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Let φ : 0→ 0 be an automorphism of a group 0. We say that x, y ∈ 0 are
in the same φ-twisted conjugacy class and write x ∼φ y if there exists an
element γ ∈0 such that y= γ xφ(γ−1). This is an equivalence relation on 0
called the φ-twisted conjugacy. Let R(φ) denote the number of φ-twisted
conjugacy classes in 0. If R(φ) is infinite for all φ ∈ Aut(0), we say that
0 has the R∞-property.

The purpose of this note is to show that the symmetric group S∞, the
Houghton groups and the pure symmetric automorphism groups have the
R∞-property. We show, also, that the Richard Thompson group T has the
R∞-property. We obtain a general result establishing the R∞-property of
the finite direct product of finitely generated groups.

This is a sequel to an earlier work by Gonçalves and Kochloukova, in
which it was shown using the sigma theory of Bieri, Neumann and Strebel
that, for most of the groups 0 considered here, R(φ)=∞ where φ varies in
a finite index subgroup of the automorphisms of 0.

1. Introduction

Let 0 be a group and let φ : 0→ 0 be an endomorphism. Then φ determines an
action 8 of 0 on itself where, for γ ∈ 0 and x ∈ 0, we have 8γ (x) = γ xφ(γ−1).
The orbits of this action are called the φ-twisted conjugacy classes. We write x ∼φ y
if x and y are in the same φ-twisted conjugacy class. Note that when φ is the
identity automorphism, the orbits are the usual conjugacy classes of 0. We denote
by R(φ) the set of all φ-twisted conjugacy classes and by R(φ) the cardinality
#R(φ) of R(φ). We say that 0 has the R∞-property if R(φ)=∞, that is, if R(φ)
is infinite, for every automorphism φ of 0.

The problem of determining which groups have the R∞-property — more briefly
the R∞-problem — has attracted the attention of many researchers since it was
discovered that all nonelementary Gromov-hyperbolic groups have the R∞-property.
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See [Levitt and Lustig 2000; Felshtyn 2001]. It is particularly interesting when
the group in question is finitely generated or countable. The notion of twisted
conjugacy arises naturally in fixed point theory, representation theory, algebraic
geometry and number theory. In recent years the R∞-problem has emerged as an
active research area.

Recall that Houghton introduced a family of groups Hn , n ≥ 2, defined as
follows: let Mn := {1, 2, . . . , n}×N. Then the group Hn consists of all bijections
f : Mn→ Mn for which there exist integers t1, . . . , tn such that f ( j, s)= ( j, s+ tj )
for all s ∈ N sufficiently large and all j ≤ n. Note that necessarily

∑
1≤ j≤n tj =

0. Let Z =
{
(t1, . . . , tn) |

∑
1≤ j≤n tj = 0

}
⊂ Zn ∼= Zn−1. One has a surjective

homomorphism τ : Hn→ Z ∼= Zn−1 sending f to its translation part (t1, . . . , tn)
(with notation as above). It is easily verified that τ is surjective with kernel the
group of all finitary permutations of Mn . K. S. Brown [1987a] showed that Hn is
finitely presented for n ≥ 3 and that it is FPn−1 but not FPn . Note that the above
definition of Hn makes sense even for n = 1 and that we have H1 ∼= S∞. However,
we treat the group S∞ separately and we shall always assume that n ≥ 2 while
considering the family Hn .

Next we recall the group Gn , the group of pure symmetric automorphisms of the
free group Fn of rank n≥2. Fix a basis xk, 1≤k≤n, of Fn . Denote by αi j ∈Aut(Fn),
1≤ i 6= j ≤n, the automorphism defined as xi 7→ xj xi x−1

j , xk→ xk , 1≤ k≤n, k 6= i .
The group Gn is the subgroup of Aut(Fn) generated by αi j , 1≤ i 6= j ≤ n. McCool
[1986] showed that Gn is finitely presented where the generating relations are:

(i) [αi j , αkl] = 1 whenever i , j , k, l are all different;

(ii) [αik, αjk] = 1 and [αi jαk j , αik] = 1 whenever i , j , k are all different.

It was shown by Gonçalves and Kochloukova [2010] that R(φ)=∞ for all φ in
a finite index subgroup of the group of all automorphisms of 0 where 0 = Hn,Gn .
Our main result is the following theorem. We give two proofs for the case of
Houghton groups, neither of which use 6-theory. However, we still need to use the
results of [Gonçalves and Kochloukova 2010] in the case of Gn .

Theorem 1.1. The following groups have the R∞-property:

(i) the group S∞ of finitary permutations of N,

(ii) the Houghton groups Hn , n ≥ 2, and

(iii) the group Gn , n ≥ 2, of pure symmetric automorphisms of a free group of
rank n.

Recall that Richard Thompson constructed three finitely presented infinite groups
F ⊂ T ⊂ V around 1965 and showed that T and V are simple. The groups F ,
T , and V arise as certain homeomorphism groups of the reals, the circle, and the
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Cantor set respectively. Since then these constructions have been generalized by
G. Higman [1974]. See also Brown [1987a], R. Bieri and R. Strebel [2014], and
M. Stein [1992]. For an introduction to the Thompson groups F , T , V see [Cannon
et al. 1996].

Theorem 1.2. The Richard Thompson group T has the R∞-property.

As the group T is simple, 6-theory yields no information about the R∞-property.
The above theorem was first proved by Burillo, Matucci, and Ventura [Burillo
et al. 2013]. Shortly thereafter, Gonçalves and Sankaran [2013] also independently
obtained the same result.

In Section 2 we make some preliminary observations concerning the R∞-property
which will be needed for our purposes. Theorem 1.1 will be established in Section 3.
The R∞-property of the group T will be proved in Section 4. In Section 5 we con-
sider the R∞-property of finite direct products of groups and obtain a strengthening
of a result of Gonçalves and Kochloukova [2010].

This is a sequel to the paper [Gonçalves and Kochloukova 2010]. We reassure
the reader that this paper can be read independently of it. Although results from
[Gonçalves and Kochloukova 2010] are used, we develop our own proof techniques
to go forward.

Note. Just after this paper was submitted, J. H. Jo, J. B. Lee, and S. R. Lee [Jo et al.
2015] have announced almost simultaneously a proof of the R∞-property for the
Houghton groups.

If f : X→Y is a map of sets, we shall always write the argument to the right of f ;
thus f (x) denotes the image of x ∈ X under f .

2. Preliminaries

We begin by recalling some general results concerning twisted conjugacy classes
of an automorphism of a group and that of its restriction to a normal subgroup.
We obtain a criterion for a periodic automorphism to have infinitely many twisted
conjugacy classes. We shall also briefly recall the notion of the Bieri–Neumann–
Strebel invariant and give its known description in the case of Houghton groups
and the pure symmetric automorphism groups.

2A. Addition formula. The following addition formula is found in [Gonçalves and
Wong 2003, Lemma 2.1]. This is a special case of a more general formula proved
in [Gonçalves and Wong 2005, §2]. For any element g ∈ G, we shall denote by ιg
the inner automorphism x 7→ gxg−1 of G. When N is a normal subgroup of G,
we shall abuse notation and denote by the same symbol ιg the automorphism of N
obtained by restriction of ιg to N .
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Lemma 2.1. Suppose that we have a commutative diagram of homomorphisms of
groups where the vertical arrows are isomorphisms and horizontal rows are short
exact sequences:

1 → N i
−→ G p

−→ G/N → 1
↓ θ ′ ↓ θ ↓ θ̄

1 → N i
−→ G p

−→ G/N → 1

Then:

(i) One has an exact sequence of (pointed) sets R(θ ′) i∗−→R(θ) p∗−→R(θ̄)→ {0}.
That is, p

∗
is surjective and Im(i∗) equals p−1

∗
({N }).

