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STRONGLY POSITIVE REPRESENTATIONS
OF EVEN GSPIN GROUPS

YEANSU KIM

We obtain a classification of strongly positive representations of split even
general spin groups over a p-adic field F using the Jacquet module method
(Tadić’s structure formula). Furthermore, we study discrete series represen-
tations of split even general spin groups over F.

1. Introduction

The classifications of (strongly positive) discrete series representations of meta-
plectic groups, classical groups, and odd GSpin groups over a p-adic field have
been studied by several authors [Kim 2015b; Matić 2011; Mœglin 2002; Mœglin
and Tadić 2002; Zelevinsky 1980]. The main purpose of this paper is to obtain a
classification of strongly positive representations of split even GSpin groups over
a nonarchimedean local field F of characteristic different from two, assuming the
uniqueness of the nonnegative rank one reducibility point (see Remark 1.2 for more
details about this assumption). Our results generalize Matić’s algebraic approach
[Matić 2011] to the case of even GSpin groups. Our results for even GSpin groups
can be applied to even special orthogonal groups to classify strongly positive repre-
sentations of SO2n . In addition, the results are parallel to those for odd GSpin groups
[Kim 2015b]. However, parts of their proofs are quite different because of differ-
ences in the group structures. For example, there are two nonconjugate standard par-
abolic subgroups whose Levi subgroups are of the form GLn1×GLn2× · · ·×GLnk

in the even case; therefore, we classify D(ρ; σcusp, c(σcusp)) instead of D(ρ; σcusp)

in Section 4B, where c is an outer automorphism on the Dynkin diagram of even
GSpin groups that permutes the last two simple roots.

To explain our results more precisely, let Gn :=GSpin2n denote the split even
general spin group of semisimple rank n over F , and GLm the general linear
group of semisimple rank m. Let Gn and GLm denote the groups of F-points of
Gn and GLm , respectively. Let R and RGL denote the Grothendieck groups of
the category of all admissible representations of finite length of even GSpin and
GL groups. Note that R contains two inequivalent representations of the group
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GLn1 ×GLn2 × · · ·×GLnk (e.g., ρ1⊗· · ·⊗ρk⊗(1⊗e) and ρ1⊗· · ·⊗ρk⊗(1⊗c),
following the notation in Section 2).

Let SP denote the set of all strongly positive representations in R, and let LJ
denote the set of pairs (Jord, σ ′), where

Jord=
k⋃

i=1

ki⋃
j=1

{
(ρi , b(i)j )

}
and σ ′ is an irreducible supercuspidal representation in R such that

• {ρ1, ρ2, . . . , ρk} ⊂ RGL is a (possibly empty) set of mutually nonisomorphic,
irreducible and essentially self-dual supercuspidal unitary representations such
that νaρi ρi o σ ′ is reducible for aρi > 0 (this defines aρi due to the uniqueness
of the reducibility point; see Remark 1.2 for more details),

• ki = daρi e, and

• for each i = 1, 2, . . . , k, the sequence b(i)1 , b(i)2 , . . . , b(i)ki
of real numbers is such

that −1< b(i)1 < b(i)2 < · · ·< b(i)ki
and aρi − b(i)j ∈ Z for each j = 1, . . . , ki .

Remark 1.1. In the set LJ, the condition of “being essentially self-dual” on the
representation ρi for each i = 1, . . . , k is due to certain Weyl group actions on the
induced representation νaρi o σ ′ (see Corollary 4.6). In the case of even special
orthogonal groups, after a minor change to the set LJ, we can construct an SO
version of LJ that corresponds to the set of strongly positive representations of
even SO. One minor change would be the condition of “being self-dual” on the
corresponding representation ρi in the case of even special orthogonal groups.

Remark 1.2 [Silberger 1980]. Let ρ and σ denote irreducible unitary supercuspidal
representations of GLn and Gn , respectively. In this paper, we assume that there
exists a unique nonnegative real number a such that νaρoσ reduces. This number
a is called the nonnegative rank one reducibility point determined by ρ and σ .

We construct a bijective mapping as follows (see Theorem 4.16).

Theorem A. There exists a bijective mapping8 between SP and LJ. More precisely,
consider σ ∈ SP to be the unique irreducible subrepresentation of the induced
representation of the form( k∏

i=1

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))
o σ ′.

Then, we may define 8(σ) as( k⋃
i=1

ki⋃
j=1

{
(ρi , b(i)j )

}
, σ ′

)
∈ LJ .
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To construct 8, we first classify the special case D(ρ; σcusp, c(σcusp)) (see
Section 4B), which is the set of strongly positive representations whose super-
cuspidal supports are the representations σcusp, c(σcusp) of Gn and twists of the
representation ρ of GL. More precisely, in Theorem 4.9 we construct a bijective map-
ping between D(ρ; σcusp, c(σcusp)) and the set of induced representations of the form

δ
(
[νa1ρ, νb1ρ]

)
× δ

(
[νa2ρ, νb2ρ]

)
× · · ·× δ

(
[νakρ, νbkρ]

)
o c′(σcusp),

where ai = a− k + i , b1 < · · · < bk , k ≤ dae and c′ ∈ C := {e, c}. Here, a is the
reducibility point determined by ρ and σcusp, i.e., νsρoσcusp is reducible if and only
if |s|=a. We then generalize this result to the set of strongly positive representations.
The classification for even GSpin groups needs more work than those for odd
GSpin groups since we consider two different representations σcusp, c(σcusp) in
D(ρ; σcusp, c(σcusp)). (In the odd case, we only need to consider D(ρ; σcusp).)

As an application, our main results give rise to a proof of the equality of L-
functions through the local Langlands correspondence in the case of GSpin groups
[Kim 2015a]. Furthermore, the equality of L-functions also has an application in
the proof of the generic Arthur packet conjecture in our case. Briefly, the generic
Arthur packet conjecture states that if the L-packet attached to the Arthur parameter
has a generic member, then it is tempered [Shahidi 2011]. This conjecture can be
considered a local version of the Generalized Ramanujan Conjecture.

The second purpose of the paper is to explicitly construct Tadić’s structure formula
for even GSpin groups. Tadić’s structure formula studies the Jacquet modules of
parabolically induced representations, and it is one of the main tools in the proof of
Theorem A. We apply and adapt the ideas from papers of Ban [1999a] and Jantzen
[2006] (Tadić’s structure formula for even special orthogonal groups) to our case.

