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BENJAMIN SAMBALE

We prove that two 2-blocks of (possibly different) finite groups with a com-
mon minimal nonabelian defect group and the same fusion system are iso-
typic (and therefore perfectly isometric) in the sense of Broué. This contin-
ues former work by Cabanes and Picaronny (J. Fac. Sci. Univ. Tokyo Sect.
IA Math. 39:1 (1992), 141–161), Sambale (J. Algebra 337 (2011), 261–284)
and Eaton et al. (J. Group Theory 15:3 (2012), 311–321).

1. Introduction

Since its appearance in 1990, Broué’s abelian defect conjecture gained much
attention among representation theorists. On the level of characters it predicts the
existence of a perfect isometry between a block with abelian defect group and its
Brauer correspondent. These blocks have a common defect group and the same
fusion system. Although Broué’s conjecture is false for nonabelian defect groups
(see [Cliff 2000]), one can still ask if perfect isometries or even isotypies exist.
We affirmatively answer this question for p = 2 and minimal nonabelian defect
groups (see Theorem 9 below). These are the nonabelian defect groups such that
any proper subgroup is abelian. Doing so, we verify the character-theoretic version
of Rouquier’s conjecture [2001, A.2] in this special case (see Corollary 10 below).
At the same time we provide a new infinite family of defect groups supporting a
blockwise Z∗-Theorem.

By Rédei’s classification of minimal nonabelian p-groups, one has to consider
three distinct families of defect groups. For two of these families the result already
appeared in the literature (see [Cabanes and Picaronny 1992; Sambale 2011; Eaton
et al. 2012]). Hence, it suffices to handle the remaining family which we will do in
the next section. The proof of the main result is an application of [Horimoto and
Watanabe 2012, Theorem 2]. The last section of the present paper also contains a
related result for the nonabelian defect group of order 27 and exponent 9.

Our notation is fairly standard. We consider blocks B of finite groups with
respect to a p-modular system (K ,O, F) where O is a complete discrete valuation
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ring with quotient field K of characteristic 0 and field of fractions F of characteristic
p. As usual, we assume that K is “large” enough and F is algebraically closed.
The number of irreducible ordinary characters (resp. Brauer characters) of B is
denoted by k(B) (resp. l(B)). Moreover, ki (B) is the number of those irreducible
characters of B which have height i ≥ 0. For other results on block invariants and
fusion systems we often refer to [Sambale 2014]. Moreover, for the definition and
construction of perfect isometries we follow [Broué and Puig 1980a; Cabanes and
Picaronny 1992]. A cyclic group of order n ∈ N is denoted by Cn .

2. A class of minimal nonabelian defect groups

Let B be a non-nilpotent 2-block of a finite group G with defect group

(1) D = 〈x, y | x2r
= y2
= [x, y]2 = [x, x, y] = [y, x, y] = 1〉 ∼= C2

2 oC2r

where r ≥ 2, [x, y] := xyx−1 y−1 and [x, x, y] := [x, [x, y]].
We have already investigated some properties of B in [Sambale 2011], and later

gave simplified proofs in [Sambale 2014, Chapter 12]. For the convenience of the
reader we restate some of these results.

Lemma 1 [Sambale 2014, Lemma 12.3]. Let z := [x, y]. Then:

(i) 8(D)= Z(D)= 〈x2, z〉 ∼= C2r−1 ×C2.

(ii) D′ = 〈z〉 ∼= C2.

(iii) |Irr(D)| = 5 · 2r−1.

Recall that a (saturated) fusion system F on a p-group P determines the following
subgroups:

Z(F) := {x ∈ P : x is fixed by every morphism in F},
foc(F) := 〈 f (x)x−1

: x ∈ Q ≤ P, f ∈ AutF (Q)〉,

hyp(F) := 〈 f (x)x−1
: x ∈ Q ≤ P, f ∈ Op(AutF (Q))〉.

Lemma 2. The fusion system F of B is the constrained fusion system of the finite
group A4 oC2r where C2r acts as a transposition in Aut(A4)∼= S4. In particular,
B has inertial index 1 and Q := 〈x2, y, z〉 ∼= C2r−1 × C2

2 is the only F-essential
subgroup of D. Moreover, AutF (Q)∼= S3. Without loss of generality, Z(F)= 〈x2

〉

and hyp(B)= foc(B)= foc(F)= 〈y, z〉.

