Pacific Journal of Mathematics

STABLE CAPILLARY HYPERSURFACES IN A WEDGE
Jaigyoung Choe and Miyuki Koiso

STABLE CAPILLARY HYPERSURFACES IN A WEDGE

Jaigyoung Choe and Miyuki Koiso

Abstract

Let Σ be a compact immersed stable capillary hypersurface in a wedge bounded by two hyperplanes in \mathbb{R}^{n+1}. Suppose that Σ meets those two hyperplanes in constant contact angles $\geq \pi / 2$ and is disjoint from the edge of the wedge, and suppose that $\partial \Sigma$ consists of two smooth components with one in each hyperplane of the wedge. It is proved that if $\partial \Sigma$ is embedded for $n=2$, or if each component of $\partial \Sigma$ is convex for $n \geq 3$, then Σ is part of the sphere. The same is true for Σ in the half-space of \mathbb{R}^{n+1} with connected boundary $\partial \Sigma$.

1. Introduction

The isoperimetric inequality says that among all domains of fixed volume in the $(n+1)$-dimensional Euclidean space \mathbb{R}^{n+1} the one with least boundary area is the round ball. What happens if the boundary area is a critical value instead of the minimum? For this question the more general domains enclosed by the immersed hypersurfaces have to be considered, hence one needs to introduce the oriented volume (as defined in (1)). Then the answer to the question is that given a compact immersed hypersurface Σ in \mathbb{R}^{n+1}, its area is critical among all variations of Σ preserving the oriented volume enclosed by Σ if and only if Σ has constant mean curvature (CMC).

So, H. Hopf [1989, p. 131] raised the question as to whether there exist closed surfaces with CMC which are not spheres. To this question, W.-Y. Hsiang [1982] obtained a counterexample, a CMC immersion of \mathbb{S}^{3} in \mathbb{R}^{4} which is not round, and Wente [1986] constructed a CMC immersion of a torus in \mathbb{R}^{3}.

Is there an extra condition on a CMC surface Σ which guarantees that Σ is a sphere? There are some affirmative results in this regard:

[^0](i) Aleksandrov [1962a; 1962b] showed that every compact embedded hypersurface of CMC in \mathbb{R}^{n+1} is a sphere,
(ii) Hopf himself [1989] proved that an immersed CMC 2-sphere is round, and
(iii) Barbosa and do Carmo [1984] showed that the only compact immersed stable CMC hypersurface of \mathbb{R}^{n+1} is the sphere.

A CMC hypersurface Σ is said to be stable if the second variation of the n dimensional area of Σ is nonnegative for all $(n+1)$-dimensional volume-preserving perturbations of Σ.

A CMC surface with nonempty boundary along which it makes a constant contact angle with a prescribed supporting surface is called a capillary surface. It is an equilibrium surface of the sum of the area and the wetting energy on the supporting surface (we call it the total energy of the surface) for volume-preserving variations (see Section 2). Such a surface is said to be stable if the second variation of the total energy is nonnegative for all volume-preserving variations. In this paper, we prove the following uniqueness result (Section 4, Theorem 1) which is a generalization of the theorem by Barbosa and do Carmo [1984] mentioned above:

Let Σ be a compact immersed stable capillary hypersurface in a wedge bounded by two hyperplanes in $\mathbb{R}^{n+1}, n \geq 2$. Suppose that Σ meets those two hyperplanes in constant contact angles $\geq \pi / 2$ and does not hit the edge of the wedge. We also assume that $\partial \Sigma$ consists of two smooth embedded ($n-1$)-dimensional manifolds, one in each hyperplane of the wedge, and that each component of $\partial \Sigma$ is convex when $n \geq 3$ (see figure). Then Σ is part of the sphere. Also, the same conclusion holds if Σ is in the half-space of \mathbb{R}^{n+1} and $\partial \Sigma$ is connected.

We emphasize that there is a stable capillary surface between two parallel planes which is not part of the sphere [Vogel 1989]. Our result shows that, if the initial supporting surface is the union of two parallel planes and we consider a stable nonspherical capillary surface, then the configuration changes discontinuously on
infinitesimal tilting of one of the planes. Such discontinuity was pointed out already in [Concus et al. 2001] without the stability of the surface.

The idea of our proof is motivated by Wente [1991]. He simplified Barbosa and do Carmo's proof by using the parallel hypersurfaces and the homothetic contraction. We have found that Wente's method carries over nicely to our capillary hypersurfaces in a wedge and in the half-space. On the other hand, the Minkowski inequality for $\partial \Sigma$ is indispensable in our arguments. Wente informed us that recently Marinov [2012] obtained the same result when Σ is in \mathbb{R}^{3} and $\partial \Sigma$ is in a plane.

Here we mention some additional related results. McCuan [1997] and Park [2005] proved that an embedded annular capillary surface in a wedge in \mathbb{R}^{3} is necessarily part of the sphere. The question then arises whether one can extend the theorems of Aleksandrov, Hopf, and Barbosa-do Carmo to the case of capillary surfaces in a wedge or in the half-space. That is:
(i) Does there exist no compact embedded capillary surface of genus ≥ 1 in a wedge (or in the half-space) of \mathbb{R}^{3} ?
(ii) Is there a compact immersed annular capillary surface of genus 0 (or higher) in a wedge (or in the half-space) which is not part of the sphere?
(iii) Which hypothesis of McCuan's and Park's can be dropped or generalized if the capillary surface is stable?

As mentioned above, in this paper we give an answer to (iii). To question (i), McCuan [1997] gave an affirmative answer with the contact angle condition $\theta_{i} \leq \pi / 2$. In relation to question (ii), Wente [1995] constructed noncompact capillary surfaces bifurcating from the cylinder in a wedge.

Finally, it should be mentioned that the stable capillary surfaces in a ball also have been studied very actively. To begin with, Nitsche [1985] showed that a capillary disk in a ball $\subset \mathbb{R}^{3}$ is a spherical cap (for a simpler proof, see [Finn and McCuan 2000, Appendix]). Ros and Souam [1997] proved that a stable capillary surface of genus 0 in a ball in \mathbb{R}^{3} is a spherical cap. They also proved that a stable minimal surface with constant contact angle in a ball $\subset \mathbb{R}^{3}$ is a flat disk or a surface of genus 1 with at most three boundary components. Moreover, Ros and Vergasta [1995] showed that a stable minimal hypersurface in a ball $B \subset \mathbb{R}^{n}$ which is orthogonal to ∂B is totally geodesic, and that a stable capillary surface in a ball $\subset \mathbb{R}^{3}$ and orthogonal to ∂B is a spherical cap or a surface of genus 1 with at most two boundary components.