(ii) (Addition formula) Suppose R(θ̄) <∞ and Fix(ιαN ◦ θ̄ )= {N } for all α ∈ G.
Then R(θ) < ∞ if and only if R(ιαθ ′) < ∞ for all α ∈ G. Moreover, the
following addition formula holds if R(θ) <∞: R(θ)=

∑
[αN ]∈R(θ̄)R(ιαθ

′). �

We omit the proof. Part (i) is trivial. As mentioned above, the addition formula
is also a known result. In any case, it can be proved in a straightforward manner. It
can also be proved easily using the fixed point version of the following six-term
exact sequence of sets due to P. R. Heath [2015, equation (2), p. 4] (cf. [Heath
1985, Theorem 1.8]), where ᾱ denotes αN ∈ G/N :

1→ Fix(ιαθ ′)→ Fix(ιαθ ′)→ Fix(ιᾱ θ̄ )→R(ιαθ ′)→R(ιαθ)→R(ιᾱ θ̄ )→ 1.

Remark 2.2. Note that if G/N ∼= Zn , n <∞, and if 1 is not an eigenvalue of the
matrix of θ̄ with respect to a basis of G/N , then, for any α ∈ G, we know that
Fix(ιαN ◦ θ̄ ) = Fix(θ̄) consists only of the trivial element. So the lemma implies
that if R(θ ′)=∞, then R(θ)=∞.

2B. Periodic outer automorphisms. Let 0 be a group with infinitely many con-
jugacy classes. Then, for any automorphism φ : 0→ 0 and any g ∈ G, we have
R(φ)= R(ιg◦φ) where ιg denotes the inner automorphism x 7→ gxg−1. Indeed, it is
readily seen that the φ-twisted conjugacy classes are the same as the left translation
by g of the ιg◦φ-twisted conjugacy classes. Thus 0 has the R∞-property if and only
if R(φ)=∞ for a set of coset representatives of Out(0)=Aut(0)/ Inn(0). We have
the following lemma. Compare with [Gonçalves and Sankaran 2013, Lemma 3.4].

Lemma 2.3. Let θ ∈ Aut(0) and let n ≥ 1. Suppose that {xn
| x ∈ Fix(θ)} is not

contained in the union of finitely many θn-twisted conjugacy classes of 0. Then
R(θ)=∞.

Proof. Let x ∼θ y in 0 where x, y ∈ Fix(θ). Thus there exists a z ∈ 0 such that
y = z−1xθ(z). Applying θ i to both sides, we obtain y = θ i (z−1)xθ i+1(z), since
x, y ∈Fix(θ). Write φ := θn . Multiplying these equations successively for 0≤ i <n,
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we obtain

yn
=

∏
0≤i<n

θ i (z−1)xθ i+1(z)= z−1xnθn(z)= z−1xnφ(z).

That is, yn
∼φ xn . Our hypothesis says that there are infinitely many elements

xk ∈ Fix(θ), k ≥ 1, such that the xn
k are in pairwise distinct φ-twisted conjugacy

classes of 0. Hence we conclude that R(θ)=∞. �

Remark 2.4. When θn
= ιγ is an inner automorphism, we see from the above

lemma that R(θ) =∞ if {xnγ | x ∈ Fix(θ)} is not contained in a finite union of
conjugacy classes of 0. When θn

= id, we see that R(θ)=∞ if Fix(θ) contains
elements of order k for arbitrarily large values of k ∈ N.

2C. 6-theory of Hn and Gn. Bieri, Neumann, and Strebel [Bieri et al. 1987] intro-
duced, for any finitely generated group 0, an invariant 6(0) which is a certain open
subset — possibly empty — of the character sphere S(0) := Hom(0,R) \ {0}/R>0

where the action of the multiplicative group of positive reals is via scalar multipli-
cation. The automorphism group Aut(0) acts on S(0) where φ∗ : S(0)→ S(0)
is defined as [χ ] 7→ [χ ◦ φ], [χ ] ∈ S(0), for φ ∈ Aut(0). This action preserves
the subspace 6(0) and hence also its complement 6c(0). If the image of the
antihomomorphism η : Aut(0)→ Homeo(6c(0)) defined as φ 7→ φ∗ is a finite
group, then K = ker(η) is a finite index subgroup of Aut(0) which fixes every
character class in 6c(0). This happens, for example, if 6c(0) is a nonempty finite
set. If 6c(0) contains a discrete character class [χ ], that is, a class represented
by a character χ whose image χ(0) ⊂ R is infinite cyclic, then it was observed
by Gonçalves and Kochloukova [2010] that the character χ itself is fixed by the
action of K on Hom(0,R). That is, χ ◦ φ = χ for all φ ∈ K ⊂Aut(0). This easily
implies that R(φ)=∞ by Lemma 2.1(i), taking G = 0, N = kerχ , θ = φ in the
notation of that lemma, so that θ̄ = id.

When 0 is Gn , n ≥ 3, the group of pure symmetric automorphisms of Fn ,
L. Orlandi-Korner [2000] has determined 6c(0). When 0 is Hn , the Houghton
group, Brown [1987b] computed the set 6c(0). Using these results, Gonçalves
and Kochloukova [2010], showed that if 0 is any one of the groups Hn , n ≥ 2,
Gm , m ≥ 3, then the image of η : Aut(0)→ Homeo(6c(0)) is finite.

In the case of the Houghton group Hn , n≥2, it turns out that6c(Hn) is a finite set
of discrete character classes [χ j ], 1≤ j ≤ n. Explicitly, χ j : Hn→ Z may be taken
to be−πi ◦ τ where τ : Hn→ Z is the translation part (see Section 1) and πi : Z→Z

is the restriction to Z ⊂Zn of the i-th projection (see [Brown 1987b]). (Recall from
Section 1 that Z =

{
(t1, . . . , tn)∈Zn

|
∑

1≤ j≤n tj =0
}
.) Thus Homeo(6c(Hn))∼= Sn

is finite and so is the image of η :Aut(Hn)→Homeo(6c(Hn)). As already remarked,
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R(φ)=∞ for all φ ∈ ker(η). The lemma below will not be used in this paper but
is included here for illustrative purposes.

Lemma 2.5. Suppose η(φ) :6c(Hn)→6c(Hn) is not an n-cycle. Then R(φ)=∞.

Proof. Since η(φ) is not an n-cycle, the orbit of [χ1] under η(φ) consists of at
most n− 1 elements. Since χ1 is discrete, the orbit of χ1 ∈ Hom(Hn,R) consists
of discrete elements. In fact, the orbit of χ1 is a subset of {χ j | 1 ≤ j ≤ n}. Now
the orbit sum λ :=

∑
1≤ j≤kχ1φ

j is a nonzero character since any n− 1 elements
of χ j , 1 ≤ j ≤ n, form a basis of Hom(Hn,R). It follows, since φ∗(λ) = λ, that
R(φ)=∞. �

If φ∗ :6c(Hn)→6c(Hn) is an n-cycle, the orbit sum is zero and the above argu-
ment fails. In fact, it is easily seen that every possible permutation of6c(Hn)may be
realized as η(φ) for some φ∈Aut(Hn); that is, η :Aut(Hn)→Homeo(6c(Hn))∼= Sn

is surjective.

