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ON THE EQUIVALENCE OF THE DEFINITIONS
OF VOLUME OF REPRESENTATIONS

SUNGWOON KIM

Let G be a rank-1 simple Lie group and let M be a connected, orientable,
aspherical, tame manifold. Assume that each end of M has amenable fun-
damental group. There are several definitions of volume of representations
of π1(M) into G. We give a new definition of volume of representations and
furthermore show that all definitions so far are equivalent.

1. Introduction

Let G be a semisimple Lie group and let X be the associated symmetric space of
dimension n. Let M be a connected, orientable, aspherical, tame manifold of the
same dimension as X . First assume that M is compact. To each representation
ρ : π1(M)→ G, one can associate a volume of ρ in the following way. First,
associate a flat bundle Eρ over M with fiber X to ρ. Since X is contractible, there
always exists a section s : M→ Eρ . Let ωX be the Riemannian volume form on X .
One may think of ωX as a closed differential form on Eρ by spreading ωX over the
fibers of Eρ . Then the volume of ρ is defined by

Vol(ρ)=
∫

M
s∗ωX .

Since any two sections are homotopic to each other, the volume Vol(ρ) does not
depend on the choice of section.

The volume of representations has been used to characterize discrete faithful
representations. Let 0 be a uniform lattice in G. Then the volume of representations
satisfies a Milnor–Wood type inequality. More precisely, for any representation
ρ : 0→ G, we have

(1) |Vol(ρ)| ≤ Vol(0\X ).
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Furthermore, equality holds in (1) if and only if ρ is discrete and faithful. This is
the so-called volume rigidity theorem. Goldman [1982] proved the volume rigidity
theorem in the higher rank case and Besson, Courtois and Gallot [Besson et al.
2007] proved the theorem in the rank-1 case.

Now assume that M is noncompact. Then the definition of volume of represen-
tations as above is not valid anymore since some problems of integrability arise.
So far, three definitions of volume of representations have been given under some
conditions on M . Let us first fix the following notation throughout the paper.

Setup. Let M be a noncompact, connected, orientable, aspherical, tame manifold.
Denote by M the compact manifold with boundary whose interior is homeomorphic
to M . Assume that each connected component of ∂M has amenable fundamental
group. Let G be a rank-1 semisimple Lie group with trivial center and no compact
factors. Let X be the associated symmetric space of dimension n. Assume that M
has the same dimension as X .

First of all, Dunfield [1999] introduced the notion of pseudodeveloping map to
define the volume of representations of a nonuniform lattice 0 in SO(3, 1). It was
successful in making an invariant associated with a representation ρ :0→ SO(3, 1)
but he did not prove that the volume of representations does not depend on the chosen
pseudodeveloping map. After that, Francaviglia [2004] proved the well-definedness
of the volume of representations. Then Francaviglia and Klaff [2006] extended the
definition of volume of representations and the volume rigidity theorem to general
nonuniform hyperbolic lattices. We call the definition of volume of representations
via pseudodeveloping map D1. For more detail about D1, see [Francaviglia and
Klaff 2006] or Section 4.

The second definition D2 of volume of representations was given by Bucher,
Burger and Iozzi [Bucher et al. 2013] and generalizes the one introduced in [Burger
et al. 2010] for noncompact surfaces. They used the theory of bounded cohomology
to make an invariant associated with a representation. Given a representation
ρ :π1(M)→G, one cannot get any information from the pullback map in degree n in
continuous cohomology, ρ∗c : H

n
c (G,R)→ H n(π1(M),R), since H n(π1(M),R)∼=

H n(M,R) is trivial. However, the situation is different in continuous bounded
cohomology. Not only may the pullback map ρ∗b : H n

c,b(G,R)→ H n
b (π1(M),R)

be nontrivial but it also encodes subtle algebraic and topological properties of a
representation such as injectivity and discreteness. Bucher, Burger and Iozzi gave a
proof of the volume rigidity theorem for representations of hyperbolic lattices from
the point of view of bounded cohomology. We refer the reader to [Bucher et al.
2013] or Section 2 for further discussion about D2.

Recently, S. Kim and I. Kim [2014] gave a new definition, called D3, of volume
of representations in the case that M is a complete Riemannian manifold with
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finite Lipschitz simplicial volume. See [Kim and Kim 2014] or Section 5 for the
exact definition of D3. In D3, it is not necessary that each connected component
of ∂M has amenable fundamental group, while the amenable condition on ∂M is
necessary in D2. They only use the bounded cohomology and `1-homology of M . It
is quite useful to define the volume of representations in the case that the amenable
condition on ∂M does not hold. They give a proof of the volume rigidity theorem
for representations of lattices in an arbitrary semisimple Lie group in their setting.

In this note, we will give another definition of volume of representations,
called D4. In D4, ρ-equivariant maps are involved as in D1 and the bounded
cohomology of M is involved as in D2 and D3. In fact, D4 seems to be a kind of
definition connecting the other definitions D1, D2 and D3. Eventually we show
that all the definitions are equivalent.

Theorem 1.1. Let G be a rank-1 simple Lie group with trivial center and no
compact factors. Let M be a noncompact, connected, orientable, aspherical, tame
manifold. Suppose that each end of M has amenable fundamental group. Then
all definitions D1, D2 and D3 of volume of representations of π1(M) into G are
equivalent. Furthermore, if M admits a complete Riemannian metric with finite
Lipschitz simplicial volume, all definitions D1, D2, D3 and D4 are equivalent.

The paper is organized as follows. For our proof, we recall the definitions of
volume of representations in the order D2, D4, D1, D3. In Section 2, we first recall
definition D2. In Section 3, we give definition D4 and then prove that D2 and D4
are equivalent. In Section 4, after recalling definition D1, we show the equivalence
of D1 and D4. Finally in Section 5, we complete the proof of Theorem 1.1 by
proving that D3 and D4 are equivalent.

