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Let c � 0 and denote by K.H; c/ the set of all infinitesimal generators
G W H! C on the upper half-plane H such that lim supy!1 y � jG.iy/j � c.
This class is related to univalent functions f W H! H with hydrodynamic
normalization and appears in the so-called chordal Loewner equation.

In this paper, we generalize the class K.H; c/ and the hydrodynamic
normalization to the Euclidean unit ball in Cn. The generalization is based
on the observation that G 2K.H; c/ can be characterized by an inequality
for the hyperbolic length of G.z/.
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1. Introduction

One-parameter semigroups. Let Bn D fz 2 Cn j kzk < 1g be the Euclidean unit
ball in Cn. In one dimension we write D WD B1 for the unit disc.

Definition 1.1. A continuous one-real-parameter semigroup of holomorphic func-
tions on Bn is a map Œ0;1/ 3 t 7! ˆt 2 H.Bn;Bn/ satisfying the following
conditions:

(1) ˆ0 is the identity.

(2) ˆtCs Dˆt ıˆs for all t; s � 0.

(3) ˆt tends to the identity locally uniformly in Bn, when t tends to 0.
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Given such a semigroup fˆtgt�0 and a point z 2 Bn, the limit

G.z/ WD lim
t!0

ˆt .z/� z

t

exists and the vector field G W Bn! Cn, called the infinitesimal generator1 of ˆt ,
is a holomorphic function (see, e.g., [Abate 1992]). We denote by Inf.Bn/ the
set of all infinitesimal generators of semigroups in Bn. For any z 2 Bn, the map
w.t/ WDˆt .z/ is the solution of the initial value problem

(1-1)
dw.t/

dt
DG.w.t//; w.0/D z:

There are various characterizations of holomorphic functions G W Bn! Cn that
are infinitesimal generators; see [Reich and Shoikhet 2005, Section 7.3], [Bracci
et al. 2010, Theorem 0.2], [Bracci et al. 2014, p. 193].

The set Inf.D/, i.e., all infinitesimal generators in the unit disc, can be character-
ized completely by the Berkson–Porta representation formula [1978]

(1-2) Inf.D/D fz 7! .� � z/.1� N�z/p.z/ � 2 D;p 2H.D;C/
with Re.p.z//� 0 for all z 2 Dg:

Remark 1.2. Let F WD!D be a holomorphic self-map. Recall the Denjoy–Wolff
theorem (see, e.g., [Reich and Shoikhet 2005, Theorem 5.1]): If F is not an elliptic
automorphism (i.e., an automorphism with exactly one fixed point in D), then there
exists one point � 2 D (the Denjoy–Wolff point of F ) such that the iterates Fn

converge locally uniformly in D to the constant map � .
If fˆtgt�0 is a semigroup on D, then we call � 2 D the Denjoy–Wolff point of

fˆtgt�0 if � is the Denjoy–Wolff point ofˆ1, which is equivalent to limt!1ˆt D �

locally uniformly.
If an infinitesimal generator in the unit disc does not generate a semigroup of

elliptic automorphisms of D, then the point � 2D from formula (1-2) is exactly the
Denjoy–Wolff point of the semigroup.

There are two special cases of infinitesimal generators in D that have been studied
intensively and turned out to be quite useful in Loewner theory and its applications.
The two different cases arise from certain normalizations of the Berkson–Porta
data � and p from formula (1-2). In the radial case, one considers those elements
G 2 Inf.D/ whose Berkson–Porta data � and p satisfy

� D 0 and p.0/D 1;

i.e., G.z/D�zp.z/.

1There is no standard convention in the literature and often �G is called the infinitesimal generator
of the semigroup.
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This class plays a central role in studying the class S of all univalent functions
f W D ! C with f .0/ D 0, f 0.0/ D 1, via the powerful tools of Loewner’s
theory, which considers a nonautonomous version of (1-1); see, e.g., [Pommerenke
1975, Chapter 6]. The class of radial generators as well as the class S have been
generalized in this context to the polydisc Dn (see [Poreda 1987a; 1987b]), and to
the unit ball Bn (see [Graham and Kohr 2003] for a collection of several results
and references).

The second class, the set of all chordal generators2, consists of all G 2 Inf.D/
whose Berkson–Porta data � and p satisfy

� D 1 and † lim
z!1

p.z/

z� 1
is finite:

The aim of this paper is to introduce a generalization of the chordal class for the
unit ball Bn.

The hydrodynamic normalization in one dimension. Instead of fixing an interior
point, like in the class S , it can be of interest to investigate univalent self-mappings
of D that fix a boundary point. In this case, one usually passes from D to the upper
half-plane HD fz 2 C j Im.z/ > 0g.

A class of such mappings that is easy to describe and that appears in several
applications is the set of all univalent mappings f WH!H that fix the boundary
point1 and have the so-called hydrodynamic normalization. Basic properties of
this class can be found in [Goryaı̆nov and Ba 1992]; see also [Bauer 2005; Contreras
et al. 2010]. One of its main applications is the chordal Loewner equation; see
[Abate et al. 2010, Section 4] for further references.

A univalent function f W H! H has hydrodynamic normalization (at1) if f
has the expansion

f .z/D z�
c

z
C 
 .z/;

where c � 0, which is usually called half-plane capacity, and 
 satisfies

† lim
z!1

z � 
 .z/D 0:

We denote by P the set of all these functions. Then P is a semigroup and the
functional l WP! Œ0;1/, l.f /D c, is additive: if f1; f2 2P, then f1 ı f2 2P

and l.f1 ıf2/D l.f1/C l.f2/.