2. Preliminaries

Let Π_{1} and Π_{2} be two hyperplanes in \mathbb{R}^{n+1} containing the $(n-1)$-plane $\left\{x_{n}=0\right.$, $\left.x_{n+1}=0\right\}$ and making angles α and $-\alpha$ (with $0<\alpha<\pi / 2$) with the horizontal
hyperplane $\left\{x_{n+1}=0\right\}$, respectively. Let $\Omega \subset\left\{x_{n}>0\right\}$ be the wedge-shaped domain bounded by Π_{1} and Π_{2}. We denote by $\bar{\Omega}$ the closure of Ω. Denote by $X:(\Sigma, \partial \Sigma) \rightarrow(\bar{\Omega}, \partial \Omega)$ an immersion of an n-dimensional oriented compact connected C^{∞} manifold Σ with nonempty boundary into Ω such that $X\left(\Sigma^{\circ}\right) \subset \Omega$ and $X(\partial \Sigma) \subset \partial \Omega$, where $\Sigma^{\circ}:=\Sigma-\partial \Sigma$. The $(n-1)$-plane

$$
\Pi_{0}:=\Pi_{1} \cap \Pi_{2}=\left\{x_{n}=0, x_{n+1}=0\right\}
$$

is called the edge of the wedge Ω. In this paper we are concerned only with the immersed surfaces $X(\Sigma)$ which connect Π_{1} to Π_{2} without intersecting Π_{0}.

For the immersion $X:(\Sigma, \partial \Sigma) \rightarrow(\bar{\Omega}, \partial \Omega)$, the n-dimensional area $\mathscr{H}^{n}(X)$ is written as

$$
\mathscr{H}^{n}(X)=\int_{\Sigma} d S
$$

where $d S$ is the volume form of Σ induced by X. The $(n+1)$-dimensional oriented volume $V(X)$ enclosed by $X(\Sigma)$ is defined by

$$
\begin{equation*}
V(X)=\frac{1}{n+1} \int_{\Sigma}\langle X, v\rangle d S \tag{1}
\end{equation*}
$$

where the Gauss map v is the unit normal vector field along X with orientation determined as follows. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an oriented frame on the tangent space $T_{p}(\Sigma), p \in \Sigma$. Then $\left\{d X_{p}\left(e_{1}\right), \ldots, d X_{p}\left(e_{n}\right), v\right\}$ is a frame of \mathbb{R}^{n+1} with positive orientation.

In this paper $X(\Sigma)$ is immersed while $X(\partial \Sigma)$ is assumed to be embedded. $X(\partial \Sigma)$ influences the area $\mathscr{H}^{n}(X)$ through the wetting energy. Set $C_{i}=X(\partial \Sigma) \cap \Pi_{i}$ and let $D_{i} \subset \Pi_{i}$ be the domain bounded by C_{i}. The wetting energy $\mathscr{W}(X)$ of X is defined by

$$
\mathscr{W}(X)=\omega_{1} \mathscr{H}^{n}\left(D_{1}\right)+\omega_{2} \mathscr{H}^{n}\left(D_{2}\right)
$$

where ω_{i} is a constant with $\left|\omega_{i}\right|<1$ and $\mathscr{H}^{n}\left(D_{i}\right)$ is the n-dimensional area of D_{i}. Then we define the total energy $E(X)$ of the immersion X by

$$
E(X)=\mathscr{H}^{n}(X)+\mathscr{W}(X) .
$$

Note that $\Sigma \cup D_{1} \cup D_{2}$ is a piecewise smooth hypersurface without boundary. We can extend $v: \Sigma \rightarrow S^{n}$ to the Gauss map $v: \Sigma \cup D_{1} \cup D_{2} \rightarrow S^{n}$. Since the origin of \mathbb{R}^{n+1} is on the edge Π_{0} of $\Omega,\langle X, v\rangle=0$ on $D_{1} \cup D_{2}$. Hence the oriented volume

$$
\begin{equation*}
\widehat{V}(X)=\frac{1}{n+1} \int_{\Sigma \cup D_{1} \cup D_{2}}\langle X, v\rangle d S \tag{2}
\end{equation*}
$$

coincides with $V(X)$.
Let $X_{t}:(\Sigma, \partial \Sigma) \rightarrow(\bar{\Omega}, \partial \Omega)$ be a 1-parameter family of immersions with $X_{0}=X$. It is well known [Finn 1986, Chapter 1] that a necessary and sufficient condition for X to be a critical point of the total energy for all variations X_{t} for which the volume
$\widehat{V}\left(X_{t}\right)$ is constant is that the immersed surface have constant mean curvature H and that the contact angle θ_{i} of $X(\Sigma)$ with Π_{i} (measured between $X(\Sigma)$ and D_{i}) be constant along C_{i} (see figure on page 2). More precisely,

$$
\cos \theta_{i}=-\omega_{i} \quad \text { on } C_{i}
$$

The hypersurface $X(\Sigma)$ of constant mean curvature with constant contact angle along C_{i} will be called a capillary hypersurface. A capillary hypersurface is said to be stable if the second variation of $E\left(X_{t}\right)$ at $t=0$ is nonnegative for all volumepreserving perturbations $X_{t}:(\Sigma, \partial \Sigma) \rightarrow(\bar{\Omega}, \partial \Omega)$ of $X(\Sigma)$.