2. Bounded cohomology and definition D2

We choose the appropriate complexes for the continuous cohomology and continuous
bounded cohomology of G for our purpose. Consider the complex C∗c (X ,R)alt

with the homogeneous coboundary operator, where

Ck
c (X ,R)alt = { f : X k+1

→ R | f is continuous and alternating}.

The action of G on Ck
c (X ,R)alt is given by

g · f (x0, . . . , xk)= f (g−1x0, . . . , g−1xk).

Then the continuous cohomology H∗c (G,R) can be isomorphically computed by
the cohomology of the G-invariant complex C∗c (X ,R)Galt (see [Guichardet 1980,
Chapitre III]). According to the Van Est isomorphism [Borel and Wallach 2000,
Proposition IX.5.5], the continuous cohomology H∗c (G,R) is isomorphic to the set
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of G-invariant differential forms on X . Hence, in degree n, H n
c (G,R) is generated

by the Riemannian volume form ωX on X .
Let Ck

c,b(X ,R)alt be a subcomplex of continuous, alternating, bounded real-
valued functions on X k+1. The continuous bounded cohomology H∗c,b(G,R) is
obtained by the cohomology of the G-invariant complex C∗c,b(X ,R)Galt (see [Monod
2001, Corollary 7.4.10]). The inclusion of complexes C∗c,b(X ,R)Galt ⊂ C∗c (X ,R)Galt
induces a comparison map H∗c,b(G,R)→ H∗c (G,R).

Let Y be a countable CW-complex. Denote by Ck
b(Y,R) the complex of bounded

real-valued k-cochains on Y . For a subspace B ⊂ Y , let Ck
b(Y, B,R) be the sub-

complex of those bounded k-cochains on Y that vanish on simplices with image
contained in B. The complexes C∗b (Y,R) and C∗b (Y, B,R) define the bounded
cohomologies H∗b (Y,R) and H∗b (Y, B,R) respectively. For our convenience, we
give another complex which computes the bounded cohomology H∗b (Y,R) of Y . Let
Ck

b(Ỹ ,R)alt denote the complex of bounded, alternating real-valued Borel functions
on (Ỹ )k+1. The π1(Y )-action on C∗b (Ỹ ,R)alt is defined as the G-action on C∗c (X ,R).
Ivanov [1985] proved that the π1(Y )-invariant complex C∗b (Ỹ ,R)

π1(Y )
alt defines the

bounded cohomology of Y .
Bucher, Burger and Iozzi [Bucher et al. 2013] used bounded cohomology to define

the volume of representations. Let M be a connected, orientable, compact manifold
with boundary. Suppose that each component of ∂M has amenable fundamental
group. In that case, it is proved in [Bucher et al. 2012; Kim and Kuessner 2015]
that the natural inclusion i : (M,∅)→ (M, ∂M) induces an isometric isomorphism
in bounded cohomology,

i∗b : H
∗

b (M, ∂M,R)→ H∗b (M,R),

in degrees ∗ ≥ 2. Noting the remarkable result of Gromov [1982, Section 3.1]
that the natural map H n

b (π1(M),R)→ H n
b (M,R) is an isometric isomorphism in

bounded cohomology, for a given representation ρ : π1(M)→ G we have a map

ρ∗b : H
n
c,b(G,R)→ H n

b (π1(M),R)∼= H n
b (M,R)∼= H n

b (M, ∂M,R).

The G-invariant Riemannian volume form ωX on X gives rise to a continuous
bounded cocycle 2 : X n+1

→ R defined by

2(x0, . . . , xn)=

∫
[x0,...,xn]

ωX ,

where [x0, . . . , xn] is the geodesic simplex with ordered vertices x0, . . . , xn in X .
The boundedness of2 is due to the fact that the volume of geodesic simplices in X is
uniformly bounded from above [Inoue and Yano 1982]. Hence the cocycle2 induces
a continuous cohomology class [2]c ∈ H n

c (G,R) and, moreover, a continuous
bounded cohomology class [2]c,b ∈ H n

c,b(G,R). The image of ((i∗b )
−1
◦ ρ∗b )[2]c,b
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via the comparison map c :H n
b (M, ∂M,R)→H n(M, ∂M,R) is an ordinary relative

cohomology class. Its evaluation on the relative fundamental class [M, ∂M] gives
an invariant associated with ρ.

Definition 2.1 (D2). For a representation ρ : π1(M)→ G, define the invariant

Vol2(ρ)= 〈(c ◦ (i∗b )
−1
◦ ρ∗b )[2]c,b, [M, ∂M]〉.

In definition D2, a specific continuous bounded volume class [2]c,b in H n
c,b(G,R)

is involved. The question is naturally raised as to whether, if another continuous
bounded volume class is used in D2 instead of [2]c,b, the value of the volume
of representations changes or not. One could expect that definition D2 does not
depend on the choice of continuous bounded volume class but it does not seem
easy to get an answer directly. It turns out that D2 is independent of the choice of
continuous bounded volume class. For a proof, see Section 5.

Proposition 2.2. Definition D2 does not depend on the choice of continuous
bounded volume class. That is, for any two continuous bounded volume classes
ωb, ω

′

b ∈ H n
c,b(G,R),

〈(c ◦ (i∗b )
−1
◦ ρ∗b )(ωb), [M, ∂M]〉 = 〈(c ◦ (i∗b )

−1
◦ ρ∗b )(ω

′

b), [M, ∂M]〉.