3. Proof of Theorem 1.1

Let X be an infinite set. We will only be concerned with the case when X is
countably infinite. We shall denote by S∞(X) the group of all finitary permutations
of X , that is, those permutations which fix all but finitely many elements of X .
The group of all permutations of X will be denoted by S(X). We shall denote
S(X) (resp. S∞(X)) simply by Sω (resp. S∞) when X is clear from the context.
If x = (xk)k∈Z is a doubly infinite sequence in X of pairwise distinct elements,
we regard it as an element of S(X) where x(xk) = xk+1 and x(a) = a if a 6= xk

for all k ∈Z. Two such sequences x = (xk) and y= (yk) define the same permutation
if and only if y is a shift of x , that is, there exists an n such that xk = yk+n for all
k ∈ Z. Thus, the sequence x = (xk)k∈Z is just the infinite cycle x ∈ S(X). Any
f ∈ S(X) is uniquely expressible as a product of disjoint cycles. Such an expression
of f is its cycle decomposition. The cycle type of an f ∈ S(X) is the function
c( f ) :N∪{∞}→Z≥0∪{∞} where c( f )(α) is the number of α-cycles in the cycle
decomposition of f if that number is finite; otherwise it is∞ for α ∈ N∪ {∞}. As
in the case S∞(X), if f and g have the same cycle type, then they are conjugate
in S(X). We need a criterion for f and g to be conjugate by an element of S∞(X).

Lemma 3.1. Let x = (xk)k∈Z, y = (yk)k∈Z ∈ Sω(X) be two disjoint infinite cycles
and let (a, b) ∈ S∞.

(i) If a = x0, b = xk , k > 0, then (a, b)x = uv, where u = (uj )j∈Z ∈ Sω, v ∈ S∞
are disjoint cycles defined by

uj =

{
xj j < 0,
xj+k j ≥ 0,

and v = (x0, . . . , xk−1) ∈ S∞.
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(ii) If a = x0, b = y0, then (a, b)xy = uv, where u = (uj )j∈Z, v = (vj )j∈Z are
disjoint infinite cycles defined by

uj =

{
xj j < 0,
yj j ≥ 0,

and vj =

{
yj j < 0,
xj j ≥ 0.

�

If k ∈ N, we denote by N>k the set of all integers greater than k. Note that
S∞ =

⋃
k≥2 Sk where Sk is the subgroup consisting of permutations of N which fix

all n > k. In particular, the group S∞ is generated by transpositions (i, i+1), i ≥ 1.
The alternating group A∞ equals the commutator subgroup [S∞, S∞], has index 2
in S∞ and is simple. The conjugacy class of any element of S∞ is determined
by its cycle type, as in the case of finite symmetric groups. The group S∞ is a
normal subgroup of Sω = S(N). In particular, any bijection f : N→ N defines an
automorphism ιf ∈ Aut(S∞) by restricting the inner automorphism determined by
f ∈ Sω. Moreover ιf is the identity automorphism only if f equals the identity map.

The following result is well-known. See [Scott 1987, §11.4].

Theorem 3.2. The homomorphism ι : Sω→ Aut(S∞) is an isomorphism of groups.

The following corollary is a special case of a more general result established in
[Dixon and Mortimer 1996, Theorem 8.2A]. We include a proof, which is simpler
in our special case.

Corollary 3.3. Suppose that S∞ is a characteristic subgroup of a group H con-
tained in Sω. Then the automorphism group of H is isomorphic to the normalizer
N (H) of H in Sω. In particular, every automorphism of H is the restriction to H
of a unique inner automorphism of Sω.

Proof. We shall use the same symbol ιf to denote the conjugation by f ∈ Sω or its
restriction to any subgroup normalized by f .

It is evident that ι :N (H)→Aut(H) defined as f 7→ ιf defines an homomorphism.
(Here ιf (h)= f h f −1 for all h ∈ H .) This is a monomorphism since ιf is nontrivial
on S∞ ⊂ H if f is not the identity.

Let φ : H → H be any automorphism and let f ∈ Sω be the element such that
φ|S∞ = ιf . We claim that φ = ιf . Suppose that u := φ(h), ιf (h)= f h f −1

=: v for
some h ∈ H . We must show that u(i)= v(i) for all i ∈N. It suffices to show that
{u(i), u( j)}= {v(i), v( j)} for all i, j ∈N, i 6= j . Let i, j ∈N, i 6= j . Now consider
the transposition (a, b) ∈ S∞ such that ιf (a, b)= φ(a, b)= (i, j). We have

φ(h(a, b)h−1)= φ(h)φ(a, b)φ(h−1)= u(i, j)u−1
= (u(i), u( j)),

while

ιf (h(a, b)h−1)= ιf (h)ιf (a, b)ιf (h−1)= v(i, j)v−1
= (v(i), v( j)).
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Therefore (u(i), u( j))= (v(i), v( j))∈ S∞ since ιf and φ agree on S∞. This implies
that {u(i), u( j)} = {v(i), v( j)}, completing the proof. �

3A. S∞ has the R∞-property. Let θ ∈ Aut(S∞). In view of Theorem 3.2, θ = ιf
for some f ∈ Sω. Let x, y ∈ S∞ and suppose that y = zxθ(z−1)= zx f z−1 f −1 for
some z ∈ S∞. Then we have y f = z(x f )z−1 in Sω for some z ∈ S∞. For any cycle
(finite or infinite) u = (uj ), we have that zuz−1 is the cycle (z(uj )). Any z ∈ S∞
moves only finitely many elements of N. Hence when u is an infinite cycle we have
z(uj )= uj for all but finitely many j ∈ Z. For an arbitrary element u expressed as
a product of pairwise disjoint cycles, u(α) = (u(α)j ), the element zuz−1 being a
product of zu(α)z−1, we see that zu(α)z−1

= u(α) for all but a finitely many α,
and, moreover, if u(α)= (u(α)j )j∈Z) is an infinite cycle, then z(u(α)j )= u(α)j for
all but finitely many j ∈ Z.1

Lemma 3.4. If f ∈ Sω has an infinite cycle u, then there exist infinitely many
transpositions τk ∈ S∞ such that τj f 6= zτk f z−1 for any z ∈ S∞.

Proof. Fix an infinite cycle u = (uα)α∈Z that occurs in the cycle decomposition
of f . Let τα = (u0, uα), α≥ 1. Then we claim that τα f and τβ f are not conjugates
if α 6= β. To see this, we apply Lemma 3.1 to compute ταu, α ≥ 1. Note that the
cycles that occur in ταu also occur in the cycle decomposition of τα f . This is true
in particular of the infinite cycle, denoted v(α), that occurs in ταu.

Now v(α)p = v(β)p = up for all p < 0 and α, β ≥ 1, and, when α 6= β, we have
up+α = v(α)p 6= v(β)p = up+β , p≥ 0. This implies that the zv(β)z−1 cannot occur
in τα f for any z ∈ S∞ if α 6= β in its cycle decomposition, by the assertion made
in the paragraph above the statement of the lemma. Hence τα f 6= zτβ f z−1 for
any z ∈ S∞. �

We are now ready to prove part (i) of Theorem 1.1, restated below:

Theorem 3.5. The group S∞ has the R∞-property.

Proof. Let θ = ιf ∈ Aut(S∞) where f ∈ Sω. We need to show that there exist
pairwise distinct elements τj ∈ S∞, j ∈N, such that τj f 6= zτk f z−1 for any z ∈ S∞
if j 6= k. Since S∞ has infinitely many conjugacy classes, the assertion holds for
f ∈ S∞; thus we need only consider the case f /∈ S∞. In the cycle decomposition
of f , either (i) there exists an infinite cycle, or (ii) all the cycles are finite and there
are infinitely many of them.