Remark 1.3. Let f 2 P with l.f / D c. If we transfer f to the unit disc by
conjugation by the Cayley transform, then we obtain a function Qf W D! D having

2 Note that there is no standard use of the words “radial” and “chordal” in the literature. In
[Contreras et al. 2010], e.g., an element G 2 Inf.D/ is called radial if � 2 D and chordal if � 2 @D.
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the expansion
Qf .z/D z�

c

4
.z� 1/3C Q
 .z/;

where † limz!1 Q
 .z/=.z� 1/3 D 0.

If fˆtgt�0 is a one-real-parameter semigroup contained in P with l.ˆ1/D a,
then it is easy to see that l.ˆt /D a � t . If H is the generator of this semigroup, then
we also define l.H / WD a.

We will be interested in the following set of chordal generators.

Definition 1.4. By K.H; c/ we denote the set of all infinitesimal generators H of
one-real-parameter semigroups fˆtgt�0 contained in P with l.H /� c.

Remark 1.5. The set K.H; c/ can be characterized in various ways; see [Goryaı̆nov
and Ba 1992, Section 1] and [Maassen 1992, Proposition 2.2].

It is known that H 2K.H; c/ for some c � 0 if and only if H maps H into H and

(1-3) lim sup
y!1

yjH.iy/j � c:

In fact, l.H /D lim supy!1 yjH.iy/j.
Furthermore, this is equivalent to H maps H into H and

(1-4) jH.z/j �
c

Im.z/

for all z 2 H. The number l.H / is the smallest constant such that this inequality
holds.

Finally, it is known that this property is equivalent to the fact that �G is the
Cauchy transform of a finite, nonnegative Borel measure � on R, i.e.,

(1-5) H.z/D

Z
R

�.du/

u� z
:

The number l.H / can be calculated by l.H /D �.R/.

Remark 1.6. It is easy to see that the following holds: if f 2 P with c D l.f /,
then H WD f � id 2 K.H; c/ with l.H /D c.

Let C WH!D, C.z/D .z�i/=.zCi/, be the Cayley map. We define K.D; c/ by

K.D; c/D fC 0.C�1/ � .H ıC�1/ jH 2 K.H; c/g:3

The rest of this paper is organized as follows: In Section 2 we look for an invariant
characterization of chordal generators, i.e., of the sets K.H; c/ and K.D; c/, and we
introduce the class K.Bn; c/ for the higher-dimensional unit ball. It will turn out to
be quite useful to study “slices” of this class, which is done in Section 3. In Section 4
we introduce and study the class Pn, a higher-dimensional analog of the class P.

3If fˆt gt�0 is a semigroup in H with generator H , then fC ıˆt ıC�1gt�0 is a semigroup in D

and its generator is given by C 0.C�1/ � .H ıC�1/.
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2. Chordal generators in higher dimensions

Invariant formulation for K.D; c/ and K.H; c/. For R> 0, we let ED.1;R/ be
the horodisc in D with center 1 and radius R, i.e.,

ED.1;R/D

�
z 2 D

ˇ̌̌
1

juD.z/j
<R

o
;

where uD.z/D�.1� jzj
2/=j1� zj2 is the Poisson kernel in D with respect to 1.

By using the Cayley map, we define analogously

EH.1;R/D C�1.ED.1;R//D
n
z 2 H

ˇ̌̌
1

Im.z/
<R

o
:

For z 2 D and a tangent vector v 2 C, we denote by jvjD;z the hyperbolic length
of v, i.e.,

jvjD;z WD
2jvj

1� jzj2
:

Furthermore, we let RD.z/ be the radius R of the horodisc ED.1;R/ that satisfies
z 2 @E.1;R/; in short, RD.z/D 1=juD.z/j. Analogously, for z 2H and v 2 C, we
define RH.z/ WD 1= Im.z/ and the hyperbolic length jvjH;z WD jvj= Im.z/.

According to (1-4), we know that H 2 K.H; c/ if and only if H maps H into H

and jH.z/j � c= Im.z/ for all z 2 H. By using the Berkson–Porta formula, it is
easy to see that we can rephrase this to: H 2K.H; c/ if and only if H 2 Inf.H/ and
jH.z/j � c= Im.z/ for all z 2 H.

The last inequality is equivalent to jH.z/j= Im.z/� c= Im.z/2 or

jH.z/jH;z �
c

Im.z/2
D c �RH.z/

2:

If we pass from H to D and transform H into G D C 0.C�1/ � .H ı C�1/,
then G satisfies jG.C.z//jD;C.z/DjH.z/jH;z and we immediately get the following
characterization.

Proposition 2.1. Let G 2 Inf.D/. Then

G 2 K.D; c/ () jG.z/jD;z � c �RD.z/
2 for all z 2 D:

Let H 2 Inf.H/. Then

H 2 K.H; c/ () jH.z/jH;z � c �RH.z/
2 for all z 2 H:

Chordal generators in the unit ball. For n2N, let un be the pluricomplex Poisson
kernel in Bn with pole at e1 WD .1; 0; : : : ; 0/, i.e.,

uBn;p D�
1�kzk2

j1� z1j
2
:
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The level sets of uBn
are exactly the boundaries of horospheres with center e1;

more precisely, the set

EBn
.e1;R/ WD fz 2 Bn j juBn

.z/j�1 <Rg; R> 0;

is the horosphere with center e1 and radius R.
Furthermore, for z 2 Bn and v 2 Cn, we denote by kvkBn;z the Kobayashi-

hyperbolic length of the vector v with respect to z.
Motivated by Proposition 2.1, we make the following definition.

Definition 2.2. Let c � 0. We define the class K.Bn; c/ to be the set of all infini-
tesimal generators G on Bn such that, for all z 2 Bn,

(2-1) kG.z/kBn;z �
c

uBn
.z/2

:

Remark 2.3. K.Bn; c/ is a compact family: Montel’s theorem and the definition
of K.Bn; c/ immediately imply that it is a normal family. If a sequence .Gn/ �

K.Bn; c/ converges locally uniformly to G W Bn! Cn, then G is holomorphic and
also an infinitesimal generator, which can be seen by using the characterization
given in [Bracci et al. 2010, Theorem 0.2]. Of course, G also satisfies (2-1) and we
conclude G 2 K.Bn; c/.