The paper is organized as follows. In Section 2, we recall the standard notation
and preliminaries. In Section 3, we construct Tadić’s structure formula for Gn

(Theorem 3.4), which gives the explicit structure of the Jacquet modules of the
parabolically induced representations of Gn . In Section 4, we construct the classifi-
cation of strongly positive representations for Gn (Theorem A). In Section 5, we
describe embeddings of the general discrete series representations using Casselman’s
square integrability criterion [Kim 2009] (Theorem 5.1). This embedding of discrete
series representations, together with Theorem A, has an interesting application in
the proof of the equality of L-functions through the local Langlands correspondence
for GSpin groups [Kim 2015a].

2. Notation and preliminaries

Let F be a nonarchimedean local field of characteristic different from two. For a
connected reductive group G defined over F , we let G be the group of F-points of
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G. Let Gn be a split even general spin group of semisimple rank n defined over
F , as defined by Asgari [2002]. A split even GSpin group Gn := GSpin2n is a
split reductive linear algebraic group of type Dn whose derived group is a double
covering of a split special orthogonal group and whose connected component of
the Langlands dual group is L G0

= GSO2n(C). Therefore, the based root datum of
Gn is the dual based root datum of GSO2n .

The following proposition describes the structure of GSpin groups as studied by
Asgari [2002].

Proposition 2.1. The root datum (X∗, R∗, X∗, R∗) of Gn can be described as

X∗ = Ze0⊕Ze1⊕ · · ·⊕Zen,

X∗ = Ze∗0 ⊕Ze∗1 ⊕ · · ·⊕Ze∗n

(there is a standard Z-pairing 〈 , 〉 on X∗× X∗), with R∗ and R∗ generated by

1∗ = {α1 = e1− e2, α2 = e2− e3, . . . , αn−1 = en−1− en, αn = en−1+ en},

1∗ = {α
∨

1 = e∗1 − e∗2, α
∨

2 = e∗2 − e∗3, . . . , α
∨

n−1 = e∗n−1− e∗n, α
∨

n = e∗n−1+ e∗n − e∗0}.

Let s = (n1, n2, . . . , nk; n′) be an ordered partition of n. Let Ps = Ms Ns denote
the standard parabolic subgroup of Gn that corresponds to the partition s. The Levi
factor Ms is isomorphic to GLn1 ×GLn2 × · · ·×GLnk ×Gn′ [Asgari 2002, Theorem
2.7]. When n′ = 0 and nk > 0, we have two nonconjugate standard parabolic
subgroups whose Levi subgroups are of the form GLn1 ×GLn2 × · · · ×GLnk . In
this case, the corresponding set of simple roots contains exactly one of αn−1, αn . The
corresponding Levi factor is denoted by M(n1,...,nk ;0)=GLn1 ×GLn2 × · · ·×GLnk , if
the corresponding set of simple roots contains αn−1; or by c(M(n1,...,nk ;0)) otherwise.
Here, we let c be the outer automorphism on the Dynkin diagram of Gn that
permutes αn−1 and αn and fixes other simple roots.

For representations ρ1, . . . , ρk of GLn1, . . . ,GLnk , we let ρ1⊗· · ·⊗ρk⊗(1⊗e)
denote a representation of M(n1,...,nk ;0), and ρ1⊗· · ·⊗ρk⊗ (1⊗c)) a representation
of c(M(n1,...,nk ;0)). Let ν be a character of GLn defined by |det|F . We denote the
induced representation IndGn

P (ρ1⊗ · · ·⊗ ρk ⊗ σ) by

ρ1× · · ·× ρk o σ

where each ρi is a representation of some GLni , and σ is a representation of Gn .
We also write rs(σ ) for the normalized Jacquet module of the representation σ with
respect to Ps. In other words, rs is a functor from admissible representations of Gn

to admissible representations of Ms. In particular, for a subquotient σ of ρo σcusp,
where ρ is a representation of GLk and σcusp is a supercuspidal representation of
Gn , we define rGL(σ )= r(k;n)(σ ).
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In the case of GL, for P ′ = M ′N ′ the standard parabolic subgroup of GLn with
M ′∼=GLn1 ×GLn2 × · · ·×GLnk , we denote the induced representation IndGLn

P ′ (ρ1⊗

· · ·⊗ ρk) by

ρ1× · · ·× ρk,

with each ρi a representation of some GLni .
We also follow the notation introduced in [Bernstein and Zelevinsky 1977].

Let ρ be an irreducible unitary supercuspidal representation of some GLp. We
define the segment 1 := [νaρ, νa+kρ] = {νaρ, νa+1ρ, . . . , νa+kρ}, where a ∈ R

and k ∈ Z≥0. If a > 0, we call the segment 1 strongly positive. We note that
the induced representation νa+kρ× νa+k−1ρ× · · ·× νaρ has a unique irreducible
subrepresentation, which we denote by δ(1). Then δ(1) is an essentially square-
integrable representation attached to 1 (Section 3.1 of [Zelevinsky 1980]).

Let us briefly review the Langlands classification for general linear groups.
For every irreducible essentially square-integrable representation δ of some GLn ,
there exists a unique e(δ) ∈ R such that the representation ν−e(δ)δ is unitarizable.
When δ = δ(1), we simply denote e(δ(1)) by e(1). Suppose δ1, δ2, . . . , δk are
irreducible essentially square-integrable representations of GLn1,GLn2, . . . ,GLnk

with e(δ1)≤ e(δ2)≤ · · · ≤ e(δk). Then, the induced representation δ1×δ2×· · ·×δk

has a unique irreducible subrepresentation, which we denote by L(δ1, δ2, . . . , δk).
This irreducible subrepresentation is called the Langlands subrepresentation, and it
appears with the multiplicity one in δ1×δ2×· · ·×δk . Every irreducible representation
ρ of GLn is isomorphic to some L(δ1, δ2, . . . , δk). Given ρ, the representations
δ1, δ2, . . . , δk are unique up to a permutation. If i1, i2, . . . , ik is a permutation
of 1, 2, . . . , k such that the representations δi1 × · · · × δik and δ1 × · · · × δk are
isomorphic, we also write L(δi1, δi2, . . . , δik ) for L(δ1, δ2, . . . , δk).

