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NUMBER OF SINGULARITIES OF
STABLE MAPS ON SURFACES

TAKAHIRO YAMAMOTO

Let N denote the plane R2 or the 2-sphere S2. In this paper, we determine
the 5-tuples of integers (g, d, i, c, n) such that there exists a degree d stable
map 6g → N whose singular point set consists of i connected components,
c cusps, and n nodes, where 6g is the standard genus g surface.

1. Introduction

Throughout this paper, all surfaces and manifolds are connected and of class C∞

(i.e., smooth), and all maps are of class C∞. Let M be a closed surface and N be a
surface. For a C∞ map ϕ : M→ N , denote by S(ϕ) the set of singular points of ϕ.
Call ϕ(S(ϕ)) the apparent contour (contour for short), and denote it by γ (ϕ). In
this paper, all C∞ maps M→ N have nonempty singular point sets.

A C∞ map ϕ : M → N is said to be stable if it satisfies the following two
properties.

(1) For each p ∈ M , the map germ of ϕ at p is C∞ right-left equivalent to one of
the map germs at 0 ∈ R2 as follows:

(a, x) 7→


(a, x), p is a regular point,
(a, x2), p is a fold point,
(a, x3

+ ax), p is a cusp point.

Hence, S(ϕ) is a disjoint union of finitely many circles.

(2) For each q ∈γ (ϕ), the map germ (ϕ|S(ϕ), ϕ
−1(q)∩S(ϕ)) is right-left equivalent

to one of the three multigerms as depicted in Figure 1.

Fold NodeCusp

q qq

Figure 1. The multigerms of ϕ|S(ϕ).
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According to a classical result of Whitney [1955], stable maps form an open
dense subset of the space of all C∞ maps M→ N with respect to the Whitney C∞

topology.
For a stable map ϕ : M → N , denote by c(ϕ), n(ϕ) and i(ϕ) the numbers of

cusps, nodes and connected components of S(ϕ), respectively.
For a nonnegative integer g, the closed and oriented surface of genus g, which

is the connected sum of g copies of the 2-dimensional torus T 2, is denoted by 6g.
The 2-dimensional sphere and the plane are denoted by S2 and R2, respectively.

For any stable map f : M→ S2 (or R2) of a closed and oriented surface M , one
can associate the 5-tuple of integers (g, d( f ), i( f ), c( f ), n( f )), where g is the
genus of M and d( f ) is the mapping degree of f . This paper studies the following
question: which 5-tuples (g, d, i, c, n) can occur in this way?

Some necessary conditions have been obtained by Pignoni [1993], Kamenosono
and Yamamoto [2009] (see also Proposition 3.4), Eliashberg [1970], and Quine
[1978] (see also Theorem 3.11 of the present paper). M. Yamamoto [2009] studied
the numbers i( f ) of fold maps f :6g→6h .

András Szűcs posed the following question at the International Workshop on Real
and Complex Singularities, held in São Carlos in 2012: whether these conditions
form a complete set of restrictions.

The answer is No. There is a geometrical condition for the number of nodes.
More precisely, there is the minimal number of nodes for a given 4-tuple (g, d, i, c).
The main results of this paper are the following two theorems.

Let v1 = (2, 1) and v2 = (0, 2) be vectors in R2. For given integers k, ` ≥ 0,
denote by Lk,` the affine lattice {µ1v1+µ2v2+ (2, 0) |µ1, µ2 ∈ Z} if k ≡ ` mod 2,
and the lattice {µ1v1+µ2v2 | µ1, µ2 ∈ Z} otherwise. For given integers k, `≥ 0,
set δk,` = 2 if k ≡ ` mod 2, and δk,` = 0 otherwise.