Just as we passed from D to H in one dimension, we can pass from the unit
ball Bn to the Siegel upper half-space HnD f.z1; Qz/ 2Cn j Im.z1/ > kQzk

2g in order
to get simpler formulas:

The Cayley map

C W Hn! Bn; C.z/D .C1.z/; : : : ;Cn.z//D

�
z1� i

z1C i
;

2z2

z1C i
; : : : ;

2zn

z1C i

�
;

maps Hn biholomorphically onto Bn. It extends to a homeomorphism from the
one-point compactification bHnDHn[@Hn[f1g of Hn[@Hn to the closure of Bn.

The pluricomplex Poisson kernel transforms as follows:

uHn
.z/ WD uBn

.C.z//D� Im.z1/CkQzk
2:

Thus, we define the horosphere EHn
.1;R/ with center1 and radius R> 0 by

EHn
.1;R/ WD

n
z 2 Hn

ˇ̌̌
Im.z1/�kQzk

2 >
1

R

o
:

For v 2 Cn and z 2 Hn, we let kvkHn;z be the Kobayashi hyperbolic length of v.
Let c�0. We define the class K.Hn; c/ to be the set of all infinitesimal generators

H on Hn satisfying the inequality

kH.z/kHn;z �
c

uHn
.z/2
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for all z 2 Hn. Then we have

K.Bn; c/D
˚
C 0.C�1/ � .H ıC�1/ jH 2 K.Hn; c/

	
:

From now on we will stay in the upper half-space Hn, where most of the compu-
tations we need take a simpler form.

3. Slices

Normalized geodesics and slices. For any H 2 Inf.Hn/, one can consider one-
dimensional slices by using the so-called Lempert projection devices; see [Bracci
and Shoikhet 2014, Section 3].

If w 2Hn, then there exists a unique complex geodesic passing through w and1.
Let us choose a parametrization ' WH!Hn of this geodesic. There exists a unique
holomorphic map P WHn!Hn with P2DP and P ı' D '. Define zP D '�1 ıP .
Then

h' W H! C; h'.�/D d zP .'.�// �H.'.�//;

is an infinitesimal generator on H; see [Bracci and Shoikhet 2014, p. 6].
We will need special parametrizations of these geodesics: In [Bracci and Patrizio

2005, p. 516], it is shown that for any complex geodesic ' WH!Hn with '.1/D1,
there exists a' > 0 such that

uHn
.'.�//D a' �uH.�/

for all � 2 H. Call a geodesic ' W H! Hn normalized if '.1/D1 and a' D 1.

Lemma 3.1. Let a 2 C and 
 2 Cn�1 such that .a; 
 / 2 Hn. Then the map

'
 W H! Hn; '
 .�/ WD .�C ik
k2; 
 /;

is a normalized geodesic through .a; 
 /. Furthermore, if H D .H1; zH / 2 Inf.Hn/,
then the slice h
 WD h'


of H with respect to '
 is given by

(3-1) h
 .�/DH1.'
 .�//� 2i N
T
� zH .'
 .�//:

Proof. Let  WD!Bn be a complex geodesic with  .1/D e1. As a parametrization
for  , one can choose (see [Bracci and Shoikhet 2014, Section 3])

 .�/D .˛2.� � 1/C 1; ˛.� � 1/ˇ/;

where ˛ > 0 and ˇ 2 Cn�1 such that kˇk2 D 1�˛2. Then

C�1. .�//D

�
i
2C˛2.� � 1/

˛2.1� �/
; iˇ=˛

�
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and

� 7! C�1
�
 .C1.�//

�
D

�
�i C

�C i

˛2
; iˇ=˛

�
D

�
�

˛2
C i

1�˛2

˛2
; iˇ=˛

�
D

�
�

˛2
C i





ˇ˛




2

; iˇ=˛

�
is a complex geodesic from H to Hn. A reparametrization (�=˛2 to �) and setting

 D iˇ=˛ gives the geodesic

(3-2) '
 .�/D .�C ik
k2; 
 /:

This complex geodesic is normalized because it satisfies '
 .1/D1 and

uHn
.'
 .�//D Im.�C ik
k2/�k
k2 D Im.�/D uH.�/:

The projection onto '
 .H/ is given by

(3-3) P .z1; Qz/D .z1� 2i N
T
� QzC 2ik
k2; 
 /:

Clearly, P is holomorphic and maps Hn onto '
 .H/ because

Im.z1� 2i N
T
� QzC 2ik
k2/D Im.z1/� 2 Im.i N
T

� Qz/C 2k
k2

� kQzk2� 2k
kkQzkCk
k2Ck
k2

D .k
k�kQzk/2Ck
k2 � k
k2:

Furthermore,

.P ıP /.z1; Qz/D .z1� 2i N
T
QzC 2ik
k2� 2i N
T 
 C 2ik
k2; 
 /

D .z1� 2i N
T
QzC 2ik
k2; 
 /D P .z1; Qz/:

Thus, the inverse zP W H2! H; zP D '�1

 ıP , is given by

zP .z1; Qz/D .z1� 2i N
T
QzC ik
k2/:

If H.z/D .H1.z/; zH .z// is a generator on Hn, we get the slice reduction

h'

.�/D d zP .'
 .�// �H.'
 .�//

DH1.'
 .�//� 2i N
T
� zH .'
 .�//: �

Some explicit formulas. Later on we will need explicit formulas of the Kobayashi
norms of dP .z/H.z/ and H.z/�dP .z/ �H.z/. The following lemma is proven in
the Appendix.
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Lemma 3.2. Let a 2 C;p; v 2 Cn�1 and z D .z1; Qz/ 2 Hn. Then the following
formulas hold: 


�a

0

�



Hn;z
D

jaj

juHn
.z/j

;(3-4)





�2i NpT v

v

�




Hn;z

D 2

q
kvk2 juHn

.z/jC j.p� Qz/T vj2

juHn
.z/j

;(3-5)





�a�2i QzT v

0

�
C

�
2i QzT v

v

�



2

Hn;z

D





�a�2i QzT v

0

�



2

Hn;z

C





�2i QzT v

v

�



2

Hn;z

:

(3-6)

By using Lemma 3.2 we obtain the following explicit expressions.