Case (i). In this case the assertion has already been established in Lemma 3.4.

Case (ii). Suppose that f =
∏
α∈Nu(α) where the u(α) are all finite cycles having

length `(α) at least 2 for every α ∈ N. Let J := {α ∈ N | `(α)≥ 3}. We break up
the proof into two subcases depending on whether J is infinite or not.

1There is a mild abuse of notation here; u(α) is not to be confused with the value of u at α. We
will use Greek letters as labels in such situations.
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Subcase (a). J is infinite. Let Jk ⊂ J be the set consisting of the first k elements of J
(with respect to the usual ordering on J ⊂N). Write u(α)= (u(α)1, . . . , u(α)`(α))
and set U (α) := {u(α)i | 1≤ i ≤ `(α)}, α ∈N. Consider the collection of pairwise
disjoint transpositions λα = (u(α)1, u(α)2), α ∈ J , and let τk =

∏
α∈Jk

λα . Note that

λαu(α)= (u(α)1) · (u(α)2, . . . , u(α)`(α))= (u(α)2, . . . , u(α)`(α))

fixes only u(α)1 in the set U (α), as `(α) ≥ 3. Then τk ·
∏
α∈Jk

u(α) fixes only
u(α)1 ∈ N, α ∈ Jk , in the set

⋃
α∈Jk

U (α). Let F0 = Fix( f ). Then Fix(τk f ) =
F0 ∪ {u(α)1 | α ∈ Jk} =: Fk .

Suppose that τj f = zτk f z−1 with z ∈ S∞ and j 6= k. Then z defines a bijection
ζ : Fj → Fk between the fixed sets of τj f and τk f . Clearly this is a contradiction
if Fix( f )= F0 is finite. Assume that F0 ⊂ N is infinite. Since z is in S∞, it fixes
all but finitely many elements of F0. Let L := {m ∈ F0 | z(m) 6= m}. Note that
ζ restricts to the identity on F0 \ L . Therefore ζ restricts to a bijection between
L ∪{u(β)1 | β ∈ Jj } and L ∪{u(β)1 | β ∈ Jk}. Since j 6= k, we have that L is finite
and L ⊂ F0 is disjoint from {u(β)1 | β ∈ Jn}, n = j, k, which is a contradiction.

Subcase (b). The set J is finite; we set K = N \ J and define Kj , j ∈ N, to be the
set of first α elements of K . Again we set λα = (u(α)1), u(α)2) = u(α), α ∈ K .
Now, if α ∈ K , we have λαu(α)= id; that is, λαu( j) fixes both points of U (α). We
set τj :=

∏
α∈Kj

λα and Fj := Fix(τj f )= F0
⋃
α∈Kj

U (α). Arguing exactly as above,
for any z ∈ S∞, we see that τj f = zτk f z−1 implies j = k, completing the proof. �

3B. Houghton groups. As in the introduction, Hn , n ≥ 2, denotes the Houghton
group. We first describe the group of outer automorphisms of Hn . Recall from
Section 1 that one has an exact sequence

1→ S∞(Mn) ↪→ Hn
τ
−→ Z→ 1

where τ : Hn → Z sends f ∈ Hn to the translation part (t1, . . . , tn) ∈ Z of f .
The group S∞(Mn) is the commutator subgroup of Hn if n ≥ 3. When n = 2,
the commutator subgroup is the alternating group A∞(M2) which has index 2
in S∞(M2). In any case, S∞ = S∞(M) is characteristic in Hn as Hn/S∞ is the
maximal torsion-free abelian quotient of Hn .

Lemma 3.6. Let φ : Hn→ Hn , n ≥ 2, be an automorphism. Then φ is inner if and
only if φ̄ : Z→ Z is the identity automorphism.

Proof. It is trivial to see that any inner automorphism of Hn induces the identity
automorphism of Z . For the converse, suppose that φ : Hn → Hn induces the
identity automorphism of Z .

Let f ∈ S(Mn) be such that ιf (Hn)= Hn .
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Consider the element hp : Mn→ Mn , 1≤ p < n, in Hn defined as follows:2

hp(i, k)=


(p, k+ 1) if i = p, k ≥ 1,
(n, k− 1) if i = n, k > 1,
(p, 1) if i = n, k = 1,
(i, k) if i 6= p, n.

Thus hp permutes {p, n}×N in a single cycle,

hp = (. . . , (n, 2), (n, 1), (p, 1), (p, 2), . . . , (p, k), . . .),

and so f hp f −1 is the cycle

f hp f −1
= (. . . , f (n, 2), f (n, 1), f (p, 1), f (p, 2), . . . , f (p, k), . . .) ∈ Hn.

The only infinite cycles in Hn are those whose terms, except for a finite part of
the cycle, are consecutive numbers along two rays, say {in} ×N and {ip} ×N, in
the negative and positive directions respectively of the cycle f hp f −1. Therefore
we have τ( f hp f −1) = eip − ein . Moreover, there exist integers tn , tp such that
f (n, k) = (in, k + tn) and f (p, k) = (ip, k + tp) for sufficiently large k. Clearly
in and tn are independent of p. Since f is a bijection, the association p 7→ ip is a
permutation πf ∈ Sn , and consequently

∑
1≤q≤n tq = 0. Note that πf = id if and

only if f ∈ Hn .
Since S∞ is characteristic in Hn , by Corollary 3.3, φ= ιg for a unique g ∈ S(Mn).

We claim that g ∈ Hn . Since τ(ghg−1)= τ(φ(h))= τ(h) for all h ∈ Hn , we have
πg(q)= q for all q ≤ n and so we have g ∈ Hn . �

The group Sn acts on the set Mn = {1, . . . , n} ×N in the obvious manner, by
acting via the identity on N. This defines an action ψ of Sn on the group S(Mn)

defined as f 7→ σ ◦ f ◦ σ−1 which preserves the subgroup Hn . Thus we obtain
a homomorphism ψ : Sn→ Aut(Hn). It is readily seen that τ(ψσ (h)) = σ(τ(h))
for all h ∈ Hn , where σ acts on Z ⊂ Zn by permuting the standard basis elements
e1, . . . , en . In particular ψ is a monomorphism. Let ψ̄ : Sn → Out(Hn) be the
composition of ψ with the projection Aut(Hn)→ Out(Hn).

Proposition 3.7. The homomorphism ψ̄ : Sn→Out(Hn) is an isomorphism and so
Aut(Hn)= Inn(Hn)o Sn ∼= Hn o Sn .

Proof. Lemma 3.6 shows that ψ̄ is a monomorphism. We shall show that it is
surjective.

Let φ ∈ Aut(Hn). Write φ = ιf for a (unique) f ∈ S(Mn). With notation as in
the proof of Lemma 3.6, let π := πf ∈ Sn .

2The element (p, k) ∈ Mn should not be confused with the transposition in S(N).
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Consider the automorphism ψ−1
π φ =: θ . We have

τ(θ(hp))=π
−1(τ (φ(hp)))=π

−1(τ ( f hp f −1))=π−1(eπ(p)−eπ(n))=ep−en=τ(hp)

for 1≤ p < n. Since the group Z is generated by τ(hp), 1≤ p < n, it follows by
Lemma 3.6 that θ is inner. Hence ψ̄(π)= φ (mod Inn(Hn)).