The Grothendieck group of the category of all finite length admissible repre-
sentations of Gn (resp. GLn), a free abelian group over the set of all irreducible
representations of Gn (resp. GLn), is denoted by R(n) (resp. RGL(n)). We set

R =
⊕
n≥0

R(n),

RGL =
⊕
n≥0

RGL(n).

The strongly positive representations of Gn are defined as follows.

Definition 2.2 (strongly positive). An irreducible representation σ of Gn is called
strongly positive if for each representation νs1ρ1×ν

s2ρ2×· · ·×ν
skρkoσcusp, where

each ρi (i = 1, 2, . . . , k) is an irreducible supercuspidal unitary representation of
some GLni , σcusp ∈ R is an irreducible supercuspidal representation of Gn′ and
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si ∈ R (i = 1, 2, . . . , k) is such that

σ ↪→ νs1ρ1× ν
s2ρ2× · · ·× ν

skρk o σcusp,

we have si > 0 for each i .

Finally, the next proposition recalls the properties of discrete series representa-
tions studied in [Asgari 2002].

Proposition 2.3. Let M be GLn1 ×GLn2 × · · · × GLnk ×Gn′ ⊂ Gn . Let ρi be a
supercuspidal representation of GLni and σ a supercuspidal representation of Gn′ .
Write ρi=ν

e(ρi )ρu
i , where e(ρi )∈R and ρu

i is a unitary supercuspidal representation
for i = 1, . . . , k. If ρ1× · · ·× ρk o σ has a discrete series subrepresentation, then
ρu

i
∼= ρ̃u

i ⊗ (ωσ ◦ det) for i = 1, . . . , k.

3. Tadić’s structure formula for even GSpin groups

Tadić’s structure formulae for Sp2n , SO2n+1, SO2n and GSpin2n+1 in [Tadić 1995;
Jantzen 2006; Kim 2015b] are based on the geometric lemma (2.11 in [Bernstein
and Zelevinsky 1977] or Section 6 in [Casselman 1995]). Briefly, the geometric
lemma explicitly calculates the Jacquet modules of induced representations (rG,N ◦

iG,N in [Bernstein and Zelevinsky 1977]) and it depends on the double coset
representative Weyl group elements (W M,N in [Bernstein and Zelevinsky 1977])
and their actions on the simple roots and representations of Levi subgroups. In this
section, we explicitly construct the structure of Jacquet modules of parabolically
induced representations of Gn (Tadić’s structure formula for Gn , Theorem 3.4) using
the geometric lemma. We will adapt and follow the results in [Ban 1999a; Jantzen
2006], i.e., the case of SO2n . Ban characterizes the double coset representative Weyl
group elements ([W�i1

\W/W�i2
] in [Ban 1999a, Section 5]) and its action on the

simple roots in the cases of Dn-type groups, which include SO2n and Gn . Jantzen
[2006] constructs Tadić’s structure formula for SO2n using Ban’s results. Therefore,
once we calculate the Weyl group action on the representations in our case, we are
ready to adapt Jantzen’s calculation [2006] to construct Tadić’s structure formula
for Gn .

Let (p, ε) ∈ Sn o {±1}n be an element in the Weyl group WGn with ε =
(ε1, . . . , εn) ∈ {±1}n such that

∏n
i=1 εi = 1. We can identify (p, ε) ∈ WGn with

p · ε ∈WSO2n where the action by conjugation of p and ε ∈WSO2n on the standard
maximal torus in SO2n can be defined by

p ·diag(x1, . . . , xn, x−1
n , . . . , x−1

1 )= diag(x p−1(1), . . . , x p−1(n), x−1
p−1(n), . . . , x−1

p−1(1))

ε ·diag(x1, . . . , xn, x−1
n , . . . , x−1

1 )= diag(xε1
1 , . . . , xεn

n , x−εn
n , . . . , x−ε1

1 ).

We can get the action of those on the roots (see also [Hundley and Sayag 2012]).
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Lemma 3.1. Let e0, e1, . . . , en and e′0, e′1, . . . , e′n be the standard bases of the
character lattice and the cocharacter lattice of Gn as in Proposition 2.1. Let
(p, ε) ∈ Sn o {±1}n be as above.

Then

(p, ε) · ei =


ep(i) for i > 0, εi = 1,
−ep(i) for i > 0, εi =−1,
e0+

∑
εi=−1

ep(i) for i = 0,

(p, ε) · e′i =


e′p(i) for i > 0, εi = 1,
e′0− e′p(i) for i > 0, εi =−1,
e′0 for i = 0.

Proof. The calculations of (p, ε) · ei for i > 0 are done in [Ban 1999a, Section 5].
We can also calculate (p, ε) ·e′i directly from the matrix calculation since e′0, . . . , e′n
comprise the character lattice of GSO. For (p, ε) · e0, we need to use the duality of
ei and e′i . �

Let 1∗ = {α1 = e1−e2, α2 = e2−e3, . . . , αn−1 = en−1−en, αn = en−1+en} be
a simple root for Gn as explained in Section 2. From Lemma 3.1, we can calculate
the action of (p, ε) on the set of simple roots in R∗ (see also [Ban 1999a]).

Corollary 3.2. With notation as in Lemma 3.1,

(p, ε) ·αi =

{
εi ep(i)− εi+1ep(i+1) for 0≤ i ≤ n− 1,
εn−1ep(n−1)+ εnep(n) for i = n.

Now we are ready to construct Tadić’s structure formula for Gn . Let ρi be an
irreducible smooth representation of GLni for i = 1, 2, 3, 4. Let σ be an irreducible
smooth representation in R and let ωσ be the central character of σ . For any element
c1 ∈ C = {e, c}, we define õ as follows:

(3-1) (ρ1⊗ρ2⊗ρ3⊗ c1)õ(ρ4⊗σ)= (ρ̃1⊗ (ωσ ◦ det))×ρ2×ρ4⊗ρ3o c1(σ ).

One extends õ to a Z-bilinear mapping

õ : (RGL⊗ RGL⊗ RGL⊗Z[C])× (RGL⊗ R)→ RGL⊗ R.