Proof. We have seen in [Sambale 2014, Proposition 12.7] that F is constrained and
coincides with the fusion system of A4 oC2r . The construction of the semidirect
product A4 oC2r is slightly different in [Sambale 2014], but it is easy to see that
both constructions give isomorphic groups. The remaining claims follow from the
proof of [Sambale 2014, Proposition 12.7]. �
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By a result of Watanabe [2014, Theorem 3 and Lemma 3], the hyperfocal
subgroup of a 2-block is trivial or noncyclic. Hence, our situation with a Klein-four
(hyper)focal subgroup represents the first nontrivial example in some sense. Recall
that a B-subsection is a pair (u, bu) such that u ∈ D and bu is a Brauer correspondent
of B in CG(u).

Lemma 3. The set R := Z(D)∪ {x i y j
: i, j ∈ Z, i odd} is a set of representatives

for the F-conjugacy classes of D with |R| = 2r+1. For u ∈ R let (u, bu) be a
B-subsection. Then bu has defect group CD(u). Moreover, l(bu) = 1 whenever
u ∈R \ 〈x2

〉.

Proof. By Lemma 2, it is easy to see that R is in fact a set of representatives for the
F-conjugacy classes of D. Observe that 〈u〉 is fully F-normalized for all u ∈R.
Hence, by [Sambale 2014, Lemma 1.34], bu has defect group CD(u) and fusion
system CF (〈u〉). It is easy to see that CF (〈u〉) is trivial unless u ∈ Z(F) = 〈x2

〉.
This shows l(bu)= 1 for u ∈R \ 〈x2

〉. �

Theorem 4 [Sambale 2014, Theorem 12.4]. We have k(B)= 5·2r−1, k0(B)= 2r+1,
k1(B)= 2r−1 and l(B)= 2.

Proof. By Lemma 2, we have |D : foc(B)| = 2r . In particular, 2r
| k0(B) by

[Robinson 2008, Theorem 1]. Moreover, [Kessar et al. 2015, Theorem 1.1] implies
2r+1
≤ k0(B). By Lemma 3 we have l(bx)= 1. Thus, we obtain k0(B)= 2r+1 by

a result of Robinson (see [Sambale 2014, Theorem 4.12]). In order to determine
l(B), we use induction on r . Let u := x2. Then bu dominates a block bu of
CG(u)/〈u〉 with defect group D := D/〈u〉 ∼= D8 and fusion system F := F/〈u〉.
By [Linckelmann 2007, Theorem 6.3], 〈x2, y, z〉/〈u〉 ∼= C2

2 is the only F-essential
subgroup of D. Therefore, a result of Brauer (see [Sambale 2014, Theorem 8.1])
shows that l(bu) = l(bu) = 2. By Lemma 3 and [Sambale 2014, Theorem 1.35]
it follows that k(B) > k0(B). Since |Z(D) : Z(D) ∩ foc(B)| = 2r−1, we have
2r−1
| ki (B) for i ≥ 1 by [Robinson 2008, Theorem 2]. Thus, by [Robinson 1991,

Theorem 3.4] we obtain

2r+2
≤ k0(B)+ 4(k(B)− k0(B))≤

∞∑
i=0

ki (B)22i
≤ |D| = 2r+2.

This gives k1(B) = 2r−1 and k(B) = k0(B)+ k1(B) = 5 · 2r−1. In case r = 2,
[Sambale 2014, Theorem 1.35] implies

l(B)= k(B)−
∑

16=u∈R

l(bu)= 10− 8= 2.

Now let r ≥ 3 and 1 6= 〈u〉< 〈x2
〉. Then bu as above has the same type of defect

group as B except that r is smaller. Hence, induction gives l(bu)= l(bu)= 2. Now
the claim l(B)= 2 follows again by [Sambale 2014, Theorem 1.35]. �
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In the following results we denote the set of irreducible characters of B of height i
by Irri (B).