Bucher, Burger and Iozzi proved the volume rigidity theorem for hyperbolic
lattices as follows.

Theorem 2.3 [Bucher et al. 2013]. Let n ≥ 3. Let i : 0 ↪→ Isom+(Hn) be a lattice
embedding and let ρ : 0→ Isom+(Hn) be any representation. Then

|Vol2(ρ)| ≤ |Vol2(i)| = Vol(0\Hn),

with equality if and only if ρ is conjugated to i by an isometry.

3. New definition D4

In this section we give a new definition of volume of representations. It will turn
out that the new definition is useful in proving that all the definitions of volume of
representations are equivalent.

End compactification. Let M̂ be the end compactification of M obtained by adding
one point for each end of M . Let M̃ denote the universal cover of M . Define ̂̃M to
be the space obtained by adding to M̃ one point for each lift of each end of M . The
points added to M are called ideal points of M and the points added to M̃ are called
ideal points of M̃ . Denote by ∂ M̂ the set of ideal points of M and by ∂ ̂̃M the set of
ideal points of M̃ . Let p : M̃→ M be the universal covering map. The covering
map p : M̃→ M extends to a map p̂ : ̂̃M→ M̂ and, moreover, the action of π1(M)
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on M̃ by covering transformations induces an action on ̂̃M . The action on ̂̃M is not
free because each point of ∂ ̂̃M is stabilized by some peripheral subgroup of π1(M).

Note that M̂ can be obtained by collapsing each connected component of ∂M
to a point. Similarly, ̂̃M can be obtained by collapsing each connected component
of p̄−1(∂M) to a point where p̄ : M̃→ M is the universal covering map. We denote
the collapsing map by π : M̃→ ̂̃M .

One advantage of M̂ is the existence of a fundamental class in singular homology.
While the top dimensional singular homology of M vanishes, the top dimensional
singular homology of M̂ with coefficients in Z is isomorphic to Z. Moreover, it
can be easily seen that H∗(M̂,R) is isomorphic to H∗(M, ∂M,R) in degree ∗ ≥ 2.
Hence the fundamental class of M̂ is well-defined and we denote it by [M̂].

The cohomology groups. Let Y be a topological space and suppose that a group L
acts continuously on Y . Then the cohomology group H∗(Y ; L ,R) associated with
Y and L is defined in the following way. Our main reference for this cohomology
is [DuPre 1968].

For k > 0, define

Fk
alt(Y,R)= { f : Y k+1

→ R | f is alternating}.

Let Fk
alt(Y,R)L denote the subspace of L-invariant functions, where the action of L

on Fk
alt(Y,R) is given by

(g · f )(y0, . . . , yk)= f (g−1 y0, . . . , g−1 yk),

for f ∈ Fk
alt(Y ), g ∈ L . Define a coboundary operator δk : Fk

alt(Y,R)→ Fk+1
alt (Y,R)

by the usual

(δk f )(y0, . . . , yk+1)=

k+1∑
i=0

(−1)i f (y0, . . . , ŷi , . . . , yk+1).

The coboundary operator restricts to the complex F∗alt(Y,R)L . The cohomology
H∗(Y ; L ,R) is defined as the cohomology of this complex. Define F∗alt,b(Y,R)

as the subspace of F∗alt(Y,R) consisting of bounded alternating functions. Clearly
the coboundary operator restricts to the complex F∗alt,b(Y,R)L and so it defines
a cohomology, denoted by H∗b (Y ; L ,R). In particular, for a manifold M , the
cohomology H∗(M̃;π1(M),R) is actually isomorphic to the group cohomology
H∗(π1(M),R), and H∗b (M̃;π1(M),R) is isomorphic to the bounded cohomology
H∗b (π1(M),R).

Remark 3.1. Let L and L ′ be groups acting continuously on topological spaces
Y and Y ′, respectively. Given a homomorphism ρ : L → L ′, any ρ-equivariant
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continuous map P : Y → Y ′ defines a chain map,

P∗ : F∗alt(Y
′,R)L ′

→ F∗alt(Y,R)L .

Thus it gives a morphism in cohomology. Let Q : Y → Y ′ be another ρ-equivariant
map. For each k > 0, one may define

Hk(y0, . . . , yk)=

i∑
i=0

(−1)k(P(y0), . . . , P(yi ), Q(yi ), . . . , Q(yk)).

Then by a straightforward computation,

(∂k+1 Hk + Hk−1∂k)(y0, . . . , yk)= (P(y0), . . . , P(yk))− (Q(y0), . . . , Q(yk)).

It follows from the above identity that, for any cocycle f ∈ Fk
alt(Y

′,R)L ′ ,

(P∗ f − Q∗ f )(y0, . . . , yk)= δk( f ◦ Hk−1)(y0, . . . , yk).

From this usual process in cohomology theory, one could expect that P and Q
induce the same morphism in cohomology. However, since f ◦ Hk−1 may not be
alternating, P and Q may not induce the same morphism in cohomology.

Since 2 : X n+1
→ R is a G-invariant continuous bounded alternating cocycle, it

yields a bounded cohomology class [2]b ∈ H n
b (X ;G,R). Let X be the compactifi-

cation of X obtained by adding the ideal boundary ∂X . Extending the G-action
on X to X , we can define a cohomology H∗(X ;G,R) and bounded cohomology
H∗b (X ;G,R). In the rank-1 case, since the geodesic simplex is well-defined for
any (n+ 1)-tuple of points of X , the cocycle 2 can be extended to a G-invariant
alternating bounded cocycle 2 : Xn+1

→ R. Hence 2 determines a cohomology
class [2] ∈ H n(X ;G,R) and [2]b ∈ H n

b (X ;G,R).
Let D̂ : ̂̃M→ X be a ρ-equivariant continuous map whose restriction to M̃ is a

ρ-equivariant continuous map from M̃ to X . We will consider only such kinds of
equivariant maps throughout the paper. Denote by D : M̃→ X the restriction of D̂
to M̃ . Then D̂ induces a homomorphism in cohomology,

D̂∗ : H n(X ;G,R)→ H n( ̂̃M;π1(M),R).