We denote by m the linear extension to RGL⊗ RGL of parabolic induction from a
maximal parabolic subgroup.

Let

�k =


1 if k = 0,
1 \ {αk} if k ≤ n− 2,
1 \ {αn−1, αn} if k = n− 1,
1 \ {αn} if k = n.
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and �n =1 \ {αn−1} = c(�n). We define µ∗(σ ) as follows. For 0≤ k ≤ n, write

rM�k ,Gn
(σ )=

∑
i∈Ik

ρi,k ⊗ σi,k,

rM�n ,Gn
(σ )=

∑
j∈J

ρ j ⊗ (1⊗ c),

the normalized Jacquet modules of σ with respect to the standard maximal parabolic
subgroups P�k = M�k N�k and P�n

= M�n
N�n

, respectively. For such σ , we can
define µ∗(σ ) ∈ RGL⊗ R as

µ∗(σ )=

n∑
k=0

∑
i∈Ik

ρi,k ⊗ σi,k +
∑
j∈J

ρ j ⊗ (1⊗ c).

Using Jacquet modules with respect to the maximal parabolic subgroups of GLn ,
we can also define

m∗(ρ)=
n∑

k=0

s.s.(rk(ρ)) ∈ RGL⊗ RGL

for an irreducible representation ρ of GLn , and then extend m∗ linearly to the whole
of RGL. Here, rk(ρ) denotes the Jacquet module of the representation ρ with respect
to the parabolic subgroup whose Levi subgroup is GLk ×GLn−k , and s.s. denotes
so-called semisimplification, i.e., a canonical map from objects of the category
of all smooth finite length representations of GL into the Grothendieck group of
this category. We define s : RGL⊗ RGL→ RGL⊗ RGL by s(x ⊗ y) = y⊗ x . Let
M∗C : RGL→ RGL⊗ RGL⊗ RGL⊗Z[C] be the map (1⊗m∗C) ◦ s ◦m∗, where

1⊗m∗C : RGL⊗ RGL→ RGL⊗ RGL⊗ RGL⊗Z[C]

ρ1⊗ ρ2 7→ ρ1⊗m∗(ρ2)⊗ cn1,

for representations ρ1 of GLn1 and ρ2 of GLn2 .

Remark 3.3. In our case of even GSpin groups, we have cn1 when we calculate
µ∗, while we don’t have such action in the case of odd GSpin groups. This is due
to the differences of the Weyl group actions on the simple roots. In our case, the
corresponding Weyl group element acts on en by (−1)n1 . Therefore, if n1 is odd,
we need to permute αn−1 = en−1− en and αn = en−1+ en . In other words, we have
the outer automorphism c on the representation σ .

The following theorem is called Tadić’s structure formula for even GSpin groups.

Theorem 3.4. For ρ ∈ RGL(i) and σ ∈ R(n− i), we have

µ∗(ρo σ)=M∗C(ρ)õµ
∗(σ ).
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Proof. We sketch the proof and explain how we can adapt the approach in [Jantzen
2006] to our case. Let us explicitly calculate the left hand side of the equation
in the theorem. Since GSpin2n is also of Dn-type, we can apply the double coset
representative Weyl group elements, which are studied in [Ban 1999a], to our case.
Therefore, we have µ∗(ρoσ) as in [Jantzen 2006, pp. 811–812]. Now, we calculate
the action of the double coset representative Weyl group elements (qn in [Jantzen
2006]) on the representations. The actions of qn produce contragredient of τ (3)s (d)
with (ωθ ◦ det), i.e., (ωθ ◦ det)τ̃ (3)s (d) (see p. 812 for the notation of τ (3)s (d) and θ ).
Accordingly, we need to define õ as (3-1). This forces µ∗(ρo σ) to be equal to
M∗C(ρ)õµ∗(σ ) after changing index several times as in the proof of [Jantzen 2006,
Chapter 4]. �

4. Classification of strongly positive representations for even GSpin groups

We give the classification of strongly positive representations of even GSpin groups
in this section. We apply and adapt some proofs from Matić’s results [2011] for
metaplectic groups to our case. Therefore, we mostly focus on the following cases
which are quite different from [Matić 2011]. For example, when the reducibility
point is 1

2 , we follow the idea of [Kim 2015b] instead of [Matić 2011]. We also
emphasize the difference between the even case and the odd case, and omit the
proof if it is similar to the case of either metaplectic groups or odd GSpin groups.
For example, in the even case, we need to add c(σcusp) when we classify the special
case D(ρ; σcusp, c(σcusp)) (in the odd case, we classify D(ρ; σcusp)).

4A. Several lemmas. We recall several lemmas which are essential in this section.
Let us first recall the half integer conjecture in the case of GSpin groups. Let σ
be an irreducible supercuspidal representation of Gn′ and let ρ be an irreducible
supercuspidal unitary representation of GLk . The following is a recent result of
Mœglin which is called the half integer conjecture for GSpin groups [Mœglin 2014,
Theorem 3.1.1]:

Lemma 4.1 [Mœglin 2014]. Let a ∈ R be a nonnegative real number such that
νaρo σ reduces. Then, a ∈ 1

2 Z.

Remark 4.2. In [Kim 2015b], we classified the strongly positive representations
of odd GSpin groups assuming the half integer conjecture. Due to Mœglin’s results
(Lemma 4.1), we can completely remove the assumption in the odd case.

Remark 4.3. When we further assume that σ is a generic representation, Shahidi
[1990] proved that a ∈ {0, 1

2 , 1}.

Let us calculate µ∗
((∏n

j=1 δ
(
[νa jρ j , ν

b jρ j ]
))
o σ

)
, where each ρ j is an irre-

ducible supercuspidal representation of GLk , the real numbers a j and b j are such
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that b j − a j ∈ Z≥0 for each j = 1, . . . , n and σ is an irreducible supercuspidal
representation of finite length of Gn′ .

Example 4.4. Let us first calculate the case when n = 1. Since σ is supercuspidal,
µ∗(σ )= 1⊗ σ . Following the definition of M∗C , we have

M∗C
(
δ
(
[νaρ1, ν

bρ1]
))

=

b∑
i=a−1

b∑
j=i

δ
(
[νaρ1, ν

iρ1]
)
⊗ δ

(
[ν j+1ρ1, ν

bρ1]
)
⊗ δ

(
[νi+1ρ1, ν

jρ1]
)
⊗ ck(i−a+1).

