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OF HYPERQUADRICS FROM C2 TO C3

MICHAEL REITER

In this article we deduce some topological results concerning holomorphic
mappings of hyperquadrics under biholomorphic equivalence. We study the
class F of so-called nondegenerate and transversal holomorphic mappings
locally sending the sphere in C2 to a Levi-nondegenerate hyperquadric in C3,
which contains the most interesting mappings. We show that from a topo-
logical point of view there is a major difference when the target is the sphere
or the hyperquadric with signature (2, 1). In the first case, F modulo the
group of automorphisms is discrete, in contrast to the second case, where
this property fails to hold. Furthermore, we study some basic properties
such as freeness and properness of the action on F of automorphisms fix-
ing a given point to obtain a structural result for a particularly interesting
subset of F .

1. Introduction and results

We study holomorphic mappings between the sphere S2
⊂C2 and the hyperquadric

S3
ε ⊂ C3, which for ε =±1 is given by

S3
±
:=
{
(z1, z2, z3) ∈ C3

| |z1|
2
+ |z2|

2
± |z3|

2
= 1

}
,

so that S3
+
=S3 is the sphere in C3. Faran [1982] classified holomorphic mappings

between spheres in C2 and C3 and Lebl [2011] classified mappings sending S2 to
S3
−

. In [Reiter 2015] we give a new CR-geometric approach to reprove Faran’s
and Lebl’s results in a unified manner. Let us introduce the following equivalence
relation. For k = 1, 2 let Hk :Uk→ C3 be a holomorphic mapping where Uk is an
open and connected neighborhood of pk ∈ S2 and Hk(Uk ∩S2)⊂ S3

ε . We say H1

is equivalent to H2 if there exist automorphisms φ of S2 and φ′ of S3
ε such that

H2 = φ
′
◦ H1 ◦φ

−1.
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Theorem 1.1 [Reiter 2015, Theorem 1.3]. Given p ∈ S2, let U ⊂ C2 be an open
and connected neighborhood of p and H : U → C3 a nonconstant holomorphic
mapping satisfying H(U ∩S2) ⊂ S3

ε . Then H is equivalent to exactly one of the
following maps:

(i) H ε
1(z, w)= (z, w, 0),

(ii) H ε
2(z, w)=

(
z2,

(1−ε+z(1+ε))w
√

2
, w2

)
,

(iii) H ε
3(z, w)=

(
z, (1−ε+z2(1+ε))w

2z
,
(1−ε+z(1+ε))w2

2z

)
,

(iv) H ε
4(z, w)=

(
4z3, (3(1−ε)+(1+3ε)w2)w,

√
3(1−ε+2(1+ε)w+(1−ε)w2)z

)
1+3ε+3(1−ε)w2 .

Additionally, for ε =−1, we have

(v) H5(z, w)=
(
(2+
√

2z)z
1+
√

2z+w
,w,

(1+
√

2z−w)z
1+
√

2z+w

)
,

(vi) H6(z, w)=
(
(1−w)z, 1+w−w2, (1+w)z

)
1−w−w2 ,

(vii) H7(z, w)=
(
1, h(z, w), h(z, w)

)
for some nonconstant holomorphic function

h :U → C.

In fact, we study holomorphic mappings between the Heisenberg hypersurface
H2
⊂ C2 and H3

ε , where H3
+
= H3 is the Heisenberg hypersurface in C3. The

hypersurfaces H2 and H3
ε are biholomorphic to S2 and S3

ε respectively, except one
point, and are given by

H2
=
{
(z, w) ∈ C2

| Imw = |z|2
}
,

H3
ε =

{
(z′1, z′2, w

′) ∈ C3
| Imw′ = |z′1|

2
+ ε|z′2|

2}.
We denote by F the class of germs of 2-nondegenerate transversal mappings sending
a small piece of H2 to H3

ε . F is introduced in more detail in Definition 2.5 below.
This is, in some sense, the most natural and interesting class of mappings when
studying holomorphic mappings between H2 to H3

ε . From [Reiter 2015] we know
that F consists of mappings belonging to the orbits of the maps listed in (ii)–(vi) of
Theorem 1.1 with respect to the equivalence relation of automorphisms introduced
above, after composing with an appropriate Cayley transform.

For a germ of a real-analytic CR-submanifold (M, p) of CN, we write Autp(M, p)
for germs of real-analytic CR-diffeomorphisms fixing p, which we refer to as
isotropies of (M, p). Let us denote by G0 := Aut0(H2, 0)×Aut0(H3

ε, 0) the direct
product of the groups of isotropies of (H2, 0) and (H3

ε, 0), which we introduce in
Definition 2.3 below in more detail.

After showing that π :F→F /G0 is continuous, we obtain the following results.
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Theorem 1.2. The quotient topology τQ on F /G0 coincides with the induced
topology τJ of F , which carries the topology induced by the jet space J 3

0 (H
2,H3

ε).

In the next theorem we equip F with the topology τJ induced by the jet space
J 3

0 (H
2,H3

ε), the automorphism groups carry the topology of the 2-jet group (see
[Baouendi et al. 1997] for more details), and the quotient space X of F with respect
to the equivalence relation of Theorem 1.1 carries the quotient topology. For more
details on the different topologies we use, we refer to Section 2 below.

Theorem 1.3. The quotient space X of F with respect to the equivalence relation of
automorphisms of H2 and H3

ε is discrete for ε =+1 and not Hausdorff for ε =−1.

The above result was not known before and shows one major difference between
holomorphic mappings from the sphere in C2 to the sphere in C3 and to the hyper-
quadric with signature (2, 1) in C3. Furthermore, we study the action of G0 on F
given by G0×F→ F, (φ, φ′, H) 7→ φ′ ◦ H ◦φ−1. The action is called proper if
the associated map (φ, φ′, H) 7→ (H, φ′ ◦ H ◦φ−1) is a proper map, such that the
following result holds:

Theorem 1.4. The mapping N :G0×F→F given by N (φ, φ′, H) := φ′◦H ◦φ−1

is a proper action.

We write F⊂ F for the set of maps which have trivial stabilizers given below in
Lemma 3.1. Based on the above result we obtain the following theorem concerning
the real-analytic structure of F, where 5 : F→N denotes the normalization map
induced by the mapping N , and N denotes a particular set of representatives of the
quotient F /G0 defined in Lemma 3.1 below.

Theorem 1.5. If ε = +1 then 5 : F→ F /G0 is a real-analytic principal fiber
bundle with structure group G0. If ε =−1 then F is locally mapped to G0×N via
local real-analytic diffeomorphisms. In particular, F is not a smooth manifold.

Note that the second part of Theorem 1.5 stands in contrast to the case of maps
in Autp(M, p). Assuming some nondegeneracy conditions for certain germs of
real-analytic CR-submanifolds (M, p), such as Levi-nondegeneracy, it is known
that Autp(M, p) admits a manifold structure (see [Baouendi et al. 1997; 1999;
2004; Kowalski 2005; Kim and Zaitsev 2005; Lamel and Mir 2007; Lamel et al.
2008; Juhlin and Lamel 2013]). To prove Theorem 1.5 we use a real-analytic
version of the so-called local slice theorem for free and proper actions. For proper
smooth actions of noncompact Lie groups the first proof of the local slice theorem
was given in [Palais 1961, 2.2.2 Proposition]. In the real-analytic setting a global
slice theorem was proved by [Heinzner et al. 1996, Section VI] and [Illman and
Kankaanrinta 2000, Theorem 0.6].

We organize this paper as follows. We introduce the necessary notations, tools
and results in Section 2. In the following sections we study properties of the action
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of the group of isotropies on F and in Section 5 we investigate the connectedness
of F and discreteness of the quotient space. Using these results, in Section 7 we
obtain some structural and topological information of F and F /G0. Finally, in
Section 8 we study different normal forms with respect to isotropies. This article
is based on the author’s thesis [Reiter 2014] at the University of Vienna. Some
computations are carried out with Mathematica 7.0.1.0 [Wolfram 2008].

2. Preliminaries

Definition 2.1. We fix coordinates (z, w) = (z1, . . . , zn, w) ∈ Cn+1. For a germ
h : (Cn+1, 0)→ (C, 0) of a holomorphic function h(z, w)=

∑
α,β aαβzαwβ , we write

h̄(z̄, w) := h(z, w)=
∑

α,β āαβ z̄αwβ for the complex conjugate of h. Derivatives
of h with respect to z or w are denoted by

hzαwβ (0) :=
∂ |α|+|β|h
∂zα∂wβ

(0).

For n ≥ 1 and a germ of a map H : (Cn+1, 0) → (Cn′+1, 0) with components
H =

(
f1, . . . , fn′, g

)
, we write Hzαwβ (0)=

(
f1zαwβ (0), . . . , fn′zαwβ (0), gzαwβ (0)

)
.