Theorem 1.1. Let g ≥ 0 and i ≥ 1. If f :6g→ R2 is a stable map whose singular
point set consists of i components, then the pair (c( f ), n( f )) is in L i,g∩D, where D
denotes the subset of R2 (expressed by coordinates (x, y)) defined by the following:

D=


{
(x, y)

∣∣ x ≥ δi,g, y ≥ 0, y ≥− 1
2 x + g− i + 3, y ≥ 1

2 x − g− i + 1
}

if 1≤ i ≤ g{
(x, y)

∣∣ x ≥ δi,g, y ≥ 0, y ≥ 1
2 x − g− i + 1

}
if i > g.

Furthermore, for any pair (c, n) in L i,g ∩ D, there is a stable map f : 6g → R2

with S( f ) consisting of i components, c cusps, and n nodes.

Theorem 1.2. Let g, d ≥ 0 and i ≥ 1. If f : 6g → S2 is a degree d stable map
whose singular point set consists of i components, then the pair (c( f ), n( f )) is in
L i,g+d ∩ D, where D denotes the subset of R2 (expressed by coordinates (x, y))
defined by the following:



NUMBER OF SINGULARITIES OF STABLE MAPS ON SURFACES 491

g = 0:

D =
{
{(x, y) | x ≥ 2(d + 1− i), y ≥ 0} if 1≤ i ≤ d,
{(x, y) | x ≥ δi,d , y ≥ 0} if i ≥ d.

g ≥ 1:

D =



(1) {(x, y) | x ≥ δi,g, y ≥ 0, y ≥− 1
2 x+g+3−i}

if d = 0 and 1≤ i ≤ g,

(2) {(x, y) | x ≥ δi,g, y ≥ 0} if d = 0 and i > g,

(3) {(x, y) | x ≥ 2(d+1−g− i), y ≥ 0, y ≥− 1
2 x+d+g+3− i}

∪ {(x, y) | x ≥ 2(d+g+1− i), y ≥ 0}
if d ≥ 1 and 1≤ i ≤ d−g+1,

(4) {(x, y) | x ≥ δi,g+d , y ≥ 0, y ≥− 1
2 x+d+g+3− i}

∪ {(x, y) | x ≥ 2(d+g+1− i), y ≥ 0}
if d ≥ 1 and d−g+1≤ i ≤ d+g−1,

(5) {(x, y) | x ≥ δi,g+d , y ≥ 0} if d ≥ 1 and i ≥ d+g.

Furthermore, for any pair (c, n) in L i,g+d ∩ D, there is a degree d stable map
f :6g→ S2 with S( f ) consisting of i components, c cusps and n nodes.

In Theorems 1.1 and 1.2, generators v1 and v2 correspond to two modifications
for stable maps between surfaces: v1 is passing through the swallow-tail singularity
(Figure 2), while v2 is passing through the tangency singularity (Figure 3).

In order to prove Theorems 1.1 and 1.2, we will construct maps for any 5-tuples
in the list. The constructions go as follows. There are ten modifications that can
apply to any map in order to obtain a map with a new 5-tuple.

Swallow-tail

Figure 2. Swallow-tail singularity.

Tangency

Figure 3. Tangency singularity.



492 TAKAHIRO YAMAMOTO

(1) Passing through the swallow-tail singularity (Figure 2):

(g, d, i, c, n)→ (g, d, i, c+ 2, n+ 1),

(2) Passing through the tangency singularity of the singular curve (Figure 3):

(g, d, i, c, n)→ (g, d, i, c, n+ 2),

(3) Attaching two spheres (Figure 4):

(g, d, i, c, n)→ (g, d, i, c+ 4, n),

(4) Attaching a handle vertically (Figure 5, left):

(g, d, i, c, n)→ (g+ 1, d, i + 1, c, n),

M

M #S2#S2

f

f 0


 .f /


 .f 0/

Figure 4. Attaching two spheres: by attaching two maps idS2 and
− idS2 to f : M→ S2, we obtain a stable map M→ S2, where idS2

denotes the identity map on S2 and − idS2 the C∞ map of S2 into
S2 defined by x 7→ −x .

