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We consider a subclass of the class of group-theoretical fusion categories:
To every finite group G and subgroup H one can associate the category
of G-graded vector spaces with a two-sided H-action compatible with the
grading. We derive a formula that computes higher Frobenius-Schur indi-
cators for the objects in such a category using the combinatorics and repre-
sentation theory of the groups involved in their construction. We calculate
some explicit examples for inclusions of symmetric groups.

1. Introduction

Higher Frobenius–Schur indicators are invariants of an object in a pivotal fusion
category (and hence also invariants of that category). They generalize the degree two
Frobenius-Schur indicator — which was originally defined for a representation of a
finite group by its namesakes in 1906 — to higher degrees and more general objects.
Categorical versions of degree two indicators were studied by Bantay [1997], as
well as Fuchs, Ganchev, Szlachányi, and Vescernyés [Fuchs et al. 1999]; indicators
for modules over semisimple Hopf algebras were introduced by Linchenko and
Montgomery [2000] and studied in depth by Kashina, Sommerhäuser, and Zhu
[2006]. The degree two indicators for modules over semisimple quasi-Hopf algebras
were treated by Mason and Ng [2005]. The higher indicators for pivotal fusion
categories that we deal with in the present paper were introduced in [Ng and
Schauenburg 2008; 2007b; 2007a].

Frobenius–Schur indicators have become a tool for the structure theory and
classification of fusion categories. The problem we deal with here, however, is
simply how to calculate them in very specific examples. More concretely we will
deal with a specific class of group-theoretical fusion categories [Ostrik 2003; Etingof,
Nikshych and Ostrik 2005]. Degree two indicators for Hopf algebras associated
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with such categories have been studied in [Kashina, Mason and Montgomery
2002; Jedwab and Montgomery 2009]. In [Kashina, Sommerhäuser and Zhu 2006]
formulas for higher indicators of smash product Hopf algebras associated to a group
acting by automorphisms on another group were given. This class of examples
includes the Drinfeld double of a finite group. For such doubles, the explicit
formulas were used to study the question of integrality of the indicators in [Iovanov,
Mason and Montgomery 2014]. Extensive computer calculations, in particular with
a view towards the question of whether the indicators of the doubles of symmetric
groups are positive, were conducted in [Courter 2012]; examples for certain other
groups can be found in [Keilberg 2014; 2012].

Natale [2005] has derived formulas for the degree two Frobenius–Schur indicators
of the objects in general group-theoretical fusion categories. Her approach is based
on the fact that a group-theoretical fusion category can be written as the module
category over a quasi-Hopf algebra which is known explicitly. Then the explicit
definition of degree two indicators of modules over quasi-Hopf algebras in [Mason
and Ng 2005] can be applied.

In principle the same approach, now using the higher indicator formula for
quasi-Hopf algebras from [Ng and Schauenburg 2008], could be used to obtain
higher indicator formulas for group-theoretical categories. However, those formulas
involve iterated applications of the associator elements of the relevant quasi-Hopf
algebra dealing with the parentheses of iterated tensor products in the category.
Applying them with the explicit quasi-Hopf structure deriving from the data of a
group-theoretical fusion category seems a formidable task.

We will take an entirely different approach. The formula from [Ng and Schauen-
burg 2007a, Theorem 4.1], generalizing the “third formula” from [Kashina, Som-
merhäuser and Zhu 2006], links higher Frobenius–Schur indicators in a spherical
fusion category C to the ribbon structure of the Drinfeld center Z(C) and the functor
from C to Z(C) adjoint to the underlying functor. The “third formula” was used in
[Shimizu 2011] to calculate indicators in Tambara–Yamagami categories; in our
context the approach is aided by the fact that the centers of group-theoretical fusion
categories are easy to determine: a group-theoretical fusion category is the monoidal
category of bimodules over the (twisted) group algebra of a subgroup H of a finite
group G inside the category VectG of G-graded vector spaces (twisted by a three-
cocycle on G). By [Schauenburg 2001], the Drinfeld center of such a bimodule
category is equivalent to the Drinfeld center of the “ambient” category. In different
language this means that group-theoretical fusion categories are Morita equivalent
to the category of graded vector spaces with twisted associativity; see the survey
[Nikshych 2013]. We will treat the case of a group-theoretical fusion category
defined without cocycles. Thus C = G

HMH , the center is Z(GHMH ) = Z(VectG),
equivalent to the category of modules over the Drinfeld double of G.
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In a sense, the underlying functor Z(VectG) →
G
HMH is already known ex-

plicitly from [Schauenburg 2001], but we need to do more. Simple objects in
G
HMH are parametrized by group-theoretical data, namely (equivalence classes
of) pairs consisting of an element of G and an irreducible representation of a
certain stabilizer subgroup of H. Simple objects of Z(VectG) are also classified by
group-theoretical data, (equivalence classes of) pairs consisting of an element of
G and an irreducible representation of its centralizer. In Section 3, we will describe
the underlying functor Z(VectG) →

G
HMH on the level of simple objects by a

formula involving only the combinatorics and representation theory of subgroups
of G. Given this description, one can turn things around and describe the adjoint
functor G

HMH →Z(VectG) equally explicitly. Admittedly the resulting description,
while completely explicit and entirely on the level of groups, subgroups, and
group representations, is quite unwieldy — this is perhaps natural, since one has
to deal with how conjugacy classes and centralizers (involved in the description of
modules over the Drinfeld double) relate to double cosets of a chosen subgroup, and
stabilizers of one-sided cosets under the regular action (involved in the description
of G

HMH ).
In Section 4, we will use the description of the adjoint functor and the “third

formula” to obtain a formula for the higher indicators of the simple objects of
G
HMH . Luckily we do not need complete information about the adjoint, but only
the traces of the ribbon structure on the images under the adjoint. This allows us to
dramatically simplify the immediate result based on the complicated description of
the adjoint to obtain a surprisingly simple-looking formula for the higher indicators.
It is in fact even simpler than Natale’s formula for second indicators, and uses
only group characters and the combinatorics of group elements and subgroups,
without mentioning the associated quasi-Hopf algebra and its characters at all. One
should admit, though, that characters of the associated quasi-Hopf algebra are in
turn described in more “basic” terms in [Natale 2005]. Also, our results are marred
by the obvious limitation that they do not treat general group-theoretical categories,
but only those in whose definition the relevant group cocycles are trivial — we have
amended this limitation in [Schauenburg 2015].