Note that the action of π1(M) on ̂̃M is not free and hence H∗( ̂̃M;π1(M),R)may not
be isomorphic to H∗(M̂,R). Let H∗simp(M̂,R) denote the simplicial cohomology
induced from a simplicial structure on M̂ . Then there is a natural restriction map
H∗( ̂̃M;π1(M),R)→ H∗simp(M̂,R)∼= H∗(M̂,R). Thus we regard the cohomology
class D̂∗[2] as a cohomology class of H n(M̂,R). Let [M̂] be the fundamental
cycle in Hn(M̂,R)∼= R.
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Definition 3.2 (D4). Let D : M̃→ X be a ρ-equivariant continuous map which is
extended to a ρ-equivariant map D̂ : ̂̃M→ X . Then we define the invariant

Vol4(ρ, D)= 〈D̂∗[2], [M̂]〉.

As observed before, D̂∗[2] may depend on the choice of ρ-equivariant map.
However, it turns out that the value Vol4(ρ, D) is independent of the choice of
ρ-equivariant continuous map as follows.

Proposition 3.3. Let ρ : π1(M)→ G be a representation. Then

Vol2(ρ)= Vol4(ρ, D).

Proof. Since the continuous bounded cohomology H∗c,b(G,R) can be computed
isomorphically from the complex C∗c,b(X ,R)alt, there is the natural inclusion
C∗c,b(X ,R)alt ⊂ F∗alt,b(X ,R). Denote the homomorphism in cohomology induced
from the inclusion by iG : H k

c,b(G,R)→ H k
b (X ;G,R). Clearly, iG([2]c,b)= [2]b.

The bounded cohomology H∗b (π1(M),R) is obtained by the cohomology of the
complex C∗b (M̃,R)

π1(M)
alt . Since C∗b (M̃,R)alt = F∗alt,b(M̃,R), the induced map

iM : H k
b (π1(M),R)→ H k

b (M̃;π1(M),R) is the identity map. Let D̂ : ̂̃M→X be a
ρ-equivariant map which maps M̃ to X . Then consider the following commutative
diagram, where π : M̃→ ̂̃M is the collapsing map:

H n(X ;G,R)
D̂∗

// H n( ̂̃M;π1(M),R)

π∗

))

H n
b (X ;G,R)

D̂∗b
//

resX
��

c̄

OO

H n
b (
̂̃M;π1(M),R)

resM

��

π∗b

))

ĉ

OO

H n(M, ∂M,R)

H n
b (X ;G,R)

D∗b
// H n

b (M̃;π1(M),R) H n
b (M, ∂M,R)

i∗b
oo

c

OO

H n
c,b(G,R)

iG

OO

ρ∗b
// H n

b (π1(M),R)

iM

OO

Note that the map ρ∗b in the bottom of the diagram is actually induced from the
restriction map D : M̃→X . However, it does not depend on the choice of equivariant
map but only on the homomorphism ρ. In other words, any continuous equivariant
map from M̃ to X gives rise to the same map, ρ∗b : H

∗

c,b(G,R)→ H∗b (π1(M),R).
For this reason, we denote it by ρ∗b instead of D∗c,b.

Note that π induces a map π∗ : F∗alt(
̂̃M,R)→ F∗alt(M̃,R). It follows from the al-

ternating property that the image of π∗ is contained in C∗(M, ∂M,R). Hence the
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map π∗ : H n( ̂̃M;π1(M),R)→ H n(M, ∂M,R) makes sense. One can understand
π∗b : H

n
b (
̂̃M;π1(M),R)→ H n

b (M, ∂M,R) in a similar way.
Noting that c̄([2]b) = [2] and resX ([2]b) = [2]b, it follows from the above

commutative diagram that

((i∗b )
−1
◦ iM ◦ ρ∗b )[2]c,b = ((i

∗

b )
−1
◦ D∗b ◦ iG)[2]c,b = ((i∗b )

−1
◦ D∗b ◦ resX )[2]b

= ((i∗b )
−1
◦ resM ◦D̂∗b)[2]b = (π

∗

b ◦ D̂∗b)[2]b.

Hence

Vol2(ρ)= 〈(c ◦ (i∗b )
−1
◦ iM ◦ ρ∗b )[2]c,b, [M, ∂M]〉

= 〈(c ◦π∗b ◦ D̂∗b)[2]b, [M, ∂M]〉 = 〈(π∗ ◦ D̂∗ ◦ c̄)[2]b, [M, ∂M]〉

= 〈(π∗ ◦ D̂∗)[2], [M, ∂M]〉 = 〈D̂∗[2], π∗[M, ∂M]〉

= 〈D̂∗[2], [M̂]〉 = Vol4(ρ, D). �

Proposition 3.3 implies that the value Vol4(ρ, D) does not depend on the choice
of continuous equivariant map. Hence from now on we will use the notation
Vol4(ρ) := Vol(ρ, D). Furthermore, Proposition 3.3 allows us to interpret the
invariant Vol2(ρ) in terms of a pseudodeveloping map via Vol4(ρ) in the next
section. Note that a pseudodeveloping map for ρ is a specific kind of ρ-equivariant
continuous map ̂̃M→ X .