A capillary hypersurface $X(\Sigma)$ in $\bar{\Omega}$ has a nice property called the balancing formula [Choe 2002; Concus et al. 2001; Korevaar et al. 1989]:

Lemma 1. We have

$$
\begin{equation*}
n H \mathscr{H}^{n}\left(D_{i}\right)=-\left(\sin \theta_{i}\right) \mathscr{H}^{n-1}\left(C_{i}\right), \quad i=1,2 \tag{3}
\end{equation*}
$$

Proof. We first remark the following fact. Let $\hat{\Sigma}$ be an m-dimensional oriented compact connected C^{∞} manifold, and $Y: \hat{\Sigma} \rightarrow \mathbb{R}^{m+1}$ a continuous map which is a piecewise C^{∞} immersion. Also let \hat{v} be the Gauss map of Y. Then, by using the divergence theorem, we obtain

$$
\int_{\hat{\Sigma}} \hat{v} d S=0 .
$$

Now integrate

$$
\Delta_{\Sigma} X=n H \nu
$$

on Σ to get

$$
\sum_{i=1}^{2} \int_{C_{i}} \eta d s=n H \int_{\Sigma} v d \Sigma
$$

where η is the outward-pointing unit conormal to $\partial \Sigma$ on X. Then, use the above remark to obtain

$$
\begin{equation*}
\sum_{i=1}^{2} \int_{C_{i}} \eta d s=-n H \sum_{i=1}^{2} \int_{D_{i}} v d S \tag{4}
\end{equation*}
$$

Denote by N_{i} the unit normal to Π_{i} that points outward from Ω. Denote by n_{i} the inward pointing unit normal to C_{i} in Π_{i}. Set

$$
\epsilon_{i}:= \begin{cases}1 & \text { if } v=N_{i} \text { on } D_{i} \tag{5}\\ -1 & \text { if } v=-N_{i} \text { on } D_{i}\end{cases}
$$

Then from (4) we obtain

$$
\sum_{i=1}^{2} \int_{C_{i}}\left(\left(\sin \theta_{i}\right) \epsilon_{i} N_{i}-\left(\cos \theta_{i}\right) n_{i}\right) d s+\sum_{i=1}^{2} n H \mathscr{H}^{n}\left(D_{i}\right) \epsilon_{i} N_{i}=0
$$

that is, for the $(n-1)$-dimensional area $\mathscr{H}^{n-1}\left(C_{i}\right)$,

$$
\sum_{i=1}^{2}\left(\sin \theta_{i}\right) \epsilon_{i} \mathscr{H}^{n-1}\left(C_{i}\right) N_{i}-\sum_{i=1}^{2}\left(\cos \theta_{i}\right) \int_{C_{i}} n_{i} d s+\sum_{i=1}^{2} n H \mathscr{H}^{n}\left(D_{i}\right) \epsilon_{i} N_{i}=0
$$

Using the above remark again, we obtain

$$
\sum_{i=1}^{2}\left(n H \mathscr{H}^{n}\left(D_{i}\right)+\left(\sin \theta_{i}\right) \mathscr{H}^{n-1}\left(C_{i}\right)\right) N_{i}=0
$$

Since N_{1} and N_{2} are linearly independent, we obtain the formula (3).
Another tool that will be essential in this paper is the formula for the volume of tubes due to H. Weyl [1939]. Given an immersion X of a compact oriented n-manifold M into \mathbb{R}^{n+1}, let $X_{t}=X+t \nu$ be the one-parameter family of parallel hypersurfaces to X. Thanks to the parallelness of X_{t} one can easily see that X_{t} has the same unit normal vector field as X and that the area $\mathscr{H}^{n}\left(X_{t}\right)$ is a polynomial of degree n in t. Namely, if k_{1}, \ldots, k_{n} are the principal curvatures of X, then

$$
\begin{align*}
\mathscr{H}^{n}\left(X_{t}\right) & =\int_{M} \prod_{i=1}^{n}\left(1-k_{i} t\right) d S \tag{6}\\
& =a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{n} t^{n}, \\
a_{0} & =\mathscr{H}^{n}\left(X_{0}\right), \\
a_{1} & =-\int_{M} n H d S, \\
a_{2} & =\int_{M} \sum_{i<j} k_{i} k_{j} d S, \\
a_{\ell} & =(-1)^{\ell} \int_{M} \sum_{i_{1}<\cdots<i_{\ell}} k_{i_{1}} k_{i_{2}} \cdots k_{i_{\ell}} d S .
\end{align*}
$$

Moreover, the oriented volume $V\left(X_{t}\right)$ satisfies

$$
\frac{d}{d t} V\left(X_{t}\right)=\mathscr{H}^{n}\left(X_{t}\right)
$$

Hence

$$
\begin{gathered}
V\left(X_{t}\right)=v_{0}+v_{1} t+v_{2} t^{2}+\cdots+v_{n+1} t^{n+1}, \\
v_{1}=a_{0}, \quad 2 v_{2}=a_{1}, \quad \cdots
\end{gathered}
$$

3. Admissible variations

Here we assume that our capillary hypersurface $X:(\Sigma, \partial \Sigma) \rightarrow(\bar{\Omega}, \partial \Omega)$ has a nonempty boundary component on each $\Pi_{i}, i=1,2$. But the case when Σ is in the half-space and $\partial \Sigma$ is connected can be treated similarly.

To check the stability of X one needs to deal with its volume-preserving variations $X_{t}:(\Sigma, \partial \Sigma) \rightarrow(\bar{\Omega}, \partial \Omega)$. The specific variation that we use arises from the parallel hypersurfaces

$$
X_{t}^{1}=X+t \nu
$$

But X_{t}^{1} does not satisfy the boundary condition $X_{t}^{1}(\partial \Sigma) \subset \partial \Omega$ unless $\theta_{i}=\pi / 2$. To move the boundary to a desired place in $\partial \Omega$, we apply a translation

$$
X_{t}^{2}(p)=p+t a
$$

for some $a \in \mathbb{R}^{n+1}$. The vector a is determined in such a way that

$$
X_{t}^{2} \circ X_{t}^{1}(\partial \Sigma) \subset \partial \Omega
$$

Clearly such a vector uniquely exists as can be seen in the figure.