We also treat variants of the indicator formula that are more complicated, involv-
ing passing to orbits under the action of auxiliary subgroups, but computationally
advantageous for the same reason that they pass from sums over the entire group H
to sums over certain orbits.

In Section 5, we will explicitly calculate indicators in several examples of fusion
categories associated to an inclusion of symmetric groups Sn−2 ⊂ Sn . We use the
“simple” version of our indicator formula for the cases n = 4, 5. The cases n = 6, 7
illustrate how the more complicated versions reduce the size of the calculations
needed down to a manageable size.
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2. Preliminaries

Throughout the paper, G is a finite group, and H ⊂ G a subgroup. We denote the
adjoint action of G on itself by x F g= xgx−1. If V is a representation of a subgroup
K ⊂ G, and x ∈ G, we denote by x F V the twisted representation of x F K with
the same underlying vector space V on which y ∈ x F K acts like x−1

F y ∈ K .
We work over the field C of complex numbers; representations are complex

representations; and characters are ordinary characters.
The category G

HMH :=
CG
CHMCH is defined as the category of CH -bimodules over

the group algebra of H, considered as an algebra in the category of CG-comodules,
that is, of G-graded vector spaces. Thus, an object of G

HMH is a G-graded vector
space M ∈ VectG with a two-sided H -action compatible with the grading in the
sense that |hmk| = h|m|k for h, k ∈ H and m ∈ M .

The category G
HMH is a fusion category. The tensor product is the tensor product

of CH -bimodules. Simple objects are parametrized by irreducible representations
of the stabilizers of right cosets of H in G. More precisely, let D ∈ H\G/H be
a double coset of H in G, let d ∈ D, and let S = StabH (d H) = H ∩ (d F H)
be the stabilizer in H of the right coset d H under the action of H on its right
cosets in G. Then the subcategory D

HMH ⊂
G
HMH , defined to contain those objects

the degrees of all of whose homogeneous elements lie in D, is equivalent to the
category Rep(S) of representations of S. The equivalence D

HMH → Rep(S) takes
M to (Md H )/H ∼= (M/H)d H/H , the space of those vectors in the quotient of M
by the right action of H whose degrees lie in the right coset of d. Details are
in [Zhu 2001; Schauenburg 2002a]. We will denote the inverse equivalence by
Fd : Rep(StabH (d H))→ Hd H

HMH , so that we have a category equivalence⊕
d

Rep(StabH (d H))
(Fd )d
−−−→

G
HMH

in which the sum runs over a set of representatives of the double cosets of H in G.
Of course D

HMH can be described by choosing a different representative of D. If
h ∈ H, then dh has the same right coset as d , and Fdh = Fd , while StabH (hd H)=
h F StabH (d H) and Fd(W )= Fhd(h FW ) for W ∈ Rep(StabH (dh)).

In the special case H = G, the above description, with the neutral element
representing the sole class of G in G, amounts to the (well-known) equivalence
Rep(G)∼= G

GMG sending V ∈ Rep(G) to V ⊗CG with the regular right G-action
and the diagonal left G-action. This is a monoidal category equivalence.

The category G
GYD = CG

CGYD of (left-left) Yetter–Drinfeld modules over CG has
objects the G-graded vector spaces with a left G-action compatible with the grading
in the sense that |gv| = g|v|g−1 for g ∈G and v ∈ V ∈ G

GYD. The category G
GYD is

the (right) center of the category GM of G-graded vector spaces: the half-braiding
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c : U ⊗ V → V ⊗ U between a graded vector space U and a Yetter–Drinfeld
module V is given by u⊗ v 7→ |u|v⊗ u. To calculate indicators using the “third
formula” we also need the fact that the canonical pivotal structure of G

GYD is given
by the ordinary vector space isomorphism V → V ∗∗, so that pivotal trace and
ordinary trace coincide. Finally, the ribbon automorphism θ of an object V ∈ G

GYD
is given by θ(v)= |v|v.

Simple objects of G
GYD are parametrized by irreducible representations of the

centralizers in G of elements of G. (In fact, this can be viewed as a special case
of the description of graded bimodules above, as we shall review in Example 4.7
below). More precisely, let g ∈ G and CG(g), the centralizer of g in G. Then, a
functor

Gg : Rep(CG(g))→ G
GYD

can be defined by sending V ∈ Rep(CG(g)) to the CG-module

IndG
CG(g)V = CG⊗CCG(g) V,

endowed with the grading given by |x ⊗ v| = xgx−1 for x ∈ G and v ∈ V. We
note the special case g = 1 which recovers the canonical (monoidal) inclusion
functor Rep(G)→ G

GYD. Summing over different elements, we obtain a category
equivalence ⊕

g

Rep(CG(g))
(Gg)g
−−−→

G
GYD.

The sum runs over a set of representatives of the conjugacy classes of G, and the
image of the functor Gg consists of those Yetter–Drinfeld modules, the degrees of
whose homogeneous elements lie in the conjugacy class of g. We note for later use
that the ribbon automorphism of Gg(V ) is θ(x⊗v)= (x Fg)(x⊗v)= xg⊗v= x⊗gv;
the trace of θm is therefore [G : CG(g)]χ(gm), where χ denotes the character of V.

As a final piece of notation, we will write 〈M, N 〉 := dimC(HomC(M, N )) for
objects M, N in a semisimple category.

3. The center and the adjoint

By a result of Müger [2003], the Drinfeld center Z(C) of a pivotal fusion category
C is a modular category, and the underlying functor Z(C)→ C has a two-sided
adjoint K. To handle the center of G

HMH and the adjoint functor K we use the fact
[Schauenburg 2001] that the center of a category of bimodules in a tensor category
C coincides, in many cases including the present one, with the center of C itself.

To be precise, we will use the “right center” Z(C) whose objects are pairs (V, c)
in which c : X ⊗ V → V ⊗ X is a half-braiding defined for any X ∈ C, and we
denote by K the adjoint functor of the underlying functor Z(C)→ C.
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Then, writing C = GM= VectG for the category of G-graded vector spaces, we
have a category equivalence

G
GYD ∼= Z(C)−→ Z(CHCCH )= Z

(G
HMH

)
which sends (N , c) ∈ Z(C) to an object of Z(CHCCH ) whose underlying right
CH -module is N ⊗CH, whose left CH -module structure is given by

CH ⊗ N ⊗CH
c⊗CH
−−−→ N ⊗CH ⊗CH

N⊗∇
−−−→ N ⊗CH,

and whose half-braiding (which we do not need) is induced by the half-braiding
of N.