Proposition 5 [Sambale 2014, Proposition 12.9]. The set Irr0(B) contains four
2-rational characters and two families of 2-conjugate characters of size 2i for every
i = 1, . . . , r −1. The characters of height 1 split into two 2-rational characters and
one family of 2-conjugate characters of size 2i for every i = 2, . . . , r − 2.

Proposition 6. There are 2-rational characters χi ∈ Irr(B) for i = 1, 2, 3 such that

Irr0(B)= {χi ∗ λ : i = 1, 2, λ ∈ Irr(D/foc(B))},

Irr1(B)= {χ3 ∗ λ : λ ∈ Irr(Z(D)foc(B)/foc(B))}.

In particular, the characters of height 1 have the same degree and

|{χ(1) : χ ∈ Irr0(B)}| ≤ 2.

Proof. We have already seen in the proof of Theorem 4 that the action of D/foc(B) on
Irr0(B) via the ∗-construction has two orbits, and the action of Z(D)foc(B)/foc(B)
on Irr1(B) is regular. By Proposition 5 we can choose 2-rational representatives for
these orbits, having identified the sets Irr(D/foc(B)) and Irr(Z(D)foc(B)/foc(B))
with subsets of Irr(D) in an obvious manner. �

In the situation of Proposition 6 it is conjectured that χ1(1) 6= χ2(1) (see [Malle
and Navarro 2011]).

Proposition 7 [Sambale 2014, Proposition 12.8]. The Cartan matrix of B is given
by

2r−1
(

3 1
1 3

)
up to basic sets.

Observe that Proposition 7 also gives the Cartan matrix for the defect group D8

and the corresponding fusion system (this would be the case r = 1).
Now we are in a position to obtain the generalized decomposition matrix of B.

This completes partial results in [Sambale 2011, Section 3.3].

Proposition 8. Let R and χi be as in Lemma 3 and Proposition 6 respectively. Then
there are basic sets for bu (u ∈R) and signs ε, σ ∈ {±1} such that the generalized
decomposition numbers of B have the following form:

u x2i x2i z x2i+1 x2i+1 y

du
χ1ϕ

(1, 0) 1 1 1
du
χ2ϕ

(0, ε) ε ε −ε

du
χ3ϕ

(σ, σ ) −2σ 0 0
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Proof. Since the Galois group of Q(e2π i/2r
) over Q acts on the columns of the

generalized decomposition matrix (see Proposition 5), we only need to determine
the numbers du

χiϕ
for u ∈ {x, xy, x2 j

, x2 j
z} (i = 1, 2, 3, j = 1, . . . , r). First let

u = x . Then the orthogonality relations show that

2r
|dx
χ1ϕ
|
2
+ 2r
|dx
χ2ϕ
|
2
+ 2r−1

|dx
χ3ϕ
|
2
= 2r+1.

Since χ1 and χ2 have height 0, we have dx
χ1ϕ
6= 0 6= dx

χ2ϕ
(see [Sambale 2014,

Proposition 1.36]). It follows that dx
χiϕ
=±1 for i = 1, 2 and dx

χ3ϕ
= 0, because χi

is 2-rational. By replacing ϕ with −ϕ if necessary (i.e., changing the basic set for
bx ), we may assume that dx

χ1ϕ
= 1. We set dx

χ2ϕ
=: ε0. Similarly, we obtain dxy

χ1ϕ = 1,
dxy
χ2ϕ = ±1 and dxy

χ3ϕ = 0. Now since the columns dx and dxy of the generalized
decomposition matrix are orthogonal, we obtain dxy

χ2ϕ =−ε0.
Now let u := x2 j

for some j ∈ {1, . . . , r}. Let IBr(bu)= {ϕ1, ϕ2} (see the proof
of Theorem 4). Then by Proposition 7 we get

2r
|du
χ1ϕ1
|
2
+ 2r
|du
χ2ϕ1
|
2
+ 2r−1

|du
χ3ϕ1
|
2
= 3 · 2r−1,

2r
|du
χ1ϕ2
|
2
+ 2r
|du
χ2ϕ2
|
2
+ 2r−1

|du
χ3ϕ2
|
2
= 3 · 2r−1,

2r du
χ1ϕ1

du
χ1ϕ2
+ 2r du

χ2ϕ1
du
χ2ϕ2
+ 2r−1du

χ3ϕ1
du
χ3ϕ2
= 2r−1.