However, $X_{t}^{2} \circ X_{t}^{1}$ is not volume-preserving. One way of making it into a volume-preserving variation is to deform it by a homothetic contraction

$$
\begin{equation*}
X_{t}:=s(t) X_{t}^{2} \circ X_{t}^{1} \tag{7}
\end{equation*}
$$

where $s(t)$ satisfies

$$
\begin{equation*}
\widehat{V}\left(X_{t}\right)=\widehat{V}\left(X_{0}\right)=v_{0} \tag{8}
\end{equation*}
$$

In order to compute $\widehat{V}\left(X_{t}\right)$ we first must consider the oriented volume $\widehat{V}\left(X_{t}^{2} \circ X_{t}^{1}\right)$ enclosed by $X_{t}^{2} \circ X_{t}^{1}(\Sigma) \cup D_{1}^{t} \cup D_{2}^{t}$, where $D_{i}^{t} \subset \Pi_{i}$ is the domain bounded by $\Pi_{i} \cap X_{t}^{2} \circ X_{t}^{1}(\partial \Sigma)$. Note here that since $X_{t}^{2} \circ X_{t}^{1}(\Sigma) \cup D_{1}^{t} \cup D_{2}^{t}$ is closed, the oriented volume $\widehat{V}\left(X_{t}^{2} \circ X_{t}^{1}\right)$ as computed by (2) is independent of the translation X_{t}^{2}. While
t increases by Δt, the oriented volume $\widehat{V}\left(X_{t}^{2} \circ X_{t}^{1}\right)$ increases by $\mathscr{H}^{n}\left(X_{t}^{2} \circ X_{t}^{1}\right) \Delta t$ on $X_{t}^{2} \circ X_{t}^{1}(\Sigma)$ and by $-\cos \theta_{i} \mathcal{H}^{n}\left(D_{i}^{t}\right) \Delta t$ on D_{i}^{t}. Hence

$$
\begin{equation*}
\frac{d}{d t} \widehat{V}\left(X_{t}^{2} \circ X_{t}^{1}\right)=\mathscr{H}^{n}\left(X_{t}^{2} \circ X_{t}^{1}\right)-\sum_{i} \cos \theta_{i} \mathscr{H}^{n}\left(D_{i}^{t}\right) \tag{9}
\end{equation*}
$$

Calling $-\sum_{i} \cos \theta_{i} \mathscr{H}^{n}\left(D_{i}^{t}\right)$ the wetting energy $\mathscr{W}\left(X_{t}^{2} \circ X_{t}^{1}\right)$ of $X_{t}^{2} \circ X_{t}^{1}(\Sigma)$, we define the total energy by

$$
E\left(X_{t}^{2} \circ X_{t}^{1}\right)=\mathscr{H}^{n}\left(X_{t}^{2} \circ X_{t}^{1}\right)+\mathscr{W}\left(X_{t}^{2} \circ X_{t}^{1}\right)
$$

The tube formula (6) for the capillary hypersurface Σ yields

$$
\begin{gather*}
\mathscr{H}^{n}\left(X_{t}^{2} \circ X_{t}^{1}\right)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{n} t^{n} \\
a_{0}=\mathscr{H}^{n}(\Sigma), \quad a_{1}=-n H a_{0}, \quad a_{2}=\int_{\Sigma} \sum_{i<j} k_{i} k_{j} d S \\
\frac{d}{d t} \widehat{V}\left(X_{t}^{2} \circ X_{t}^{1}\right)=E\left(X_{t}^{2} \circ X_{t}^{1}\right) \tag{10}
\end{gather*}
$$

Recall $C_{i}=X(\partial \Sigma) \cap \Pi_{i}$. Since $X_{t}^{2} \circ X_{t}^{1}(\Sigma)$ has constant contact angle with $\partial \Omega$ for all $t, X_{t}^{2} \circ X_{t}^{1}\left(C_{i}\right)$ are the parallel hypersurfaces of $p_{\Pi_{i}}\left(X_{t}^{2}\left(C_{i}\right)\right)$, where $p_{\Pi_{i}}$ denotes the projection of \mathbb{R}^{n+1} onto Π_{i}. Also recall $\partial D_{i}=C_{i}, D_{i}=D_{i}^{0}$. The distance between $X_{t}^{2} \circ X_{t}^{1}\left(C_{i}\right)$ and $p_{\Pi_{i}}\left(X_{t}^{2}\left(C_{i}\right)\right)$ is $t \sin \theta_{i}$. Hence again by the tube formula for $\mathscr{H}^{n-1}\left(X_{t}^{2} \circ X_{t}^{1}\left(C_{i}\right)\right)$, we obtain

$$
\begin{aligned}
& \mathscr{H}^{n}\left(D_{i}^{t}\right)=\mathscr{H}^{n}\left(D_{i}\right)+\mathscr{H}^{n-1}\left(C_{i}\right) t \sin \theta_{i}-\frac{1}{2}\left(\int_{C_{i}}(n-1) \bar{H} d \bar{S}\right) t^{2} \sin ^{2} \theta_{i} \\
&+\cdots+(-1)^{n-1} \frac{1}{n}\left(\int_{C_{i}} \bar{k}_{1} \bar{k}_{2} \cdots \bar{k}_{n-1} d \bar{S}\right) t^{n} \sin ^{n} \theta_{i}
\end{aligned}
$$

where \bar{H} and \bar{k}_{i} are, respectively, the mean curvature and the principal curvature of C_{i} in Π_{i} with respect to the outward unit normal, and $d \bar{S}$ is the ($n-1$)-dimensional volume form of C_{i}.

Then (9) gives

$$
\begin{aligned}
\frac{d}{d t} \widehat{V}\left(X_{t}^{2} \circ X_{t}^{1}\right) & =a_{0}-\sum_{i} \cos \theta_{i} \mathscr{H}^{n}\left(D_{i}\right)-\left(n H a_{0}+\sum_{i} \cos \theta_{i} \sin \theta_{i} \mathscr{H}^{n-1}\left(C_{i}\right)\right) t \\
& +\left(\int_{\Sigma} \sum_{i<j} k_{i} k_{j} d S+\frac{1}{2} \sum_{i} \cos \theta_{i} \sin ^{2} \theta_{i} \int_{C_{i}}(n-1) \bar{H} d \bar{S}\right) t^{2}+\cdots
\end{aligned}
$$

Hence if we write

$$
E\left(X_{t}^{2} \circ X_{t}^{1}\right)=e_{0}+e_{1} t+\cdots+e_{n} t^{n}
$$

then (10) yields

$$
\begin{align*}
& e_{0}=a_{0}-\sum_{i} \cos \theta_{i} \mathscr{H}^{n}\left(D_{i}\right), \\
& e_{1}=-n H a_{0}-\sum_{i} \cos \theta_{i} \sin \theta_{i} \mathscr{H}^{n-1}\left(C_{i}\right), \tag{11}\\
& e_{2}=\int_{\Sigma} \sum_{i<j} k_{i} k_{j} d S+\frac{1}{2} \sum_{i} \cos \theta_{i} \sin ^{2} \theta_{i} \int_{C_{i}}(n-1) \bar{H} d \bar{S} .
\end{align*}
$$