Classes of maps, automorphisms and equivalence relations.

Definition 2.2. We write H(p; p′) := {H :(CN , p)→ (CN ′, p′) | H holomorphic}
for the set of germs of holomorphic mappings from (CN , p) to (CN ′, p′). For germs
of real-analytic hypersurfaces (M, p)⊂ CN and (M ′, p′)⊂ CN ′ , we denote by

H(M, p;M ′, p′) := {H ∈H(p; p′) | H(M∩U )⊂M ′, for U a neighborhood of p},

the set of germs of holomorphic mappings from (M, p) to (M ′, p′).

Definition 2.3. (i) We denote the collection of germs of locally real-analytic CR-
diffeomorphisms of (M, p) by

Aut(M, p) :=
{
H : (CN, p)→CN

| H holomorphic, H(M)⊂M, det(H ′(p)) 6= 0
}

and the group of isotropies of (M, p) fixing p by

Autp(M, p) := {H ∈ Aut(M, p) | H(p)= p}.

We write G0 :=Aut0(H2, 0)×Aut0(H3
ε, 0) and refer to elements of G0 as isotropies

of (H2, 0) and (H3
ε, 0).

(ii) We write R+ := {x ∈ R | x > 0} for the positive real numbers, denote the unit
circle in C by S1 := {eit

| 0≤ t < 2π} and set 0 :=R+×R×S1
×C. For an element

σγ ∈ Aut0(H2, 0) we denote γ = (λ, r, u, c) ∈ 0 and write

(2-1) σγ (z, w) :=
(λu(z+cw), λ2w)

1−2ic̄z+(r−i|c|2)w
.
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(iii) We define, for θ =±1 if ε =−1 and θ =+1 if ε =+1,

S2
ε,θ :=

{
a′ = (a′1, a′2) ∈ C2

| |a′1|
2
+ ε|a′2|

2
= θ

}
,(2-2)

and let

(2-3) U ′ :=
( u′a′1 −εu

′a′2
ā′2 ā′1

)
, u′ ∈ S1, a′ = (a′1, a′2) ∈ S

2
ε,θ .

We set 0′ := R+ ×R×S1
×S2

ε,θ ×C2 to denote elements σ ′γ ′ ∈ Aut0(H3
ε, 0) via

γ ′ = (λ′, r ′, u′, a′, c′) ∈ 0′, where c′ = (c′1, c′2):

σ ′γ ′(z
′, w′) :=

(λ′U ′ t(z′+c′w′), θλ′2w′)
1−2i(c̄′1z′1+εc̄

′

2z′2)+
(
r ′−i(|c′1|

2+ε|c′2|
2)
)
w′
.(2-4)

(iv) We call elements of 0×0′ standard parameters. If the standard parameters
(γ, γ ′) ∈ 0×0′ are chosen such that (σγ , σ ′γ ′)= (idC2, idC3), we say the standard
parameters are trivial.

Definition 2.4. For G, H ∈H(M, p;M ′, p′), we define an equivalence relation

G ∼ H :⇔ ∃(φ, φ′) ∈ Autp(M, p)×Autp′(M ′, p′) : G = φ′ ◦ H ◦φ−1.

The equivalence classes in H(M, p;M ′, p′)/∼ are denoted by

[F] := {G ∈H(M, p;M ′, p′) | G ∼ F}.

In the case where (p, p′) = (0, 0) and (M,M ′) = (H2,H3
ε), we call the above

relation isotropic equivalence and write O0(H) for the orbit of a map H , called the
isotropic orbit of H.

The class F , the normal form N and its classification. In [Reiter 2015] we intro-
duced the following class of mappings, which are 2-nondegenerate and transversal.
These mappings represent the immersive maps, which are not equivalent to the
linear embedding (see [Reiter 2015, Proposition 2.16]).

Definition 2.5. For a neighborhood U ⊂ C2 of 0, define F(U ) to be the set of
holomorphic mappings H = ( f1, f2, g), with H(U ∩ H2) ⊂ H3

ε , which satisfy
H(0)= 0, f1z(0) f2z2(0)− f2z(0) f1z2(0) 6= 0 and gw(0) > 0. Define F to be the set
of germs H , such that H ∈ F(U ) for some neighborhood U ⊂ C2 of 0.

Proposition 2.6 [Reiter 2015, Proposition 3.1]. Let H ∈ F . Then there exist
isotropies (σ, σ ′) ∈ G0 such that Ĥ := σ ′ ◦ H ◦ σ−1 satisfies Ĥ(0) = 0 and the
following conditions:

(i) Ĥz(0)= (1, 0, 0), (iii) f̂2z2(0)= 2, (vi) Re
(
ĝw2(0)

)
= 0,

(ii) Ĥw(0)= (0, 0, 1), (iv) f̂2zw(0)= 0, (vii) Re
(

f̂2z2w(0)
)
= 0.

(v) f̂1w2(0)= | f̂1w2(0)| ≥ 0,
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A holomorphic mapping of F satisfying the above conditions is called a normalized
mapping. The set of normalized mappings is denoted by N .

Remark 2.7. A mapping H ∈N necessarily satisfies the following conditions (see
[Reiter 2015, Remark 3.4]):

(i) H(0)= (0, 0, 0), (v) Hzw(0)=
( iε

2 , 0, 0
)
,

(ii) Hz(0)= (1, 0, 0), (vi) Hw2(0)= (| f1w2(0)|, f2w2(0), 0),

(iii) Hw(0)= (0, 0, 1), (vii) Hz2w(0)=
(
4i| f1w2(0)|, i Im( f2z2w(0)), 0

)
.

(iv) Hz2(0)= (0, 2, 0),

We classify all mappings belonging to N ' F /G0 in [Reiter 2015].

Theorem 2.8 [Reiter 2015, Theorem 4.1]. The set N consists of the following
mappings, where s ≥ 0:

Gε
1(z, w) :=

(
2z(2+ iεw), 4z2, 4w

)
/(4−w2),

Gε
2,s(z, w) :=

(
4z− 4εsz2

+ i(ε− s2)zw+ sw2,

4z2
+ s2w2, w(4− 4εsz− i(ε+ s2)w)

)
/
(
4− 4εsz− i(ε+ s2)w− 2iszw− εs2w2),

Gε
3,s(z, w) :=

(
256εz+ 96izw+ 64εsw2

+ 64z3
+ 64iεsz2w

− 3(3ε− 16s2)zw2
+ 4isw3,

256εz2
− 16w2

+ 256sz3
+ 16iz2w− 16εszw2

− iεw3,

w(256ε− 32iw+ 64z2
− 64iεszw− (ε+ 16s2)w2)

)
/
(
256ε− 32iw+ 64z2

− 192iεszw− (17ε+ 144s2)w2

+ 32iεz2w+ 24szw2
+ iw3).

Each mapping in N is not isotropically equivalent to any different mapping in N .

For ε=±1, Figure 1 depicts N in the parameter space according to Theorem 2.8
(see [Reiter 2015, §4] for more details).

Associated topologies. We deal with the following topologies (see, e.g., [Baouendi
et al. 1997]).

Definition 2.9. For K ⊂ CN a compact neighborhood of p ∈ CN , we denote by
HK (p; p′) the space of holomorphic mappings, defined in a neighborhood of K ,
which map p ∈ CN to p′ ∈ CN ′ equipped with the uniform norm on K . We equip
H(p; p′) with the inductive limit topology with respect to HK (p; p′), where K is
some compact neighborhood of p in CN . Then for H, Hn ∈H(p; p′), we say that
Hn converges to H if there exists K ⊂ CN a compact neighborhood of p such that
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G−2,0
G−

2, 1
2

G−2,1

G−3,0

G−1

G+2,0 G+3,0

G+1

Figure 1. N for ε =±1 in the parameter space.

each Hn is holomorphic in a neighborhood of K and Hn converges uniformly to
H on K . For H(M, p;M ′, p′)⊂H(p; p′), we consider the induced topology of
H(p; p′) denoted by τC .

Definition 2.10. Let Z ∈ CN be coordinates in CN , H : CN
→ CN ′ a holomorphic

mapping defined at p ∈ CN and α ∈ NN . We denote by j k
p H the k-jet of H at p

defined as

j k
p H :=

(
∂ |α|H
∂Zα

(p) : |α| ≤ k
)
,

and by J k
p,p′ the collection of all k-jets at p of germs of mappings from (CN, p) to

(CN ′, p′). We set J k
p := J k

p,p and denote the topology for J k
p,p′ by τJ , which we refer

to as the topology of the jet space. Let (M, p)⊂ (CN, p) and (M ′, p′)⊂ (CN ′, p′)
be germs of submanifolds. For k ∈ N we denote by J k

q (M, p;M ′, p′) the space of
k-jets of H(M, p;M ′, p′) at q. We also define J k

q (M, p) := J k
q (M, p;M, p) and

J k
0 (M;M ′) := J k

0 (M, 0;M ′, 0). We denote by Gk
p(M, p)⊂ J k

p(M, p) the space of
k-jets of Autp(M, p) at p.