Obviously, du
χ1ϕ1

du
χ2ϕ1
= 0 and we may assume that (du

χ1ϕ1
, du
χ1ϕ2

) = (1, 0) and
(du
χ2ϕ1

, du
χ2ϕ2

)= (0, ε j ) for a sign ε j ∈ {±1}. Moreover, du
χ3ϕ1
= du

χ3ϕ2
=: σ j ∈ {±1}.

Now let u := x2 j
z. Then we have

2r
|du
χ1ϕ
|
2
+ 2r
|du
χ2ϕ
|
2
+ 2r−1

|du
χ3ϕ
|
2
= 2r+2.

It is known that 2 |du
χ3ϕ
6=0, since bu is major (see [Sambale 2014, Proposition 1.36]).

This gives du
χ1ϕ
= 1, du

χ2ϕ
= ±1 and du

χ3ϕ
= ±2. By the orthogonality to dx2 j

we
obtain that du

χ3ϕ
=−2σ j and du

χ2ϕ
= ε j .

It remains to show that the signs ε j and σ j do not depend on j . For this we
consider characters λ,ψ ∈ Irr(D) whose values are given as follows:

x2 j
x2 j

z x xy

λ 1 1 1 −1
ψ 2 −2 0 0

Observe that ψ is the inflation of the irreducible character of D/〈x2
〉 ∼= D8 of

degree 2. It is easy to see that (λ+ ψ)(x2k y) = −1 = 1− 2 = (λ+ ψ)(x2kz)
for every k ∈ Z. It follows that λ+ψ is F-stable, i.e., (λ+ψ)(u) = (λ+ψ)(v)
whenever u and v are F-conjugate. By [Broué and Puig 1980a], χ1 ∗ (λ+ψ) is
a generalized character of B. In particular, the scalar product (χ1 ∗ (λ+ψ), χ3)G

is an integer. This number can be computed by using the so-called contribution
numbers mu

χ1χ3
:= du

χ1
C−1

u du
χ3

T where Cu is the Cartan matrix of bu and du
χi

is the
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row of the generalized decomposition matrix corresponding to (u, bu) and χi . For
u = x2 j

we have

C−1
u = 2−r−2

(
3 −1
−1 3

)
by Proposition 7. This gives mu

χ1χ3
= 2−r−1σ j . Similarly, mu

χ1χ3
=−2−r−1σ j for

u = x2 j
z. Thus, we obtain

(χ1 ∗ (λ+ψ), χ3)G =
∑
u∈R

(λ+ψ)(u)mu
χ1χ3
=

∑
u∈Z(D)

(λ+ψ)(u)mu
χ1χ3

= (3+ 1)
(

2−r−1σr + 2−r−1
r−1∑
j=1

σ j 2r− j−1
)

= 2−r+1σr +

r−1∑
j=1

σ j 2− j .

If σ1 = σ j for some j 6= 1, then it follows immediately that σ1 = · · · = σr (other-
wise the scalar product above is not an integer). Now suppose that −σ1 = σ2 =

· · · = σr . In this case we replace χ3 by the 2-rational character χ3 ∗ τ where
τ ∈ Irr(Z(D)foc(B)/foc(B)) such that τ(x2)=−1. This changes σ1, but does not
affect σ j for j > 1.

A similar argument with the scalar product (χ2 ∗ (λ+ ψ), χ3)G implies that
ε1 = · · · = εr . In case ε0 =−ε1, we replace χ2 by χ2 ∗ τ where τ ∈ Irr(D/foc(B))
such that τ(x) = −1. Observe again that this changes ε0, but keeps ε j for j > 0.
This completes the proof. �

3. The main result

Theorem 9. Let B and B̃ be 2-blocks of (possibly different) finite groups with a
common minimal nonabelian defect group and the same fusion system. Then B and
B̃ are isotypic (and therefore perfectly isometric).