Therefore,

µ∗
(
δ
(
[νaρ1, ν

bρ1]
)
o σ

)
=

b∑
i=a−1

b∑
j=i

δ
(
[ν−i ρ̃1⊗ (ωσ ◦ det), ν−aρ̃1⊗ (ωσ ◦ det)]

)
×δ
(
[ν j+1ρ1, ν

bρ1]
)
⊗ δ

(
[νi+1ρ1, ν

jρ1]
)
o ck(i−a+1)(σ ).

We omit δ
(
[νxρ1, ν

yρ1]
)

if x > y. Then, to calculate

µ∗
(( n∏

j=1

δ
(
[νa jρ j , ν

b jρ j ]
))
o σ

)
,

we use (1.3) of [Tadić 1998]:

m∗
( n∏

j=1

δ
(
[νa jρ j , ν

b jρ j ]
))
=

n∏
j=1

( b j∑
i j=a j−1

δ
(
[νi j+1ρ j , ν

b jρ j ]
)
⊗δ
(
[νa jρ j , ν

i jρ j ]
))
.

The Weyl group elements are essential objects when we define the intertwining
operators between two induced representations [Shahidi 2010, Chapter 4]. We
recall the action of the Weyl group elements on the induced representations. Let Mθ

be a Levi subgroup isomorphic to GLk ×Gn−k for θ =1 \αk . There is a unique
Weyl group element w0 such that w0(αk) < 0 and w0(θ)⊂1.

Lemma 4.5. Let ρ and σ be irreducible supercuspidal representations of GLk and
Gn−k , respectively. Then

(ρ⊗ σ)w0 = (ρ̃⊗ (ωσ ◦ det))⊗ ck(σ ),

where ωσ is the central character of σ .

Proof. Sincew0(αk)< 0 andw0(θ)⊂1, we can explicitly calculate its action on the
simple roots. Let us identifyw0 as (p, ε)∈ Sno{±1}n with ε= (ε1, . . . , εn)∈{±1}n

such that
∏n

i=1 εi = 1. Then
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p(i)=
{

k+ 1− i for 1≤ i ≤ k,
i for k+ 1≤ i ≤ n,

and εi =


−1 for 1≤ i ≤ k,
1 for k+ 1≤ i ≤ n,
(−1)k for i = n,

for k 6= n− 1, n, and

p(i)= n+ 1− i and εi =


(−1)k−1 for i = 1,
−1 for 2≤ i ≤ n− 1,
(−1)k+n−1 for i = n,

for k = n− 1, n. Using this identification, the lemma follows from Lemma 3.1. �

Corollary 4.6. Let ρ and σ be as in Lemma 4.5. Then ρoσ and (ρ̃⊗(ωσ ◦det))o
ck(σ ) are associate. Therefore, Lemma 5.4 (iii) of [Bernstein et al. 1986] implies
that the sets of irreducible composition factors of ρoσ and (ρ̃⊗(ωσ ◦det))ock(σ )

are the same. Furthermore, if we assume that ρ o σ is irreducible, then ρ o σ ∼=
(ρ̃⊗ (ωσ ◦ det))o ck(σ ).

Now we show that strongly positive representations can be embedded into
parabolically induced representations of special type. More precisely, we consider
parabolically induced representations of the form

(4-1) δ(11)× δ(12)× · · ·× δ(1k)o c′(σcusp),

where 11,12, . . . ,1k is a sequence of strongly positive segments satisfying
0 < e(11) ≤ e(12) ≤ · · · ≤ e(1k) (we allow k = 0 here), σcusp is an irreducible
supercuspidal representation of Gn′ and c′ ∈ C . Note that the idea of such embed-
dings of representations was initiated in [Muić 2006] and further refined in [Hanzer
and Muić 2008].

Lemma 4.7. Let 11, . . . ,1k and σcusp be as above. Then the induced representa-
tion δ(11)× δ(12)×· · ·× δ(1k)o c′(σcusp) has a unique irreducible subrepresen-
tation, which we denote by δ(11, . . . ,1k; c′(σcusp)).

Proof. We briefly explain the main ideas of the proof and how we adapt the proof
from [Matić 2011] to the case of even GSpin groups. The case k = 0 is clear. Let
j1 < j2 < · · ·< js be the positive integers such that

e(11)= · · · = e(1 j1) < e(1 j1+1)= · · · = e(1 j2) < · · ·< e(1 js+1)= · · · = e(1k).

Then Theorem 3.4 implies that an irreducible representation

δ(11)× · · ·× δ(1 j1)⊗ δ(1 j1+1)× · · ·× δ(1 j2)⊗ · · ·⊗ c′(σcusp)

appears with multiplicity one in the Jacquet module of δ(11)× δ(12)× · · · ×

δ(1k)o c′(σcusp) with respect to the appropriate parabolic subgroup. Therefore,
since this irreducible representation is contained in the Jacquet module of any
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subrepresentation of δ(11)× δ(12)× · · · × δ(1k)o c′(σcusp) with respect to the
appropriate parabolic subgroup, it follows that the induced representation δ(11)×

δ(12)× · · ·× δ(1k)o c′(σcusp) has a unique irreducible subrepresentation. �

Now, as in the odd case [Kim 2015b], we can show that strongly positive
representations can be embedded into induced representations of the form (4-1).

Lemma 4.8. Let σ ∈ R denote a strongly positive representation. Then σ can be
embedded into certain induced representations of the form (4-1).

4B. Classification of strongly positive representations: the D(ρ; σcusp, c(σcusp))

case. Let ρ be an essentially self-dual irreducible supercuspidal representation
of GLnρ and σcusp an irreducible supercuspidal representation of Gn′ . Also, let
D(ρ; σcusp, c(σcusp)) be the set of strongly positive representations whose supercus-
pidal supports are the representations σcusp, c(σcusp) and twists of the representation
ρ. We assume that there exists a unique nonnegative real number a such that
νaρoσcusp reduces [Silberger 1980]. The half integer conjecture for GSpin groups
(Lemma 4.1) implies that a ∈ 1

2 Z.
In this section, we construct the classification of strongly positive representations

in D(ρ; σcusp, c(σcusp)). Lemma 4.8 implies that there exists a mapping from the
set of strongly positive representations of Gn into the set of induced representations
of the form (4-1). We first refine the image of this map when we restrict the map to
D(ρ; σcusp, c(σcusp)).