Attach a handleAttach a handle

vertically horizontally

Figure 5. Left: attaching a handle vertically. Right: attaching a
handle horizontally. The map is obtained when one projects these
surfaces to the horizontal plane.
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Figure 6. Attaching a pair of handles: attaching a handle vertically
and then attaching a handle horizontally.

f f 0

� S.f 0/

Figure 7. Attaching a balloon.

(5) Attaching a handle horizontally (Figure 5, right):

(g, d, i, c, n)→ (g+ 1, d, i, c+ 2, n),

(6) Attaching a pair of handles. More precisely, attaching a handle vertically and
then attaching a handle horizontally (Figure 6):

(g, d, i, c, n)→ (g+ 2, d, i, c, n+ 2),

(7) Attaching a balloon (Figure 7):

(g, d, i, c, n)→ (g, d, i + 2, c, n),

(8) Making a wrinkle (Figure 8):

(g, d, i, c, n)→ (g, d, i + 1, c+ 2, n),

(9) Attaching a sphere horizontally (Figure 9):

(g, d, i, c, n)→ (g, d + 1, i, c+ 2, n),

(10) Attaching a sphere vertically (Figure 10):

(g, d, i, c, n)→ (g, d + 1, i + 1, c, n).
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Figure 8. Making a wrinkle.

M M #S2

f
f 0


 .f /


 .f 0/

Figure 9. Attaching a sphere horizontally.

M � � M


 .f / 
 .f 0/

� S.f 0/

Figure 10. Attaching a sphere vertically.

(11) Attaching a pair of a sphere and a handle. More precisely, attaching a sphere
vertically and then, attaching a handle horizontally (Figure 11):

(g, d, i, c, n)→ (g+ 1, d + 1, i, c, n+ 2),

We remark that we can apply all modifications (i) with 1≤ i ≤ 11 to stable maps
of surfaces into the sphere. But we can apply modifications (1) and (2), (4), (5),
(6), (7), (8) to stable maps of surfaces into the plane.
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Figure 11. Attaching a pair of a sphere and a handle: attaching a
sphere vertically and then, attaching a handle horizontally.

These modifications never decrease the number of 5-tuple (g, d, i, c, n), but
they increase some of them. Hence it is enough to construct maps providing the
minimal 5-tuples. These constructions can be found in [Demoto 2005; Fukuda and
Yamamoto 2011; Kamenosono and Yamamoto 2009; Yamamoto 2009; Yamamoto
2010]. We will sketch their descriptions in Section 2.

Remark 1.3. Theorems 1.1 and 1.2 together with the previous results [Fukuda and
Yamamoto 2011; Kamenosono and Yamamoto 2009; Pignoni 1993; Yamamoto
2009; 2010] make the very first step toward classifying generic C∞ maps of closed
surfaces into the plane or the sphere up to right-left equivalence.

Remark 1.4. Let M be a closed surface and N a surface. Let A be an element, an
ordered pair, or triple consisting of some elements in {c, i, n, c+ n}. For a stable
map ϕ : M→ N , denote by A(ϕ) the element, the ordered pair, or triple consisting
of the corresponding elements in {c(ϕ), i(ϕ), n(ϕ), c(ϕ)+ n(ϕ)}. For a C∞ map
ϕ0 : M→ N , we say that a stable map ϕ : M→ N has an A-minimal contour for ϕ0

if A(ϕ) is minimal with respect to the lexicographic order among those stable maps
which are homotopic to ϕ0.

Let A = (i, c, n). The (i, c, n)-minimal contours were studied in [Demoto 2005;
Kamenosono and Yamamoto 2009; Pignoni 1993]. The (i, c, n)-minimal contours
of a C∞ map 6g → S2 of degree d correspond to the bottom left corner of the
lattice L1,g+d ∩ D. Note that for a C∞ map M → N , there is a stable map with
S( f ) consisting of one component.