Note that J k
p(M, p;M ′, p′)⊂ J k

p,p′ . We identify J k
p,p′ with the space of germs

of holomorphic polynomial mappings, up to degree k, from CN to CN ′, which map
p∈CN to p′∈CN ′. Thus J k

p,p′ can be identified with some CK , where K :=N ′
(N+k

N

)
,

such that the topology τJ for J k
p,p′ is induced by the natural topology of CK .

Definition 2.11. We say K ⊂H(M, p;M ′, p′) admits a jet parametrization for K
of order k if there exists a mapping 9 : CN

×CK
⊃U → CN ′ , with K = N ′

(N+k
N

)
,

from above and U an open neighborhood of {p} × J k
p(M, p;M ′, p′), which is

holomorphic in the first N variables and real-analytic in the remaining K variables,
such that F(Z)=9(Z , j k

p F) for all F ∈ K.

If K ⊂ H(M, p;M ′, p′) admits a jet parametrization of some order k, then
τC = τJ , which follows from the real-analyticity in the last K variables. We need
the following jet determination result which is an immediate consequence of the
normalization and classification of maps in F .
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Corollary 2.12 [Reiter 2015, Corollary 4.8]. Let U ⊂ C2 be a neighborhood of
0 and H : U → C3 a holomorphic mapping. We denote the components of H by
H = ( f, g)= ( f1, f2, g) and write j0(H) := { j2

0 (H), fz2w(0)}. If for H1, H2 ∈ F
the coefficients belonging to j0(H1) and j0(H2) coincide, then we have H1 ≡ H2.

Remark 2.13. Based on [Lamel 2001, Proposition 25, Corollary 26–27] we obtain
a jet parametrization of order 4 for K = F in [Reiter 2015, Lemma 4.3], and by
Corollary 2.12 we have that K =K0 :=15. Using Theorem 2.8 and the notation from
Corollary 2.12, we identify F with a subset J⊂CK0 given by J := { j0(H) | H ∈F},
and the topology we use in the sequel for F is τJ .

Definition 2.14. Let X be a topological space, Y a set and q : X→ Y a surjective
mapping. We call the topology on Y induced by q the quotient topology τQ on Y ,
where a set U ⊂ Y is open in Y if q−1(U ) is open in X .

3. The isotropic stabilizer and freeness of the group action on F

Lemma 3.1. Set N :=N \{Gε
1,Gε

2,0,Gε
3,0} and F :=

⋃
H∈N O0(H). The isotropic

stabilizer stab0(H) := {(φ, φ′) ∈ G0 | φ
′
◦ H ◦φ−1

= H} of H is trivial for H ∈N.
Furthermore, we have that stab0(Gε

1) = stab0(Gε
2,0) is homeomorphic to S1 and

stab0(Gε
3,0) is homeomorphic to Z2.

Proof. Let H = ( f, g) = ( f1, f2, g) ∈ N satisfy the conditions in Remark 2.7.
We write s := 2| f1w2(0)| ≥ 0, x := f2w2(0) ∈ C and y := Im( f2z2w(0)) ∈ R. By
Corollary 2.12 we only need to consider coefficients in j0(H). We let (σ, σ ′) ∈ G0

with the notation from (2-1), (2-3) and (2-4), and consider the equation

σ ′ ◦ H ◦ σ−1
= H,(3-1)

where we parametrize σ−1 as in (2-1). The coefficients of order 1, which are fz(0)
and Hw(0), are given by

U ′ t(uλλ′, 0)= (1, 0) and (U ′ t(uc+ λc′1, λc′2), θλλ
′)= (0, 0, 1).

These equations imply θ =+1, λ′= 1/λ, a′2= c′2= 0, a′1= 1/(uu′) and c′1=−uc/λ.
Assuming these standard parameters we consider the coefficients of order 2, which
are fz2(0), Hzw(0) and Hw2(0), given by (

0, 2u′u3λ
)
= (0, 2),(3-2) (

−r − λ2r ′+ iελ2/2, 2u′u3λc, 0
)
= (iε/2, 0, 0),(3-3) (

λ2(λs+ iεuc)/u, uu′λ(λ2x + 2u2c2),−2(r + λ2r ′)
)
= (s, x, 0).(3-4)
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The second component of (3-3) implies c = 0. If we assume this value for c we
obtain for the third order terms fz2w(0) the equation(

2iuλ3s, u′u3λ(−4r − 2λ2r ′+ iλ2 y)
)
= (4is, iy).(3-5)

The second component of (3-2) shows λ = 1. Furthermore we obtain from the
third component of (3-4) that r ′ = −r and since from the second component of
(3-2) we get u′u3

= 1, which uniquely determines u′, we obtain from the second
component of (3-5) that r = 0. The remaining equation from the first component of
(3-4), which comes from the coefficient f1w2(0), is s/u = s. If s > 0 we obtain that
u = 1 and hence all standard parameters are trivial, which proves the first claim of
the lemma.

If s=0, then H ∈{Gε
1,Gε

2,0,Gε
3,0}, since these maps are precisely those satisfying

f1w2(0) = 0 in the list of mappings from Theorem 2.8. It is easy to check that
the isotropic stabilizers of the maps Gε

1 and Gε
2,0 are generated by the isotropies

(σ (z, w), σ ′(z′1, z′2, w
′)) = (uz, w, z′1/u, z′2/u

2, w′) with |u| = 1. If we consider
Gε

3,0 in (3-1), then we obtain that (σ (z, w), σ ′(z′1, z′2, w
′)) = (δz, w, δz′1, z′2, w

′),
where δ =±1, are the only elements of stab0(Gε

3,0), which proves the last claim of
the lemma. �

Proposition 3.2. The map N : G0×F→ F given by N (φ, φ′, H) := φ′ ◦ H ◦φ−1

is a free action.

Proof. Lemma 3.1 shows that N restricted to N is a free action. We assume the
general case H ∈ F and consider the equation φ′ ◦ H ◦φ−1

= H for (φ, φ′) ∈ G0.
We write H = φ̂′ ◦ Ĥ ◦ φ̂−1, where Ĥ ∈N and (φ̂, φ̂′) ∈ G0 are unique according
to Lemma 3.1. After setting (ψ,ψ ′) = (φ̂−1

◦ φ ◦ φ̂, φ̂′
−1
◦ φ′ ◦ φ̂′), we rewrite

φ′ ◦ H ◦ φ−1
= H as ψ ′ ◦ Ĥ ◦ψ−1

= Ĥ . Since each map in N admits a trivial
stabilizer, we obtain that (ψ,ψ ′)= (idC2, idC3) and the freeness of the action. �

4. Continuity of the normalization map

Remark 4.1. For F : (C2, 0)→ (C3, 0) a germ of a holomorphic mapping, for
which we assume that F ∈F and the jet j0(F)⊂ j3

0 F is of the form as in Remark 2.7,
we write F = ( f 1, f 2, f 3) for the components and denote derivatives of F at 0 by
f k
`m := f k

z`wm (0). We set 1(F) := f 1
10 f 2

20− f 1
20 f 2

10.

Lemma 4.2. For n ∈ N, we let (φn, φ
′
n) ∈ G0 and Hn, H ∈ F be such that

φ′n ◦ Hn ◦φ
−1
n → H as n → ∞, where F is equipped with the topology τJ . If

we assume Hn, H ∈ N , then Hn → H , and if we assume Hn, H ∈ N, then
(φn, φ

′
n)→ (idC2, idC3) as n→∞.

Proof. We assume that Hn = (h1
n, h2

n, h3
n) and H = (h1, h2, h3) are given as in

Remark 4.1, where the coefficients of Hn depend on n ∈N. Let sn := 2|h1
n02| ≥ 0,
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xn := h2
n02 ∈C and yn := Im

(
h2

n21

)
. To each (φn, φ

′
n)∈G0 we associate the standard

parameters (γn, γ
′
n) ∈ 0×0

′, where we use the notation for the parametrization
of G0 from (2-1) and (2-4). According to Theorem 2.8, Hn depends on sn ≥ 0.
Let us denote 4 := 0 × 0′ × R+0 and write ξn = (γn, γ

′
n, sn) ∈ 4. We define

9n := φ
′
n ◦ Hn ◦φ

−1
n , which depends on ξn ∈4. For components of 9n , we write

9n= (ψ
1
n , ψ

2
n , ψ

3
n ) and ψn= (ψ

1
n , ψ

2
n ). Limits are always considered when n→∞.