4. Pseudodeveloping map and definition D1

Dunfield [1999] introduced the notion of pseudodeveloping map in order to define
the volume of representations ρ : π1(M)→ SO(3, 1) for a noncompact complete
hyperbolic 3-manifold M of finite volume. We start by recalling the definition of
pseudodeveloping map.

Definition 4.1 (cone map). Let A be a set, let t0 ∈ R, and let cone(A) be the cone
obtained from A× [t0,∞] by collapsing A× {∞} to a point, called ∞. A map
D̂ : cone(A)→ X is a cone map if D̂(cone(A))∩ ∂X = {D̂(∞)} and for all a ∈A
the map D̂|a×[t0,∞] is either the constant to D̂(∞) or the geodesic ray from D̂(a, t0)
to D̂(∞), parametrized in such a way that the parameter (t − t0), t ∈ [t0,∞], is
the arc length.

For each ideal point v of M , fix a product structure Tv×[0,∞) on the end relative
to v. The fixed product structure induces a cone structure on a neighborhood of v
in M̂ , which is obtained from Tv × [0,∞] by collapsing Tv × {∞} to a point v.
We lift such structures to the universal cover. Let ṽ be an ideal point of M̃ that
projects to the ideal point v. Denote by Eṽ the cone at ṽ that is homeomorphic to
Pṽ ×[0,∞], where Pṽ covers Tv and Pṽ ×{∞} is collapsed to ṽ.
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Definition 4.2 (pseudodeveloping map). Let ρ : π1(M)→ G be a representation.
A pseudodeveloping map for ρ is a piecewise-smooth ρ-equivariant map D : M̃→X .
Moreover, D is required to extend to a continuous map D̂ : ̂̃M → X with the
property that there exists a t ∈ R+ such that, for each end Eṽ = Pṽ ×[0,∞] of ̂̃M ,
the restriction of D̂ to Pṽ ×[t,∞] is a cone map.

Definition 4.3. A triangulation of M̂ is an identification of M̂ with a complex
obtained by gluing together with simplicial attaching maps. It is not required for
the complex to be simplicial, but it is required that open simplices embed.

Note that a triangulation of M̂ always exists and it lifts uniquely to a trian-
gulation of ̂̃M . Given a triangulation of M̂ , one can define the straightening of
pseudodeveloping maps as follows.

Definition 4.4 (straightening map). Let M̂ be triangulated. Let ρ :π1(M)→G be a
representation and D : M̃→X a pseudodeveloping map for ρ. A straightening of D
is a continuous piecewise-smooth ρ-equivariant map Str(D) : ̂̃M→ X such that

• for each simplex σ of the triangulation, Str(D) maps σ̃ to Str(D ◦ σ̃ ),

• for each end Eṽ = Pṽ×[0,∞], there exists a t ∈R such that Str(D) restricted
to Pṽ ×[t,∞] is a cone map,

where σ̃ is a lift of σ to ̂̃M and Str(D ◦ σ̃ ) is the geodesic straightening of the map
D ◦ σ̃ :1n

→ X .

Note that any straightening of a pseudodeveloping map is also a pseudodeveloping
map.

Lemma 4.5. Let M̂ be triangulated. Let ρ : π1(M)→ G be a representation and
D : M̃ → X a pseudodeveloping map for ρ. Then a straightening Str(D) of D
exists and, furthermore, Str(D) : ̂̃M→ X is always equivariantly homotopic to D̂
via a homotopy that fixes the vertices of the triangulation.

Proof. First, set Str(D)(V )= f (V ) for every vertex V of the triangulation. Then
extend Str(D) to a map which is piecewise-straight with respect to the triangulation.
This is always possible because X is contractible. Note that D̂ and Str(D) agree
on the ideal vertices of ̂̃M and are equivariantly homotopic via the straight-line
homotopy between them. Hence it can be easily seen that the extension is a
straightening of D. �

For any pseudodeveloping map D : M̃→ X , for ρ,∫
M

D∗ωX

is always finite. This can be seen as follows. We stick to the notation used in
Definition 4.2. We may assume that the restriction of D̂ to each Eṽ = Pṽ ×[0,∞]
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is a cone map. Choose a fundamental domain F0 of Tv in Pṽ. Then there exists
a t ∈ R+ such that∣∣∣∣∫

Tv×[t,∞)
D∗ωX

∣∣∣∣= Voln
(
cone(D(F0×{t}))

)
≤

1
n− 1

Voln−1(D(F0×{t})),

where Voln−1 denotes the (n− 1)-dimensional volume. The last inequality holds
for any Hadamard manifold with sectional curvature at most −1. See [Gromov
1982, Section 1.2]. Hence the integral of D∗ωX over M is finite.

Definition 4.6 (D1). Let D : M̃→ X be a pseudodeveloping map for a representa-
tion ρ : π1(M)→ G. Define the invariant

Vol1(ρ, D)=
∫

M
D∗ωX .

In the case that G = SO(n, 1), Francaviglia [2004] showed that definition D1
does not depend on the choice of pseudodeveloping map. We give a self-contained
proof for this in the rank-1 case.

Proposition 4.7. Let ρ : π1(M)→ G be a representation. Then, for any pseudo-
developing map D : M̃→ X ,

Vol1(ρ, D)= Vol4(ρ).

Thus, Vol1(ρ, D) does not depend on the choice of pseudodeveloping map.

Proof. Let T be a triangulation of M̂ with simplices σ1, . . . , σN . Then the triangula-
tion gives rise to a fundamental cycle

∑N
i=1 σi of M̂ . Let Str(D) be a straightening

of D with respect to the triangulation T . Since Str(D) is a ρ-equivariant continuous
map, we have

Vol4(ρ) := Vol4(ρ, D)= 〈Str(D)∗[2], [M̂]〉 = 〈2,
N∑

i=1

Str(D̂(σi ))〉

=

N∑
i=1

∫
Str(D̂(σi ))

ωX =

∫
M

Str(D)∗ωX .

