Vol. 280, No. 2, 2016

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Topological Molino's theory

Jesús A. Álvarez López and Manuel F. Moreira Galicia

Vol. 280 (2016), No. 2, 257–314
Abstract

Molino’s description of Riemannian foliations on compact manifolds is generalized to the setting of compact equicontinuous foliated spaces, in the case where the leaves are dense. In particular, a structural local group is associated to such a foliated space. As an application, we obtain a partial generalization of results by Carrière and Breuillard–Gelander, relating the structural local group to the growth of the leaves.

Keywords
equicontinuous foliated space, equicontinuous pseudogroup, groupoid, germ, partial map, compact-open topology, local group, local action, growth
Mathematical Subject Classification 2010
Primary: 57R30
Milestones
Received: 22 May 2014
Revised: 9 November 2014
Accepted: 4 June 2015
Published: 28 January 2016
Authors
Jesús A. Álvarez López
Departamento de Xeometría e Topoloxía
Facultade de Matemáticas
Universidade de Santiago de Compostela
15782 Santiago de Compostela
Spain
Manuel F. Moreira Galicia
Departamento de Xeometría e Topoloxía
Facultade de Matemáticas
Universidade de Santiago de Compostela
15782 Santiago de Compostela
Spain