Theorem 4.9. Suppose that σ is an irreducible strongly positive representation
in D(ρ; σcusp, c(σcusp)), taken as the unique irreducible subrepresentation of an
induced representation of the form (4-1). Write 1i = [ν

aiρ, νbiρ] for i = 1, . . . , k.
Then ai = a− k+ i for each i , b1 < · · ·< bk and k ≤ dae.

Proof. We consider the case when a = 1
2 . We first show, by induction on k, that

ai = a for each i = 1, . . . , k and that b1 ≤ · · · ≤ bk when a = 1
2 .

For the case k = 1, note that if ai 6= a, then

νaiρo σcusp ∼= (ν
−ai ρ̃⊗ (ωσcusp ◦ det))o cnρ (σcusp)∼= ν

−aiρo σcusp.

Therefore, we have the embedding

σ ↪→ νb1ρ× · · ·× νa1+1ρ× ν−a1ρo σcusp

which contradicts the strong positivity of σ .
Now suppose the theorem holds for all m ∈ Z such that 0 ≤ m < k. We prove

it for k. As in the case when k = 1, we show ak = a. We know that σ embeds in
δ(11)o δ(12, . . . ,1k; σcusp), since σ is the unique irreducible subrepresentation
of δ(11)× · · · δ(1k)o σcusp. This implies that each ai = a for 2 ≤ i ≤ k and
b2 ≤ · · · ≤ bk . It remains to show that a1 =

1
2 and b1 ≤ b2.
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Suppose that a1 /∈
1
2 +Z. Then νa1ρ× δ(1i ) is irreducible for i ≥ 2. Therefore,

we have the embedding

σ ↪→ δ
(
[νa1+1ρ, νb1ρ]

)
× νa1ρ× δ(12)× · · ·× δ(1k)o σcusp

∼= δ
(
[νa1+1ρ, νb1ρ]

)
× δ(12)× · · ·× δ(1k)× ν

a1ρo σcusp

∼= δ
(
[νa1+1ρ, νb1ρ]

)
× δ(12)× · · ·× δ(1k)× ν

−a1ρo σcusp

which contradicts the strong positivity of σ . Therefore, a1 ∈
1
2 + Z. If a1 6=

1
2 ,

then a1 ≥
3
2 . This implies that δ(11)× δ(1i ) is irreducible for i ≥ 2 since b1 ≤ bi .

Therefore, we have the embedding

σ ↪→ δ(12)× · · ·× δ(1k)× δ(11)o σcusp

∼= δ(12)× · · ·× δ(1k)× δ
(
[νa1+1ρ, νb1ρ]

)
× νa1ρo σcusp

∼= δ(12)× · · ·× δ(1k)× δ
(
[νa1+1ρ, νb1ρ]

)
× ν−a1ρo σcusp

which again contradicts the strong positivity of σ . Thus, a1 =
1
2 . Also, b1 ≤ b2

follows from e(11)≤ e(12). The following lemma finishes the proof of the theorem
in the case when a = 1

2 .

Lemma 4.10. The unique irreducible subrepresentation of

δ
(
[ν1/2ρ, νb′1ρ]

)
× δ

(
[ν1/2ρ, νb′2ρ]

)
× · · ·× δ

(
[ν1/2ρ, νb′kρ]

)
o σcusp,

denoted σ ∗
(b′1,...,b

′

k ;1/2)
, is not strongly positive when k ≥ 2.

Proof. We first show the case when k= 2. The embedding of ν1/2ρoδ(ν1/2ρ, σcusp)

into ν1/2ρ× ν1/2ρo σcusp implies the embedding

σ ∗(1/2,1/2;1/2) ↪→ ν1/2ρo δ(ν1/2ρ, σcusp).

Using Lemma 3.8 (b) as well as Remark 3.2 of [Tadić 1998], we can show that
δ
(
[ν−1/2ρ, ν1/2ρ]

)
o σcusp is a direct sum of two irreducible nonisomorphic repre-

sentations, say τ1 and τ2, in the same way as in the proof of Sublemma 5.8 of [Kim
2015b]. From Frobenius reciprocity and

rGL
(
δ
(
[ν−1/2ρ, ν1/2ρ]

)
o σcusp

)
=

2δ
(
[ν−1/2ρ, ν1/2ρ]

)
⊗ σcusp+ ν

1/2ρ× ν1/2ρ⊗ cnρ (σcusp),

it follows that rGL(τ1) = δ
(
[ν−1/2ρ, ν1/2ρ]

)
⊗ σcusp+ ν

1/2ρ × ν1/2ρ ⊗ cnρ (σcusp)

and rGL(τ2) = δ
(
[ν−1/2ρ, ν1/2ρ]

)
⊗ σcusp. We also obtain that σ ∗(1/2,1/2;1/2) ∼= τ1,

which is a subrepresentation of δ
(
[ν−1/2ρ, ν1/2ρ]

)
o σcusp, in the same way as in

the proof of Sublemma 5.9 of [Kim 2015b]. Therefore, we have the embedding

σ ∗(1/2,1/2;1/2) ↪→ δ
(
[ν−1/2ρ, ν1/2ρ]

)
o σcusp ↪→ ν1/2ρ× ν−1/2ρo σcusp.
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We conclude that σ ∗(1/2,1/2;1/2) is not strongly positive.
Next we consider the case k ≥ 2. Suppose that σ ∗

(b′1,...,b
′

k ;1/2)
is strongly positive.

Since each representation ν1/2ρ×δ
(
[ν1/2ρ, νb′iρ]

)
is irreducible for all i = 1, . . . , k,

we have an embedding of σ ∗
(b′1,...,b

′

k ;1/2)
into

δ
(
[ν3/2ρ, νb′1ρ]

)
× δ

(
[ν3/2ρ, νb′2ρ]

)
×

· · ·× δ
(
[ν3/2ρ, νb′kρ]

)
× ν1/2ρ× · · ·× ν1/2ρo σcusp.