Finally, note that Inn(Hn)∼= Hn since the center of Hn is trivial. �

The above description of Aut(Hn) has been obtained by Burillo, Cleary, Martino,
and Röver [Burillo et al. 2014, Theorem 2.2] and also by Cox [2014, §2.2]. All the
proofs make essential use of Theorem 3.2 and Corollary 3.3. The proof given by
Burillo et al. and our proof seem to be based on the same idea, although conceived
of independently.

Theorem 3.8. The Houghton group Hn has the R∞-property for any n ≥ 2.

We shall give two proofs for part (ii) of Theorem 1.1, restated above. The first
one uses the structure of the automorphism group of Hn and is more direct. The
second one uses the result of Theorem 3.5 and the addition formula (Lemma 2.1).

First proof. Observe that there are infinitely many conjugacy classes in Hn since
two elements in S∞ = S∞(Mn) ⊂ Hn are conjugates in Hn only if they have the
same cycle type. It follows that R(φ)=∞ for any inner automorphism φ of Hn .
Therefore, to show that R(φ)=∞ for an arbitrary φ ∈Aut(Hn), it suffices to show
that R(φ)=∞ for all φ in a set of coset representatives of elements of Out(Hn).
Thus we need only show that R(ψσ )=∞ for any σ ∈ Sn , where ψ : Sn→Aut(Hn)

is as defined in the paragraph above Proposition 3.7. We shall use Lemma 2.3 and
Remark 2.4 to achieve this.

For k ≥ 1, consider the element ξk which is defined as the product of k-cycles
((i, 1), . . . , (i, k)) ∈ Hn , 1≤ i ≤ n. Explicitly,

ξk(i, j)=


(i, j + 1) if 1≤ j < k,
(i, 1) if j = k,
(i, j) if j > k,

for all i ≤ n. Then ξk is fixed by ψσ for every σ ∈ Sn . Thus, {ξ n
k | k ≥ 1} contains

elements of arbitrarily large orders and so by Remark 2.4 it follows that R(ψσ )=∞
for all σ ∈ Sn , completing the proof. �

Second proof. Consider the exact sequence 1→ S∞(Mn)→ Hn → Z → 0. As
remarked already, S∞(Mn) is characteristic in Hn and we have Z ∼= Zn−1. Thus
any automorphism θ of Hn restricts to an automorphism θ ′ of S∞(Mn) and in-
duces an automorphism θ̄ of Z . If R(θ̄) = ∞ then, by Lemma 2.1(i), we have
R(θ) = R(θ̄) =∞. Now suppose that R(θ̄) <∞. Then Fix(θ̄) = 0. Since Z is
abelian and since R(θ ′)=∞ by Theorem 3.5, the addition formula (Lemma 2.1(ii))
yields R(θ)= R(θ ′)=∞, completing the proof. �
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3C. The group of pure symmetric automorphisms. Recall that Gn ⊂ Aut(Fn),
n ≥ 2, denotes the group of pure symmetric automorphisms of the free group Fn of
rank n. A presentation for Gn , obtained by McCool [1986], was recalled in Section 1.
It is immediate from this presentation that the abelianization Gab

n = Gn/[Gn,Gn]

is isomorphic to Zn2
−n with basis the images ᾱi j , 1 ≤ i 6= j ≤ n. We denote by

{χi j | 1≤ i 6= j ≤ n} the basis of Hom(Gab
n ,Z) dual to the basis {ᾱi j | 1≤ i 6= j ≤ n}.

We shall denote by the same symbol χi j the composition Gn→ Gab
n

χi j
−→Z ↪→ R.

We will assume that n ≥ 3, leaving out G2 which is isomorphic to a free group of
rank 2 and which is known to have the R∞-property.

We begin by recalling the explicit description of 6c(Gn) due to Orlandi-Korner
[2000].

Let Ai j :=Rχi j+Rχ j i and Bi jk :=R(χi j−χk j )+R(χ jk−χik)+R(χki−χ j i ), with
i , j , k pairwise distinct. Note that Ai j = Aj i and Bi jk = Bpqr if {i, j, k} = {p, q, r}.
Let S be the union of vector subspaces S =

⋃
Apq ∪

⋃
Bi jk ⊂ Hom(Gn,R) where

the unions are over all pairs of distinct numbers p, q ≤ n and all pairwise distinct
numbers i, j, k ≤ n. It was shown by Orlandi-Korner [2000] that 6c(Gn) is the
image of S \ {0} ⊂ Hom(Gn,R) \ {0}.

Let Sn denote the semidirect product Cn
2 o Sn where Sn acts on Cn

2 by permuting
the coordinates. Here C2 = {1,−1}. The group Sn acts effectively on Fn , the free
group with basis {x1, . . . , xn} where π ∈ Sn permutes the generators: we have the
equality π(xj )= xπ( j), 1≤ j ≤ n, and the action of the k-th factor of Cn

2 is given
by the automorphism tk(xk) = x−1

k , tk(xj ) = xj , j 6= k. Thus Sn is a subgroup
of Aut(Fn). It is readily verified that Sn normalizes Gn: tkαi, j t−1

k =α
−1
i, j if k= j and

equals αi, j otherwise; if π ∈ Sn , then παi, jπ
−1
=απ(i),π( j) for all i , j . In particular,

π∗(Ai j )= Aπ(i)π( j) and π∗(Bi jk)= Bπ(i)π( j)π(k) for all π ∈ Sn . Thus we have the
following lemma:

Lemma 3.9. Let n ≥ 3. The action of the group Sn ⊂Aut(Fn) on Hom(Gn,R) and
on 6c(Gn) is defined by π∗(χi, j ) = χπ(i),π( j), t∗(χi, j ) = ti tjχi, j , for all π ∈ Sn ,
t = (t1, . . . , tn) ∈ Cn

2 . �

The following proposition is a refinement of a statement in the proof of [Gonçalves
and Kochloukova 2010, Theorem 4.11].

Proposition 3.10. There exists a surjective homomorphism η : Aut(Gn)→ Sn such
that φ∗(χi, j )= εi, jχσ(i),σ ( j), 1≤ i 6= j ≤ n, where εi, j ∈ {1,−1} and σ = η(φ)∈ Sn .
In particular, Aut(Gn)∼= K o Sn where K = ker(η).

Proof. We see that φ∗ preserves the collections of subspaces A :={Ai j |1≤ i< j≤n}
and B := {Bi jk | 1< i < j < k≤ n}, since φ∗ is a linear isomorphism of Hom(Gn,R)

and since φ∗ :6c(Gn)→6c(Gn) is a homeomorphism. Note that B is nonempty
since n ≥ 3. In our notation Apq , Bpqr , it is not assumed that p < q < r .
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It is readily seen that (Apq + Ars)∩ Bi jk = 0 unless {p, q, r, s} = {i, j, k}. On
the other hand (Ai j + Aik)∩ Bi jk = R(χk,i −χ j,i ). It follows that φ∗ preserves the
collection of 1-dimensional spaces C := {R(χk,i −χ j,i ) | i, j, k pairwise distinct}.

