̂ (X2

t ◦ X1
t ) as computed by (2) is independent of the translation X2

t . While
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t increases by 1t , the oriented volume V̂ (X2
t ◦ X1

t ) increases by Hn(X2
t ◦ X1

t )1t
on X2

t ◦ X1
t (6) and by − cos θi H

n(Dt
i )1t on Dt

i . Hence

(9) d
dt

V̂ (X2
t ◦ X1

t )=Hn(X2
t ◦ X1

t )−
∑

i

cos θi H
n(Dt

i ).

Calling −
∑

i cos θi H
n(Dt

i ) the wetting energy W(X2
t ◦ X1

t ) of X2
t ◦ X1

t (6), we
define the total energy by

E(X2
t ◦ X1

t )=Hn(X2
t ◦ X1

t )+W(X2
t ◦ X1

t ).

The tube formula (6) for the capillary hypersurface 6 yields

Hn(X2
t ◦ X1

t )= a0+ a1t + a2t2
+ · · ·+ antn,

a0 =Hn(6), a1 =−nHa0, a2 =

∫
6

∑
i< j

ki k j d S,

d
dt

V̂ (X2
t ◦ X1

t )= E(X2
t ◦ X1

t ).(10)

Recall Ci = X (∂6)∩5i . Since X2
t ◦ X1

t (6) has constant contact angle with ∂�
for all t , X2

t ◦ X1
t (Ci ) are the parallel hypersurfaces of p5i (X

2
t (Ci )), where p5i

denotes the projection of Rn+1 onto 5i . Also recall ∂Di = Ci , Di = D0
i . The

distance between X2
t ◦ X1

t (Ci ) and p5i (X
2
t (Ci )) is t sin θi . Hence again by the tube

formula for Hn−1(X2
t ◦ X1

t (Ci )), we obtain

Hn(Dt
i )=Hn(Di )+Hn−1(Ci ) t sin θi −

1
2

(∫
Ci

(n− 1)H d S
)

t2 sin2 θi

+ · · ·+ (−1)n−1 1
n

(∫
Ci

k̄1k̄2 · · · k̄n−1 d S
)

tn sinn θi ,

where H and k̄i are, respectively, the mean curvature and the principal curvature of
Ci in 5i with respect to the outward unit normal, and d S is the (n−1)-dimensional
volume form of Ci .

Then (9) gives

d
dt

V̂ (X2
t ◦ X1

t )= a0−
∑

i

cos θi H
n(Di )−

(
nHa0+

∑
i

cos θi sin θi Hn−1(Ci )

)
t

+

(∫
6

∑
i< j

ki k j d S+ 1
2

∑
i

cos θi sin2 θi

∫
Ci

(n− 1)H d S
)

t2
+ · · · .

Hence if we write

E(X2
t ◦ X1

t )= e0+ e1t + · · ·+ entn,
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then (10) yields

(11)

e0 = a0−
∑

i

cos θi H
n(Di ),

e1 =−nHa0−
∑

i

cos θi sin θi Hn−1(Ci ),

e2 =

∫
6

∑
i< j

ki k j d S+ 1
2

∑
i

cos θi sin2 θi

∫
Ci

(n− 1)H d S.

On the other hand, if we let

V̂ (X2
t ◦ X1

t )= v0+ v1t + v2t2
+ · · ·+ vn+1tn+1,

then it follows from (7), (8), and the binomial series that

s(t)n = vn/(n+1)
0 (v0+ v1t + v2t2

+ · · ·+ vn+1tn+1)−n/(n+1)

= 1− n
n+1

(
v1
v0

)
t +

(
n(2n+1)
2(n+1)2

(
v1
v0

)2
−

n
n+1

(
v2
v0

))
t2
+ · · · .

Thus

(12) E(X t)= s(t)n E(X2
t ◦ X1

t (6))

= e0+

(
e1−

n
n+1

(
v1
v0

)
e0

)
t

+

(
e2−

n
n+1

(
v1
v0

)
e1+

n(2n+1)
2(n+1)2

(
v1
v0

)2
e0−

n
n+1

(
v2
v0

)
e0

)
t2

+ · · · .

From (10) we have

(13) v1 = e0, 2v2 = e1,

and the fact that E ′(0)= 0 in (12) implies

(14) v0 =
n

n+ 1
e2

0

e1
.