Thus, we identify Z(GHMH ) =
G
GYD, and we identify the underlying functor

Z(GHMH )→
G
HMH with the functor

U : G
GYD 3 N −→ N ⊗CH ∈ G

HMH ,

where the obvious right CH -module N ⊗CH has left module structure given by
a(n⊗ b)= an⊗ ab and grading given by |n⊗ b| = |n|b.

Next, let g ∈ G, set C := CG(g), and let V ∈ Rep(C). We consider

UGg(V )= CG ⊗
CC

V ⊗CH ∈ G
HMH .

Let Xg be a set of representatives of the double cosets in H\G/C , giving the
decomposition G =

⊔
x∈Xg

H xC . Then each CH xC⊗
CC

V ⊗CH ⊂ CG⊗
CC

V ⊗CH
is a subobject in G

HMH , and we have

UGg(V )=
⊕
x∈Xg

CH xC ⊗
CC

V ⊗CH.

Note that the degrees of the homogeneous elements of CH xC ⊗CC V ⊗ H lie
in the double coset H(x F g)H, so that CH xC ⊗CC V ⊗ CH is in the image
of the functor FxFg. To calculate the preimage, observe first that the degree of
hxc⊗ v⊗ h′ ∈ CH xC ⊗CC V ⊗CH is (hx F g)h′, and thus is in (x F g)H if and
only if h ∈ StabH ((x F g)H)=: J. Hence

CH xC ⊗
CC

V ⊗CH = FxFg(CJ xC ⊗
CC

V ).

Next, observe that for j, ̃ ∈ J and c, c̃ ∈ C , we have j xc = ̃ xc̃ if and only if
̃−1 j = x F (c̃c−1), which implies that we have an isomorphism

CJ xC ⊗
CC

V 3 j xc⊗ v 7→ j ⊗ cv ∈ CJ ⊗
C[J∩(xFC)]

(x F V ).

Note that J∩(x FC)=StabH ((x F g)H)∩CG(x F g)= H∩CG(x F g)= H∩x FC .
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We have shown:

CH xC ⊗
CC

V ⊗CH = FxFg
(
IndStabH ((xFg)H)

H∩(xFC) ResxFC
H∩(xFC))(x F V )

)
,

whence

UGg(V )=
⊕
x∈Xg

FxFg
(
IndStabH ((xFg)H)

H∩(xFC) ResxFC
H∩(xFC)(x F V )

)
.

Let d ∈G and S = StabH (d H). Let Hd be a set of representatives of H/S. Thus
the double coset Hd H is the disjoint union Hd H =

⊔
h∈Hd

hd H; that is, Hdd is a
set of representatives of the right cosets contained in Hd H.

If x F g ∈ Hd H, then there is a unique h ∈ Hd such that (x F g)H = hd H;
thus, StabH ((x F g)H) = StabH (hd H) = h F S, and for a representation N of
StabH ((x F g)H) we have FxFg N = Fhd N = Fd(h−1

F N ). Again H ∩ (x F C)=
(h F S)∩ (x F C). Therefore,

(UGg(V ))Hd H =
⊕

Fhd
(
IndhFS

(hFS)∩(xFC) ResxFC
(hFS)∩(xFC)(x F V )

)
=

⊕
Fd
(
h−1
F
(
IndhFS

(hFS)∩(xFC) ResxFC
(hFS)∩(xFC)(x F V )

))
,

where the sum is over all x ∈ Xg and h ∈ Hd such that x F g ∈ hd H , and if
W ∈ Irr(S), then〈

UGg(V ),Fd(W )
〉
=

∑〈
h−1
F
(
IndhFS

(hFS)∩(xFC) ResxFC
(hFS)∩(xFC)(x F V )

)
,W

〉
=

∑〈
IndhFS

(hFS)∩(xFC) ResxFC
(hFS)∩(xFC)(x F V ), h FW

〉
.

For the adjoint K of U , this implies, by Frobenius reciprocity:〈
KFd(W ),Gg(V )

〉
=

∑〈
x−1
F
(
IndxFC

(hFS)∩(xFC) ReshFS
(hFS)∩(xFC)(h FW )

)
, V
〉
.

This means that we have calculated a formula for the adjoint K: denoting by C a
system of representatives for the conjugacy classes of G, we have

KFd(W )=
∑

Gg
(
x−1
F
(
IndxFCG(g)

(hFS)∩(xFCG(g)) ReshFS
(hFS)∩(xFCG(g))(h FW )

))
=

∑
GxFg

(
IndxFCG(g)

(hFS)∩(xFCG(g)) ReshFS
(hFS)∩(xFCG(g))(h FW )

)
,

where the sum is over all g ∈ C, x ∈Xg, and h ∈Hd such that x F g ∈ hd H . While
this is clearly not a particularly pleasant or practical formula, we can say something
in its favor: It expresses the functor K entirely in terms of the groups involved and
their representations, using, of course, the translation of group representations to
objects in the two categories involved via the functors F and G.
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4. Indicator formulas for group inclusions

We retain the notations of the previous section, and proceed to calculate the higher
Frobenius–Schur indicators of objects in G

HMH . This is based on the categorical
version of the “third formula” in [Kashina, Sommerhäuser and Zhu 2006, §6.4] that
calculates indicators in a fusion category C through the adjoint K.

The formula obtained above for the adjoint K : G
HMH →

G
GYD yields, via [Ng

and Schauenburg 2007a, Theorem 4.1], a formula for the higher indicators of the
simple objects of G

HMH . Since we are dealing with the right center, the relevant
formula [op. cit., Remark 4.3] is

νm(X)=
1
|G|

Tr
(
θ−m
K(X)

)
.

We proceed to use the information available on K to apply it.
First, let η′ be a character of (h F S)∩ (x FC), and χ = IndxFC

(hFS)∩(xFC)(η
′). Then

by a standard formula for induced characters,

χ(x F gm)=
1

|(h F S)∩ (x F C)|

∑
y∈xFC

yFxFgm
∈hFS

η′(y F x F gm)

=

{
[x F C : (h F S)∩ (x F C)]η′(x F gm) if x F gm

∈ h F S,
0 otherwise,

as elements in x F C commute with x F gm.
Let η be the character of W ∈ Rep(S), and let χ be the character of V :=

IndxFC
hFS∩xFC ReshFS

hFS∩xFC(h F η). Then

Tr
(
θm
GxFg(V )

)
= [G : x F C]χ(x F gm)

=

{
[G : (h F S)∩ (x F C)]η(h−1x F gm) if x F gm

∈ h F S,
0 otherwise.