This paper is organized as follows. In Section 2, we prepare some stable maps
M→ R2 and M→ S2 which we employ in the following section. In Section 3, we
prove Theorems 1.1 and 1.2. In Section 4, we pose two problems which concern
the apparent contours of stable maps between surfaces. In the Appendix, we study
i-(c, n)-minimal contours and i-(n, c)-minimal contours of stable maps 6g→ S2.

2. Stable maps 6g → N (for N = R2 or N = S2)

In this section, we show that there exist stable maps 6g → R2 and 6g → S2

whose triples (i, c, n) are in the lists of Theorems 1.1 and 1.2, respectively. For two
integers k and `, set δk,` = 2 if k ≡ `, and δk,` = 0 otherwise.
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2A. Stable maps 6g → R2. Let pS2 : S2
→ R2 be the standard projection defined

by (x, y, z) 7→ (x, y). Then, the contour γ (pS2) is an embedded circle in R2, namely,
the triple (i, c, n) is equal to (1, 0, 0). Then, by applying modifications (1) and (2)
to pS2 inductively, for each (c, n) in

L1,0 ∩
{
(x, y)

∣∣ x ≥ 0, y ≥ 1
2 x
}
,

we obtain a stable map f : S2
→R2 with S( f ) consisting of one component, c cusps,

and n nodes. Furthermore, for a given integer i ≥ 1, by applying modifications (7)
and (8) i − 1 times to stable maps S2

→ R2 whose pairs (c, n) are in

L1,0 ∩
{
(x, y)

∣∣ x ≥ 0, y ≥ 1
2 x
}
,

for each (c, n) in

L i,0 ∩
{
(x, y)

∣∣ x ≥ δi,0, y ≥ 0, y ≥ 1
2 x − i + 1

}
,

we obtain a stable map f : S2
→R2 with S( f ) consisting of i components, c cusps,

and n nodes.
Then, for given integers g ≥ 1 and i ≥ 1, with i > g, let k and ` be nonnegative

integers satisfying k+`= g. By applying modifications (4) k times and (5) ` times
to stable maps S2

→ R2 whose pairs (c, n) are in

L i,0 ∩
{
(x, y)

∣∣ x ≥ δi,0, y ≥ 0, y ≥ 1
2 x − i + 1

}
,

for each (c, n) in

L i,g ∩
{
(x, y)

∣∣ x ≥ δi,g, y ≥ 0, y ≥ 1
2 x − g− i + 1

}
,

we obtain a stable map f :6g→R2 with S( f ) consisting of i components, c cusps,
and n nodes.

Thus, we obtain stable maps 6g → R2 whose pairs (c, n) are in the list of
Theorem 1.1 with i > g.

Proposition 2.1. Let g ≥ 1. For each pair (c, n) in

L1,g ∩
{
(x, y)

∣∣ y =− 1
2 x + g+ 2, y ≥ 1

}
,

there is a stable map 6g → R2 with S( f ) consisting of one component, c cusps,
and n nodes.

Proof. There exist stable maps T 2
→R2 whose triples (i, c, n) are equal to (1, 2, 2)

and (1, 4, 1). There also exist stable maps 62→R2 whose triples (i, c, n) are equal
to (1, 0, 4) and (1, 2, 3). See [Pignoni 1993; Yamamoto 2010] for the details.