Substituting the identities of (13) and (14) into the coefficient of t2 in (12) yields

E ′′(0)/2= 1
2ne0

(
2ne0e2− (n− 1)e2

1
)
.
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Hence from (11) we get

ne0 E ′′(0)= 2n
(

a0−
∑

i

cos θi H
n(Di )

)
×

(∫
6

∑
i< j

ki k j d S+ 1
2

∑
i

cos θi sin2 θi

∫
Ci

(n− 1)H d S
)

−(n− 1)
(

nHa0+
∑

i

cos θi sin θi Hn−1(Ci )

)2

.

Then the balancing formula (3) yields(
nHa0+

∑
i

cos θi sin θi Hn−1(Ci )

)2

= n2 H 2
(

a0−
∑

i

cos θi H
n(Di )

)2

.

Therefore,

ne0 E ′′(0)=
(

a0−
∑

i

cos θi H
n(Di )

)
×

(
2n
∫
6

∑
i< j

ki k j d S+ n
∑

i

cos θi sin2 θi

∫
Ci

(n− 1)H d S

−

∫
6

n2(n− 1)H 2 d S+ n2(n− 1)H 2
∑

i

cos θi H
n(Di )

)
=

(
a0−

∑
i

cos θi H
n(Di )

)
×

(
−

∫
6

∑
i< j
(ki − k j )

2 d S+ n
∑

i

cos θi sin2 θi

∫
Ci

(n− 1)H d S

+ n2(n− 1)H 2
∑

i

cos θi H
n(Di )

)
.

Applying the balancing formula (3) again, this gives

(15) ne0 E ′′(0)=
(

a0−
∑

i

cos θi H
n(Di )

)(
−

∫
6

∑
i< j

(ki − k j )
2 d S

+ (n− 1)
∑

i

cos θi sin2 θi

(
n
∫

Ci

H d S+ Hn−1(Ci )
2

Hn(Di )

))
.

We shall see in the next section that

n
∫
∂Di

H d S+ Hn−1(∂Di )
2

Hn(Di )
≥ 0.
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4. Theorem

We are now ready to state the theorem of this paper.

Theorem 1. Let W be a wedge in Rn+1 bounded by two hyperplanes 51 and 52.
Let 6 ⊂ W be a compact oriented immersed hypersurface that is disjoint from
the edge 51 ∩52 of W , having smooth embedded boundary ∂6 ⊂51 ∪52, and
satisfying ∂6 ∩5i = ∂Di for a nonempty bounded connected domain Di in 5i .
Suppose that 6 is a stable capillary hypersurface in W . In other words, 6 is an
immersed constant mean curvature hypersurface making a constant contact angle
θi ≥ π/2 with Di such that for all volume-preserving perturbations (for the oriented
volume enclosed by 6 ∪D1∪D2), the second variation of the total energy

E(6)=Hn(6)− cos θ1Hn(D1)− cos θ2Hn(D2)

is nonnegative.

(i) If n = 2, then 6 is part of the 2-sphere.

(ii) If n ≥ 3 and D1 and D2 are convex, then 6 is part of the n-sphere.

Conversely, if 6 is part of the n-sphere, then it is stable.
Moreover, the same conclusion holds when 6 is in the half-space of Rn+1 and

∂6 is connected.

Proof. We prove the theorem for6 in a wedge, and the proof for6 in the half-space
is similar.

When n = 2, (15) becomes

2e0 E ′′(0)=
(

a0−
∑

i

cos θi H
2(Di )

)(
−

∫
6

(k1− k2)
2 d S

+

∑
i

cos θi sin2 θi

(
2
∫
∂Di

k ds+ H1(∂Di )
2

H2(Di )

))
,

where k is the geodesic curvature of ∂Di with respect to the outward unit normal
along ∂Di . Note that on the smooth Jordan curve ∂Di ,

∫
∂Di

k ds =−2π . Hence the
isoperimetric inequality of Di and the angle condition cos θi ≤ 0 yield

E ′′(0)≤ 0.