On the other hand, if we let

$$
\widehat{V}\left(X_{t}^{2} \circ X_{t}^{1}\right)=v_{0}+v_{1} t+v_{2} t^{2}+\cdots+v_{n+1} t^{n+1}
$$

then it follows from (7), (8), and the binomial series that

$$
\begin{aligned}
s(t)^{n} & =v_{0}^{n /(n+1)}\left(v_{0}+v_{1} t+v_{2} t^{2}+\cdots+v_{n+1} t^{n+1}\right)^{-n /(n+1)} \\
& =1-\frac{n}{n+1}\left(\frac{v_{1}}{v_{0}}\right) t+\left(\frac{n(2 n+1)}{2(n+1)^{2}}\left(\frac{v_{1}}{v_{0}}\right)^{2}-\frac{n}{n+1}\left(\frac{v_{2}}{v_{0}}\right)\right) t^{2}+\cdots
\end{aligned}
$$

Thus
(12) $E\left(X_{t}\right)=s(t)^{n} E\left(X_{t}^{2} \circ X_{t}^{1}(\Sigma)\right)$

$$
\begin{aligned}
=e_{0} & +\left(e_{1}-\frac{n}{n+1}\left(\frac{v_{1}}{v_{0}}\right) e_{0}\right) t \\
& +\left(e_{2}-\frac{n}{n+1}\left(\frac{v_{1}}{v_{0}}\right) e_{1}+\frac{n(2 n+1)}{2(n+1)^{2}}\left(\frac{v_{1}}{v_{0}}\right)^{2} e_{0}-\frac{n}{n+1}\left(\frac{v_{2}}{v_{0}}\right) e_{0}\right) t^{2} \\
& +\cdots
\end{aligned}
$$

From (10) we have

$$
\begin{equation*}
v_{1}=e_{0}, \quad 2 v_{2}=e_{1} \tag{13}
\end{equation*}
$$

and the fact that $E^{\prime}(0)=0$ in (12) implies

$$
\begin{equation*}
v_{0}=\frac{n}{n+1} \frac{e_{0}^{2}}{e_{1}} \tag{14}
\end{equation*}
$$

Substituting the identities of (13) and (14) into the coefficient of t^{2} in (12) yields

$$
E^{\prime \prime}(0) / 2=\frac{1}{2 n e_{0}}\left(2 n e_{0} e_{2}-(n-1) e_{1}^{2}\right)
$$

Hence from (11) we get

$$
\begin{aligned}
& n e_{0} E^{\prime \prime}(0)= 2 n\left(a_{0}-\sum_{i} \cos \theta_{i} \mathscr{H}^{n}\left(D_{i}\right)\right) \\
& \times\left(\int_{\Sigma} \sum_{i<j} k_{i} k_{j} d S+\frac{1}{2} \sum_{i} \cos \theta_{i} \sin ^{2} \theta_{i} \int_{C_{i}}(n-1) \bar{H} d \bar{S}\right) \\
& \quad-(n-1)\left(n H a_{0}+\sum_{i} \cos \theta_{i} \sin \theta_{i} \mathscr{H}^{n-1}\left(C_{i}\right)\right)^{2} .
\end{aligned}
$$

Then the balancing formula (3) yields

$$
\left(n H a_{0}+\sum_{i} \cos \theta_{i} \sin \theta_{i} \mathscr{H}^{n-1}\left(C_{i}\right)\right)^{2}=n^{2} H^{2}\left(a_{0}-\sum_{i} \cos \theta_{i} \mathscr{H}^{n}\left(D_{i}\right)\right)^{2}
$$

Therefore,

$$
\begin{aligned}
& n e_{0} E^{\prime \prime}(0)=\left(a_{0}-\sum_{i}\right.\left.\cos \theta_{i} \mathscr{H}^{n}\left(D_{i}\right)\right) \\
& \times\left(2 n \int_{\Sigma} \sum_{i<j} k_{i} k_{j} d S+n \sum_{i} \cos \theta_{i} \sin ^{2} \theta_{i} \int_{C_{i}}(n-1) \bar{H} d \bar{S}\right. \\
&\left.\quad-\int_{\Sigma} n^{2}(n-1) H^{2} d S+n^{2}(n-1) H^{2} \sum_{i} \cos \theta_{i} \mathscr{H}^{n}\left(D_{i}\right)\right) \\
&=\left(a_{0}-\sum_{i} \cos \theta_{i} \mathscr{H}^{n}\left(D_{i}\right)\right) \\
& \times\left(-\int_{\Sigma} \sum_{i<j}\left(k_{i}-k_{j}\right)^{2} d S+n \sum_{i} \cos \theta_{i} \sin ^{2} \theta_{i} \int_{C_{i}}(n-1) \bar{H} d \bar{S}\right. \\
&\left.+n^{2}(n-1) H^{2} \sum_{i} \cos \theta_{i} \mathscr{H}^{n}\left(D_{i}\right)\right) .
\end{aligned}
$$

Applying the balancing formula (3) again, this gives

$$
\begin{align*}
n e_{0} E^{\prime \prime}(0)=\left(a_{0}-\right. & \left.\sum_{i} \cos \theta_{i} \mathscr{H}^{n}\left(D_{i}\right)\right)\left(-\int_{\Sigma} \sum_{i<j}\left(k_{i}-k_{j}\right)^{2} d S\right. \tag{15}\\
& \left.+(n-1) \sum_{i} \cos \theta_{i} \sin ^{2} \theta_{i}\left(n \int_{C_{i}} \bar{H} d \bar{S}+\frac{\mathscr{H}^{n-1}\left(C_{i}\right)^{2}}{\mathscr{H}^{n}\left(D_{i}\right)}\right)\right)
\end{align*}
$$

We shall see in the next section that

$$
n \int_{\partial D_{i}} \bar{H} d \bar{S}+\frac{\mathscr{H}^{n-1}\left(\partial D_{i}\right)^{2}}{\mathscr{H}^{n}\left(D_{i}\right)} \geq 0
$$