We start with the first order terms of 9n . We let U ′n be the 2× 2-matrix from
(2-3) with entries u′n , a′1n and a′2n instead of u′, a′1 and a′2, so that we have

ψnz(0)= λnλ
′

nU ′n
t(un, 0),(4-1)

9nw(0)= λnλ
′

n
(
U ′n

t(uncn + λnc′1n, λnc′2n), θnλnλ
′

n
)
.(4-2)

Since ψ3
nw(0)→ 1 we obtain θn =+1, λnλ

′
n→ 1. This implies that unu′na′1n→ 1

and a′2n→ 0, considering ψnz(0)→ (1, 0) in (4-1). Because a′n = (a
′

1n, a′2n) ∈ S
2
ε,θ

from (2-2), we have |a′1n| → 1. If we consider the first two components in (4-2),
we obtain from ψnw(0)→ (0, 0) and (|a′1n|, |a

′

2n|)→ (1, 0) that uncn+λnc′1n→ 0
and c′2n→ 0.

Next we consider the second order terms of 9n to obtain

(4-3) ψnz2(0)= 2unλnλ
′

nU ′n
t(2i(c̄n + unλn c̄′1n), unλn

)
,

where the left-hand side of (4-3), ψnz2(0), must converge to (0, 2). After applying
U ′n
−1 we rewrite the second component of (4-3) as

(4-4) 2u2
nλ

2
nλ
′

n = a′1n
(
−ā′2nψ

1
nz2(0)/(u′na′1n)+ψ

2
nz2(0)

)
.

Since (|a′1n|, |a
′

2n|) → (1, 0), the absolute value of the right-hand side of (4-4)
converges to 2. Taking the absolute value of the left-hand side of (4-4) implies
λn→ 1, which together with λnλ

′
n→ 1 shows λ′n→ 1. Next we consider

ψnzw(0)= i
2λnλ

′

nU ′n
t(T1(γn, γ

′

n), 4λn(c′2n(c̄n + unλn c̄′1n)− iu2
ncn)

)
,(4-5)

where the real-analytic function T1 : 0 × 0
′
→ C does not depend on a′n ∈ S2

ε,θ

and u′n . The left-hand side of (4-5) has to converge to (iε/2, 0) and we rewrite the
second component of (4-5) as

(4-6) 4λn
(
c′2n(c̄n + unλn c̄′1n)− iu2

ncn
)

=−2i
(
−ā′2nψ

1
nzw(0)+ u′na′1nψ

2
nzw(0)

)
/(λnλ

′

nu′n).

Taking the limit, we know, since (|a′1n|, |a
′

2n|)→ (1, 0) and (λn, λ
′
n)→ (1, 1), that

the right-hand side of (4-6) converges to 0 and if we also use uncn+λnc′1n→ 0 we
obtain that cn→ 0, such that c′1n→ 0.
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Next we compute

(4-7) ψ3
nw2(0)

= 2λ2
nλ
′2
n
(
−(rn + λ

2
nr ′n)+ i

(
|cn|

2
+ ελ2

n|c
′

2n|
2
+ λn c̄′1n(2uncn + λnc′1n)

))
.

We take all of the previously obtained limits as n →∞ of the sequences c′n =
(c′1n, c′2n)∈C2, cn and λn, λ

′
n . Then since ψ3

nw2(0)→ 0, we have that rn+λ
2
nr ′n→ 0.

Next we compute

ψnw2(0)= λnλ
′

nU ′n
t(λ3

nsn + T2(γn, γ
′

n), λ
3
nxn + T3(γn, γ

′

n)
)
,(4-8)

where T2, T3 : 0×0
′
→ C are real-analytic functions and T2 is given by

T2(γn, γ
′

n)= 2(uncn + c′1nλn)
(
i|cn|

2
− rn − λ

2
nr ′n
)

+2iλn c̄′1n(uncn + λnc′1n)(2uncn + λnc′1n)

+iελ2
n
(
uncn(1+ 2|c′2n|

2)+ 2λnc′1n|c
′

2n|
)
,

so that T2(γn, γ
′
n)→ 0. Then the first component of (4-8) becomes

λ3
nsn + T2(γn, γ

′

n)=
(
ā′1nψ

1
nw2(0)+ εu′na′2nψ

2
nw2(0)

)
/(λnλ

′

nu′n).(4-9)

Since
(
ψ1

nw2(0), ψ2
nw2(0)

)
→
(
2|h1

02|, h2
02

)
∈R+×C, we obtain sn→ 2|h1

02|, and if
|h1

02| 6= 0 we have ā′1n/u
′
n→ 1. Then unu′na′1n→ 1 implies that un→ 1 and further

inspection of (4-4) gives u2
n/a
′

1n→ 1, which shows a′1n→ 1 and u′n→ 1. Note that
if |h1

02| = 0 we have that a′1n, un, u′n ∈ S1 for all n ∈N. Observe that the following
considerations are independent of the value of h1

02:

(4-10) ψnz2w(0)

=λnλ
′

nU ′n

(
−4iu2

nλ
3
nsn + T4(γn, γ

′
n)

−2εu2
nλn(2rn + λ

2
nr ′n)+ iεu2

nλ
3
n yn + 6u3

nλ
2
ncnsn + T5(γn, γ

′
n)

)
,

where T4, T5 : 0×0
′
→ C are real-analytic functions and T5 is given by

T5(γn, γ
′

n)= 2iελn
(
4ic̄nc′2n(c̄n + 2unλn c̄′1n)+ 2cnu2

n(5c̄n + 3unλn c̄′1n)

+ u2
nλ

2
n
(
|c′1n|

2
+ 3ε|c′2n|

2
+ 4ic̄′1nc′2n

))
,

hence T5(γn, γ
′
n)→ 0. Since

(
ψ1

nz2w
(0), ψ2

nz2w
(0)
)
→

(
2i|h1

02|, ih2
21

)
∈ iR× iR,

considering the real part of the second component of (4-10) we obtain 2rn+r ′n→ 0,
which together with rn + λ

2
nr ′n→ 0 shows (rn, r ′n)→ (0, 0). To sum up, we obtain

that Hn → H , and moreover, if |h1
02| 6= 0, we conclude (φn, φ

′
n)→ (idC2, idC3),

which completes the proof. �

Proposition 4.3. The map π :F→N given by π(H) :=φ′◦H◦φ−1 for (φ, φ′)∈G0,
according to Proposition 2.6, is continuous with respect to τJ .
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Proof. Let (Hn)n∈N be a sequence of mappings in F and H ∈F , such that Hn→ H .
Assuming without loss of generality that H ∈N , we need to show H̃n :=π(Hn)→H .
We have H̃n = φ

′
n ◦Hn ◦φ

−1
n ∈N , where (φn, φ

′
n) ∈G0 are the isotropies according

to Proposition 2.6. Since Hn = φ
′−1
n ◦ H̃n ◦φn→ H , we conclude by Lemma 4.2

that H̃n→ H . �

Using Proposition 4.3 we are able to prove Theorem 1.2.

Proof of Theorem 1.2. We show that π : F → N is a surjective, continuous and
closed mapping with respect to τJ . Surjectivity is clear from Proposition 2.6 and
Theorem 2.8 and continuity we have shown in Proposition 4.3. It remains to prove
that π is closed with respect to τJ . Let C ⊂ F be a closed subset. We need to show
that π(C) ⊂ N is a closed subset. To prove this statement we let Hn ∈ π(C) for
n ∈ N, forming a sequence of mappings in N such that Hn→ H0, where H0 ∈N .
To show that π(C) is closed we need to conclude that H0 ∈ π(C). By Theorem 2.8
we can write Hn = Gε

kn,sn
and H0 = Gε

k0,s0
for kn, k0 ∈ {2, 3}. Note that since

Hn→ H0 in N we have sn→ s0. This implies that for any convergent sequence
Gn ∈ π

−1(Hn) the map G0 := limn→∞ Gn belongs to π−1(H0). Since C is closed,
an arbitrary convergent sequence Fn ∈ π

−1(Hn)∩C with Fn→ F0 thus satisfies
F0 ∈ π

−1(H0)∩C , which implies H0 = π(F0) ∈ π(C). �

5. A topological property of the quotient space of F

Lemma 5.1. The class F consists of 5+ε
2 connected components.