Proof. We may assume that B is not nilpotent by [Broué and Puig 1980b]. Let D
be a defect group of B and B̃. If |D| = 8, then the claim follows from [Cabanes and
Picaronny 1992]. Now suppose that D is given as in (1). We will attach a tilde to
everything associated with B̃. By Proposition 8 and [Horimoto and Watanabe 2012,
Theorem 2] there is a perfect isometry I :CF(G, B)→CF(G̃, B̃) where CF(G, B)
denotes the space of class functions with basis Irr(B) over K . It remains to show
that I is also an isotypy. In order to do so, we follow [Cabanes and Picaronny 1992,
Section V.2]. For each u ∈ D let CF(CG(u)2′, bu) be the space of class functions
on CG(u) which vanish on the p-singular classes and are spanned by IBr(bu). The
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decomposition map du
G : CF(G, B)→ CF(CG(u)2′, bu) is defined by

du
G(χ)(s) := χ(ebu us)=

∑
ϕ∈IBr(bu)

du
χϕϕ(s)

for χ ∈ Irr(B) and s ∈ CG(u)2′ where ebu is the block idempotent of bu over O.
Then I determines isometries

I u
: CF(CG(u)2′, bu)→ CF(CG̃(u)2′, b̃u)

by the equation du
G̃
◦ I = I u

◦ du
G . Note that I 1 is the restriction of I . We need

to show that I u can be extended to a perfect isometry Î u : CF(CG(u), bu) →

CF(CG̃(u), b̃u). Suppose first that bu is nilpotent. Then by Proposition 8, du
G(χ1)=

εϕ and du
G̃
(I (χ1)) = ε̃ϕ̃ where IBr(bu) = {ϕ} and IBr(b̃u) = {ϕ̃} for some signs

ε, ε̃ ∈ {±1}. It follows that I u(ϕ) = εε̃ϕ̃. Let ψ ∈ Irr0(bu) and ψ̃ ∈ Irr0(b̃u) be
2-rational characters. Then it is well known that ϕ = d1

CG(u)(ψ) and Irr(bu) =

{ψ ∗λ : λ ∈ Irr(D)} (see [Broué and Puig 1980b]). Therefore, we may define Î u by
Î u(ψ ∗ λ) := εε̃ψ̃ ∗ λ for λ ∈ Irr(D). Then Î u is a perfect isometry and

Î u(ϕ)= Î u(d1
CG(u)(ψ))= d1

CG̃(u)
( Î u(ψ))= εε̃d1

CG̃(u)
(ψ̃)= εε̃ϕ̃ = I u(ϕ).

Hence, Î u extends I u . Moreover, Î u does not depend on the generator of 〈u〉, since
the signs ε and ε̃ were defined by means of 2-rational characters.

Assume next that bu is non-nilpotent. Then u ∈ 〈x2
〉 and bu has defect group

D. By Proposition 8, we can choose basic sets ϕ1, ϕ2 (resp. ϕ̃1, ϕ̃2) for bu (resp.
b̃u) such that ϕi = du

G(χi ) and ϕ̃i = du
G̃
(I (χi )) for i = 1, 2. Then I u(ϕi ) = ϕ̃i for

i = 1, 2. Since the Cartan matrix of bu with respect to the basic set ϕ1, ϕ2 is already
fixed (and given by Proposition 7), we find 2-rational characters ψi ∈ Irr0(bu) such
that d1

CG(u)(ψi )= εiϕi with εi ∈ {±1} for i = 1, 2 (see the proof of Proposition 8).
Similarly, one has ψ̃i ∈ Irr0(b̃u) such that d1

CG̃(u)
(ψ̃i ) = ε̃i ϕ̃i . Then, by what we

have already shown, there exists a perfect isometry

Î u : CF(CG(u), bu)→ CF(CG̃(u), b̃u)

sending ψi to εi ε̃i ψ̃i for i = 1, 2. We have

Î u(ϕi )= εi Î u(d1
CG(u)(ψi ))= εi d1

CG̃(u)
( Î u(ψi ))= ε̃i d1

CG̃(u)
(ψ̃i )= ϕ̃i = I u(ϕi )

for i = 1, 2. This shows that Î u extends I u . Moreover, it is easy to see that Î u does
not depend on the generator of 〈u〉.