4. Theorem

We are now ready to state the theorem of this paper.
Theorem 1. Let W be a wedge in \mathbb{R}^{n+1} bounded by two hyperplanes Π_{1} and Π_{2}. Let $\Sigma \subset W$ be a compact oriented immersed hypersurface that is disjoint from the edge $\Pi_{1} \cap \Pi_{2}$ of W, having smooth embedded boundary $\partial \Sigma \subset \Pi_{1} \cup \Pi_{2}$, and satisfying $\partial \Sigma \cap \Pi_{i}=\partial D_{i}$ for a nonempty bounded connected domain D_{i} in Π_{i}. Suppose that Σ is a stable capillary hypersurface in W. In other words, Σ is an immersed constant mean curvature hypersurface making a constant contact angle $\theta_{i} \geq \pi / 2$ with D_{i} such that for all volume-preserving perturbations (for the oriented volume enclosed by $\Sigma \cup D_{1} \cup D_{2}$), the second variation of the total energy

$$
E(\Sigma)=\mathscr{H}^{n}(\Sigma)-\cos \theta_{1} \mathscr{H}^{n}\left(D_{1}\right)-\cos \theta_{2} \mathscr{H}^{n}\left(D_{2}\right)
$$

is nonnegative.
(i) If $n=2$, then Σ is part of the 2-sphere.
(ii) If $n \geq 3$ and D_{1} and D_{2} are convex, then Σ is part of the n-sphere.

Conversely, if Σ is part of the n-sphere, then it is stable.
Moreover, the same conclusion holds when Σ is in the half-space of \mathbb{R}^{n+1} and $\partial \Sigma$ is connected.
Proof. We prove the theorem for Σ in a wedge, and the proof for Σ in the half-space is similar.

When $n=2$, (15) becomes

$$
\begin{aligned}
2 e_{0} E^{\prime \prime}(0)=\left(a_{0}-\sum_{i} \cos \theta_{i} \mathscr{H}^{2}\left(D_{i}\right)\right) & \left(-\int_{\Sigma}\left(k_{1}-k_{2}\right)^{2} d S\right. \\
& \left.+\sum_{i} \cos \theta_{i} \sin ^{2} \theta_{i}\left(2 \int_{\partial D_{i}} k d s+\frac{\mathscr{H}^{1}\left(\partial D_{i}\right)^{2}}{\mathscr{H}^{2}\left(D_{i}\right)}\right)\right)
\end{aligned}
$$

where k is the geodesic curvature of ∂D_{i} with respect to the outward unit normal along ∂D_{i}. Note that on the smooth Jordan curve $\partial D_{i}, \int_{\partial D_{i}} k d s=-2 \pi$. Hence the isoperimetric inequality of D_{i} and the angle condition $\cos \theta_{i} \leq 0$ yield

$$
E^{\prime \prime}(0) \leq 0
$$

Therefore Σ needs to be umbilic everywhere if it is stable.
When $n \geq 3$, Minkowski showed that for a convex domain $D \subset \mathbb{R}^{n}$ with mean curvature H on ∂D,

$$
n \int_{\partial D}|H| d S \leq \frac{\mathscr{H}^{n-1}(\partial D)^{2}}{\mathscr{H}^{n}(D)}
$$

[Osserman 1978, p. 1191]. Hence it follows from (15) that the stable Σ is all umbilic.

If Σ is part of the n-sphere, then Σ is the minimizer of the energy E among all embedded hypersurfaces in Ω enclosing the same volume [Zia et al. 1988]. The proof is similar to that of Theorem 4.1 in [Koiso and Palmer 2007]; the method is essentially the same as in [Winterbottom 1967]. Hence Σ is stable for all $n \geq 2$.

Remark 1. Our contact angle condition $\theta_{i} \geq \pi / 2$ is quite natural because McCuan [1997] proved the nonexistence of embedded capillary surfaces with $\theta_{i} \leq \pi / 2$ in a wedge of \mathbb{R}^{3}. Also it had been experimentally observed that a wedge forces the liquid drops (bridges) with $\theta_{i} \leq \pi / 2$ to move toward its edge.

5. Minkowski's inequality

The Minkowski inequality is not well known among geometers and its proof is not easily available in the literature. So in this section we sketch a proof of it. First we need to introduce the mixed volume [Schneider 1993].

The Minkowski sum of two sets A and B in \mathbb{R}^{n} is the set

$$
A+B=\left\{a+b \in \mathbb{R}^{n}: a \in A, b \in B\right\}
$$

Given convex bodies K_{1}, \ldots, K_{r} in \mathbb{R}^{n}, the volume of the Minkowski sum $\lambda_{1} K_{1}+$ $\cdots+\lambda_{r} K_{r}$ (for $\lambda_{i} \geq 0$) of the scaled convex bodies $\lambda_{i} K_{i}$ of K_{i} is a homogeneous polynomial of degree n given by

$$
\mathscr{H}^{n}\left(\lambda_{1} K_{1}+\cdots+\lambda_{r} K_{r}\right)=\sum_{j_{1}, \ldots, j_{n}=1}^{r} V\left(K_{j_{1}}, \ldots, K_{j_{n}}\right) \lambda_{j_{1}} \cdots \lambda_{j_{n}} .
$$

$V\left(K_{j_{1}}, \ldots, K_{j_{n}}\right)$ is called the mixed volume of $K_{j_{1}}, \ldots, K_{j_{n}}$. The mixed volume is uniquely determined by the following three properties:
(i) $V(K, \ldots, K)=\mathscr{H}^{n}(K)$, (ii) V is symmetric, (iii) V is multilinear.

A remarkable property of the mixed volume is the Aleksandrov-Fenchel inequality:

$$
V\left(K_{1}, K_{2}, K_{3}, \ldots, K_{n}\right)^{2} \geq V\left(K_{1}, K_{1}, K_{3}, \ldots, K_{n}\right) \cdot V\left(K_{2}, K_{2}, K_{3}, \ldots, K_{n}\right)
$$

For a convex body $K \subset \mathbb{R}^{n}$ and a unit ball $B \subset \mathbb{R}^{n}$, the mixed volume

$$
W_{j}(K):=V(\overbrace{K, K, \ldots, K}^{n-j \text { times }}, \overbrace{B, B, \ldots, B}^{j \text { times }})
$$

is called the j-th quermassintegral of K. The Steiner formula says that the quermassintegrals of K determine the volume of the parallel bodies of K :

$$
\mathscr{H}^{n}(K+t B)=\sum_{j=0}^{n}\binom{n}{j} W_{j}(K) t^{j} .
$$

Comparing the Steiner formula for a convex domain $D \subset \mathbb{R}^{n}$ with its tube formula, one can obtain

$$
\begin{aligned}
W_{0}(D) & =\mathscr{H}^{n}(D), \\
n W_{1}(D) & =\mathscr{H}^{n-1}(\partial D), \\
n W_{2}(D) & =\int_{\partial D}|H| d S, \\
n(n-1)(n-2) W_{3}(D) & =2 \int_{\partial D} \sum_{i<j} k_{i} k_{j} d S .
\end{aligned}
$$