By applying modifications (5) and (6) to the above four stable maps T 2
→ R2,

62→R2 inductively, we obtain the desired stable maps 6g→R2. For example, let
us consider the case g = 2. By applying modification (5) to stable maps T 2

→ R2
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whose triples (i, c, n) are equal to (1, 2, 2) and (1, 4, 1), we obtain stable maps
62 → R2 whose triples (i, c, n) are equal to (1, 4, 2) and (1, 6, 1), respectively.
Furthermore, let us consider the case g = 3. By applying modification (6) to stable
maps T 2

→ R2 whose triples (i, c, n) are equal to (1, 2, 2) and (1, 4, 1), we obtain
stable maps 63 → R2 whose triples (i, c, n) are equal to (1, 2, 4) and (1, 4, 3),
respectively. By applying modification (5) to stable maps 62→ R2 whose triples
(i, c, n) are equal to (1, 4, 2) and (1, 6, 1), we obtain stable maps 63→ R2 whose
triples (i, c, n) are equal to (1, 6, 2) and (1, 8, 1), respectively. �

Then, by applying modifications (1) and (2) inductively to stable maps in
Proposition 2.1, for each (c, n) in

L1,g ∩
{
(c, n)

∣∣ x ≥ δ1,g, y ≥ 1, y ≥− 1
2 x + g+ 2, y ≥ 1

2 x − g− 2
}
,

we obtain a stable map 6g→ R2 with S( f ) consisting of one component, c cusps,
and n nodes.

For given integers g ≥ 1 and i ≥ 1 with 1≤ i ≤ g, by applying modification (4)
i − 1 times to stable maps 6g−i+1→ R2 whose pairs (c, n) are in

L1,g−i+1 ∩
{
(c, n)

∣∣ x ≥ δ1,g−i+1, y ≥ 1, y ≥− 1
2 x + (g− i + 1)+ 2,

y ≥ 1
2 x − (g− i + 1)− 2

}
,

for each (c, n) in

L i,g ∩
{
(c, n)

∣∣ x ≥ δi,g, y ≥ 1, y ≥− 1
2 x + g+ 2, y ≥ 1

2 x − g− 2
}
,

we obtain a stable map 6g→ R2 with S( f ) consisting of i components, c cusps,
and n nodes.

Thus, we obtain all stable maps 6g→R2 whose triples (i, c, n) are in the list of
Theorem 1.1.

2B. Stable maps 6g → S2. Note that stable maps6g→R2 obtained in Section 2A
induce degree zero stable maps 6g→ S2.

Let us consider stable maps S2
→ S2. Denote by f S2,S2

(1,2,0) a degree one stable map
S2
→ S2 whose contour is shown in Figure 12.
Let d ≥ 1 and i ≥ 1 be integers with i ≤ d. By applying modifications (1), (2),

and (3) inductively to a degree d stable map S2
→ S2 whose triple (i, c, n) is equal

to (1, 2d, 0), for each (c, n) in

L1,d ∩ {(x, y) | x ≥ 2d, y ≥ 0},

we obtain a degree d stable map f : S2
→ S2 with S( f ) consisting of one component,

c cusps, and n nodes. Then, by applying modification (10) i − 1 times inductively
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S2

f
S2;S2

.1;2;0/

Figure 12. Stable map f S2,S2

(1,2,0) : S
2
→ S2.

to these degree d − i + 1 stable maps S2
→ S2 whose pairs (c, n) are in

L1,d−i+1 ∩ {(x, y) | x ≥ 2(d + 1− i), y ≥ 0},

for each (c, n) in

L i,d ∩ {(x, y) | x ≥ 2(d + 1− i), y ≥ 0},

we obtain a degree d stable map f : S2
→ S2 with S( f ) consisting of i components,

c cusps, and n nodes.
Let d ≥ 0 and i ≥ 1 be integers with i ≥ d . By applying modification (10) d times

and d − 1 times inductively to degree zero stable maps S2
→ S2 and degree one

stable maps S2
→ S2 whose pairs (c, n) are in

L i,0 ∩ {(x, y) | x ≥ δi,0, y ≥ 0} and L i,1 ∩ {(x, y) | x ≥ δi,1, y ≥ 0}

respectively, for each (c, n) in

L i,d ∩ {(x, y) | x ≥ δi,d , y ≥ 0},

we obtain a degree d stable map S2
→ S2 with S( f ) consisting of i components,

c cusps and n nodes.
Thus, we obtain all stable maps S2

→ S2 whose pairs (c, n) are in the lists of
Theorem 1.2 with g = 0.