Therefore 6 needs to be umbilic everywhere if it is stable.
When n ≥ 3, Minkowski showed that for a convex domain D ⊂ Rn with mean

curvature H on ∂D,

n
∫
∂D
|H | d S ≤ Hn−1(∂D)2

Hn(D)

[Osserman 1978, p. 1191]. Hence it follows from (15) that the stable 6 is all
umbilic.
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If 6 is part of the n-sphere, then 6 is the minimizer of the energy E among all
embedded hypersurfaces in � enclosing the same volume [Zia et al. 1988]. The
proof is similar to that of Theorem 4.1 in [Koiso and Palmer 2007]; the method is
essentially the same as in [Winterbottom 1967]. Hence 6 is stable for all n ≥ 2. �

Remark 1. Our contact angle condition θi ≥ π/2 is quite natural because McCuan
[1997] proved the nonexistence of embedded capillary surfaces with θi ≤ π/2 in
a wedge of R3. Also it had been experimentally observed that a wedge forces the
liquid drops (bridges) with θi ≤ π/2 to move toward its edge.

5. Minkowski’s inequality

The Minkowski inequality is not well known among geometers and its proof is not
easily available in the literature. So in this section we sketch a proof of it. First we
need to introduce the mixed volume [Schneider 1993].

The Minkowski sum of two sets A and B in Rn is the set

A+ B = {a+ b ∈ Rn
: a ∈ A, b ∈ B}.

Given convex bodies K1, . . . , Kr in Rn , the volume of the Minkowski sum λ1K1+

· · ·+ λr Kr (for λi ≥ 0) of the scaled convex bodies λi Ki of Ki is a homogeneous
polynomial of degree n given by

Hn(λ1K1+ · · ·+ λr Kr ) =

r∑
j1,..., jn=1

V (K j1, . . . , K jn )λ j1 · · · λ jn .

V (K j1, . . . , K jn ) is called the mixed volume of K j1, . . . , K jn . The mixed volume
is uniquely determined by the following three properties:

(i) V (K , . . . , K )=Hn(K ), (ii) V is symmetric, (iii) V is multilinear.

A remarkable property of the mixed volume is the Aleksandrov–Fenchel inequality:

V (K1, K2, K3, . . . , Kn)
2
≥ V (K1, K1, K3, . . . , Kn) · V (K2, K2, K3, . . . , Kn).

For a convex body K ⊂ Rn and a unit ball B ⊂ Rn , the mixed volume

W j (K ) := V (

n− j times︷ ︸︸ ︷
K , K , . . . , K ,

j times︷ ︸︸ ︷
B, B, . . . , B)

is called the j-th quermassintegral of K . The Steiner formula says that the quer-
massintegrals of K determine the volume of the parallel bodies of K :

Hn(K + t B)=
n∑

j=0

(n
j

)
W j (K )t j .
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Comparing the Steiner formula for a convex domain D⊂Rn with its tube formula,
one can obtain

W0(D)=Hn(D),

nW1(D)=Hn−1(∂D),

nW2(D)=
∫
∂D
|H | d S,

n(n− 1)(n− 2)W3(D)= 2
∫
∂D

∑
i< j

ki k j d S.

The Aleksandrov–Fenchel inequality for the quermassintegrals yields

W1(D)2 ≥W0(D)W2(D),

W2(D)2 ≥W1(D)W3(D).

Consequently,

n
∫
∂D
|H | d S ≤ Hn−1(∂D)2

Hn(D)
,(16) ∫

∂D

∑
i< j

ki k j d S ≤ (n−1)(n−2)
2

(∫
∂D |H | d S

)2

Hn−1(∂D)
(17)

≤
(n−1)(n−2)

2n2
Hn−1(∂D)3

Hn(D)2
,

where (16) is the desired Minkowski inequality.

Remark 2. We note that (16) is the isoperimetric inequality when D is a domain
in R2, and so is (17) when D ⊂ R3, because∫

∂D⊂R2
|k| ds = 2π and

∫
∂D⊂R3

k1k2 d S = 4π.

Remark 3. Let Dt ⊂ Rn be the parallel domain with distance t to D. Then (16) is
equivalent to

n Hn−1(∂Dt)
′

Hn−1(∂Dt)
≤
(n−1)Hn(Dt)

′

Hn(Dt)
,

or equivalently, (
Hn−1(∂Dt)

n

Hn(Dt)n−1

)′
≤ 0.

Hence the isoperimetric quotient Hn−1(∂Dt)
n/Hn(Dt)

n−1 decreases as t increases.
Indeed, the parallel domain Dt becomes rounder and rounder as t increases.
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