Furthermore, since we know σ ∗(1/2,1/2;1/2) is the unique irreducible subrepresentation
of ν1/2ρ× ν1/2ρo σcusp, we have the embedding

σ ∗
(b′1,...,b

′

k ;1/2)
↪→ δ

(
[ν3/2ρ, νb′1ρ]

)
× · · ·× ν1/2ρo σ ∗(1/2,1/2;1/2).

This contradicts the strong positivity of σ ∗(1/2,1/2;1/2). �

Returning to the proof of Theorem 4.9, it remains to prove the case when a 6= 1
2 .

This case is similar to the proof in [Matić 2011] and we skip the proof here. �

We also show that the map from D(ρ; σcusp, c(σcusp)) to the set of induced
representations of the form (4-1) is well defined in the following theorem.

Theorem 4.11. Suppose that σ is an irreducible strongly positive representation
in D(ρ; σcusp, c(σcusp)). Then there exist a unique set of strongly positive segments
11,12, . . . ,1k with 0< e(11)≤ e(12)≤ · · · ≤ e(1k), and a unique irreducible
supercuspidal representation σ ′ ∈ R such that σ ' δ(11,12, . . . ,1k; σ

′).

Proof. We first show the uniqueness of the partial supercuspidal support σ ′. Sup-
pose that there are two sets of strongly positive segments and representations
in R, {11,12, . . . ,1k, σcusp} and {1′1,1

′

2, . . . ,1
′

l, c(σcusp)}, which satisfy the
conditions in Theorem 4.9. Then we have the two embeddings

σ ↪→

( k∏
i=1

δ(1i )

)
o σcusp,(4-2)

σ ↪→

( l∏
j=1

δ(1′j )

)
o c(σcusp).(4-3)

These embeddings imply that( l∏
j=1

δ(1′j )

)
⊗ c(σcusp)≤ rGL(σ )≤ rGL

(( k∏
i=1

δ(1i )

)
o σcusp

)
.

However, Theorem 3.4 implies that rGL
((∏k

i=1 δ(1i )
)
o σcusp

)
can contain the

support c(σcusp) only if the corresponding GL part,
∏l

j=1 δ(1
′

j ), has negative
exponent. This is a contradiction since each 1′i is strongly positive for all i .
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It remains to show the uniqueness of strongly positive segments. The situation
becomes similar to the odd case [Kim 2015b] since we show the uniqueness of σ ′.
Therefore, we can apply the idea of [Matić 2011] (for a 6= 1

2) and [Kim 2015b] (for
a = 1

2 ) to complete the proof, which we omit here. �

In Theorem 4.9 and Theorem 4.11, we construct an injective mapping from
D(ρ; σcusp, c(σcusp)) into the set of induced representations of the form

δ
(
[νa−k+1ρ, νb′1ρ]

)
× δ

(
[νa−k+2ρ, νb′2ρ]

)
× · · ·× δ

(
[νaρ, νb′kρ]

)
o c′(σcusp)

((4-1) with refinement on the unitary exponents as in Theorem 4.9). In other words,
if we let Jordc′

(ρ,a) be the set of (c′; b1, b2, . . . , bkρ ), where c′ ∈ C and bi ∈ R are
such that bi − a+ kρ − i ∈ Z≥0 for i = 1, . . . , kρ and −1 < b1 < b2 < · · · < bkρ ,
we construct the injective mapping

D(ρ; σcusp, c(σcusp)) ↪→ Jorde
(ρ,a) ∪ Jordc

(ρ,a) .

It remains to show that this injective mapping is also surjective. For an element
(c′; b1, b2, . . . , bkρ )∈ Jorde

(ρ,a) ∪ Jordc
(ρ,a), let σ(c′;b1,...,bkρ ;a) be a unique irreducible

subrepresentation of

δ
(
[νa−kρ+1ρ, νb1ρ]

)
× δ

(
[νa−kρ+2ρ, νb2ρ]

)
× · · ·× δ

(
[νaρ, νbkρ ρ]

)
o c′(σcusp).

To show the surjectivity, we apply the induction argument in [Matić 2011] to show
that the above subrepresentation σ(c′;b1,...,bkρ ;a) is strongly positive. We don’t repeat
the argument here.

Theorem 4.12. The representation σ(c′;b1,...,bkρ ;a) is strongly positive.

Remark 4.13. In the case of odd GSpin groups, we classify the special case
D(ρ; σcusp) in [Kim 2015b]. In the even case, we need to consider c(σcusp) as
a support in D(ρ; σcusp, c(σcusp)) as well, since the action of certain Weyl group
elements makes σ into c(σ ) (e.g., Lemma 4.5).

4C. Classification of strongly positive representations. Let ρi be an essentially
self-dual irreducible supercuspidal representation of GLnρi

for i = 1, . . . , k, and
σcusp an irreducible supercuspidal representation of Gn′ . We consider the set
D(ρ1, ρ2, . . . , ρk; σcusp, c(σcusp)) of strongly positive representations whose su-
percuspidal supports are the representations σcusp, c(σcusp) and twists of the rep-
resentations ρ1, . . . , ρk . We assume that there exists a unique nonnegative real
number aρi such that νaρi ρi o σcusp reduces for each i [Silberger 1980]. The half
integer conjecture for GSpin groups (i.e., Lemma 4.1) implies that each aρi ∈

1
2 Z.
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Theorem 4.14. Let σ be a strongly positive representation in D(ρ1, ρ2, . . . , ρk;

σcusp, c(σcusp)). Then σ can be considered to be the unique irreducible subrepresen-
tation of the induced representation

(4-4)
( k∏

i=1

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))
o c′(σcusp),

where c′ ∈C = {e, c} and for i = 1, . . . , k and j = 1, . . . , ki , each ki ∈Z≥0 satisfies
ki ≤ daρi e and each b(i)j > 0 is such that b(i)j − aρi ∈ Z≥0. Also, b(i)j < b(i)j+1 for
1≤ j ≤ ki − 1.

Proof. The proof is exactly the same as the odd case, and so is omitted. �

We also show that the map from D(ρ1, ρ2, . . . , ρk; σcusp, c(σcusp)) to the set of
induced representations of the form (4-4) is well defined in the following theorem.