Proof. According to Proposition 2.6 and Proposition 4.3, we denote by π : F→N
the normalization map, which is continuous with respect to τJ . By Theorem 1.2, we
equip F and N with τJ . For k ∈{2, 3}, we set Ck := {Gε

k,s | s≥0} and N ∗ :=C2∪C3.
The space of standard parameters 0 × 0′ is path-connected, since as defined in
Definition 2.5 for maps H = ( f1, f2, g) ∈ F , we assumed gw(0) > 0, which
implies that for isotropies as in (2-4) we require θ =+1 for ε =±1. Thus for any
H ∈N the isotropic orbit O0(H) is path-connected. First we treat the case ε =−1.
We observe that F∗ :=

⋃
H∈N ∗ O0(H) is path-connected. If F were connected

then π(F) = N would be connected, which is not possible, since N consists
of 2 connected components G−1 and N ∗. Thus F has 2 connected components
O0(G−1 ) and F∗. For ε = +1 we note that the set O0(Ck) :=

⋃
H∈Ck

O0(H) for
k ∈ {2, 3} is path-connected and N consists of 3 connected components. Thus F
admits at most 3 connected components. F is not connected since then π(F)=N
would be connected. If F consists of 2 connected components F1,F2 such that
F =F1 ∪F2, we need to distinguish several cases. Either F1= O0(G+1 )∪O0(Ck),
and F2 = O0(C`), where k 6= ` and k, ` ∈ {2, 3}, or F1 = O0(C2)∪ O0(C3) and
F2= O0(G+1 ). In all cases we have, by the continuity of π , that π(F1) is connected,
which is not possible. �
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Proof of Theorem 1.3. The quotient space X consists of elements denoted by [F] for
F ∈ F . We equip X with the quotient topology such that the canonical projection
p : F → X is continuous. For ε = +1 we have X = {G+1 ,G+2,0,G+3,0} by our
classification. By Lemma 5.1 we obtain that p−1(H) for H ∈ X is a connected
component of F , hence open. Thus X carries the discrete topology. To prove
the statement for ε = −1 we write H0 := G−2,1/2 ∈ N and H1 := G−3,0 ∈ N . For
k ∈ {0, 1}, let Uk ∈ X be an open neighborhood of [Hk]. Then Vk := p−1(Uk) is an
open neighborhood of the orbit of Hk in F . According to our classification there
exists a sequence (Gn)n∈N of mappings in F , where each Gn ∈ [H1] and Gn→ H0

in F as n→∞. Thus there exists N ∈ N such that Gn ∈ V0 ∩ V1 for all n ≥ N ,
which shows [H1] ∈U0 ∩U1 and completes the proof. �

6. Properness of the group action

Proof of Theorem 1.4. For n ∈N we let Gn = (g1
n, g2

n, g3
n), H ′n = (h

′1
n, h′2n, h′3n) ∈F

with Gn = ϕ
′
n ◦ H ′n ◦ϕ

−1
n , where (ϕn, ϕ

′
n) ∈ G0. Equipping J 3

0 with a suitable norm
‖ · ‖, we need to show that if we let N > 1 such that ‖ j0(Gn)‖, ‖ j0(H ′n)‖ ≤ N
and |g3

n01|, |h
′3
n01| ≥ 1/N as well as |1(Gn)|, |1(H ′n)| ≥ 1/N , then we have that

{(ϕn, ϕ
′
n) | n ∈ N} is relatively compact in G0. For a simplification, we write

H ′n = φ
′
n ◦ Hn ◦φ

−1
n , where Hn ∈N and (φn, φ

′
n)∈G0 according to Proposition 2.6.

Since we have shown in Proposition 4.3 that the map π :F→N is continuous, it fol-
lows that the sequence Hn is relatively compact, and we assume that each Hn satisfies
all conditions we assumed for H ′n . Further we assume that Hn is given as described
in Remark 2.7, where we set sn := 2|h1

n02| ≥ 0, xn := h2
n02 ∈ C and yn := Im

(
h2

n21

)
.

In the proof of Proposition 2.6 given in [Reiter 2015, Proposition 3.1], we give
explicit formulas for (φn, φ

′
n), which shows that {(φn, φ

′
n) | n ∈N} is bounded, since

the sequence H ′n is relatively compact. We set ψn := ϕn ◦ φn and ψ ′n := ϕ
′
n ◦ φ

′
n .

Hence we need to prove that {(ψn, ψ
′
n) | n ∈ N} is bounded in G0. If we use the

parametrization of (ψn, ψ
′
n) from (2-1) and (2-4), we show that {(γn, γ

′
n) | n ∈ N}

is bounded in 0× 0′. More precisely, we need to show the boundedness of the
sequences λn, cn, rn, a′1n, a′2n, λ

′
n, c′n, r

′
n in 0×0′. We use the equations from the

proof of Lemma 4.2, where 9n plays the role of Gn . We start considering the third
component of (4-2), which gives 1/

√
N ≤ λnλ

′
n ≤
√

N . Then we rewrite (4-1) to
obtain, for k = 1, 2, that |a′kn| = |g

k
n10|/(λnλ

′
n) ≤ N

√
N . After rewriting the first

two components of (4-2) we obtain that |uncn+λnc′1n|, |λnc′2n| ≤ 2N 3. Then, using
(4-2) and (4-3), we compute

1(Gn)=

∣∣∣∣λnλ
′

nU ′n

(
un 4iun(c̄n + unλn c̄′1n)

0 unλn

)∣∣∣∣= u2
nλ

3
nλ
′2
n ,

such that the boundedness of 1(Gn) from below implies that 1/N 2
≤ λn ≤ N 2.

This gives 1/(
√

N N 2)≤ λ′n ≤
√

N N 2, and from (4-2) we derive boundedness of
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the sequence |c′2n|. Then from (4-5) we obtain that the sequence |cn| is bounded,
such that (4-2) shows the boundedness of |c′1n|.

Finally, using all the previous bounds, we get from (4-7) and the second compo-
nent of (4-10) that the sequences |rn+λ

2
nr ′n| and |2rn+λ

2
nr ′n| are both bounded, which

implies that |rn| and |r ′n| are bounded from above. Thus the sequence (ψn, ψ
′
n) is

relatively compact. Since (φn, φ
′
n) is relatively compact, this implies that (ϕn, ϕ

′
n)

is also relatively compact, completing the proof. �

7. On the real-analytic structure of F

Lemma 7.1. Let5 :F→N be given by5(H) := φ′◦H ◦φ−1, where (φ, φ′)∈G0

are the unique isotropies according to Proposition 2.6 and Lemma 3.1. For k = 2, 3
we write Mk,ε := {5

−1(Gε
k,s) | s> 0}. Then Mk,ε is a real-analytic real submanifold

of F of real dimension 16.

Proof. For fixed k ∈ {2, 3}, s> 0 and δ > 0, we write Gδ,s := {Gε
k,t | t ∈ Bδ(s)∩R+},

where Bδ(s) := {t ∈ R+ | |t − s| < δ}. To prove the lemma we show that for
every s0 ∈ R+ and sufficiently small δ0 > 0, there exists a locally real-analytic
parametrization for M :=5−1(Gδ0,s0). As noted in Remark 2.13, we identify F
with the set J⊂ CK0 .

Theorem 2.8 implies that for each H ∈ M there exist (φ, φ′) ∈ G0, k ∈ {2, 3}
and s1 ∈ Bδ0(s0)∩R+, such that H = φ′ ◦Gε

k,s1
◦φ−1. This fact is used to describe

M locally via parametrizations as follows. For s > 0 sufficiently near s0, let Fs be
a mapping as in Remark 4.1, which depends real-analytically on s := 2| f 1

02|. For
the remaining coefficients in j0(Fs) we write x := f 2

02 and y := Im
(

f 2
21

)
, where we

suppress the dependence on s notationally. We use the real version of the notation
for the parametrization of G0 as in (2-1) and (2-4). Here we denote the set of real
parameters of G0 by 0×0′. Let us write 4 :=0×0′×R+⊂RN0 , where N0 := 16.
For ξ = (γ, γ ′, s) ∈4, we define the mapping

(7-1) 9 :4→ J, 9(ξ) := j0(φ′γ ′ ◦ Fs ◦φ
−1
γ ),

where we use the notation as in (2-1) and (2-4) for φγ and φ′γ ′ respectively and
suppress the dependence on ε.

We set 9̌(z, w) := (φ′γ ′ ◦Fs◦φ
−1
γ )(z, w) with components 9̌= (ψ̌1, ψ̌2, ψ̌3) and

ψ̌ :=
(
ψ̌1, ψ̌2

)
. The holomorphic mapping 9̌ is defined in a small neighborhood

U ⊂ C2 of 0 and satisfies 9̌(H2
∩U )⊂ H3

ε . By Theorem 2.8 and the real-analytic
dependence of the isotropies on the standard parameters, which can be observed by
inspecting the proof of Proposition 2.6 in [Reiter 2015, Proposition 3.1], we note that
9 and 9̌ are real-analytic in ξ ∈4. We assume without loss of generality that ξ0 is
chosen in such a way that (φγ , φ′γ ′)= (idC2, idC3). Consequently we write O(2) for
terms involving standard parameters of the isotropies which vanish to second order
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at ξ0, and we consider a′1 ∈ C near 1 such that we substitute ā′1 = (1− ε|a
′

2|
2)/a′1

and take θ =+1 in 9, which is then given by the following expressions:

ψ̌z(0)=
(
uu′λλ′a′1, uλλ′ā′2

)
,

9̌w(0)=
(
u′λλ′a′1(uc+ λc′1), λ

2λ′c′2/a
′

1, λ
2λ′2

)
+ O(2),

ψ̌z2(0)=
(
2iuu′λλ′(iεuλa′2+ 2(c̄+ uλc̄′1)a

′

1), 2u2λ2λ′/a′1
)
+ O(2),

9̌zw(0)=
(
−

1
2

uu′λλ′a′1(2(r + λ
2r ′)− iελ2),

uλ2λ′
( iε

2
λā′2+

2uc
a′1

)
, 2iλ2λ′2(c̄+ uλc̄′1)

)
+ O(2),

9̌w2(0)=
(
u′λ3λ′

(
a′1(iεuc+ λs)− ελa′2x

)
,

λ4λ′
(
x/a′1+ ā′2s

)
,−2λ2λ′2(r + λ2r ′)

)
+ O(2),

ψ̌z2w(0)=
(
−uu′λ3λ′

(
4a′1

(
−iuλs+ ε(c̄+ uλc̄′1)

)
+ iεuλa′2 y

)
,

u2λ2λ′
((
−2(2r + λ2r ′)+ 6εuλcs+ iλ2 y

)
/a′1+ 2iλ2ā′2s

))
+ O(2).