Altogether we have proved the theorem if D is given as in (1). By [Sambale
2014, Theorem 12.4] it remains to handle the case

D ∼= 〈x, y | x2r
= y2r

= [x, y]2 = [x, x, y] = [y, x, y] = 1〉
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where r ≥ 2. Here B and B̃ are Morita equivalent and therefore perfectly isometric.
However, a Morita equivalence does not automatically provide an isotypy. Nev-
ertheless, in this special case the Morita equivalence is a composition of various
“natural” equivalences (namely Fong reductions, Külshammer–Puig reduction and
Külshammer’s reduction for blocks with normal defect groups, see [Eaton et al.
2012, proof of Theorem 1]). In particular, the generalized decomposition matrices
of B and B̃ coincide up to signs (see [Watanabe 1985]). Now we can use the same
methods as above in order to construct an isotypy. In fact, for every B-subsection
(u, bu) one has that bu is nilpotent or u = [x, y] and bu is Morita equivalent to B
(see the proof of [Sambale 2011, Proposition 4.3]). We omit the details. �

Corollary 10. Let B be a 2-block of a finite group G with minimal nonabelian
defect group D 6∼= D8. Then B is isotypic to a Brauer correspondent in NG(hyp(B)).

Proof. Let bD be a Brauer correspondent of B in D CG(D). Since D CG(D) ⊆
NG(hyp(B)), the Brauer correspondent b := bNG(hyp(B))

D of B has defect group
D. By Theorem 9, it suffices to show that B and b have the same fusion system.
Observe that NG(D, bD) ⊆ NG(hyp(B)). In particular, B and b have the same
inertial quotient. If there is only the trivial fusion system on D, then we are done
(this applies if D is metacyclic of order at least 16). In case D ∼= Q8, B is a
controlled block (see, e.g., [Cabanes and Picaronny 1992]). Since B and b have the
same inertial quotient, it follows that these blocks also have the same fusion system.
It remains to consider the two other families of defect groups (see [Sambale 2014,
Theorem 12.4]). For one of these families the fusion system is again controlled (see
[Sambale 2014, Proposition 12.7]). Finally, if D is given as in (1), then the fusion
system is constrained and the automorphisms of the essential subgroup (if it exists)
also act on hyp(B). Hence, B is nilpotent if and only if b is nilpotent. Again the
claim follows from Theorem 9. �

We remark that Corollary 10 would be false in case D ∼= D8. The principal
2-block of GL(3, 2) gives a counterexample. If B is a block of a finite group G
with defect group as given in (1), then B is also isotypic to a Brauer correspondent
in CG(u) where u ∈ Z(F). This resembles Glauberman’s Z∗-theorem.

In the situation of Theorem 9 (or Corollary 10) it is desirable to extend the
isotypies to Morita equivalences (as we did in [Eaton et al. 2012]). This is not
always possible if |D|=8, since for example the principal 2-blocks of the symmetric
groups S4 and S5 are not Morita equivalent. Nevertheless, the possible Morita
equivalence classes in case |D| = 8 are known by Erdmann’s classification of tame
algebra [Erdmann 1990] (at least over F , see [Holm 2001]). In view of [Eaton
et al. 2012] one may still ask if two non-nilpotent 2-blocks with isomorphic defect
groups as in Section 2 are Morita equivalent. We will see that the answer is again
negative.
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Consider the groups G1 := A4oC2r and G2 := A5oC2r constructed similarly as
in Lemma 2. Then G1/Z(G1)∼= S4 and G2/Z(G2)∼= S5. Let Bi be the principal
2-block of Gi , and let Bi be the principal 2-block of Gi/Z(Gi ) for i = 1, 2. Then
the Cartan matrix of Bi is just the Cartan matrix of Bi multiplied by |Z(Gi )| = 2r−1.
It is known that the Cartan matrices of B1 and B2 do not coincide (regardless of the
labeling of the simple modules). Therefore, B1 and B2 are not Morita equivalent.

Nevertheless, the structure of a finite group G with a minimal nonabelian Sylow
2-subgroup P as given in (1) is fairly restricted. More precisely, Glauberman’s
Z∗-theorem implies x2

∈ Z∗(G), and the structure of G/Z∗(G) follows from the
Gorenstein–Walter theorem [1965]. In particular, G has at most one nonabelian
composition factor by Feit–Thompson.