By the formula for K(Fd(W )) obtained in the previous section, this finally implies
(using |(h F S)∩ (x F CG(g))| = |S ∩ (h−1x F CG(g)| = |S ∩CG(h−1x F g)|) that

νm(Fd(W ))=
∑ 1
|S ∩CG(h−1x F g)|

η(h−1x F gm),(1)

where the sum is over g ∈ C, x ∈ Xg, and h ∈ Hd such that x F g ∈ hd H and
x F gm

∈ h F S. Surely this sum is not pleasant to work with; it involves summing
over all conjugacy classes of the group and all representatives of certain double
cosets, as well as over the coset representatives in Hd , albeit that last sum involves
either no summand (for many combinations of g and x we might have x F g 6∈Hd H ),
or just one summand (the representative of the unique right coset containing x F g).
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We shall process it further using the observation

(2) Hd H =
⊔

g∈C, x∈Xg
xFg∈Hd H

H F (x F g)=
⊔

g∈C, x∈Xg
h∈Hd

xFg∈hd H

H F (h−1x F g).

For the first equality, one has to check when x F g and y F g, for x, y ∈ G, are in
the same orbit of the action of H on G by conjugation:

∃h ∈ H : h F (x F g)= y F g ⇐⇒ ∃h ∈ H : hxgx−1h−1
= ygy−1

⇐⇒ ∃h ∈ H : y−1hx ∈ CG(g)

⇐⇒ x ∈ H yCG(g),

while the second is an obvious reparametrization.
Thus, the set

(3) Rd = {h−1x F g | g ∈ C, x ∈ Xg, h ∈ Hd , x F g ∈ hd H}

is a set of representatives of the orbits of the action of H on Hd H by conjugation.
Moreover, Rd ⊂ d H. Thus, Rd is a set of representatives of the orbits of the action
of S on d H by conjugation. We have very nearly proved the main result of the
paper:

Theorem 4.1. Let G be a finite group, H ⊂G a subgroup, d ∈G, S = StabH (d H),
W ∈ Rep(S) with character η, and Fd(W ) the object of G

HMH corresponding to W.
Then

(4) νm(Fd(W ))=
1
|S|

∑
r∈d H
rm
∈S

η(rm)=
1
|S|

∑
h∈H

(dh)m∈S

η((dh)m).

Proof. Substituting (3) in the indicator formula (1) yields

(5) νm(Fd(W ))=
∑

r∈Rd
rm
∈S

1
|S∩CG(r)|

η(rm).

But for s ∈ S we have (s F r)m ∈ S⇐⇒ rm
∈ S, and η((s F r)m)= η(rm) whenever

rm
∈ S. Since S∩CG(r) is the stabilizer of r under the adjoint action of S, the first

equality in (4) follows. The second equality is a trivial reparametrization. �

In the following we keep the notations of Theorem 4.1.

Remark 4.2. Note that for r ∈ d H we have rm
∈ S⇐⇒ rm

∈ H. Thus we could
modify the conditions in the sums (4) and subsequent similar sums, but in the
examples that we treated, it seemed easier to check whether an element is in S than
to check whether it is in H.
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Remark 4.3. For m ∈ N, the elements

(6) µm(d) :=
1
|S|

∑
r∈d H
rm
∈S

rm
=

1
|S|

∑
h∈H

(dh)m∈S

(dh)m ∈ CS

are central in the group algebra CS, and νm(Fd(W ))= η(µm(d)).

Remark 4.4. If d ∈CG(H), then S=H, and for h ∈H we have (dh)m=dmhm
∈H

if and only if dm
∈ H, so that

(7) µm(d)=

dm 1
|H |

∑
h∈H

hm if dm
∈ H,

0 otherwise,

and therefore, since dm
∈ H is in the center of H ,

(8) νm(Fd(W ))=

{η(dm)

η(1)
νm(W ) if dm

∈ H,

0 otherwise.

The most obvious case of this is when d = 1; the image of F1 is the monoidal
subcategory H

HMH ⊂
G
HMH , which is monoidally equivalent to Rep(H). The

formula (8) can also be used to easily obtain examples where the higher indicators
are not real: the cyclic group G of order 9, its generator d , its subgroup H of order 3,
and a nontrivial irreducible character of the latter will do to obtain ν3(Fd(W )), a
nontrivial third root of unity.

Lemma 4.5. Let y ∈ S. Then

(9)
∑

χ∈Irr(S)

νm(Fd(χ))χ(y)= |{h ∈ H | (dh)m = y}|.

In fact the function ζm(y) = |{h ∈ H | (dh)m = y}| is easily seen to be a class
function on S, so one can verify (9) by taking its scalar product with an irreducible
character η. The left hand side gives the m-th indicator by the orthogonality relations,
the right hand side by (4).

Remark 4.6. Assume that H ⊂ G is part of an exact factorization, i.e., there
exists a subgroup L ⊂ G such that L H = G and L ∩ G = {1}. As pointed out
in [Schauenburg 2002b], the category G

HMH is then equivalent to the category of
modules over a bismash product Hopf algebra CL # CH. Thus, our results comprise
a method to calculate indicators for bismash product Hopf algebras (of which the
double below is a special case).

Example 4.7. Let 0 be a finite group, G = 0 × 0 with diagonal embedding
1 : 0→ 0×0, and H =1(0). It is well known that the category G

HMH
∼=
0
0M

0
0

is equivalent to the module category of the Drinfeld double of 0 (in fact this is a
special case of [Schauenburg 1994]).
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Let G be a cross section of the conjugacy classes of 0. Then {(γ, 1) | γ ∈G} is a
cross section of the double cosets of H in G. Let d= (γ, 1). Then S=StabH (d H)=
1(C0(γ )). Let h =1(θ) ∈ H and m ∈N. Then (dh)m = (γ θ, θ)m = ((γ θ)m, θm),
thus (dh)m ∈ S if and only if (γ θ)m = θm. Therefore, our indicator formula yields

(10) νm(Fd(W ))=
1

|C0(γ )|

∑
θ∈0

(γ θ)m=θm

η(θm).

This formula was obtained in [Kashina, Sommerhäuser and Zhu 2006]; see also
[Iovanov, Mason and Montgomery 2014], where the corresponding special case of
(9) can be found. Note that we can replace η by η since the indicators in this case
are known to be real.