As a first step we show that for given ξ0 ∈4 the Jacobian of 9 with respect to ξ
evaluated at ξ0, denoted by 9ξ (ξ0), is of full rank N0. Instead of considering the
real equations of 9, however, we conjugate 9 and compute the Jacobian of the
system 8 := (9,9) ∈ C2K0 with respect to

ξ = (u, λ, c, r, u′, a′1, a′2, λ
′, c′1, c′2, r

′, s; c̄, ā′2, c̄′1, c̄′2) ∈ CN0

and evaluate at

ξ0 = (1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, s0; 0, 0, 0, 0) ∈ RN0,(7-2)

denoted by 8ξ (ξ0). We bring the transpose of 8ξ (ξ0) into echelon form, denoting
the resulting matrix by ϕ = (ϕ1, . . . , ϕN0), where ϕ j

= (ϕ
j
1 , . . . , ϕ

j
2K0
) ∈ C2K0 for

1 ≤ j ≤ N0, such that rank
(
8ξ (ξ0)

)
= rank(ϕ). In the following we suppress the

evaluation of 8 at ξ0 notationally and perform elementary row operations. The
matrix given by

(ϕ1, . . . , ϕ11) :=
(
8u,8ā′2,8c′1,8c′2,8λ,8c̄,8a′1,8r ′,8c,8a′2,8s

)
−

(
0, 0, 0,8u,8u, 0,8u, 0,8c′1,

iε
2
8c̄, 0

)
,

is in row echelon form, with constant nonzero entries on the main diagonal. Each 0
above represents 0 ∈ C2K0 . Next we define

ϕ12
:=8λ′ +

1
3
8u −8λ−

1
3
8a′1 −

iε
8
8r ′ +

10s0
3
8s,

ϕ13
:=8u′ −

1
3
8u −

2
3
8a′1 −

2
3
8s,
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which are of the following form, where we denote by h′ derivatives of a function h
depending on s with respect to s:

ϕ12
= (0, . . . , 0, ϕ12

12, . . . , ϕ
12
2K0
)

=

(
0, . . . , 0,−2(4x−5s0x ′)

3
, 2iε, 8is0

3
,
2i(3ε−3y+5s0 y′)

3
,−

1
3
, ϕ12

17, . . . , ϕ
12
2K0

)
ϕ13
= (0, . . . , 0, ϕ13

12, . . . , ϕ
13
2K0
)

=

(
0, . . . , 0, 2x−s0x ′

3
, 0,−8is0

3
,−

is0 y′

3
,−

2
3
, ϕ13

17, . . . , ϕ
13
2K0

)
.

Then we define ϕ14 :=8r−8r ′ , ϕ15 :=8c̄′2 and ϕ16 :=8c̄′1 , from which we compute
ϕ14
=−2(e15 + e2K0), ϕ

15
= e19 and ϕ16

= −2e24 + iεe26 − 12εse2K0 , where for
j ∈ N we denote by e j the j-th unit vector in R2K0 .

We have to consider several cases. First, in case ϕ12
12 6= 0, then we consider

ϕ̃13 := ϕ13
− ϕ13

12ϕ
12/ϕ12

12 , such that ϕ̃13
13 is a multiple of −2x + s0x ′. If ϕ̃13

13 6= 0,
then ϕ = (ϕ1, . . . , ϕ12, ϕ̃13, ϕ14, ϕ15, ϕ16) is in echelon form. If ϕ̃13

13 = 0, then
x = Cs2, where C ∈ C \ {0} and we have ϕ̃13

14 6= 0, which again implies that
ϕ = (ϕ1, . . . , ϕ12, ϕ̃13, ϕ14, ϕ15, ϕ16) is in echelon form.

Next we treat the case ϕ12
12 = 0. First we consider the trivial case. If x = 0, then

since s0 > 0, we have x ′ = 0 and so ϕ = (ϕ1, . . . , ϕ16) is in echelon form. Now we
assume x 6= 0, which implies x ′ 6= 0, and solve ϕ12

12 = 0. The solution is given by
x = Cs4/5, where C ∈ C \ {0} and ϕ = (ϕ1, . . . , ϕ11, ϕ13, ϕ12, ϕ14, ϕ15, ϕ16) is in
echelon form.

To sum up, we conclude that in all cases the Jacobian 8ξ (ξ0) of the system 8

evaluated at ξ0 is of full rank N0, and hence that 9 from (7-1) is a real-analytic
locally regular mapping if we choose δ0 > 0 sufficiently small in M . For 9 to be
a local parametrization of M it remains to show that for each sufficiently small
neighborhood U ⊂ 4 ⊂ RN0 of ξ0, there exists a neighborhood W ⊂ CK0 of
9(ξ0)= Fs0 , such that 9(U )=W ∩M . We have

9(U )= { j0(H) | ∃ξ = (γ, γ ′, t) ∈U : H = φ′−1
γ ′ ◦ Ft ◦φγ }

and with the notation from the beginning of this proof for δ > 0 we have

M =5−1(Fδ,s0)

= {H ∈ F | ∃(γ, γ ′, s) ∈ 0×0′× Bδ(s0)∩R+ : φ′γ ′ ◦ H ◦φ−1
γ = Fs}.

Remark 2.13, together with the fact that for each H ∈ M we can write H =
φ′
−1
γ ′ ◦Fs◦φγ , shows9(U )⊂M . We assume that there exists a neighborhood U ⊂4

of ξ0, such that for any neighborhood W of 9(ξ0)= Fs0 we have 9(U ) 6=W ∩M .
We choose open, connected neighborhoods (Wn)n∈N of Fs0 with

⋂
n Wn ={Fs0} and

9(U ) 6=Wn ∩M for all n ∈ N. There exists a sequence of mappings (Hn)n∈N ∈ F
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such that Hn ∈ Wn ∩ M and Hn 6∈ 9(U ). We write Hn = φ
′−1
γ ′n
◦ Fsn ◦ φγn and

conclude by Lemma 4.2 that (γn, γ
′
n, sn)→ ξ0 in 4. Thus eventually Hn ∈9(U )

for large enough n ∈ N, which completes the proof of the lemma. �

We need the following theorem concerning free and proper group actions on
manifolds.

Theorem 7.2 [Duistermaat and Kolk 2000, Theorem 1.11.4]. Let k ∈ N∪ {∞, ω}

be nonzero and M a Ck manifold equipped with a Ck action G×M→ M , where
G is a Ck Lie group. Assume that the action is free and proper. Then M/G has
the unique structure of a Ck manifold of real dimension dimR M − dimR G and the
topology of M/G is the quotient topology τQ . We denote by ϕ : M → M/G the
canonical projection given by ϕ(m)=G ·m := {g ·m | g ∈G} for m ∈ M. For every
s ∈ M/G there is an open neighborhood S ⊂ M/G of s and a Ck diffeomorphism
ψ : ϕ−1(S)→ G× S, ψ : m 7→ (ψ1(m), ψ2(m)), such that for m ∈ ϕ−1(S), g ∈ G
we have ϕ(m) = ψ2(m) and ψ(g · m) = (g · ψ1(m), ψ2(m)). We say the triple
(ϕ,M,M/G) is a Ck principal fiber bundle with structure group G.

Proof of Theorem 1.5. By [Baouendi et al. 1997, Corollary 1.2] the group G0 is a
totally real, closed, real-analytic submanifold of

G2
0(H

2, 0)×G2
0(H

3
ε, 0)⊂ J 2

0 (H
2, 0)× J 2

0 (H
3
ε, 0).