Lemma 3.3. Let H D .H1; zH / 2 Inf.Hn/ and fix z 2 Hn. Denote by P the
projection onto the complex geodesic through z and1. Then the following formulas
hold:

(3-7)
dP .z/ �H.z/D .H1.z/� 2i QzT zH .z/; 0/;

H.z/� dP .z/ �H.z/D .2i QzT zH .z/; zH .z//:

Furthermore,

kH.z/k2Hn;z
D kdP .z/ �H.z/k2Hn;z

CkH.z/� dP .z/ �H.z/k2Hn;z
;(3-8)

kdP .z/H.z/kHn;z D
jH1.z/� 2i QzT zH .z/j

juHn
.z/j

;(3-9)

kH.z/� dP .z/ �H.z/kHn;z D 2
k zH .z/kp
juHn

.z/j
:(3-10)

Proof. The formulas for dP .z/H.z/ and H.z/ � dP .z/H.z/ follow from the
explicit form (3-3).

Equation (3-8) follows from (3-6) with aDH1.z/ and v D zH .z/.
Furthermore, (3-9) follows directly from (3-4) with aDH1.z/�2i QzT zH .z/ and

(3-10) from (3-5) by setting p D Qz and v D zH . �

Slices of generators in K.Hn; c/ and examples.

Proposition 3.4. Let c � 0 and H 2 K.Hn; c/. Then every normalized slice h

of H belongs to K.H; c/.

Proof. Fix 
 2 Cn�1 and � 2 H and let z D '
 .�/.
Furthermore, let P be the projection onto '
 .H/. Now we write H.z/ as

H.z/D dP .z/ �H.z/C .H.z/� dP .z/H.z//:
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As H 2 K.Hn; c/, equation (3-8) implies

kH.z/k2Hn;z
D kdP .z/ �H.z/k2Hn;z

CkH.z/� dP .z/H.z/k2Hn;z
�

c2

uHn
.z/4

:

In particular,

(3-11) kdP .z/ �H.z/kHn;z �
c

uHn
.z/2

:

By the definition of the slice h
 , we have

dP .'
 .�// �H.'
 .�//D .d'
 /.�/ � h
 .�/;

and consequently

kdP .'
 .�// �H.'
 .z//kHn;'
 .�/ D k.d'
 /.�/ � h
 .�/kHn;'
 .�/ D jh
 .�/jH;� :

The last equality holds as '
 is a complex geodesic. Equation (3-11) implies

jh
 .�/jH;� �
c

uHn
.'
 .�//2

D
c

uH.�/2
;

where the last equality holds as '
 is normalized. Hence, h
 2 K.H; c/. �

Remark 3.5. If two holomorphic functions H1;H2 WHn!Cn have the same slices,
i.e., dP .z/H1.z/D dP .z/H2.z/ for all z 2 Hn, then H1 DH2; see the proof of
Theorem 3.2 in [Casavecchia 2010].

Example 3.6. The family fˆt .z/D .z1; e
�it=z1z2/gt�0 is a semigroup on H2. Its

generator H is given by

H.z1; z2/D

�
0;�i

z2

z1

�
:

Thus, for 
 2 C, the slice h
 has the form

h
 .z/D�2i N
 � �i



zC i j
 j2
D
�2j
 j2

zC i j
 j2
:

Consequently, the limit limy!1 y � jh.iy/j D 2j
 j2 exists, but does not have an
upper bound that is independent of 
 . Proposition 3.4 implies that for any c � 0,
H 62 K.H2; c/.

Example 3.7. Let

H W H2! C2; H.z1; z2/D

�
�1=z1

z2=2z2
1

�
:
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For 
 2 C, the slice h
 is given by

h
 .�/D
�1

�C i j
 j2
� 2i N
 �




2.�C i j
 j2/2

D
�� � 2i j
 j2

.�C i j
 j2/2
D
.�� � 2i j
 j2/. N�2� 2i j
 j2 N� � j
 j4/ˇ̌

�C i j
 j2
ˇ̌4 :

Let us write � D xC iy, x 2 R, y 2 .0;1/. Then a small calculation gives

Im.h
 .�//D
y.x2Cy2/C 4y2j
 j2C 5yj
 j4C 2j
 j6ˇ̌

�C i j
 j2
ˇ̌4 > 0:

Furthermore,
lim sup
y!1

yjh
 .iy/j D 1:

Hence, h
 2K.H; 1/. So each slice is an infinitesimal generator in H and by [Bracci
and Shoikhet 2014, Proposition 3.8], the function H is an infinitesimal generator
in H2.

Now let .z1; z2/ 2 H2 and write z1 D xC iy, x;y 2 R. Then we get

uH2
.z/4 � kH.z/k2H2;z

D .y � jz2j
2/2 �

x2Cy2C 3jz2j
2y

.x2Cy2/2

�
y�jz2j

2

y2
�
x2Cy2C 3y2

.x2Cy2/2
�

x2C 4y2

x2Cy2
� 4

(an explicit formula of the Kobayashi metric is given in the Appendix). Consequently,
H 2 K.H2; 2/.

Question 3.8. Let H W Hn ! Cn be an infinitesimal generator. Assume there
exists c � 0 such that h
 2 K.H; c/ for every 
 2 Cn�1. Does this imply that
H 2 K.Hn;C / for some C � c?