In the proof of Theorem 4.1 we have obtained the simple looking indicator
formula (4) via the more complicated formula (5). But in fact the latter is, in some
respects, better than the former: it involves a sum over fewer terms, namely orbits
of the adjoint action of S instead of individual elements of d H. Of course, for
this simplification we could have taken any section of the orbits on d H instead of
Rd . In fact, we can also pass to orbits over a group different from S; also, it may
be convenient to take orbits in H of the action on H corresponding to the adjoint
action on d H :

Proposition 4.8. In the notation of Theorem 4.1, set E=CG(d)∩SCG(S)∩NG(H).
Then, SE = E S is a subgroup of G. Let S′ ⊂ SE be a subgroup, and let R′d be a
section of the orbits of d H under the adjoint action of S′ on d H. Then,

(11) νm(Fd(W ))=
1
|S|

∑
r∈R′d
rm
∈S

|S′|
|S′ ∩CG(r)|

η(rm).

Alternatively, let S′ act on H by “twisted conjugation” defined by the formula
s F̃ h = (d−1

F s)hs−1. Let T′d be a system of representatives of the orbits. Then,

(12) νm(Fd(W ))=
1
|S|

∑
h∈T′d

(dh)m∈S

|S′|
|S′ ∩CG(dh)|

η((dh)m).

Proof. Let x ∈ E and u ∈ S = H ∩ (d F H). Then x F u ∈ (x F H)∩ (xd F H) =
H ∩d F H = S since x F H = H and xd = dx by hypothesis. Thus E normalizes S,
and SE = E S is a subgroup of G. Now let x ∈ E and h ∈ H. Since x ∈ SCG(S),
we have (dh)m ∈ S if and only if x F (dh)m ∈ S; in fact, these two elements are
then conjugate in S. The condition x ∈ CG(d) implies x F (dh)m = (d(x F h))m,
and x ∈ NG(H) implies x F h ∈ H. Thus the action of S′ on d H is well defined,
and the condition rm

∈ S is invariant along the orbits, as well as the values η(rm)



188 PETER SCHAUENBURG

along those orbits where rm
∈ S. This implies (11), since S′∩CG(r) is the stabilizer

of r . Since s F (dh) = d(s F̃ h) for s ∈ S and h ∈ H, we obtain (12) by a simple
reparametrization. �

Remark 4.9. The previous result is perhaps the most useful if S′ ⊂ CG(d), so that
the twisted adjoint action coincides with the adjoint action. At any rate, it allows
us to replace H by a set of orbit representatives before passing to the nastier part of
the calculations involved in applying the indicator formula to concrete examples.

To set notation for subsequent calculations, let G be the set of orbits of G
under the adjoint action of S′, and S the image of S in G. We do not distinguish
notationally elements of G from those of G. We also let H̃ be the set of orbits of
the twisted adjoint action of S′ on H, and Q(d) :=

∑
h∈H h ∈ CH̃. Set

(13) T (d) :=
∑
h∈T′d

[S′ : S′ ∩CG(dh)]dh = d Q(d) ∈ CG.

Let CG 3 x 7→ x [m] ∈ CG be the linear map induced by taking m-th powers of
group elements. Let π :CG→CS be the linear projection annihilating G \ S. Then

(14) νm(Fd(W ))= η(µm(d)) with µm(d)=
1
|S|
π(T (d)[m]).

Of course µm(d) is just the image of µm(d) in CS.

5. Example calculations

Consider the symmetric group Sn and the subgroup Sm ⊂ Sn for m < n. For d ∈ Sn

the stabilizer StabSm (d Sn) = Sm ∩ d F Sm consists of those permutations σ ∈ Sm

for which d−1
F σ ∈ Sm . For d−1

F σ to fix every element greater than m it is
necessary and sufficient that σ fix every element k with d−1(k) 6∈ {1, . . . ,m}. Thus
StabSm (d Sm) = S{1,...,m}∩{d(1),...,d(m)} is a symmetric group. We have seen that in
general higher indicators for the objects of G

HMH are nonnegative rational linear
combinations of character values of the stabilizers StabH d H . Moreover, higher
indicators for any pivotal fusion category are cyclotomic integers.

Proposition 5.1. Let m < n. Then all values of the higher Frobenius–Schur indica-
tors for the objects of Sn

Sm
MSm

are integers.

The following example shows that this can fail if we embed Sm into Sn in a
different fashion.

Example 5.2. Consider

G = S9 ⊃ H = {σ ∈ S9 | i ≡ j (mod 3) ⇒ σ(i)≡ σ( j) (mod 3)},
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so H is the subgroup of those permutations in S9 that preserve conjugacy modulo 3.
Thus H ∼= S3 is generated by t = (123)(456)(789) and s = (12)(45)(78).

The element d = (147258369) ∈ S9 satisfies d3
= t , so in particular d−1

F t ∈ H.
On the other hand d−1

F s = (12)(45)(79), so d−1
F s 6∈ H because 1≡ 7 (mod 3)

while 2 6≡ 9 (mod 3). It follows that S = StabH (d H)= 〈t〉.
To compute µ3(d), first observe that d3

= (dt)3 = (dt2)3 = t . The computation
ds = (157369)(248) and (ds)3 = (13)(56)(79) 6∈ S shows that (dh)3 6∈ S for
h ∈ H \ {1, t, t2

}, since such h are conjugate to s by powers of t , which commute
with d. Thus µ3(d)= t .

In particular ν3(Fd(η))= ζ
−1 is not real when η(t)= ζ is a nontrivial third root

of unity.

We will now compute some of the indicator values for the canonically embedded
subgroups Sn−2 ⊂ Sn (as we shall see, this contains, in a sense, the case Sn−1 ⊂ Sn ,
or rather Sn−2 ⊂ Sn−1). We note already that all the indicator values we will find
are nonnegative.

For n ≥ 4, it is easy to check that Sn−2 has seven double cosets in Sn:

{σ ∈ Sn | σ(n−1)= n−1, σ (n)= n)} = Sn−2,

{σ ∈ Sn | σ(n−1) 6= n−1, σ (n)= n)},

{σ ∈ Sn | σ(n−1)= n−1, σ (n) 6= n)},

{σ ∈ Sn | σ(n−1)= n, σ (n)= n−1)},

{σ ∈ Sn | σ(n−1)= n, σ (n) 6= n−1)},

{σ ∈ Sn | σ(n−1) 6= n, σ (n)= n−1)},

{σ ∈ Sn | {σ(n−1), σ (n)}∩{n−1, n} =∅}.

A convenient set of double coset representatives is d1 = ( ), d2 = (n − 2, n − 1),
d3 = (n− 2, n), d4 = (n− 1, n), d5 = (n− 2, n− 1, n), d6 = (n− 2, n, n− 1), and
d7 = (n− 3, n− 1)(n− 2, n).