Since both Str(D) and D̂ are pseudodeveloping maps for ρ that agree on the ideal
points of ̂̃M , it can be proved, using the same arguments as the proof of [Dunfield
1999, Lemma 2.5.1], that∫

M
Str(D)∗ωX =

∫
M

D∗ωX = Vol1(ρ, D). �

Remark 4.8. While D1 is defined with only a pseudodeveloping map, definition D4
is defined with any equivariant map. This is one advantage of definition D4. By
Proposition 4.7, the notation Vol1(ρ) := Vol1(ρ, D) makes sense.
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5. Lipschitz simplicial volume and definition D3

In this section, M is assumed to be a Riemannian manifold with finite Lipschitz
simplicial volume. Gromov [1982, Section 4.4] introduced the Lipschitz simplicial
volume of Riemannian manifolds. One can define the Lipschitz constant for each
singular simplex in M by giving the Euclidean metrics on the standard simplices.
Then the Lipschitz constant of a locally finite chain c of M is defined as the
supremum of the Lipschitz constants of all singular simplices occurring in c. The
Lipschitz simplicial volume of M is defined by the infimum of the `1-norms of all
locally finite fundamental cycles with finite Lipschitz constant. Let [M]`

1

Lip be the
set of all locally finite fundamental cycles of M with finite `1-seminorm and finite
Lipschitz constant. If [M]`

1

Lip =∅, the Lipschitz simplicial volume of M is infinite.
In the case that [M]`

1

Lip 6= ∅, we gave a new definition of volume of represen-
tations in [Kim and Kim 2014] as follows. A representation ρ : π1(M) → G
induces a canonical pullback map ρ∗b : H

∗

c,b(G,R)→ H∗b (π1(M),R)∼= H∗b (M,R)

in continuous bounded cohomology. Hence, for any continuous bounded volume
class ωb ∈ H n

c,b(G,R), we obtain a bounded cohomology class ρ∗b (ωb)∈ H n
b (M,R).

Then, the bounded cohomology class ρ∗b (ωb) can be evaluated on `1-homology
classes in H `1

n (M,R) by the Kronecker products,

〈 · , · 〉 : H∗b (M,R)⊗ H `1

∗
(M,R)→ R.

For more details about this, see [Kim and Kim 2014].

Definition 5.1 (D3). We define the invariant

Vol3(ρ)= inf〈ρ∗b (ωb), α〉,

where the infimum is taken over all α ∈ [M]`
1

Lip and all ωb ∈ H n
c,b(G,R) with

c(ωb)= ωX .

One advantage of D3 is that the isomorphism H n
b (M, ∂M,R)→H n

b (M,R) is not
needed. When M admits the isomorphism above, we will verify that definition D3
is eventually equivalent to the other definitions of volume of representations.

Lemma 5.2. Suppose that M is a noncompact, connected, orientable, aspherical,
tame Riemannian manifold with finite Lipschitz simplicial volume and that each
end of M has amenable fundamental group. Then, for any α ∈ [M]`

1

Lip and any
continuous bounded volume class ωb,

〈ρ∗b (ωb), α〉 = 〈(c ◦ (i∗b )
−1
◦ ρ∗b )(ωb), [M, ∂M]〉.

Proof. When M is a 2-dimensional manifold, the proof is given in [Kim and Kim
2014]. Actually the proof in the general case is the same. We sketch the proof here
for the reader’s convenience. Let K be a compact core of M . Note that K is a
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compact submanifold with boundary that is a deformation retract of M . Consider
the following commutative diagram, where every map is the map induced from the
canonical inclusion:

C∗b (M,R) C∗b (M,R)
j∗b

oo C∗b (M, ∂M,R)
i∗b

oo

C∗b (M,M − K ,R)

l∗b

OO

q∗b

66

Every map in the diagram induces an isomorphism in bounded cohomology in ∗≥ 2.
Thus, there exists a cocycle zb ∈ Cn

b (M,M − K ,R) such that l∗b([zb])= ρ
∗

b (ωb).
Let c =

∑
∞

i=1 aiσi be a locally finite fundamental `1-cycle with finite Lipschitz
constant representing α ∈ [M]`

1

Lip. Then we have

〈ρ∗b (ωb), α〉 = 〈l∗b([zb]), α〉 = 〈zb, c〉.

Since zb vanishes on simplices with image contained in M−K , we have the equality
〈zb, c〉 = 〈zb, c|K 〉, where c|K =

∑
im σi∩K 6=∅ aiσi . It is a standard fact that the

sum c|K represents the relative fundamental class [M,M−K ] in Hn(M,M−K ,R)

(see [Löh 2007, Theorem 5.3]). On the other hand, we have

〈(c ◦ (i∗b )
−1
◦ ρ∗b )(ωb), [M, ∂M]〉 = 〈(c ◦ q∗b )([zb]), [M, ∂M])〉

= 〈[zb], q∗[M, ∂M]〉

= 〈[zb], [M,M − K ]〉 = 〈zb, c|K 〉. �

By Lemma 5.2 we can reformulate definition D3 as

Vol3(ρ)= inf
ωb
〈(c ◦ (i∗b )

−1
◦ ρ∗b )(ωb), [M, ∂M]〉,

where the infimum is taken over all continuous bounded volume classes. Noting
that [2]c,b ∈ H n

c,b(G,R) is a continuous bounded volume class, it is clear that

Vol3(ρ)≤ Vol2(ρ).