The Aleksandrov-Fenchel inequality for the quermassintegrals yields

$$
\begin{aligned}
& W_{1}(D)^{2} \geq W_{0}(D) W_{2}(D) \\
& W_{2}(D)^{2} \geq W_{1}(D) W_{3}(D)
\end{aligned}
$$

Consequently,

$$
\begin{align*}
n \int_{\partial D}|H| d S & \leq \frac{\mathscr{H}^{n-1}(\partial D)^{2}}{\mathscr{H}^{n}(D)} \tag{16}\\
\int_{\partial D} \sum_{i<j} k_{i} k_{j} d S & \leq \frac{(n-1)(n-2)}{2} \frac{\left(\int_{\partial D}|H| d S\right)^{2}}{\mathscr{H}^{n-1}(\partial D)} \tag{17}\\
& \leq \frac{(n-1)(n-2)}{2 n^{2}} \frac{\mathscr{H}^{n-1}(\partial D)^{3}}{\mathscr{H}^{n}(D)^{2}}
\end{align*}
$$

where (16) is the desired Minkowski inequality.
Remark 2. We note that (16) is the isoperimetric inequality when D is a domain in \mathbb{R}^{2}, and so is (17) when $D \subset \mathbb{R}^{3}$, because

$$
\int_{\partial D \subset \mathbb{R}^{2}}|k| d s=2 \pi \quad \text { and } \quad \int_{\partial D \subset \mathbb{R}^{3}} k_{1} k_{2} d S=4 \pi .
$$

Remark 3. Let $D_{t} \subset \mathbb{R}^{n}$ be the parallel domain with distance t to D. Then (16) is equivalent to

$$
n \frac{\mathscr{H}^{n-1}\left(\partial D_{t}\right)^{\prime}}{\mathscr{H}^{n-1}\left(\partial D_{t}\right)} \leq \frac{(n-1) \mathscr{H}^{n}\left(D_{t}\right)^{\prime}}{\mathscr{H}^{n}\left(D_{t}\right)}
$$

or equivalently,

$$
\left(\frac{\mathscr{H}^{n-1}\left(\partial D_{t}\right)^{n}}{\mathscr{H}^{n}\left(D_{t}\right)^{n-1}}\right)^{\prime} \leq 0
$$

Hence the isoperimetric quotient $\mathscr{H}^{n-1}\left(\partial D_{t}\right)^{n} / \mathscr{H}^{n}\left(D_{t}\right)^{n-1}$ decreases as t increases. Indeed, the parallel domain D_{t} becomes rounder and rounder as t increases.

Acknowledgement

We thank Professor Monika Ludwig for referring us to the Aleksandrov-Fenchel inequality.

References

[Aleksandrov 1962a] A. D. Aleksandrov, "Uniqueness theorems for surfaces in the large, I", Amer. Math. Soc. Transl. (2) 21 (1962), 341-354. MR 27 \#698a Zbl 0122.39601
[Aleksandrov 1962b] A. D. Aleksandrov, "Uniqueness theorems for surfaces in the large, II", Amer. Math. Soc. Transl. (2) 21 (1962), 354-388. MR 27 \#698b Zbl 0122.39601
[Barbosa and do Carmo 1984] J. L. Barbosa and M. do Carmo, "Stability of hypersurfaces with constant mean curvature", Math. Z. 185:3 (1984), 339-353. MR 85k:58021c Zbl 0513.53002
[Choe 2002] J. Choe, "Sufficient conditions for constant mean curvature surfaces to be round", Math. Ann. 323:1 (2002), 143-156. MR 2003f:53008 Zbl 1016.53007
[Concus et al. 2001] P. Concus, R. Finn, and J. McCuan, "Liquid bridges, edge blobs, and Scherk-type capillary surfaces", Indiana Univ. Math. J. 50:1 (2001), 411-441. MR 2002g:76023 Zbl 0996.76014
[Finn 1986] R. Finn, Equilibrium capillary surfaces, Grundlehren der Mathematischen Wissenschaften 284, Springer, New York, 1986. MR 88f:49001 Zbl 0583.35002
[Finn and McCuan 2000] R. Finn and J. McCuan, "Vertex theorems for capillary drops on support planes", Math. Nachr. 209 (2000), 115-135. MR 2000k:53058 Zbl 0962.76014
[Hopf 1989] H. Hopf, Differential geometry in the large, 2nd ed., Lecture Notes in Mathematics 1000, Springer, Berlin, 1989. MR 90f:53001 Zbl 0669.53001
[Hsiang 1982] W.-y. Hsiang, "Generalized rotational hypersurfaces of constant mean curvature in the Euclidean spaces, I", J. Differential Geom. 17:2 (1982), 337-356. MR 84h:53009 Zbl 0493.53043
[Koiso and Palmer 2007] M. Koiso and B. Palmer, "Anisotropic capillary surfaces with wetting energy", Calc. Var. Partial Differential Equations 29:3 (2007), 295-345. MR 2008d:53007 Zbl 1136.76011
[Korevaar et al. 1989] N. J. Korevaar, R. Kusner, and B. Solomon, "The structure of complete embedded surfaces with constant mean curvature", J. Differential Geom. 30:2 (1989), 465-503. MR 90g:53011 Zbl 0726.53007
[Marinov 2012] P. I. Marinov, "Stability of capillary surfaces with planar boundary in the absence of gravity", Pacific J. Math. 255:1 (2012), 177-190. MR 2923699 Zbl 1242.49090
[McCuan 1997] J. McCuan, "Symmetry via spherical reflection and spanning drops in a wedge", Pacific J. Math. 180:2 (1997), 291-323. MR 98m:53013 Zbl 0885.53009
[Nitsche 1985] J. C. C. Nitsche, "Stationary partitioning of convex bodies", Arch. Rational Mech. Anal. 89:1 (1985), 1-19. MR 86j:53013 Zbl 0572.52005
[Osserman 1978] R. Osserman, "The isoperimetric inequality", Bull. Amer. Math. Soc. 84:6 (1978), 1182-1238. MR 58 \#18161 Zbl 0411.52006
[Park 2005] S.-h. Park, "Every ring type spanner in a wedge is spherical", Math. Ann. 332:3 (2005), 475-482. MR 2006h:53008 Zbl 1102.53007
[Ros and Souam 1997] A. Ros and R. Souam, "On stability of capillary surfaces in a ball", Pacific J. Math. 178:2 (1997), 345-361. MR 98c:58029 Zbl 0930.53007
[Ros and Vergasta 1995] A. Ros and E. Vergasta, "Stability for hypersurfaces of constant mean curvature with free boundary", Geom. Dedicata 56:1 (1995), 19-33. MR 96h:53013 Zbl 0912.53009
[Schneider 1993] R. Schneider, Convex bodies: The Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications 44, Cambridge Univ. Press, 1993. MR 94d:52007 Zbl 0798.52001
[Vogel 1989] T. I. Vogel, "Stability of a liquid drop trapped between two parallel planes, II: General contact angles", SIAM J. Appl. Math. 49:4 (1989), 1009-1028. MR 90k:53013 Zbl 0691.53007
[Wente 1986] H. C. Wente, "Counterexample to a conjecture of H. Hopf", Pacific J. Math. 121:1 (1986), 193-243. MR 87d:53013 Zbl 0586.53003
[Wente 1991] H. C. Wente, "A note on the stability theorem of J. L. Barbosa and M. Do Carmo for closed surfaces of constant mean curvature", Pacific J. Math. 147:2 (1991), 375-379. MR 92g:53010 Zbl 0715.53041
[Wente 1995] H. C. Wente, "The capillary problem for an infinite trough", Calc. Var. Partial Differential Equations 3:2 (1995), 155-192. MR 97f:53006 Zbl 0960.53011
[Weyl 1939] H. Weyl, "On the volume of tubes", Amer. J. Math. 61:2 (1939), 461-472. MR 1507388 Zbl 0021.35503
[Winterbottom 1967] W. L. Winterbottom, "Equilibrium shape of a small particle in contact with a foreign substrate", Acta Metal. 15:2 (1967), 303-310.
[Zia et al. 1988] R. K. P. Zia, J. E. Avron, and J. E. Taylor, "The summertop construction: Crystals in a corner", J. Statist. Phys. 50:3-4 (1988), 727-736. MR 89g:82058 Zbl 1084.82582