Note that d2 and d3 are conjugate by (n− 1, n). The same holds for d5 and d6.
We have StabSn−2(d2Sn−2) = StabSn−2(d5Sn−2) = Sn−3, StabSn−2(d7Sn−2) = Sn−4,
and StabSn−2(d4Sn−2)= Sn−2.

Note that every di commutes with the elements in StabSn−2(di Sn−2); this is
particular to our choice of representatives. It implies that the twisted conjugation
action of the stabilizers on the group Sn−2 from Proposition 4.8 is the ordinary
adjoint action.

Note further that d4 commutes with the elements of Sn−2. By Remark 4.4 it
follows that

(15) νm(F(n−1,n)(W ))=

{
νm(W ) if m is even,
0 if m is odd,



190 PETER SCHAUENBURG

for any W ∈ Rep(Sn−2), while νm(F( )(W ))= νm(W ).
Note also that d2 ∈ Sn−1. Thus, the indicators for objects in Fd2(Rep(Sn−2))

can also be viewed as indicators in the subcategory Sn−1
Sn−2

MSn−2
. The subgroup

Sn−2 ⊂ Sn−1 is part of an exact factorization, Sn−1 = Cn−1 · Sn−2, where Cn−1

denotes the cyclic group generated by the (n − 1)-cycle (1, 2, . . . , n − 1). As
remarked already, these indicators are indicators for modules over a bismash product
Hopf algebra CCn−2 #CSn−1. Observe that the exact factorization suggests a different
choice of coset representative, namely the (n− 1)-cycle instead of d2. We have the
feeling that d2 is the better choice since the (n− 1)-cycle does not commute with
elements in the corresponding stabilizer.

Since the images of Fd2 and Fd3 are mapped to each other by an autoequivalence,
as well as the images of Fd5 and Fd6 , we can concentrate on the indicators of the
objects in the images of Fdi for i = 2, 5, 7. We will treat some of them below for
small values of n.

S2 ⊂ S4. Consider H = 〈(1 2)〉 ⊂ G = S4. We have the following double coset
representatives, with their right cosets and double cosets:

i di di H \ {di } Hdi H \ di H StabH (di H)

1 ( ) (1 2) H
2 (2 3) (1 2 3) (1 3), (1 3 2) {( )}

3 (2 4) (1 2 4) (1 4), (1 4 2) {( )}

4 (3 4) (1 2)(3 4) H
5 (2 3 4) (1 2 3 4) (1 3 4), (1 3 4 2) {( )}

6 (2 4 3) (1 2 4 3) (1 4 3), (1 4 3 2) {( )}

7 (2 3)(1 4) (1 4 2 3) (1 4 2 3), (1 3 2 4) {( )}

We proceed to list the sequences of the higher Frobenius–Schur indicators for all
the simple objects of G

HMH in the images of the functors Fdi . These sequences are
periodic, and we list them for one complete period.

For d1, they are the sequences of the higher Frobenius–Schur indicators of the
representations of H, namely (1, . . . ) with period one for the trivial representation,
and (1, 0, . . . ) with period two for the nontrivial representation.

In all other cases, the only powers of the elements of di H that lie in the stabilizer
StabH (di H) are identity elements. (This requires only a glance for d4, as the
stabilizer itself is trivial in the other cases.) Thus, regardless of the choice of
representation also in the d4 case, the indicator νm counts how many of the two
m-th powers of the two elements of di H are trivial; the count is then divided by
two in the d4 case. Thus the indicator sequences, up to a full period, are
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(νm(Fdi (W )))m =


(0, 1, 1, 1, 0, 2, . . . ) for i = 2, 3,
(0, 1, . . . ) for i = 4,
(0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 2, . . . ) for i = 5, 6,
(0, 1, 0, 2, . . . ) for i = 7.

(Note that the case d4 was already treated above using Remark 4.4.)

S3 ⊂ S5. In this case we have the right cosets

i di di S3 \ {di }

1 () (12), (13), (23), (123), (132)
2 (34) (12)(34), (143), (243), (1243), (1432)
3 conjugate preceding row by (45)
4 (45) (12)(45), (13)(45), (23)(45), (123)(45), (132)(45)
5 (345) (12)(345), (1453), (2453), (12453), (14532)
6 conjugate preceding row by (45)
7 (2435) (14352), (15243), (25)(34), (143)(25), (152)(34)

We have

StabS3(di S3)=


S3 for i = 1, 4,
S2 = 〈(1 2)〉 for i = 2, 3, 5, 6,
{( )} for i = 7.

As indicated above, we will only treat the indicators for d2, d5, and d7.
One sees that for i = 2, the only possibility for a power of an element of di S3 to

be in StabS3(di S3) is if that power is trivial. The same is of course true for i = 7.
So the m-th indicators for the simple objects in the images of Fdi for i = 2, 7 do not
“see” the representations of StabS3(di S3), but only count the number of elements
whose orders divide m; the count has to be divided by 2 if i = 2. We have

νm(Fd2(W ))=


0, (m, 12)= 1,
1, (m, 12)= 2, 3,
2, (m, 12)= 4, 6,
3, (m, 12)= 12;

νm(Fd7(W ))=



0, (m, 60)= 1, 3,
1, (m, 60)= 2,
2, (m, 60)= 4, 5, 15,
3, (m, 60)= 6, 10,
4, (m, 60)= 12, 20,
5, (m, 60)= 30,
6, (m, 60)= 60.

Finally d5S3 contains one element, (1 2)(3 4 5), whose third power is in
StabS3(d5S3) \ {( )}. Powers of the other elements are only in the stabilizer when
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they are trivial. Thus, we obtain

µm(d5)= µm(d6)=



0 when (m, 60)= 1, 2,
1
2(( )+ (1 2)) when (m, 60)= 3,
( ) when (m, 60)= 4, 5, 6, 10,
2( ) when (m, 60)= 12, 20, 30,
1
2(3( )+ (1 2)) when (m, 60)= 15,
3( ) when (m, 60)= 60.

For the trivial representation W0 of 〈(1 2)〉, this yields

νm(Fd5(W0))= νm(Fd6(W0))=


0 when (m, 60)= 1, 2,
1 when (m, 60)= 3, 4, 5, 6, 10,
2 when (m, 60)= 12, 15, 20, 30,
3 when (m, 60)= 60.