It is conjecturally true that the comparison map H n
c,b(G,R)→ H n

c (G,R) is an
isomorphism for any connected semisimple Lie group G with finite center. Hence,
conjecturally, Vol2(ρ)=Vol3(ρ). In spite of the absence of a proof of the conjecture,
we will give a proof for Vol2(ρ)= Vol3(ρ) by using definition D4.

Lemma 5.3. Let ωb ∈ H n
c,b(G,R) be a continuous bounded volume class, and

let fb : X n+1
→ R be a continuous bounded alternating G-invariant cocycle

representing ωb. Then fb is extended to a bounded alternating G-invariant cocycle
f̄b : X n+1

→ R. Furthermore, f̄b is uniformly continuous on X n
× {ξ} for any

ξ ∈ ∂X .



64 SUNGWOON KIM

Proof. For any (x̄0, . . . , x̄n) ∈ X n+1, define

f̄b(x̄0, . . . , x̄n)= lim
t→∞

fb(c0(t), . . . , cn(t)),

where each ci (t) is a geodesic ray toward x̄i . Here, for x ∈ X , we say that
c : [0,∞)→ X is a geodesic ray toward x if there exists a t ∈ [0,∞) such that the
restriction map c|[0,t] of c to [0, t] is a geodesic with c(t)= x and c|[t,∞) is constant
to x . Then it is clear that f̄b(x0, . . . , xn)= fb(x0, . . . , xn) for (x0, . . . , xn) ∈ X n+1.
To see the well-definedness of f̄b, we need to show that, for other geodesic rays
c′i (t) toward x̄i ,

(2) lim
t→∞

fb(c0(t), . . . , cn(t))= lim
t→∞

fb(c′0(t), . . . , c′n(t)).

Note that the limit always exists because fb is bounded. In the rank-1 case, the
distance between two geodesic rays with the same endpoint decays exponentially to
0 as they go to the endpoint. Moreover, since fb is G-invariant and G transitively
acts on X , we have that fb is uniformly continuous on X n+1. Thus, for any ε > 0,
there exists some number T > 0 such that

| fb(c0(t), . . . , cn(t))− fb(c′0(t), . . . , c′n(t))|< ε

for all t > T . This implies (2) and hence f̄b is well-defined.
The alternating property of f̄b actually comes from fb. Due to the alternating

property of fb, we have

f̄b(x̄0, . . . , x̄i , . . . , x̄ j , . . . , x̄n)= lim
t→∞

fb(c0(t), . . . , ci (t), . . . , c j (t), . . . , cn(t))

= lim
t→∞
− fb(c0(t), . . . , c j (t), . . . , ci (t), . . . , cn(t))

=− f̄b(x̄0, . . . , x̄ j , . . . , x̄i , . . . , x̄n).

Therefore, we conclude that f̄b is alternating. The boundedness and G-invariance
of f̄b immediately follows from the boundedness and G-invariance of fb. Further-
more, it is easy to check that f̄b is a cocycle by a direct computation.

Now it remains to prove that f̄b is uniformly continuous on X n
× {ξ}. It is

obvious that f̄b is continuous on X n
× {ξ}. Noting that the parabolic subgroup

of G stabilizing ξ acts on X transitively, it can be easily seen that f̄b is uniformly
continuous on X n

×{ξ}. �

The existence of f̄b allows us to reformulate Vol3 in terms of Vol4. Following
the proof of Proposition 3.3, we get

(3) 〈(c ◦ (i∗b )
−1
◦ ρ∗b )(ωb), [M, ∂M]〉 = 〈D̂∗[ f̄b], [M̂]〉.

The last term 〈D̂∗[ f̄b], [M̂]〉 above is computed by 〈D̂∗ f̄b, ĉ〉 for any equivariant
map D̂ and fundamental cycle ĉ of M̂ . By choosing the proper equivariant map
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and fundamental cycle, we will show that 〈D̂∗[ f̄b], [M̂]〉 does not depend on the
choice of continuous bounded volume class.

Proposition 5.4. Let ωb and ω′b be continuous bounded volume classes, and let
f̄b and f̄ ′b be the bounded alternating cocycles in Fn

alt(X;G,R) associated with
ωb and ω′b respectively, as in Lemma 5.3. Then

〈D̂∗[ f̄b], [M̂]〉 = 〈D̂∗[ f̄ ′b], [M̂]〉.

Proof. It suffices to prove that, for some ρ-equivariant map D̂ : ̂̃M → X and
fundamental cycle ĉ of M̂ ,

〈D̂∗ f̄b, ĉ〉 = 〈D̂∗ f̄ ′b, ĉ〉.

To show this, we will prove that, for some sequence (ĉk)k∈N of fundamental cycles
of M̂ ,

lim
k→∞

(〈D̂∗ f̄b, ĉk〉− 〈D̂∗ f̄ ′b, ĉk〉)= 0.

Let v1, . . . , vs be the ideal points of M . As in Section 4, fix a product structure
Tvi × [0,∞] on the end relative to vi for each i = 1, . . . , s and then lift such
structures to the universal cover. We stick to the notation used in Section 4. Set

Mk = M −
s⋃

i=1

Tvi × (k,∞].

Then (Mk)k∈N is an exhausting sequence of compact cores of M . The boundary
∂Mk of Mk consists of

⋃s
i=1 Tvi × {k}. Let T0 be a triangulation of M0. Then

we extend it to a triangulation on M̂ as follows. First note that T0 induces a
triangulation on each Tvi . Let τ be an (n− 1)-simplex of the induced triangulation
on Tvi for some i ∈ {1, . . . , s}. Then we attach π(τ × [0,∞]) to Tvi × {0} along
τ × {0}, where π : M → M̂ is the collapsing map. Since π is an embedding
on τ ×[0,∞) and π maps τ ×{∞} to the ideal point vi , it can be easily seen that
cone(τ ) := π(τ × [0,∞]) is an n-simplex. Hence we can obtain a triangulation
of M̂ by attaching each cone(τ ) to ∂M0, which is denoted by T̂0.