We use the opportunity to present a related result for p = 3 which extends
[Sambale 2014, Theorem 8.15].

Theorem 11. Let B and B̃ be non-nilpotent blocks of (possibly different) finite
groups both with defect group C9 oC3. Then B and B̃ are isotypic.

Proof. As in the proof of Theorem 9, we will make use of [Horimoto and Watanabe
2012, Theorem 2]. Let

D := 〈x, y | x9
= y3
= 1, yxy−1

= x4
〉

be a defect group of B, and let F be the fusion system of B. By [Stancu 2006], B is
controlled with inertial index 2, and we may assume that x and x−1 are F-conjugate
(see the proof of [Sambale 2014, Theorem 8.8]). Then R :={1, x, x3, y, y2, xy, xy2

}

is a set of representatives for the F-conjugacy classes of D (see the proof of [Sambale
2014, Theorem 8.15]). It suffices to show that the generalized decomposition
numbers of B are essentially unique (up to basic sets and signs and permutations
of rows). Since the Galois group of Q(e2π i/9) over Q acts on the columns of the
generalized decomposition matrix, we only need to determine the numbers du

χϕ

for u ∈ {x, x3, y, xy}. By [Sambale 2014, Theorem 8.15] there are four 3-rational
characters χi ∈ Irr(B) (i = 1, . . . , 4) such that χ1, χ2 and χ3 have height 0 and χ4

has height 1. Since foc(B)= 〈x〉, we see that

Irr(B)= {χi ∗ λ : i = 1, 2, 3, λ ∈ Irr(D/foc(B))} ∪ {χ4}.

Let u := x3. Then IBr(bu)= {ϕ} and du
χiϕ

are nonzero (rational) integers. Moreover,
du
χ4ϕ
≡ 0 (mod 3). After permuting χ1, χ2 and χ3 and changing the basic set for bu

if necessary, we may assume that du
χ1ϕ
= 2, du

χ2ϕ
=: ε1 ∈ {±1}, du

χ3ϕ
=: ε2 ∈ {±1}

and du
χ4ϕ
= 3ε3 ∈ {±3}. Now let u := x . Then du

χiϕ
=±1 for i = 1, 2, 3 and du

χ4ϕ
= 0.

We may choose a basic set for bu such that du
χ1ϕ
= 1. Then by the orthogonality

relations, du
χ2ϕ
=−ε1 and du

χ3ϕ
=−ε2. Next let u := y. Then bu dominates a block

of CG(u)/〈u〉 with cyclic defect group CD(u)/〈u〉 ∼= C3 and inertial index 2. This
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yields IBr(bu)= {ϕ1, ϕ2} and the Cartan matrix of bu is given by

3
(

2 1
1 2

)
(not only up to basic sets, but this is not important here). We can choose a basic set
such that (du

χ1ϕ1
, du
χ1ϕ2

) = (1, 1), (du
χ2ϕ1

, du
χ2ϕ2

) = (σ1, 0), (du
χ3ϕ1

, du
χ3ϕ2

) = (0, σ2)

and (du
χ4ϕ1

, du
χ4ϕ2

) = (0, 0) for some signs σ1, σ2 ∈ {±1}. Finally for u := xy we
obtain du

χ1ϕ
= 1, du

χiϕ
=−σi−1 for i = 2, 3 and du

χ4ϕ
= 0 after changing the basic

set if necessary. The following table summarizes the results:

u x3 x y xy

du
χ1ϕ

2 1 (1, 1) 1
du
χ2ϕ

ε1 −ε1 (σ1, 0) −σ1

du
χ3ϕ

ε2 −ε2 (0, σ2) −σ2

du
χ4ϕ

3ε3 0 (0, 0) 0

It suffices to show that εi = σi for i = 1, 2 (observe that we do not need the
ordinary decomposition numbers in order to apply [Horimoto and Watanabe 2012,
Theorem 2]). For this, let λ ∈ Irr(D/〈x3

〉) such that λ(x) = e2π i/3 and λ(y) = 1.
Then the generalized character ψ := λ+ λ− 2 · 1D of D is constant on 〈x〉 \ 〈x3

〉

and thus F-stable. By [Broué and Puig 1980a], χ1 ∗ψ is a generalized character of
B and (χ1 ∗ψ, χ2)G ∈ Z. As in the proof of Theorem 9, we compute

(χ1 ∗ψ, χ2)G =
∑
u∈R

ψ(u)mu
χ1χ2
= ψ(x)mx

χ1χ2
+ψ(xy)mxy

χ1χ2
+ψ(xy2)mxy2

χ1χ2

=
1
3ε1+

2
3σ1.