For the nontrivial irreducible representation W1 of 〈(1 2)〉, we obtain

νm(Fd5(W1))= νm(Fd6(W1))=


0 when (m, 60)= 1, 2, 3,
1 when (m, 60)= 4, 5, 6, 10, 15,
2 when (m, 60)= 12, 20, 30,
3 when (m, 60)= 60.

S4 ⊂ S6. Since |S4| = 24, it seems worth reducing the size of calculations in
this case by considering orbits of S4 as outlined in Proposition 4.8. We will use
S′ = StabS4(di S4).

For i = 2, 5 the stabilizer is S3. The orbits of S4 under the adjoint action of S3

are obtained by subdividing the well-known conjugacy classes of S4 according to
the placement of the letter 4 in the respective cycle structure. Trusting details to the
reader, we state:

Q(di )= ( )+ 3(12)+ 3(14)

+ 2(123)+ 6(124)

+ 3(12)(34)

+ 6(1234).

From this we obtain

T ((45))= (45)Q((45))= (45)+ 3(12)(45)+ 3(154)

+ 2(123)(45)+ 6(1254)

+ 3(12)(354)

+ 6(12354)
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and
T ((456))= (456)Q((456))= (456)+ 3(12)(456)+ 3(1564)

+ 2(123)(456)+ 6(12564)

+ 3(12)(3564)

+ 6(123564).

Thus (omitting the neutral element and writing 3 := 3( ) ∈ CS, etc.),

µ2((45))= 1
6(1+ 3+ 2(123))= 1

3(2+ (123)),

µ3((45))= 1
6(3+ 3(12))= 1

2(1+ (12)),

µ4((45))= 1
6(1+ 3+ 2(123)+ 6)= 1

3(5+ (123)),

µ5((45))= 1,

µ6((45))= 1
6(1+ 3+ 3+ 2+ 3)= 2,

µ10((45))= 1
6(1+ 3+ 2(123)+ 6)= 1

3(5+ (123))= µ4((45)),

µ12((45))= 1
6(1+ 3+ 3+ 2+ 6+ 3)= 3,

µ15((45))= 1
6(3+ 3(12)+ 6)= 1

2(3+ (12)),

µ30((45))= 1
6(1+ 3+ 3+ 2+ 3+ 6)= 3= µ12((45)),

µ20((45))= 1
6(1+ 3+ 2(123)+ 6+ 6)= 1

3(8+ (123)),

µ60((45))= 4,

µ2((456))= 0,

µ3((456))= 1
6(1+ 3(12)+ 2)= 1

2(1+ (12)),

µ4((456))= 1
6(3+ 3)= 1,

µ5((456))= 1,

µ6((456))= 1
6(1+ 3+ 2+ 6)= 2,

µ10((456))= 1,

µ12((456))= 1
6(1+ 3+ 3+ 2+ 3+ 6)= 3,

µ15((456))= 1
6(1+ 3(12)+ 2+ 6)= 1

2(3+ (12)),

µ20((456))= 1
6(3+ 6+ 3)= 2

µ30((456))= 1
6(1+ 3+ 2+ 6+ 6)= 3,

µ60((456))= 4.

For d7, the calculations are even more tedious; we now need the S2-orbits of S4,
that is, the subdivision of the conjugacy classes of S4 according to the placement of
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the letters 3, 4 in the cycle structure. Thus,

Q((35)(46))= ( )+ (12)+ 2(13)+ 2(14)+ (34)

+ 2(123)+ 2(124)+ 2(134)+ 2(143)

+ (12)(34)+ 2(13)(24)

+ 2(1234)+ 2(1243)+ 2(1324)
and

T ((35)(46))= (35)(46)+ (12)(35)(46)+ 2(153)(46)+ 2(164)(35)+ (3645)

+ 2(1253)(46)+ 2(1264)(35)+ 2(15364)+ 2(16453)

+ (12)(3645)+ 2(153)(264)

+ 2(125364)+ 2(126453)+ 2(153264),
giving

µ2((35)(46))= µ3((35)(46))= 1,

µ4((35)(46))= 4,

µ5((35)(46))= 2,

µ6((35)(46))= 7,

µ10((35)(46))= 3,

µ12((35)(46))= 10,

µ15((35)(46))= 3,

µ20((35)(46))= 6,

µ30((35)(46))= 9,

µ60((35)(46))= 12.

In particular, the indicators of the two simples in the image of F(35)(46) are identical;
while for the other cases, we have to distinguish between the three irreducible
representations of S3, to wit, the trivial representation W0, the sign representation
W1, and the two-dimensional irreducible W2. We obtain:

object m (for νm)

di W j 2 3 4 5 6 10 12 15 20 30 60

W0 1 1 2 1 2 2 3 2 3 3 4
(45) W1 1 0 2 1 2 2 3 1 3 3 4

W2 1 1 3 2 4 3 6 3 5 6 8

W0 0 1 1 1 2 1 3 2 2 3 4
(456) W1 0 0 1 1 2 1 3 1 2 3 4

W2 0 1 2 2 4 2 6 3 4 6 8

(35)(46) any 1 1 4 2 7 3 10 3 6 9 12

S5 ⊂ S7. If we want to deal with the representations associated to d7 = (46)(57) as
in the preceding example, we calculate with a sum Q((46)(57)) with as many terms
as there are orbits in S5 of the adjoint action of S3. One can check that there are 28
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orbits. But we can reduce the task considerably (if not quite by half) by extending
the stabilizer to a larger group S′ as indicated in Proposition 4.8. As the element
(45)(67) commutes with d7 and StabS5(d7S5), and normalizes S5, we can choose
S′ = S3 · 〈(45)(67)〉. Thus, we get

Q((46)(57))= ( )+ 3(12)+ 6(14)+ (45)

+ 2(123)+ 12(124)+ 6(145)

+ 6(12)(34)+ 3(12)(45)+ 6(14)(25)

+ 12(1234)+ 12(1245)+ 6(1425)

+ 6(12)(345)+ 12(14)(235)+ 2(45)(123)

+ 12(12345)+ 12(12435)

with “only” 18 terms. We calculate

T ((46)(57))= (46)(57)+ 3(12)(46)(57)+ 6(164)(57)+ (4756)

+ 2(123)(46)(57)+ 12(1264)(57)+ 6(16475)

+ 6(12)(364)(57)+ 3(12)(4756)+ 6(164)(275)

+ 12(12364)(57)+ 12(126475)+ 6(164275)

+ 6(12)(36475)+ 12(164)(2375)+ 2(4756)(123)

+ 12(1236475)+ 12(1264375).