4. Univalent functions with hydrodynamic normalization

Motivated by Remark 1.6, we define the following generalization of the class P,
where id stands for the identity mapping on Hn.

Definition 4.1.

Pn WD
˚
f W Hn! Hn j f is univalent and f � id 2 K.Hn; c/ for some c � 0

	
:

Remark 4.2. It is important to note that if f W Hn ! Hn is a holomorphic self-
mapping, then the map f� id is automatically an infinitesimal generator; see [Reich
and Shoikhet 2005, p. 207].



214 SEBASTIAN SCHLEISSINGER

Basic properties of Pn. The following proposition summarizes some basic prop-
erties of Pn.

Proposition 4.3. (a) Pn contains no automorphism of Hn except the identity.

(b) Let ˛ WHn!Hn be an automorphism of Hn with ˛.1/D1. If f 2Pn, then
˛�1 ıf ı˛ 2Pn.

(c) Let f 2Pn. Then f .EHn
.1;R//�EHn

.1;R/ for every R> 0.

(d) Let f 2Pn and write f .z/D zCH.z/ with H D .H1; zH / 2K.Hn; c/. Then

(4-1) k zH .z/k2 � jH1.z/� 2i QzT zH j for all z D .z1; Qz/ 2 Hn:

(e) Let f 2Pn. Then there exists R> 0 such that EHn
.1;R/� f .Hn/.

Proof. The statements (a) and (b) can easily be shown by using the explicit form of
automorphisms of Hn; see [Abate 1989, Proposition 2.2.4].

The statement (c) is just Julia’s lemma: Write f .z/D zCH.z/ and let us pass
to the unit ball and define Qf W Bn! Bn; Qf D C ıf ıC�1. Then

Qf D
1

2i CH1.C�1.z//� z1H1.C�1.z//

��
.1� z1/H1.C

�1.z//

2.1� z1/ zH .C�1.z//

�
C 2iz

�
:

By taking the sequence zn D .1� 1=n; 0/, it is easy to see that

lim
n!1

Qf .zn/D e1 and lim
n!1

1�k Qf .zn/k

1�kznk
D 1,

i.e., e1 is a boundary regular fixed point of Qf with boundary dilatation coefficient�1.
Julia’s lemma (see [Abate 1989, Theorem 2.2.21]) implies that Qf .EBn

.e1;R//�

EBn
.e1;R/ for any R> 0.

Inequality (d) follows directly from (c): Let zD.z1; Qz/2Hn. Another formulation
of (c) is �uHn

.zCH.z//� �uHn
.z/, or more explicitly

Im.z1/CIm.H1.z//�kQzC zH .z/k2 � Im.z1/�kQzk
2

() Im.H1.z//� kQzC zH .z/k2�kQzk2 D 2Re.QzT zH .z//Ck zH .z/k2

() Im.H1.z/�2i QzT zH .z//� k zH .z/k2:

From this inequality it follows that k zH .z/k2 � jH1.z/� 2i QzT zH j for all z 2Hn.
Finally we prove (e):
Let f 2Pn and write f .z/D zCH.z/ with H 2 K.Hn; c/. Because of (c), f

maps the horosphere EHn
.1; 1/ into itself. Hence the statement is proven if we

can show that uHn
is bounded on f .@EHn

.1; 1//.
Let z 2 Hn with z 2 @EHn

.1; 1/, i.e., juHn
.z/j D 1. Furthermore, we choose

� 2 H and 
 2 C such that '
 .�/D z. Note that this implies juH.�/j D Im.�/D 1.
Let P be the projection onto '
 .H/.
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Then we have

juHn
.f .z//j D juHn

.zCH.z//j D
ˇ̌
uHn

.zC dP .z/H.z/„ ƒ‚ …
DW w

CH.z/� dP .z/H.z/„ ƒ‚ …
DW v

/
ˇ̌
:

As dP .z/ � dP .z/D dP .z/, we have dP .z/ � v D 0. A small calculation (see also
[Casavecchia 2010, Lemma 3.1]) gives v 2 T C

z @EHn
.1; 1/. Furthermore, also

w 2 '
 .H/ and dP .z/ D dP .w/ and we get v 2 T C
w@EHn

.1; juHn
.w/j�1/. As

EHn
.1; juHn

.w/j�1/D
˚
z 2 Hn j juHn

.z/j> juHn
.w/j

	
is convex, this implies

juHn
.wCv/j � juHn

.w/j D juHn
.zCdP .z/H.z//j D

Lemma 3.3
juHn

.zC.h
 .�/; 0//j

D Im.z1/�kQzk
2
CIm.h
 .�//� Im.z1/�kQzk

2
Cjh
 .�/j

D juHn
.z/jCjh
 .�/j D 1Cjh
 .�/j � 1C

c

Im.�/
D 1Cc:

Consequently, f .Hn/� f .EHn
.1; 1//�EHn

.1; 1C c/. �

Theorem 4.4. Pn is a semigroup: if f;g 2Pn, then f ıg 2Pn.

Proof. Let f;g 2Pn with F D .F1; zF / WD f � id;G D .G1; zG/ WD g� id and

kF.z/kHn;z �
c

uHn
.z/2

; kG.z/kHn;z �
d

uHn
.z/2

for all z 2 Hn. Let z D .z1; Qz/ 2 Hn and p D .p1; Qp/ WD zCG.z/.
From Remark 4.2, we know that f ıg� id is an infinitesimal generator on Hn.