Hence G0 is a real-analytic real Lie group. With the notation of Lemma 7.1 we define
for (γ, γ ′)∈0×0′ the map Nγ,γ ′ :Mk,ε→Mk,ε, Nγ,γ ′(H) :=φ′γ ′ ◦H ◦φ−1

γ , where
(φγ , φ

′

γ ′)∈G0 according to (2-1) and (2-4). We would like to conclude that for each
fixed (γ, γ ′) ∈ 0×0′, the map Nγ,γ ′ is real-analytic. By Remark 2.13, instead of
Nγ,γ ′ it suffices to consider N ′γ,γ ′ : Jk,ε→ Jk,ε, where Jk,ε := { j0(H) | H ∈ Mk,ε},
and N ′γ,γ ′( j0(H)) := j0(φ′γ ′ ◦ H ◦ φ−1

γ ) is a restriction of Nγ,γ ′ . By considering
the components of N ′γ,γ ′( j0(H)) for H ∈ Mk,ε, we obtain that N ′γ,γ ′( j0(H)) is a
polynomial in j0(H), thus by [Bochner and Montgomery 1945, Theorem 4] the
action of G0 on Mk,ε is real-analytic.

By Proposition 3.2 and Theorem 1.4 the map N : F×G0 → F defined by
N (φ, φ′, H)= φ′ ◦ H ◦φ−1 is a free and proper action. For ε =+1 we note that
by Lemma 5.1 and Lemma 7.1 the set F is a real-analytic manifold, thus from
Theorem 7.2 the conclusion for ε =+1 follows.

Next we show the claim for ε = −1. According to Lemma 7.1, for k = 1, 2
we set Nk := {G−k+1,s | s > 0} and N0 := N1 ∩ N2 = {G−2,1/2}. The corresponding
preimages are denoted by Mk :=5

−1(Nk)⊂ F, so that M0 :=M1∩M2=5
−1(N0).

Now set M := M1 ∪ M2. By Lemma 7.1 for k = 1, 2 we have that Mk is a
real-analytic submanifold of F. We obtain by Theorem 7.2 that locally Mk is
real-analytically diffeomorphic to G0 × Sk , where Sk is a real submanifold with
dimR(Sk) = dimR(Mk)− dimR(G0) = 1, by Lemma 7.1. By Proposition 2.6 it



472 MICHAEL REITER

is possible to normalize any element in Sk with unique isotropies which depend
real-analytically on elements of Sk . Thus, since dimR(Nk)= 1, we map Sk to Nk

via real-analytic diffeomorphisms. We obtain that for k = 1, 2 there exists an open
neighborhood Uk ⊂ F of N0 and a real-analytic diffeomorphism φk : Uk → Vk

such that φk(Uk ∩ Mk) = (G0 × Nk) ∩ Vk , where Vk is an open neighborhood
of N ′0 := {id} × N0 ⊂ G0 × M , with id = (idC2, idC3). Moreover, we have that
φk(Uk∩Nk)= ({id}×Nk)∩Vk and φk satisfies the properties given in Theorem 7.2.
We define φ : U0 → V0, φ(x) := φk(x) for x ∈ U0 ∩ Uk , where k = 1, 2 and
V0 = V1 ∪ V2 is an open neighborhood of N ′0. Write Ũ :=U1 ∩U2 ∩U0 ⊂ F for an
open neighborhood of N0. Then we have φ|Ũ = φ1|Ũ = φ2|Ũ , which implies that φ
is a real-analytic diffeomorphism. Furthermore, since

image(φ1|Ũ∩M)= image(φ2|Ũ∩M)= (G0× N0)∩ Ṽ ,

where Ṽ is an open neighborhood of N ′0 ⊂ G0×M , the mapping φ locally maps
M0 real-analytic diffeomorphically to G0× N0.

Finally the last statement follows from Theorem 7.2, since if F were a smooth
manifold, then by the smooth version of Theorem 7.2, the quotient N would have
to be a smooth manifold, which is not the case. �

8. Homeomorphic variations of normal forms

In the following we use the notation from Definition 2.4.

Definition 8.1. Let H be a subset of H(M, p;M ′, p′). A proper subset K (H
is called a normal form for H if for each [F] ∈ H/∼, there exists a unique rep-
resentative G ∈ K ∩ [F]. We denote the mapping which assigns to each H ∈ H
the representative G ∈ K∩ [H ] as π :H→ K. A normal form K for H is called
admissible if π :H→ K is continuous.

The uniqueness of the representative F ∈ K ∩ [F] in Definition 8.1 is not a
restriction. Assume we have another representative F 6= G ∈ K in the class [F],
then G is equivalent to F , hence it suffices to choose exactly one element from the
set of all representatives which belong to K ∩ [F]. If there exists an admissible
normal form K for H we observe that in each orbit of any not necessarily admissible
normal form K′ for H, there exists an element of K.

Theorem 8.2. Let N ′ be an admissible normal form for F . Then N ′ is homeomor-
phic to N , where we equip N ′ and N with τJ .

Proof. Let us denote by π ′ : F→N ′ the continuous mapping as in Definition 8.1.
We note that the class N introduced in Proposition 2.6 is an admissible normal form
for F as in Definition 2.5. If we equip F with τJ , we obtain by Proposition 4.3 that
the mapping π : F→N , H 7→ σ ′ ◦ H ◦ σ−1 is continuous.
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F

N ′ N

π ′

incl′
π

incl

ψ

Figure 2. Diagram for admissible normal forms.

In Figure 2, the mapping incl′ : N ′ → F is the inclusion mapping, which is
given by incl′(H) := H for all H ∈N ′, and similarly for incl :N → F . The map
ψ :N ′→N is given by ψ(H) := F for H ∈N ′ and F ∈N ∩[H ]. Since N ′ and
N are normal forms, we obtain that ψ is a bijective mapping. Furthermore, since
ψ = π ◦ incl′ and ψ−1

= π ′ ◦ incl are compositions of continuous mappings, we
obtain that ψ is a homeomorphism. �

Example 8.3. Beginning with N , we can construct different admissible normal
forms N ′ as follows. We fix a pair of isotropies (φ0, φ

′

0) ∈ G0 and consider the
isotropies (φ̃, φ̃′) ∈ G0 from Proposition 2.6, such that π : F → N is given by
π(H) := φ̃′ ◦ H ◦ φ̃−1, denoted by Ĥ . We define φ := φ0 ◦ φ̃ and φ′ := φ′0 ◦ φ̃

′, to
obtain for F ∈ F that

φ′ ◦ F ◦φ−1
= φ′0 ◦ φ̃

′
◦ F ◦ φ̃−1

◦φ−1
0 = φ

′

0 ◦ F̂ ◦φ−1
0 ,

where F̂ ∈ N . We define N ′ := {φ′0 ◦ F̂ ◦ φ−1
0 | F̂ ∈ N }. As observed above π

induces an admissible normal form, which implies that the mapping π ′ : F→N ′

given by π ′(F) := φ′ ◦ F ◦φ−1 is continuous and N ′ is an admissible normal form.

Acknowledgments

We would like to thank Bernhard Lamel, Giuseppe della Sala and Nordine Mir for
their interest in this work and many discussions related to the topic of this article.

References

[Baouendi et al. 1997] M. S. Baouendi, P. Ebenfelt, and L. P. Rothschild, “Parametrization of local
biholomorphisms of real analytic hypersurfaces”, Asian J. Math. 1:1 (1997), 1–16. MR 99b:32022
Zbl 0943.32021

[Baouendi et al. 1999] M. S. Baouendi, P. Ebenfelt, and L. P. Rothschild, “Rational dependence of
smooth and analytic CR mappings on their jets”, Math. Ann. 315:2 (1999), 205–249. MR 2001b:
32075 Zbl 0942.32027

[Baouendi et al. 2004] M. S. Baouendi, L. P. Rothschild, J. Winkelmann, and D. Zaitsev, “Lie group
structures on groups of diffeomorphisms and applications to CR manifolds”, Ann. Inst. Fourier
(Grenoble) 54:5 (2004), 1279–1303. MR 2005k:32048 Zbl 1062.22046

http://msp.org/idx/mr/99b:32022
http://msp.org/idx/zbl/0943.32021
http://dx.doi.org/10.1007/s002080050365
http://dx.doi.org/10.1007/s002080050365
http://msp.org/idx/mr/2001b:32075
http://msp.org/idx/mr/2001b:32075
http://msp.org/idx/zbl/0942.32027
http://www.numdam.org/item?id=AIF_2004__54_5_1279_0
http://www.numdam.org/item?id=AIF_2004__54_5_1279_0
http://msp.org/idx/mr/2005k:32048
http://msp.org/idx/zbl/1062.22046


474 MICHAEL REITER

[Bochner and Montgomery 1945] S. Bochner and D. Montgomery, “Groups of differentiable and
real or complex analytic transformations”, Ann. of Math. (2) 46 (1945), 685–694. MR 7,241d
Zbl 0061.04406