Received June 4, 2014. Revised May 18, 2015.

Jaigyoung Choe

School of Mathematics
Korea Institute for Advanced Study
207-43 Cheongnyangni 2-DONG
DONGDAEMUN-GU
SEOUL 130-722
South Korea
choe@kias.re.kr

Miyuki Koiso
Institute of Mathematics for Industry
Kyushu University
744, МотооКа, NISHI-KU
FUKUOKA 819-0395
JAPAN
koiso@math.kyushu-u.ac.jp

PACIFIC JOURNAL OF MATHEMATICS

msp.org/pjm
Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics University of California
Los Angeles, CA 90095-1555
blasius@math.ucla.edu

Paul Balmer
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
balmer@math.ucla.edu
Robert Finn
Department of Mathematics Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa

Department of Mathematics
University of California
Los Angeles, CA 90095-1555 popa@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics
University of California
Riverside, CA 92521-0135 chari@math.ucr.edu

Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555 liu@math.ucla.edu

Jie Qing

Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu

Daryl Cooper
Department of Mathematics
University of California
Santa Barbara, CA 93106-3080
cooper@math.ucsb.edu
Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong jhlu@maths.hku.hk

Paul Yang

Department of Mathematics
Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY
UNIV. OF BRITISH COLUMBIA UNIV. OF CALIFORNIA, BERKELEY UNIV. OF CALIFORNIA, DAVIS UNIV. OF CALIFORNIA, LOS ANGELES UNIV. OF CALIFORNIA, RIVERSIDE UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA CRUZ UNIV. OF MONTANA
UNIV. OF OREGON UNIV. OF SOUTHERN CALIFORNIA UNIV. OF UTAH UNIV. OF WASHINGTON WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.
The subscription price for 2016 is US $\$ 440 / y e a r$ for the electronic version, and $\$ 600 / y e a r$ for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall \#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
E. mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2016 Mathematical Sciences Publishers

PACIFIC JOURNAL OF MATHEMATICS

Volume 280 No. $1 \quad$ January 2016
Stable capillary hypersurfaces in a wedge 1
Jaigyoung Choe and Miyuki Koiso
The Chern-Simons invariants for the double of a compression body 17
David L. Duncan
Compactness and the Palais-Smale property for critical Kirchhoff equations in 41 closed manifolds
Emmanuel Hebey
On the equivalence of the definitions of volume of representations 51
Sungwoon Kim
Strongly positive representations of even GSpin groups 69
Yeansu Kim
An Orlik-Raymond type classification of simply connected 6-dimensional torus 89manifolds with vanishing odd-degree cohomology
Shintarô Kuroki
Solutions with large number of peaks for the supercritical Hénon equation 115Zhongyuan Liu and Shuanguie Peng
Effective divisors on the projective line having small diagonals and small heights and 141
their application to adelic dynamics
YÛSUKE OkUYama
Computing higher Frobenius-Schur indicators in fusion categories constructed from 177 inclusions of finite groups
Peter Schauenburg
Chordal generators and the hydrodynamic normalization for the unit ball 203
Sebastian Schleissinger
On a question of A. Balog 227
Ilya D. Shkredov
Uniqueness result on nonnegative solutions of a large class of differential inequalities 241
on Riemannian manifolds
Yuhua Sun
Correction to "Closed orbits of a charge in a weakly exact magnetic field" 255Will J. Merry

[^0]: Choe supported in part by NRF, 2011-0030044, SRC-GAIA. Koiso supported in part by Grant-in-Aid for Scientific Research (B) No. 25287012 and Grant-in-Aid for Challenging Exploratory Research No. 26610016 of the Japan Society for the Promotion of Science, and the Kyushu University Interdisciplinary Programs in Education and Projects in Research Development.
 MSC2010: primary 49Q10; secondary 53A10.
 Keywords: capillary surface, constant mean curvature, stable.