This shows ε1= σ1. Similarly, one gets ε2= σ2 by computing (χ1∗ψ, χ3)G . Hence,
[Horimoto and Watanabe 2012, Theorem 2] gives a perfect isometry I :CF(G, B)→
CF(G̃, B̃). In order to show that I is also an isotypy, we make use of the notation
introduced in the proof of Theorem 9. Let u ∈ D such that bu is nilpotent. Then by
the table above, we have IBr(bu)= {±du

G(χ2)}. Thus, one can extend I u just as in
Theorem 9. Now suppose that bu is non-nilpotent and thus u = y (up to inversion).
We choose a basic set ϕ1, ϕ2 for bu as above such that du

G(χi )= ϕi−1 for i = 2, 3.
Now we have to determine the ordinary decomposition numbers of bu with respect
to ϕ1, ϕ2. The defect group of bu is CD(y)= 〈x3, y〉 ∼=C3×C3 and foc(bu)= 〈x3

〉.
By [Kiyota 1984], k(bu)= 9. Therefore, there are 3-rational characters ψi ∈ Irr(bu)

such that

Irr(bu)= {ψi ∗ λ : i = 1, 2, 3, λ ∈ Irr(〈x3, y〉/〈x3
〉)}.

By the Cartan matrix of bu given above (with respect to ϕ1, ϕ2), it follows immedi-
ately that d1

CG(u)(ψi )= εiϕi with εi ∈{±1} for i =1, 2 after a suitable permutation of
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ψ1, ψ2, ψ3. Similarly, d1
CG̃(u)

(ψ̃i )= ε̃i ϕ̃i . By a result of Usami [1988], there is a per-
fect isometry CF(CG(u), bu)→ CF(CG̃(u), b̃u). However, we need the additional
information that ψi is mapped to ±ψ̃i . In order to show this, we use [Horimoto and
Watanabe 2012, Theorem 2] again. Observe that du

CG(u)(ψi )= ζi d1
CG(u)(ψi )= ζiεiϕi

for a cube root of unity ζi . But since du
ψiϕi

is rational, we have ζi = 1. Now an
elementary application of the orthogonality relations shows that the generalized
decomposition matrix of bu (in CG(u)) is determined by

v 1 y x3 x3 y

dvψ1ϕ
(ε1, 0) (ε1, 0) ε1 ε1

dvψ2ϕ
(0, ε2) (0, ε2) ε2 ε2

dvψ3ϕ
(ε3, ε3) (ε3, ε3) −ε3 −ε3

It follows that there is a perfect isometry Î u : CF(CG(u), bu)→ CF(CG̃(u), b̃u)

such that Î u(ψi )= εi ε̃i ψ̃i for i = 1, 2. Therefore Î u extends I u . As in the proof of
Theorem 9, it is also clear that Î u is independent of the choice of the generator of
〈u〉. This finishes the proof. �

The proof method of Theorem 11 also works for other defect groups. In fact,
Watanabe [2015] showed independently (using more complicated methods) that
two p-blocks (p > 2) with a common metacyclic, minimal nonabelian defect
group and the same fusion system are perfectly isometric. Again, this gives evi-
dence for the character-theoretic version of Rouquier’s conjecture (see [Watanabe
2014, Theorem 2]). As another remark, Holloway, Koshitani and Kunugi [2010,
Example 4.3] constructed a perfect isometry between the principal 3-block of
G := Aut(SL(2, 8))∼= 2G2(3) and its Brauer correspondent. Since G has a Sylow
3-subgroup isomorphic to C9 oC3, this is a special case of Theorem 11. Note that
in the introduction of [Ruengrot 2011] it is erroneously stated that these blocks are
not perfectly isometric.
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