Let φ∗(Ai j ) = Apq , φ∗(Aik) = Ars , where i , j , k are pairwise distinct. Then
{p, q} ∩ {r, s} is a singleton, say s = p — so that φ∗(Aik) = Apr — and we have
φ∗(Bi jk) = Bpqr . For, otherwise, (Ai j + Aik)∩ Bi jk is one-dimensional, whereas
φ∗((Ai j + Aik)∩ Bi jk)= (Apq + Apr )∩φ

∗(Bi jk)= 0.
In view of the fact that φ∗ stabilizes C, we have

φ∗(χk,i −χ j,i )= a(χr,p −χq,p). (∗)

On the other hand, we have χk,i ∈ Aik and so φ∗(χk,i ) ∈ φ
∗(Aik) = Apr and so

φ∗(χk,i ) = bχp,r + cχr,p for some b, c ∈ R; similarly, φ∗(χ j,i ) = b′χq,p + c′χp,q

for some b′, c′ ∈ R. Therefore,

φ∗(χk,i −χ j,i )= bχp,r + cχr,p − b′χq,p − c′χp,q . (∗∗)

Comparing (∗) and (∗∗) we see that b = 0 = c′, that is, φ∗(χk,i ) = cχr,p and
φ∗(χ j,i ) = b′χq,p. Since φ∗ : Hom(Gn;R)→ Hom(Gn,R) preserves the lattice
Hom(Gn,Z) and since χk,i , χ j,i are part of a Z-basis of Hom(Gn,Z), we see that
c, b′ =±1.

To complete the proof, we define the permutation σ ∈ Sn associated to φ∈Aut(Gn)

as σ(i)= p (with notation as above). Note that σ is indeed a bijection since φ∗ is an
isomorphism. We define η :Aut(Gn)→ Sn by η(φ)=σ . Then η is a homomorphism
of groups. It is surjective since its restriction to Sn⊂Sn is the identity by Lemma 3.9.
This also shows that η splits, completing the proof. �

Remark 3.11. It seems plausible that there exists a surjective homomorphism
τ : Aut(Gn)→ Sn that satisfies φ∗(χi, j ) = ti tjχσ(i),σ ( j), 1 ≤ i 6= j ≤ n, where
τ(φ)= (t1, . . . , tn)∈Cn

2 , σ = η(φ)∈ Sn . This would imply that Aut(Gn)∼= N oSn

for a suitable subgroup N ⊂ Aut(Gn).

The above proposition says that the matrix of φ∗, with respect to the basis
{χi, j | 1≤ i 6= j} (ordered by, say, the lexicographic ordering of the indices i , j ), is
of the form φ∗ = DP where D is a diagonal matrix with eigenvalues ±1 and P is
a permutation matrix.

Lemma 3.12. Let T = DP where D, P ∈ Mm(R) are such that D is a diagonal
matrix and P is a permutation matrix. If P = P1 · · · Pk is a cycle decomposition
then there exist eigenvectors v1, . . . , vk which are linearly independent.

Proof. The cycle decomposition allows us to express Rn as a direct sum V1⊕· · ·⊕Vk

where Vj is spanned by {ei | Pj (i) 6= i}. Specifically, if Pj = (i1, . . . , ik). Then
vj :=ei1+di1ei2+· · ·+di1 · · · dik−1eik , which is the sum of the vectors in the DP-orbit
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of ei1 , is an eigenvector of T with eigenvalue di1 · · · dik . Evidently v1, . . . , vk are
linearly independent. �

We will use the above lemma to construct two linearly independent eigenvectors
of φ∗ (with further properties that are relevant for our purposes). Let σ = η(φ) 6= id
and φ∗ = DP with D diagonal and P a permutation transformation (with respect
to the basis {χi, j }). Suppose that σ has a k-cycle in its cycle decomposition, where
k > 2. Choose any i that occurs in the k-cycle and let j := σ(i). Then χi, j and χ j,i

do not occur in the same orbit of DP and therefore vi, j :=
∑

0≤r<k(DP)r (χi, j )

and vj,i :=
∑

0≤ j<k(DP)rχ j,i are eigenvectors of the same eigenvalue ε ∈ {1,−1}.
Without loss of generality, we assume that i = 1, j = 2 and define v1,2 =: u,
v2,1 =: v. Suppose there is no such k-cycle in σ . Then σ is a product of disjoint
transpositions. Without loss of generality, suppose that the transposition (1, 3)
occurs in the decomposition. Since n > 2, either σ has a fixed point, say 2, or
n > 3 and, say, the transposition (2, 4) occurs in the decomposition. In the first
case, u := χ1,2+ d1,2χ3,2 and v := χ2,1+ d2,1χ2,3 are eigenvectors of P and in the
latter case, u := χ1,2+d1,2χ3,4 and v := χ2,1+d2,1χ4,3 are eigenvectors of P . Thus
in all cases, χ1,2 occurs in u and χ2,1 occurs in v where u, v are eigenvectors of φ∗.
If 1 is an eigenvalue of φ∗, then φ̄ has a nonzero fixed element and so R(φ)=∞.
Assume that φ∗(u)=−u, φ∗(v)=−v. Then there exist elements β, γ ∈ Gn such
that φ̄(β̄) = −β̄, φ̄(γ̄ ) = −γ̄ , where ᾱ1,2, ᾱ2,1 occur in β̄, γ̄ respectively, with
coefficient 1.

Denote by 02 := 02(Gn) the commutator subgroup of Gn and by 03 := 03(Gn)

the subgroup [Gn, 02] ⊂ 02. Thus Gn/03 is a two-step nilpotent group and we have
the following exact sequences:

1→ 03→ Gn→ Gn/03→ 1,

1→ 02/03→ Gn/03→ Gn/02→ 1.

Since 02 and 03 are characteristic in Gn , any automorphism of Gn restricts to
automorphisms of 02 and 03 and hence induces automorphisms of the quotients
G/03, 02/03 and Gn/02 = Gab

n .
Let θ ∈Aut(Gn/03) be the automorphism defined by φ and θ ′, the restriction of θ

to 02/03. With notation as above, [β, γ ]03∈02/03 satisfies θ ′([β, γ ]03)=[β, γ ]03.
By using the addition formula (Lemma 2.1), we conclude that R(θ)=∞, provided
[β, γ ]/03 is of infinite order. Granting this for the moment, by the first part of
the same lemma we conclude that R(φ)=∞ using the first exact sequence above.
Since φ ∈ Aut(Gn) was arbitrary, we conclude that Gn has the R∞-property. So all
that remains is to show that [β, γ ]03 is not a torsion element.

We use the fact that, under the surjection ψ : Gn → G2 that maps αi, j to αi, j

when {i, j} = {1, 2} and the remaining αi, j to 1, we have that 0k maps onto 0k(G2),
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k = 2, 3. Let β2, γ2 ∈ G2 be the images of β, γ respectively under ψ . Then
β̄2 = ᾱ1,2, γ̄2 = ᾱ2,1 ∈ Gab

2 . Therefore, [β2, γ2]03(G2)= [α1,2, α2,1]03(G2). Since
G2 is a free group with basis {α1,2, α2,1} we see that [α1,2, α2,1]03(G2) generates
an infinite cyclic group. Hence the same is true of [β, γ ]03. This completes the
proof of part (iii) of Theorem 1.1, which is restated below:

Theorem 3.13. The group Gn , n ≥ 2, has the R∞-property. �

4. The Thompson group T

Recall from Section 1 the description of the Richard Thompson group T as the group
of all orientation-preserving piecewise linear homeomorphisms of S = I/{0, 1}
with slopes in the multiplicative group generated by 2 ∈ R>0 and break points in
Z[1/2]. We regard the Thompson group F as the subgroup of T consisting of
elements which fix the element 1∈S1. In this section we prove the following result.

Theorem 4.1 [Burillo et al. 2013; Gonçalves and Sankaran 2013]. The Richard
Thompson group T has the R∞-property.

The fact that T has the R∞-property was proved first by Burillo, Matucci, and
Ventura [Burillo et al. 2013] (see also [Gonçalves and Sankaran 2013]). The crucial
point in the proofs of the result above is the same in both of these papers and
both the proofs rely on the description of the outer automorphism of T (recalled
in Theorem 4.2 below). However, since the approaches before getting to the main
point are slightly different, we provide our proof here which may contain some
features that are useful for other situations (such as in Remark 4.7 below).