Theorem 4.15. Suppose that the representation σ is the unique irreducible subrep-
resentations of both representations( k∏

i=1

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))
o σcusp,

( k′∏
i=1

k′i∏
j=1

δ
(
[ν

aρ′i
−k′i+ j

ρ ′i , ν
c(i)j ρ ′i ]

))
o c′(σcusp)

as in Theorem 4.14. Then k = k ′, σcusp ∼= c′(σcusp) and{ ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
) ∣∣∣ i = 1, . . . , k

}
is a permutation of{ k′i∏

j=1

δ
(
[ν

aρ′i
−k′i+ j

ρ ′i , ν
c(i)j ρ ′i ]

) ∣∣∣ i = 1, . . . , k
}
.

Proof. The arguments of the proof follow the same lines as those in the proof of
Theorem 4.11. We, therefore, omit the proof here. �

Theorem 4.14 and Theorem 4.15 imply that there exists an injective mapping
from D(ρ1, ρ2, . . . , ρk; σcusp, c(σcusp)) into the set of induced representations of
the form (4-4). Finally, it remains to show that this mapping is surjective.

Theorem 4.16. The map described above gives a bijective correspondence between
the set D(ρ1, ρ2, . . . , ρk; σcusp, c(σcusp)) and the set of induced representations of
the form (4-4).
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Proof. Let σ be the unique irreducible subrepresentation of the form (4-4), i.e.,( k∏
i=1

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))
o c′(σcusp).

Since ρp � ρq for p 6= q , we have for any l = 1, . . . , k the embedding

σ ↪→

(∏
i 6=l

ki∏
j=1

δ
(
[νaρi−ki+ jρi , ν

b(i)j ρi ]
))

oδ
(
[νaρl−kl+lρl, ν

b(l)l ρl], . . . , [ν
aρl ρl, ν

b(l)kl ρl]; c′(σcusp)
)
.

Theorem 4.12 implies that δ
(
[νaρl−kl+lρl, ν

b(l)l ρl], . . . , [ν
aρl ρl, ν

b(l)kl ρl]; c′(σcusp)
)

is strongly positive. Since l can be arbitrary, σ always has positive unitary exponents
in the Jacquet module with respect to the Levi subgroup GLnρ1

×GLnρ1
× · · · ×

GLnρk
×Gn′ . Therefore, σ is strongly positive. �

Since any strongly positive representation in R can be considered an element of
D(ρ ′1, ρ

′

2, . . . , ρ
′

k; σ
′
cusp, c′(σ ′cusp)) for some ρ ′i and σ ′cusp, we can extend the bijective

mapping constructed in Theorem 4.16 to any strongly positive representation in
R. In sum, let SP and LJ be as defined in Section 1. Then we have a bijective
correspondence between SP and LJ.

Remark 4.17. The ideas used in this section for the results of GSpin groups can
be applied to even special orthogonal groups. Let us also remark that it is easier
to work with even special orthogonal groups than even GSpin groups due to the
results of Ban [1999a; 1999b] and Jantzen [2006]. For example, in the case of even
special orthogonal groups, the Weyl group actions on the simple roots and induced
representations are studied in [Ban 1999a; 1999b] and Tadić’s structure formula
is constructed in [Jantzen 2006, Theorem 3.4] (see also [Jantzen and Liu 2014,
Theorem 3.1]). Let us remark that the classification of discrete series representations
of SO2n is first proved by C. Jantzen [2011] using the results for O2n in [Mœglin
2002; Mœglin and Tadić 2002]. Our approach is different from [Jantzen 2011] and
we generalize Matić’s idea to the case of even special orthogonal groups.

5. Applications

It is easy to see that the strongly positive representations are special kinds of discrete
series due to Casselman’s square integrability criterion in [Kim 2009]. Furthermore,
the strongly positive representations can be considered basic building blocks for
discrete series representations (Theorem 5.1). The proof of the following embedding
theorem is exactly the same as the case of odd GSpin groups, since the main idea of
the proof depends on a slight variation of Casselman’s square integrability criterion
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for even GSpin groups (Proposition 3.2 in [Kim 2009]). Hence the proof is omitted.
Let us remark that this idea originally comes from the results for metaplectic groups
by Matić and we adapt some proofs from [Matić 2012, Chapter 3] to our situation.

Theorem 5.1. Let σ denote a discrete series representation of Gn . Then there exists
an embedding of the form

σ ↪→ δ
(
[νa1ρ1, ν

b1ρ1]
)
× δ

(
[νa2ρ2, ν

b2ρ2]
)
× · · ·× δ

(
[νarρr , ν

brρr ]
)
o σsp

where ai ≤ 0, ai + bi > 0 and ρi ∈ RGL is an irreducible unitary supercuspidal
representation for i = 1, . . . , r (we allow r = 0); and σsp ∈ R is a strongly positive
representation.

Theorem 5.1, together with our main result Theorem 4.16 giving the classification
of strongly positive representations, imply the embedding

(5-1) σ ↪→ δ
(
[νa1ρ1, ν

b1ρ1]
)
× · · ·× δ

(
[νarρr , ν

brρr ]
)

×

( k∏
i=1

ki∏
j=1

δ
(
[ν

aρ′i
−ki+ j

ρ ′i , ν
b(i)j ρ ′i ]

))
o σcusp.

where ai , bi and ρi are as in Theorem 5.1; aρ′i , b(i)j , ki and ρ ′i are as in Theorem 4.14;
and σcusp is an irreducible supercuspidal representation of Gn .

This embedding has an interesting application in the proof of the equality of L-
functions from the Langlands–Shahidi method and Artin L-functions through local
Langlands correspondence (see [Shahidi 2010] for the Langlands–Shahidi method).
More precisely, in [Kim 2015a] we used the following filtration of admissible
representations to prove the equality of L-functions in the case of GSpin groups:

supercuspidal ⊆ discrete series ⊆ tempered ⊆ admissible.

We first showed the equality of L-functions in the supercuspidal case. Then, the
above embedding (5-1) was used to generalize that result to the case of discrete series
representations. Finally, that result was generalized via Langlands classification
and properties of tempered representations to the cases of tempered representations
and admissible representations. Furthermore, the equality of L-functions also has
an interesting application in the proof of the generic Arthur packet conjecture in the
case of GSpin groups [Shahidi 2011]. This conjecture can be considered a local
version of the generalized Ramanujan conjecture.
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