It remains to estimate the hyperbolic metric of this generator. We have

k.f ıg/.z/�zkHn;z D kG.z/CF.zCG.z//kHn;z

� kG.z/kHn;zCkF.zCG.z//kHn;z �
d

uHn
.z/2
CkF.p/kHn;z

�
d

uHn
.z/2
Ck.F1.p/�2i QpT zF .p/;0/kHn;zCk.2i QpT zF .p/; zF .p//kHn;z :

Note that F1.p/� 2i QpT zF .p/ corresponds to the slice of F with respect to the
geodesic through p and infinity. Because of Proposition 3.4, we know that

jF1.p/� 2i QpT zF .p/j �
c

juHn
.p/j
�

c

juHn
.z/j

;

where the second inequality follows from Proposition 4.3 (c). Together with (3-4),
this implies

(4-2) k.F1.p/� 2i QpT zF .p/; 0/kHn;z D
j.F1.p/� 2i QpT zF .p/j

juHn
.z/j

�
c

uHn
.z/2

:
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It remains to show that there exists a constant C > 0 such that

k.2i QpT zF .p/; zF .p//kHn;z �
C

uHn
.z/2

:

First, (3-5) gives
(4-3)

k.2i QpT zF .p/; zF .p//kHn;z D 2

q
k zF .p/k2 juHn

.z/jC j. Qp� Qz/T zF .p/j2

juHn
.z/j

� 2

q
k zF .p/k2 juHn

.z/jC k. Qp� Qz/k2 � k zF .p/k2

juHn
.z/j

D 2
k zF .p/k

juHn
.z/j

q
juHn

.z/jC k zG.z/k2:

Now we differentiate between two cases.

Case 1: juHn
.z/j � 1. The equations (3-8) and (3-10) imply

2
k zF .p/kp
juHn.p/j

� k zF .p/kHn;p �
c

uHn
.p/2
I

thus

(4-4) k zF .p/k �
c

2juHn
.p/j3=2

�
c

2juHn
.z/j3=2

:

In the same way, we get

(4-5) k zG.z/k �
d

2juHn
.z/j3=2

:

Combining (4-4) with (4-3) gives

k.2i QpT zF .p/; zF .p//kHn;z �
c

juHn
.z/jjuHn

.z/j3=2

q
juHn

.z/jC k zG.z/k2

D
c

juHn
.z/j2

s
1C
k zG.z/k2

juHn
.z/j

�
(4-5)

c

juHn
.z/j2

s
1C

d2

4juHn
.z/j4

�
c
p

1C d2=4

juHn
.z/j2

:
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Case 2: juHn
.z/j�1. From (4-2) we know that jF1.p/�2i QpT zF .p/j� c=juHn

.z/j,
and (4-1) implies

k zF .p/k �

p
cp

juHn
.z/j

:

Similarly we get

k zG.z/k �

p
dp

juHn
.z/j

:

Hence, with (4-3) we obtain

k.2i QpT zF .p/; zF .p//kHn;z � 2

p
c

juHn
.z/j3=2

q
juHn

.z/jC k zG.z/k2

� 2

p
c

juHn
.z/j3=2

s
juHn

.z/jC
d

juHn
.z/j

D 2

p
c

juHn
.z/j2

q
uHn

.z/2C d

� 2

p
c

juHn
.z/j2

p
1C d : �

On the Loewner equation with a K.Hn; c/-Herglotz vector field. Let fˆtgt�0 be
a semigroup on Hn with generator H 2 K.Hn; c/. Next we will show that this
implies ˆt 2Pn for every t � 0.

In fact we can prove a little more by considering a nonautonomous version
of (1-1). To this end, let fHt W Hn! Cngt�0 be a K.Hn; c/-Herglotz vector field,
i.e., Ht 2 K.Hn; c/ for almost every t � 0 and the map t 7!Ht .z/ is measurable
for every z 2 Hn; see [Arosio and Bracci 2011, Definition 1.2]. In this case, one
can solve the nonautonomous version of (1-1), namely the Loewner equation

(4-6)
@'t .z/

@t
DHt .'t .z//; '0.z/D z 2 Hn;

which gives a family f'tgt�0 of univalent self-mappings of Hn; see [Arosio and
Bracci 2011, Theorem 1.4].

Theorem 4.5. If fHtgt�0 is a K.Hn; c/-Herglotz vector field and f'tgt�0 the
solution to (4-6), then 't 2Pn for every t � 0.

Proof. Firstly, for every t � 0 and R > 0, the map 't maps the horosphere
EHn

.1;R/ into itself, i.e.,

(4-7) juHn
.'t .z//j � juHn

.z/j

for every z 2 Hn. This can be seen as follows:
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First, consider the autonomous case Ht .z/ D J.z/ for every t � 0 and some
J 2 K.Hn; c/. Let G be the corresponding generator in the unit ball, i.e., G D

C 0.C�1/ � .J ıC�1/. Then G satisfies the inequality

kG.z/k � kG.z/kBn;z �
c

uBn
.z/2
D

cj1� z1j
4

.1�kzk2/2
:

Putting z D r � e1 gives

kG.re1/k �
c.1� r/4

.1� r2/2
D

c.1� r/2

.1C r/2
:

From this it follows immediately that

lim
.0;1/3r!1

G.re1/D 0 and lim
.0;1/3r!1

G1.re1/

r � 1
D 0:

Theorem 0.3 in [Bracci et al. 2010] implies that e1 is a boundary regular fixed point
for the generated semigroup with boundary dilatation coefficient 1. Hence we can
apply Julia’s lemma and obtain (4-7).

Now assume that Ht .z/ is piecewise constant with respect to time. By using the
previous case, we see that (4-7) also holds in this case.