It is readily seen that the reflection map r defined as r(x) = 1− x , x ∈ [0, 1],
induces an automorphism ρ : T → T defined as ρ( f )= r ◦ f ◦ r−1

= r ◦ f ◦ r . We
now state the following result of Brin.

Theorem 4.2 [Brin 1996]. The group of inner automorphisms of T is of index 2
in Aut(T ) and the quotient group Out(T ) is generated by ρ.

As observed in Section 2B, for any group 0 and any automorphism φ ∈ Aut(0),
and any g ∈ 0, it is true that R(φ)=∞ if and only if R(φ ◦ ιg)=∞. Therefore, to
establish the R∞-property for 0, it is enough to show that R(φ)=∞ for a set of
coset representatives of Out(0). In the case 0 = T , in view of Theorem 4.2 due
to Brin, we need only show that R(ρ)=∞ and R(id)=∞. The latter equality is
established in Proposition 4.5 as an easy consequence of Lemma 4.4 below. Since
ρ2
= id, we may apply Remark 2.4 to show that R(ρ)=∞. The main idea is to

make use of homeomorphisms in Fix(ρ), whose supports have an arbitrarily large
number of disjoint intervals in S1. (This was also the idea used in the proof by
Burillo, Matucci, and Ventura [Burillo et al. 2013].)
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Definition 4.3. Let X be a Hausdorff topological space.

(i) The support of f ∈Homeo(X) is the open set supp( f ) := {x ∈ X | f (x) 6= x}.

(ii) Let σ : Homeo(X)→ N∪ {∞} be defined as follows: σ(id) = 0, if f 6= id;
σ( f ) is the number of connected components of supp( f ), if that number is
finite; otherwise σ( f )=∞.

Lemma 4.4. Let 0 ⊂ Homeo(X) and let σ be as defined above. Suppose that
θ ∈ Homeo(X) normalizes 0. Then σ( f )= σ(θ f θ−1).

Proof. It is clear that the number of connected components of an open set U ⊂ X
remains unchanged under a homeomorphism of X . The lemma follows immediately
from the observation that supp(θ f θ−1)= θ(supp( f )). �

Proposition 4.5. The groups F and T have infinitely many conjugacy classes.

Proof. This follows from Lemma 4.4 on observing that F has elements f for which
σ( f ) is any prescribed positive integer. Since F ⊂ T , the same is true of T . �

Lemma 4.6. Suppose that h :R→R is an orientation-preserving homeomorphism.
Then supp(h)= supp(hk) for any nonzero integer k.

Proof. Since supp(h)= supp(h−1) we may assume that k> 0. Since h is orientation-
preserving, it is order-preserving. Suppose x ∈ supp(h) so that h(x) 6= x , and
suppose x < h(x). Then applying h to the inequality we obtain h(x)< h2(x) so that
x < h(x) < h2(x). Repeating this argument yields x < h(x) < · · ·< hk(x) and so
x ∈ supp(hk). The case when x > h(x) is analogous. Thus supp(h)⊂ supp(hk). On
the other hand, if x /∈ supp(h), then h(x)= x and so hk(x)= x for all k. Therefore,
equality should hold, completing the proof. �

Proof of Theorem 4.1. By Theorem 4.2, Out(T ) ∼= Z/2Z is generated by ρ. By
Proposition 4.5, R(id)=∞. It only remains to verify that R(ρ)=∞. We apply
Remark 2.4 with θ = ρ, n = 2, γ = 1. It remains to show that Fix(ρ) has infinitely
many elements h such that the h2 are pairwise nonconjugate.

Let k ≥ 1. Let fk ∈ F ⊂ T be such that supp( fk) is a subset of (0, 1/2) which
has exactly k components. Thus, σ( fk) = k. (It is easy to construct such an
element.) Then supp(ρ( fk))= supp(r fkr−1)= r(supp( fk))⊂ (1/2, 1) is disjoint
from supp( fk)⊂ (0, 1/2). In particular, we have fk · ρ( fk)= ρ( fk) · fk =: hk and
supp(hk) = supp( fk)∪ r(supp( fk)) and so σ(hk) = 2k. Moreover, since ρ2

= 1,
we see that hk ∈ Fix(ρ). By Lemma 4.6, we have σ(h2

k)= σ(hk)= 2k. It follows
that h2

k are pairwise nonconjugate in T , completing the proof. �

Remark 4.7. In the case of the generalized Thompson groups Tn,r , suppose that
θ ∈ Aut(Tn,r ) is a torsion element, say of order m. Then our method of proof of
Theorem 4.1 can be applied to show that R(θ)=∞. In fact, applying a theorem of
McCleary and Rubin [2005] to the group Tn,r , we obtain that the automorphism
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group of Tn,r equals its normalizer in the group of all homeomorphisms of the circle
S1
= [0, r ]/{0, r}. Let θ ∈ Aut(Tn,r ) and f ∈ S1 such that θ(x) = f x f −1 with

f ∈ Homeo(R/rZ). Suppose f m
= γ ∈ Tn,r so that θ represents a torsion element

of Out(Tn,r ). If γ = 1, our method of proof of Theorem 4.1 can be applied to show
that R(θ)=∞. See [Gonçalves and Sankaran 2013] for details. However, when
γ 6= 1, it is not clear to us how to find elements of Fix(θ) satisfying the hypotheses
of Lemma 2.3. Our approach yields no information about automorphisms which
represent nontorsion elements in the outer automorphism group. The study of the
R∞-property for the groups Tn,r is a work in progress.

5. Direct product of groups

It was shown in [Gonçalves and Kochloukova 2010, Theorem 4.8] that if we have
G = G1× · · ·×Gn , where each Gi is a finitely generated group with the property
that 6c(Gi ) is a finite set of discrete character classes, not all of them empty, then
there exists a finite index subgroup H of Aut(G) such that R(φ)=∞ for all φ ∈ H .
Further, when each Gi is a generalized Richard Thompson group Fni ,∞, ni ≥ 2,
then G itself has the R∞-property.

We shall strengthen the above result here. We make use (as did Gonçalves and
Kochloukova [2010]) of a result of Meinert, recalled below, that describes the
6-invariant of a direct product. (Meinert’s theorem describes the 6-invariant in the
more general setting of a graph product of groups.)

Let G = G1×· · ·×Gn and rj = rk(Gab
j ) so that S(Gj )∼=Srj−1. We assume that

r1 ≥ 1. Then S(G) =
∏

1≤ j≤n Hom(Gj ,R) \ {0}/ ∼∼= Sr−1 and so S(G) ∼= Sr−1,
where r :=

∑
1≤ j≤n rj . It is understood that S(Gj )=∅ if rj = 0. The sphere S(Gi )

is identified with the subspace of S(G) comprising the set of points with j-th
coordinate equal to zero for all j 6= i . Observe that S(Gi )∩ S(Gj )=∅ if i 6= j . In
order to emphasize this, we shall write S(Gi )t S(Gj ) to denote their union, where
S(Gi ) and S(Gj ) are thought of as subspaces of S(G).

Recall that 6c(G) denotes the complement of 61(G)⊂ S(G).