From here, we can go through all the divisors m of the exponent 420 of S7 to obtain
the elements µm and the indicators for the three irreducible representations of S3.
The Table 1 calculates µm in two stages, giving first an “unsimplified” version of
π(T [m]) in an attempt to hint at how this intermediate result can really be read off
quite directly from the expression for T obtained above.

For good measure, we shall also finish the calculations for d2 = (56) and d5 =

(567). In each case StabS5(di S5)= S4, and

Q(di )= ( )+ 6(12)+ 4(15)+ 8(123)+ 12(125)

+ 3(12)(34)+ 12(12)(35)+ 6(1234)+ 24(1235)

+ 8(123)(45)+ 12(125)(34)+ 24(12345).

Thus,

T ((56))= (56)+ 6(12)(56)+ 4(165)+ 8(123)(56)+ 12(1265)

+ 3(12)(34)(56)+ 12(12)(365)+ 6(1234)(56)+ 24(12365)

+ 8(123)(465)+ 12(1265)(34)+ 24(123465),
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Table 1. Indicator calculations on Im(F(46)(57))⊂
S7
S5
MS5

.
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and

T ((567))= (567)+ 6(12)(567)+ 4(1675)+ 8(123)(567)+ 12(12675)

+ 3(12)(34)(567)+ 12(12)(3675)+ 6(1234)(567)+ 24(123675)

+ 8(123)(4675)+ 12(12675)(34)+ 24(1234675).

Thus, we obtain the elements µm((56)) and µm((567)) listed in Table 2.
From this information, together with the character table of S4 given in Table 3,

one can then calculate all the indicator values for the simples in the images of F(56)

and F(567); see Table 4.

m µm((56)) µm((567))

2 1
14(5+ 4(123)+ 3(12)(34)) 0

3 1
2(1+ (12)) 1

8(3+ 2(12)+ (12)(34)+ 2(1234))
4 1

3(5+ (123)) 1
6(4+ 2(123))

5 1 1
2(1+ (12))

6 1
4(11+ (12)(34)) 1

4(7+ (12)(34))
7 0 1

10 1
12(17+ 4(123)+ 3(12)(34)) 1

12 4 3
14 1

12(5+ 4(123)+ 3(12)(34)) 1
15 1

2(3+ (12)) 1
8(7+ 6(12)+ (12)(34)+ 2(1234))

20 1
3(8+ (123)) 1

6(10+ 2(123))
21 1

2(1+ (12)) 1
8(11+ 2(12)+ (12)(34)+ 2(1234))

28 1
6(10+ 2(123)) 1

3(5+ (123))
30 1

4(15+ (12)(34)) 1
4(11+ (12)(34))

35 1 1
2(3+ (12))

42 1
4(11+ (12)(34)) 1

4(11+ (12)(34))
60 5 4
70 1

12(17+ 4(123)+ 3(12)(34)) 2
84 4 4

105 1
2(3+ (12)) 1

8(15+ 6(12)+ (12)(34)+ 2(1234))
210 1

4(15+ (12)(34)) 1
4(15+ (12)(34))

420 5 5

Table 2. µm((56)), µm((567)) ∈ CS4 for indicators in S7
S5
MS5

.
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( ) (12) (123) (12)(34) (1234)

η0 1 1 1 1 1
η1 1 −1 1 1 −1
η2 2 0 −1 2 0
η3 3 1 0 −1 −1
η4 3 −1 0 −1 1

Table 3. Character table of S4.

νm(F(56)(Wi )) νm(F(567)(Wi ))

m W0 W1 W2 W3 W4 W0 W1 W2 W3 W4

2 1 1 1 1 1 0 0 0 0 0
3 1 0 1 2 1 1 0 1 1 1
4 2 2 3 5 5 1 1 1 2 2
5 1 1 2 3 3 1 0 1 2 1
6 3 3 6 8 8 2 2 4 5 5
7 0 0 0 0 0 1 1 2 3 3

10 2 2 3 4 4 1 1 2 3 3
12 4 4 8 12 12 3 3 6 9 9
14 1 1 1 1 1 1 1 2 3 3
15 2 1 3 5 4 2 0 2 3 2
20 3 3 5 8 8 2 2 3 5 5
21 1 0 1 2 1 2 1 3 4 4
28 2 2 3 5 5 2 2 3 5 5
30 4 4 8 11 11 3 3 6 8 8
35 1 1 2 3 3 2 1 3 5 4
42 3 3 6 8 8 3 3 6 8 8
60 5 5 10 15 14 4 4 8 12 12
70 2 2 3 4 4 2 2 4 6 6
84 4 4 8 12 12 4 4 8 12 12

105 2 1 3 5 4 3 1 4 6 5
210 4 4 8 11 11 4 4 8 11 11
420 5 5 10 15 15 5 5 10 15 15

Table 4. Indicators on Im(F(56)), Im(F(567))⊂
S7
S5
MS5

.

The GAP [2014] code on the next page can be used to calculate the higher
indicators for objects in G

HMH for any finite group G and subgroup H available to
GAP. It uses the simple but inefficient formula (4). Moreover it is written in the most
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IndicatorForOneRep:=function(m,G,H,d,S,eta)
local h,sum;
sum:=0;
for h in H do

if (d*h)^m in S
then sum:=sum+((d*h)^(-m))^eta;

fi;
od;
return(sum/Size(S));

end;

IndicatorsForDoubleCoset:=function(G,H,d)
local S,eta,irreps,m;
S:=Intersection(H,H^(d^(-1)));
irreps:=Irr(S);
for m in DivisorsInt(Exponent(G)) do

Print(m,":");
for eta in irreps do

Print(IndicatorForOneRep(m,G,H,d,S,eta),",");
od;
Print("\n");

od;
end;

GAP code to compute indicators in G
HMH .

straightforward manner, makes hardly any attempt to reduce the load of calculations,
and blindly repeats the same steps several times instead. For the moment, we do
not pursue the quest to write better code (storing intermediate results such as the
elements µm instead of recalculating them for each representation), nor the task
to make use of the improved formula in Proposition 4.8 to speed up matters. The
clumsy code is sufficient to do any of the calculations done above “by hand” again
in seconds. Thus it could have been used to verify these results if the author had
had any reason to mistrust his capability to perform flawless computations. Also, if
the original calculations had contained errors, the GAP code could have been used
to track those down and possibly correct them.

As it stands, the code was also sufficiently efficient to check that the inclusions
S6 ⊂ S8 as well as S7 ⊂ S9 continue to produce only nonnegative indicator values.
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