Finally, for a general K.Hn; c/-Herglotz vector field Ht .z/, we can approximate
the solution 't by a sequence 't;n such that for each n, the family f't;ngt�0

solves (4-6) with a piecewise constant K.Hn; c/-Herglotz vector field. By using the
continuity of uHn

.z/, we see that (4-7) also holds for 't .
Let zD .z1; z2/2Hn and write 'tD .'1;t ; Q't /, HtD .H1;t ; zHt /. The mapping 't

satisfies the integral equation

't .z/D zC

Z t

0

Hs.'s.z// ds:

Similarly to the proof of Theorem 4.4, (4-4), we deduce from the fact that Ht 2

K.Hn; c/ for almost every t � 0 and equations (3-8) and (3-10) that

(4-8) k zHt .'t .z//k �
c

2juHn
.z/j3=2

for every z 2 Hn and almost every t � 0, and similarly to (4-2), we deduce that

(4-9)


.H1;t .'t .z//� 2i Q't

T
zHt .'t .z//; 0/




Hn;z
�

c

uHn
.z/2

for every z 2 Hn and almost every t � 0.
First we get

(4-10) k Q's � Qzk �

Z s

0

k zH� .'� .z//k d� �

Z s

0

c

2juHn
.z/j3=2

d� D
cs

2juHn
.z/j3=2

:
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Suppose juHn
.z/j � 1. Then we have

k't .z/�zkHn;z �

Z t

0

kHs.'s.z//kHn;z ds

�

Z t

0





�H1;s.'s.z//�2i Q's
T
zHs.'s.z//

0

�




Hn;z

ds

C

Z t

0





�2i Q's
T
zHs.'s.z//

zHs.'s.z//

�




Hn;z

ds

�
(4-9);(3-5)

Z t

0

c

uHn
.z/2

dsC

Z t

0

2
k zHs.'s.z//k

juHn
.z/j

q
juHn

.z/jCk Q's�Qzk2 ds

�
(4-8);(4-10)

Z t

0

c

uHn
.z/2

dsC

Z t

0

c

juHn
.z/j5=2

s
juHn

.z/jC
c2s2

4juHn
.z/j3

ds

D
ct

uHn
.z/2
C

Z t

0

c

juHn
.z/j2

s
1C

c2s2

4juHn
.z/j4

ds

�
ct

uHn
.z/2
C

Z t

0

c

juHn
.z/j2

p
1Cc2s2 ds

D c�
tC
R t

0

p
1Cc2s2 ds

uHn
.z/2

:

The case juHn
.z/j � 1 is treated similarly, compare with the proof of Theorem 4.4,

and we conclude that for every t � 0, there exists C > 0 such that k't .z/� zkHn
�

C=uHn
.z/2 for all z 2Hn. Together with Remark 4.2, this implies that 't 2Pn. �

Question 4.6. Let f 2P1. In [Goryaı̆nov and Ba 1992, Section 4], it is shown that
there exists a K.H; c/-Herglotz vector field Ht and a time T � 0 such that f D 'T ,
where f'tgt�0 is the solution of (4-6). What can be said in the higher-dimensional
case?

On the behavior of iterates. Let F WBn!Bn be holomorphic. We say that p 2Bn

is the Denjoy–Wolff point of F if Fn! p for n!1 locally uniformly. The basic
results about the behavior of the iterates Fn for n!1 can be found in [Abate
1989, Chapter 2.2]. In particular we have (Theorem 2.2.31)
(4-11)

F has a Denjoy–Wolff point on the boundary @Bn ” F has no fixed points.

Now let f 2Pn. For nD 1, f has the Denjoy–Wolff point1 if f is not the
identity: As f is not an elliptic automorphism, the classical Denjoy–Wolff theorem
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implies that f has a Denjoy–Wolff point. This point has to be1, e.g., because of
Proposition 4.3 (c).

Next we will show that this is also true in higher dimensions, provided that f
extends smoothly to the boundary point1. There are different possible definitions
of smoothness of f near1. We will use the following one: Let H.z/D f .z/� z,
and denote by G W Bn! Cn the corresponding generator on Bn; i.e., we have

H.z/D .C�1/0.C.z// �G.C.z//

and a small computation shows

H1.z/D�
i

2
.z1C i/2 �G1.C.z//:

Our smoothness condition will be that G1 has a C 3-extension to e1; i.e., we can
write

G1.z/D
X

k1C���Ckn�3
k1;:::;kn�0

ak1;:::;kn
.z1� 1/k1 � z

k2

2
� � � � � zkn

n CO.kz� e1k
3/;

which translates to

H1.z/D�
i

2
.z1C i/2�

X
k1C���Ckn�3

ak1;:::;kn

�
�2i

z1C i

�k1

�

�
2z2

z1C i

�k2

�� � ��

�
2zn

z1C i

�kn

CO.kC.z/�e1k
3/;

or
(4-12)
H1.z/D b0;:::;0�.z1Ci/2C.z1Ci/ �

X
k1C���CknD1

bk1;:::;kn
z

k2

2
�� � ��zkn

n

C

X
k1C���CknD2

bk1;:::;kn
z

k2

2
�� � ��zkn

n C.z1Ci/�1
�

X
k1C���CknD3

bk1;:::;kn
z

k2

2
�� � ��zkn

n

CO
�
jz1Ci j�1

�k.1;z2; : : : ;zn/k
3
�

for some coefficients bk1;:::;kn
2 C.

Theorem 4.7. Let f 2Pn; f 6D id, and assume that (4-12) is satisfied. Then1 is
the Denjoy–Wolff point of f .

Proof. Write f .z/ D z CH.z/, where H 2 K.Hn; c/ and H D .H1; zH /. Let

 2 Cn�1. If we can show that the slice h
 .�/DH1.'.�//� 2i N
T zH .'
 .�// has
no zeros, then we are done:
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This implies that H has no zeros because of (3-7) and (3-8). Hence, f has no
fixed points and (4-11) implies that f has a Denjoy–Wolff point. This point has to
be1 because of Proposition 4.3 (c).