Theorem 5.1 [Meinert 1995]. Let G = G1× · · ·×Gn be finitely generated and let
r1 = rk(Gab

1 ) be positive. With the above notation, 6c(G)=
⊔

1≤ j≤n6
c(Gj ). �

We will exploit the fact that any φ ∈ Aut(G) induces a homeomorphism of
the character sphere S(G) which preserves its rational structure. Recall that an
element [χ ] ∈ S(G) is called discrete (or rational) if Im(χ)⊂ R is infinite cyclic;
equivalently, χ may be chosen to take values in Q ⊂ R. The set of rational
points in S(G) is denoted by SQ(G). We denote by DQ(G) the set of isolated
rational points in 6c(G). The set of all limit points of DQ(G) which are contained
in SQ(G) is denoted by LQ(G). Also, we denote by L(G) the set of all limit
points of 6c(G). Since 6c(G) is closed, LQ(G) and L(G) are subsets of 6c(G).
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Any homeomorphism of 6c(G) induced by an automorphism of G maps DQ(G),
LQ(G), L(G) respectively onto itself.

We are now ready to prove the following theorem. The proof is essentially the
same in spirit as that of [Gonçalves and Kochloukova 2010, Theorem 3.3]. See also
[Gonçalves and Kochloukova 2010, §4c].

Theorem 5.2. Suppose that G = G1× · · · ×Gn , n ≥ 1, is finitely generated and
that any one of the following holds:

(i) the set DQ(G1) is nonempty, finite, and contained in an open hemisphere and
DQ(Gj ) is finite (possibly empty) for 2≤ j ≤ n;

(ii) the set LQ(G1) is nonempty, finite, and contained in an open hemisphere and
LQ(Gj ) is finite (possibly empty) for 2≤ j ≤ n;

(iii) the set L(G1)∩ SQ(G1) is nonempty, finite, and contained in an open hemi-
sphere and L(Gj )∩ SQ(Gj ) is finite (possibly empty) for 2≤ j ≤ n.

Then G has the R∞-property.

Proof. Suppose φ ∈ Aut(G). We shall show that there exists a discrete character
λ ∈ Hom(G,R) such that λ ◦ φ = λ. By the discussion in Section 2C, it follows
that R(φ)=∞ and it follows that G has the R∞-property.

First we suppose that n = 1. The theorem, then, is essentially due to Gonçalves
and Kochloukova [2010]. Let φ∗ :6c(G)→6c(G) be the induced map, defined as
φ∗([χ ])=[χ ◦φ]. Since φ∗ is a homeomorphism, it maps isolated points to isolated
points. Moreover, φ∗ preserves the set of all rational points in 6c(G). It follows
that φ∗(W )=W , where W is one of the sets DQ(G), LQ(G) or L(G)∩ SQ(G).

In each of the cases (i)–(iii), we see that there is a nonempty finite set of rational
character classes W (G) ⊂ SQ(G) that is contained in an open hemisphere and
that is mapped to itself by φ∗. Suppose that [χ ] ∈W (G) and that the orbit of [χ ]
under φ∗, namely the set {(φ∗) j ([χ ] = [χ ◦ φ j

] | j ∈ N}, has k elements. Then
the orbit sum λ :=

∑
0≤ j<kχ ◦ φ

j
∈ Hom(G,R) is a nonzero discrete character

invariant under φ∗, as was to be shown.
Now let n=2. By Meinert’s theorem (Theorem 5.1) DQ(G)=DQ(G1)tDQ(G2),

LQ(G)= LQ(G1)t LQ(G2) and L(G)= L(G1)t L(G2).

Case (i). Suppose [χ ] ∈ DQ(G1), and consider the φ∗-orbit of [χ ], namely, the
set {(φk)∗([χ ]) = [χ ◦ φk

] | k ∈ Z}. This set is finite since it is contained in
DQ(G) = DQ(G1)t DQ(G2), which is finite. Suppose that [χ ◦ φ j

], 0 ≤ j < q,
are the distinct rational points in the orbit. Then we claim that the orbit sum
λ :=

∑
0≤ j<qχ ◦ φ

j is a nonzero character such that λ ◦ φ = λ. To see that
λ ∈ Hom(G,R) is nonzero, we note that its restriction to G1 is the character
λJ =

∑
j∈J χ ◦ φ

j where J := { j < q | [χ ◦ φ j
] ∈ DQ(G1)}. Since DQ(G1) is
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contained in an open hemisphere, the characters χ ◦ φ j , j ∈ J , are in an open half-
space of Hom(G1,R). Therefore the same is true of their sum, λ1, and we conclude
that λ 6= 0. It is clear that λ ◦ φ = λ since [λ ◦ φ] = [λ] and since λ is rational. As
observed in the first paragraph of Section 2C, this implies that R(φ)=∞.

Case (ii). The proof in this case is almost identical, starting with [χ ] ∈ LQ(G1). We
need only note that φ∗(LQ(G)) equals LQ(G) and that LQ(G)= LQ(G1)tLQ(G2)

is finite, as in case (i). The orbit sum λ :=
∑

0≤ j<qχ◦φ
j is again a nonzero character

which is discrete and satisfies λ ◦ φ = λ. Again we conclude that R(φ)=∞.

Case (iii). Again we start with χ ∈ L(G1)∩ SQ(G1) and proceed as in case (ii). We
leave the details to the reader.

Finally, let n ≥ 3 be arbitrary, and let H = G2× · · ·×Gn . Again by Meinert’s
theorem, we have DQ(H)=

⊔
2≤ j≤n DQ(Gj ); similar expressions hold for LQ(H)

and L(H) ∩ SQ(H). Our hypotheses on Gj imply that one of the sets DQ(H),
LQ(H), or L(G)∩ SQ(G) is finite depending on case (i), (ii), and (iii), respectively.
Since G = G1× H , we are now reduced to the situation where n = 2, which has
just been established. This completes the proof. �

We conclude the paper with the following examples.

Examples 5.3. (i) Examples of groups with DQ(G) nonempty, finite, and contained
in an open hemisphere are known. These include nonpolycyclic nilpotent-by-finite
groups of type FP∞, the generalized Richard Thompson groups Fn,∞, the double of
a knot group K with nonfinitely generated commutator subgroup (thus G∼=K ?Z2 K ).
For details see [Gonçalves and Kochloukova 2010, §4].

(ii) Examples of groups with DQ(G) and LQ(G) being finite sets are finite groups,
the Houghton groups [Brown 1987a], the pure symmetric automorphism groups
[Orlandi-Korner 2000], finitely generated infinite groups with finite abelianization
(which include the generalized Richard Thompson groups Tn,r ; see [Brown 1987a,
p. 64]), Zn , n≥ 1, and the free groups of rank n≥ 2. Another class of such groups is
provided by [Bieri et al. 1987, Theorem 8.1]. Consider a finitely generated group G
which is a subgroup of the group of all orientation-preserving PL-homeomorphisms
of the interval [0, 1]. The group G is said to be irreducible if there is no G fixed
point in (0, 1). The logarithms of the slopes near the end points 0, 1, define
characters χ0, χ1 : G → R respectively. We recall that two characters λ, χ are
independent if λ(ker(χ)) = λ(G) and χ(ker(λ)) = χ(G). It was shown in [Bieri
et al. 1987, Theorem 8.1] that 6c(G)= {[χ0], [χ1]} if G is irreducible and χ0, χ1

are independent. (These points may not be in SQ(G); see [Bieri et al. 1987, p. 470].)

(iii) Let G = G1×G2 where G1 is a finite product of groups (with G1 nontrivial)
as in example (i), and where G2 is a finite product of groups as in example (ii)
above. Then G has the R∞-property. Since there are continuously many pairwise
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nonisomorphic 2-generated infinite simple groups, taking G2 to be any one of them,
we obtain a continuous family of groups with R∞-property.
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