[Duistermaat and Kolk 2000] J. J. Duistermaat and J. A. C. Kolk, Lie groups, Springer, Berlin, 2000.
MR 2001j:22008 Zbl 0955.22001

[Faran 1982] J. J. Faran, “Maps from the two-ball to the three-ball”, Invent. Math. 68:3 (1982),
441–475. MR 83k:32038 Zbl 0519.32016

[Heinzner et al. 1996] P. Heinzner, A. T. Huckleberry, and F. Kutzschebauch, “A real analytic version
of Abels’ theorem and complexifications of proper Lie group actions”, pp. 229–273 in Complex
analysis and geometry (Trento, 1993), edited by V. Ancona et al., Lecture Notes in Pure and Appl.
Math. 173, Dekker, New York, 1996. MR 96j:57047 Zbl 0861.32011

[Illman and Kankaanrinta 2000] S. Illman and M. Kankaanrinta, “Three basic results for real analytic
proper G-manifolds”, Math. Ann. 316:1 (2000), 169–183. MR 2001f:58025 Zbl 0945.57016

[Juhlin and Lamel 2013] R. Juhlin and B. Lamel, “Automorphism groups of minimal real-analytic
CR manifolds”, J. Eur. Math. Soc. (JEMS) 15:2 (2013), 509–537. MR 3017044 Zbl 1267.32013

[Kim and Zaitsev 2005] S.-Y. Kim and D. Zaitsev, “Equivalence and embedding problems for CR-
structures of any codimension”, Topology 44:3 (2005), 557–584. MR 2005j:32037 Zbl 1079.32022

[Kowalski 2005] R. T. Kowalski, “Rational jet dependence of formal equivalences between real-
analytic hypersurfaces in C2”, Pacific J. Math. 220:1 (2005), 107–139. MR 2007h:32054 Zbl 1106.
32025

[Lamel 2001] B. Lamel, “Holomorphic maps of real submanifolds in complex spaces of different
dimensions”, Pacific J. Math. 201:2 (2001), 357–387. MR 2003e:32066 Zbl 1061.32027

[Lamel and Mir 2007] B. Lamel and N. Mir, “Parametrization of local CR automorphisms by finite
jets and applications”, J. Amer. Math. Soc. 20:2 (2007), 519–572. MR 2008b:32025 Zbl 1112.32017

[Lamel et al. 2008] B. Lamel, N. Mir, and D. Zaitsev, “Lie group structures on automorphism
groups of real-analytic CR manifolds”, Amer. J. Math. 130:6 (2008), 1709–1726. MR 2009k:32044
Zbl 1165.32017

[Lebl 2011] J. Lebl, “Normal forms, Hermitian operators, and CR maps of spheres and hyperquadrics”,
Michigan Math. J. 60:3 (2011), 603–628. MR 2861091 Zbl 1237.32005

[Palais 1961] R. S. Palais, “On the existence of slices for actions of non-compact Lie groups”, Ann.
of Math. (2) 73 (1961), 295–323. MR 23 #A3802 Zbl 0103.01802

[Reiter 2014] M. Reiter, Holomorphic mappings of hyperquadrics from C2 to C3, thesis, University
of Vienna, 2014, Available at http://othes.univie.ac.at/33603.

[Reiter 2015] M. Reiter, “Classification of holomorphic mappings of hyperquadrics from C2 to C3”,
J. Geom. Anal. (online publication March 2015).

[Wolfram 2008] Wolfram Research, “Mathematica”, 2008, Available at http://www.wolfram.com/
mathematica. version 7.0.1.0, Champaign, IL.

Received November 6, 2014. Revised May 20, 2015.

MICHAEL REITER

FACULTY OF MATHEMATICS

UNIVERSITY OF VIENNA

OSKAR-MORGENSTERN-PLATZ 1
1090 VIENNA

AUSTRIA

m.reiter@univie.ac.at

http://dx.doi.org/10.2307/1969204
http://dx.doi.org/10.2307/1969204
http://msp.org/idx/mr/7,241d
http://msp.org/idx/zbl/0061.04406
http://dx.doi.org/10.1007/978-3-642-56936-4
http://msp.org/idx/mr/2001j:22008
http://msp.org/idx/zbl/0955.22001
http://www.digizeitschriften.de/dms/resolveppn/?PID=GDZPPN002098504
http://msp.org/idx/mr/83k:32038
http://msp.org/idx/zbl/0519.32016
http://msp.org/idx/mr/96j:57047
http://msp.org/idx/zbl/0861.32011
http://dx.doi.org/10.1007/s002080050008
http://dx.doi.org/10.1007/s002080050008
http://msp.org/idx/mr/2001f:58025
http://msp.org/idx/zbl/0945.57016
http://dx.doi.org/10.4171/JEMS/366
http://dx.doi.org/10.4171/JEMS/366
http://msp.org/idx/mr/3017044
http://msp.org/idx/zbl/1267.32013
http://dx.doi.org/10.1016/j.top.2004.11.004
http://dx.doi.org/10.1016/j.top.2004.11.004
http://msp.org/idx/mr/2005j:32037
http://msp.org/idx/zbl/1079.32022
http://dx.doi.org/10.2140/pjm.2005.220.107
http://dx.doi.org/10.2140/pjm.2005.220.107
http://msp.org/idx/mr/2007h:32054
http://msp.org/idx/zbl/1106.32025
http://msp.org/idx/zbl/1106.32025
http://dx.doi.org/10.2140/pjm.2001.201.357
http://dx.doi.org/10.2140/pjm.2001.201.357
http://msp.org/idx/mr/2003e:32066
http://msp.org/idx/zbl/1061.32027
http://dx.doi.org/10.1090/S0894-0347-06-00534-0
http://dx.doi.org/10.1090/S0894-0347-06-00534-0
http://msp.org/idx/mr/2008b:32025
http://msp.org/idx/zbl/1112.32017
http://dx.doi.org/10.1353/ajm.0.0033
http://dx.doi.org/10.1353/ajm.0.0033
http://msp.org/idx/mr/2009k:32044
http://msp.org/idx/zbl/1165.32017
http://dx.doi.org/10.1307/mmj/1320763051
http://msp.org/idx/mr/2861091
http://msp.org/idx/zbl/1237.32005
http://dx.doi.org/10.2307/1970335
http://msp.org/idx/mr/23:A3802
http://msp.org/idx/zbl/0103.01802
http://othes.univie.ac.at/33603
http://dx.doi.org/10.1007/s12220-015-9594-6
http://www.wolfram.com/mathematica
mailto:m.reiter@univie.ac.at


PACIFIC JOURNAL OF MATHEMATICS
msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2016 is US $440/year for the electronic version, and $600/year for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2016 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:balmer@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:blasius@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:yang@math.princeton.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 280 No. 2 February 2016

257Topological Molino’s theory
JESÚS A. ÁLVAREZ LÓPEZ and MANUEL F. MOREIRA GALICIA

315Equivariant principal bundles and logarithmic connections on toric
varieties

INDRANIL BISWAS, ARIJIT DEY and MAINAK PODDAR

327On a spectral theorem in paraorthogonality theory
KENIER CASTILLO, RUYMÁN CRUZ-BARROSO and FRANCISCO

PERDOMO-PÍO

349Sigma theory and twisted conjugacy, II: Houghton groups and pure
symmetric automorphism groups

DACIBERG L. GONÇALVES and PARAMESWARAN SANKARAN

371The second CR Yamabe invariant
PAK TUNG HO

401No hyperbolic pants for the 4-body problem with strong potential
CONNOR JACKMAN and RICHARD MONTGOMERY

411Unions of Lebesgue spaces and A1 majorants
GREG KNESE, JOHN E. MCCARTHY and KABE MOEN

433Complex hyperbolic (3, 3, n) triangle groups
JOHN R. PARKER, JIEYAN WANG and BAOHUA XIE

455Topological aspects of holomorphic mappings of hyperquadrics from C2

to C3

MICHAEL REITER

4752-Blocks with minimal nonabelian defect groups III
BENJAMIN SAMBALE

489Number of singularities of stable maps on surfaces
TAKAHIRO YAMAMOTO

0030-8730(2016)280:2;1-5

Pacific
JournalofM

athem
atics

2016
Vol.280,N

o.2


	1. Introduction and results
	2. Preliminaries
	Classes of maps, automorphisms and equivalence relations
	The class `39`42`"613A``45`47`"603AF, the normal form `39`42`"613A``45`47`"603AN and its classification
	Associated topologies

	3. The isotropic stabilizer and freeness of the group action on `39`42`"613A``45`47`"603AF
	4. Continuity of the normalization map
	5. A topological property of the quotient space of `39`42`"613A``45`47`"603AF
	6. Properness of the group action
	7. On the real-analytic structure of `39`42`"613A``45`47`"603AF
	8. Homeomorphic variations of normal forms
	Acknowledgments
	References
	
	