Similarly to the proof of Theorem 4.4, (4-4), we have

k zH .z/k �
c

2juHn
.z/j3=2

;

and thus

k zH .'
 .�//k �
c

2juHn
.'
 .�//j3=2

D
c

2 Im.�/3=2
:

Consequently,

lim
y!1

yj N
T zH .'
 .iy//j D 0:

On the other hand, we know from Proposition 3.4 that h
 2K.H; c/, which implies
(see Remark 1.5)

lim sup
y!1

yjh
 .iy/j D lim sup
y!1

y
ˇ̌
H1.'.iy//� 2i N
T zH .'
 .iy//

ˇ̌
� c;

which gives us

(4-13) lim sup
y!1

jiy �H1.'
 .iy//j � c:

Now we use the assumption of the smoothness of H1:
Because of (4-13), all coefficients bk1;:::;kn

from (4-12) with k1C � � �C kn � 2

have to be 0. Thus,

lim
y!1

iy �H1.'
 .iy//DWK.
 /

exists and is a polynomial in 
 D .
2; : : : ; 
n/:

K.
 /D
X

k1C���CknD3

bk1;:::;kn



k2

2
� � � � � 
 kn

n :

As K.
 / is bounded, it has to be constant.
If K.
 /� 0, then all slices of H are zero; hence H D 0 by Remark 3.5 and f

is the identity, a contradiction.
Hence K.
 / is a nonzero constant and h
 .�/ is not identically zero, which

implies (e.g., by using the representation (1-5)) that h
 .�/ has no zeros. �

Question 4.8. Is1 the Denjoy–Wolff point for every f 2Pn?
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Appendix: Proof of Lemma 3.2

Lemma 3.2. Let a 2 C;p; v 2 Cn�1 and z D .z1; Qz/ 2 Hn. Then the following
formulas hold: 


�a

0

�



Hn;z
D

jaj

juHn
.z/j

;(3-4)





�2i NpT v

v

�




Hn;z

D 2

q
kvk2 juHn

.z/jC j.p� Qz/T vj2

juHn
.z/j

;(3-5)





�a� 2i QzT v

0

�
C

�
2i QzT v

v

�



2

Hn;z

D





�a� 2i QzT v

0

�



2

Hn;z

C





�2i QzT v

v

�



2

Hn;z

:

(3-6)

Proof. We write Qz D .z2; : : : ; zn/; v D .v2; : : : ; vn/;p D .p2; : : : ;pn/.
An explicit formula of the Kobayashi metric for the unit ball is given in [Abate

2004, Theorem 3.4].4 It coincides with the Bergman metric and by using the Cayley
map, we get the following formula for the upper half-space:

kwk2Hn;z
D wT

� .gj ;k/j ;k � Nw;

where w 2 Cn and .gj ;k/j ;k is an n� n-matrix with

gj ;k D�4
@2

@zj @Nzk

log
�

Im.z1/�

nX
lD2

jzl j
2

�
;

and we get for j ; k � 2,

g1;1 D
1

uHn
.z/2

; g1;k D
2izk

uHn
.z/2

; gj ;1 D
�2i Nzj

uHn
.z/2

;

gj ;j D 4
Im.z1/�

Pn
lD2;l 6Dj jzl j

2

uHn
.z/2

; gj ;k D
4zk Nzj

uHn
.z/2

; k 6D j:

The formulas (3-4) and (3-5) are now straightforward calculations. We obtain

k.a; 0/kHn;z D

q
.a; 0/ � .gj ;k/j ;k � .a; 0/

T D
p

a �g1;1 � NaD
jaj

juHn
.z/j

;

4Note, however, that the Kobayashi metric in [Abate 2004] differs by a factor of 2 from the one
we are using here.
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and

uHn
.z/2�k.2i NpT v;v/k2Hn;z

DuHn
.z/2�.2i NpT v;vT /�.gj ;k/j ;k �.2i NpT v;vT /T

DuHn
.z/2�

� nX
jD2

gj ;j jvj j
2
Cg1;1j2i NpT vj2

C

nX
jD2

gj ;1vj 2i NpT vC

nX
kD2

g1;k Nvj 2i NpT vC

nX
j ;k�2;j 6Dk

gj ;kvj Nvk

�

D 4

nX
jD2

.Im.z1/�kQzk
2/�jvj j

2
C4

nX
jD2

jzj j
2
�jvj j

2
C4

nX
j ;k�2

pj Npkvj Nvk

�4

nX
j ;k�2

Nzj pkvj Nvk�4

nX
j ;k�2

zj Npk NvjvkC4

nX
j ;k�2;j 6Dk

Nzj zkvj Nvk

D 4kvk2�juHn
.z/jC4

nX
jD2

zj Nzjvj Nzj

C4

nX
j ;k�2

.pj Npkvj Nvk�Nzj pkvj Nvk�zj Npk Nvjvk/C4

nX
j ;k�2;j 6Dk

Nzj zkvj Nvk

D 4kvk2�juHn
.z/jC4

nX
j ;k�2

.pj Npkvj Nvk�Nzj pkvj Nvk�zj Npk NvjvkCNzj zkvj Nvk/

D 4kvk2�juHn
.z/jC4j.p�Qz/T vj2:

For formula (3-6) we just need to show that

.2i QzT v; vT / � .gj ;k/j ;k � .a� 2i QzT v; 0/T D 0:

Indeed, we have

uHn
.z/2 � .gj ;k/j ;k � .a� 2i QzT v; 0/T

D . NaC 2i QzT
Nv;�2i Nz2 NaC 4Nz2 Qz

T
Nv; : : : ;�2i Nzn NaC 4Nzn Qz

T
Nv/T

and

.2i QzT v; vT /. NaC 2i QzT
Nv;�2i Nz2 NaC 4Nz2 Qz

T
Nv; : : : ;�2i Nzn NaC 4Nzn Qz

T
Nv/T

D 2i NaQzT v� 4jQzT
Nvj2� 2i NaQzT vC 4jQzT

Nvj2 D 0: �
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