Next, we extend T0 to a triangulation of Mk . In fact, Mk is decomposed as

Mk = M0 ∪

s⋃
i=1

Tvi ×[0, k].

Hence we can attach each τ × [0, k] to M0 along τ × {0} and then triangulate
τ×[0, k] by using the prism operator [Hatcher 2002, Chapter 2.1]. Via this process,
we obtain a triangulation of Mk , denoted by Tk . Note that T0 and Tk induce the
same triangulation on each Tvi . In addition, one can obtain a triangulation T̂k of M̂
from Tk similarly to how T̂0 is obtained from T0 above.
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Let ck be the relative fundamental class of (Mk, ∂Mk) induced from Tk . Then it
can be seen that

ĉk = ck + (−1)n+1 cone(∂ck)

is the fundamental cycle of M̂ induced from T̂k . Any simplex occurring in ck is
contained in Mk . Now we choose a pseudodeveloping map D̂ : ̂̃M → X . Let ṽi

be a lift of vi to ̂̃M . Let Pṽi ×[0,∞] be the cone structure of a neighborhood of ṽi ,
where Pṽi covers Tvi and Pṽi ×{∞} is just the ideal point ṽi . We may assume that
D̂ is a cone map on each Pṽi ×[0,∞]. Let c̃k be a lift of ck to a cochain in M̃ and
let ∂̃ck be a lift of ∂ck . Let τ × {0} be an (n− 1)-simplex in Tvi × {0} occurring
in ∂c0 and let τ̃ be a lift of τ to Pṽi . Then τ̃ ×{k} is a lift of τ ×{k} ∈ ∂ck . Since
D̂ is a cone map on Pṽi ×[0,∞], we have that D(τ̃ ×[0,∞]) is the geodesic cone
over τ̃ × {0} with top point ṽi in X . Hence the diameter of D(τ̃ × {k}) decays
exponentially to 0 as k→∞ for each τ .

By a direct computation, we have

〈D̂∗ f̄b− D̂∗ f̄ ′b, ĉk〉 = 〈D̂∗ f̄b− D̂∗ f̄ ′b, c̃k〉+ (−1)n+1
〈D̂∗ f̄b− D̂∗ f̄ ′b, cone(∂̃ck)〉

= 〈 f̄b− f̄ ′b, D̂∗(c̃k)〉+ (−1)n+1
〈 f̄b− f̄ ′b, D̂∗(cone(∂̃ck))〉

= 〈 fb− f ′b, D∗(c̃k)〉+ (−1)n+1
〈 f̄b− f̄ ′b, D̂∗(cone(∂̃ck))〉.

The last equality comes from the fact that D̂∗(c̃k) is a singular chain in X . Since
fb and f ′b are continuous bounded alternating cocycles representing the continuous
volume class ωX ∈ H n

c (G,R), there is a continuous alternating G-invariant function
β : X n

→ R such that fb− f ′b = δβ. Hence

〈 fb− f ′b, D∗(c̃k)〉 = 〈δβ, D∗(c̃k)〉 = 〈β, ∂D∗(c̃k)〉 = 〈β, D∗(∂̃ck)〉.

As observed before, since the diameter of all simplices occurring in D∗(∂̃ck)

decays to 0 as k→∞ and, moreover, β is uniformly continuous on X , we have

lim
k→∞
〈β, D∗(∂̃ck)〉 = 0.

Note that D(cone(τ̃×{k})) is the geodesic cone over D(τ̃×{k})with top point ṽi .
By Lemma 5.3, both f̄b and f̄ ′b are uniformly continuous on X n

×{ṽi }. Since the
diameter of D(τ̃ ×{k}) decays to 0 as k→∞,

lim
k→∞
〈 f̄b, D(cone(τ̃ ×{k}))〉 = lim

k→∞
〈 f̄ ′b, D(cone(τ̃ ×{k}))〉 = 0.

Applying this to each τ , we can conclude that

lim
k→∞
〈 f̄b, D∗(cone(∂̃ck))〉 = lim

k→∞
〈 f̄ ′b, D∗(cone(∂̃ck))〉 = 0.



ON THE EQUIVALENCE OF THE DEFINITIONS OF VOLUME OF REPRESENTATIONS 67

In the end, it follows that

lim
k→∞
〈D̂∗ f̄b− D̂∗ f̄ ′b, ĉk〉 = 0.

As we mentioned, the value on the left-hand side does not depend on ĉk . Thus we
can conclude that 〈D̂∗ f̄b− D̂∗ f̄ ′b, ĉk〉 = 0. This implies that 〈D̂∗ f̄b, ĉ〉 = 〈D̂∗ f̄ ′b, ĉ〉
for any fundamental cycle ĉ of M̂ , which completes the proof. �

Combining Proposition 5.4 with (3), Proposition 2.2 immediately follows.

Proposition 5.5. The definitions of D3 and D4 are equivalent.

Proof. By Lemma 5.2 and Proposition 3.3, we have

Vol3(ρ)= inf{〈ρ∗b (ωb), α〉 | c(ωb)= ωX and α ∈ [M]`
1

Lip}

= inf{〈(c ◦ (i∗b )
−1
◦ ρ∗b )(ωb), [M, ∂M]〉 | c(ωb)= ωX }

= inf{〈D̂∗[ f̄b], [M̂]〉 | c(ωb)= ωX } = 〈D̂∗[2], [M̂]〉 = Vol4(ρ). �
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