In the following, assume g≥ 1. Let us consider degree zero stable maps6g→ S2

which are not induced from stable maps 6g→ R2.

Proposition 2.2. Let g ≥ 1 and i ≥ 1 with i ≤ g. For each pair (c, n) in

L i,g ∩
{
(x, y)

∣∣ x ≥ δi,g, y ≥ 0, y =− 1
2 x + g+ 3− i

}
,

there is a degree zero stable map 6g→ S2 with S( f ) consisting of i components,
c cusps, and n nodes.
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Proof. For each (c, n) in

L i,g ∩
{
(x, y)

∣∣ x ≥ δi,g, y ≥ 1, y =− 1
2 x + g+ 3− i

}
,

we already obtained a degree zero stable map f :6g→ S2 with S( f ) consisting of
i components, c cusps and n nodes in Section 2A.

By attaching a sphere which is mapped by orientation reversely to f S2,S2

(1,2,0), we
obtain a degree zero stable map S2

→ S2 whose triple (i, c, n) is equal to (1, 4, 0).
Then, for each integers g ≥ 1 and i ≥ 1 with i ≤ g, by applying modifications (4)
i − 1 times and (5) g − i + 1 times to this degree zero stable map S2

→ S2, we
obtain a degree zero stable map f :6g→ S2 with S( f ) consisting of i components,
2(g+ 3− i) cusps, and no nodes. �

Let g ≥ 1 and i ≥ 1 with i ≤ g. By applying modifications (1), (2), and (3) to
stable maps obtained in the above subsection and in Proposition 2.2, for each pair
(c, n) in

L i,g ∩
{
(x, y)

∣∣ x ≥ δi,g, y ≥ 0, y ≥− 1
2 x + g+ 3− i

}
,

we obtain a stable map 6g→ S2 with S( f ) consisting of i components, c cusps,
and n nodes.

Let g ≥ 1 and i ≥ 1 with i > g. By applying modifications (1), (2), and (3)
inductively to a degree zero stable map 6g→ S2 whose triple (i, c, n) is equal to
(i, δi,g, 0), for each (c, n) in

L i,g ∩ {(x, y) | x ≥ δi,g, y ≥ 0},

we obtain a degree zero stable map f :6g→ S2 with S( f ) consisting of i compo-
nents, c cusps and n nodes.

Thus, we obtain degree zero stable maps 6g→ S2 in the lists of Theorem 1.2
(1) and (2).

In the following, assume g ≥ 1 and d ≥ 1.

Proposition 2.3. (1) If g ≤ d , then for each (c, n) in

L1,g+d ∩
{
(x, y)

∣∣ x ≥ 2(d − g), y =− 1
2 x + g+ d + 2

}
,

there is a degree d stable map 6g→ S2 with S( f ) consisting one component,
c cusps, and n nodes.

(2) If d ≤ g, then for each (c, n) in

L1,g+d ∩
{
(x, y)

∣∣ y =− 1
2 x + g+ d + 2, y ≥ 3

}
,

there is a degree d stable map 6g→ S2 with S( f ) consisting one component,
c cusps, and n nodes.
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Proof. Stable maps 6g→ R2 and 6g→ S2 whose triples (i, c, n) are one of the
following lists (1) and (2) were obtained in [Kamenosono and Yamamoto 2009;
Yamamoto 2010] respectively:

(1) Stable maps f :6g→ R2 whose triples (i, c, n) are

(i, c, n)=


(1, 0, 0) if g = 0,
(1, 2, g+ 1) if g is odd,
(1, 0, g+ 2) otherwise.

Degree d ≥ 0 stable maps f :6g→ S2 whose triples (i, c, n) are

(i, c, n)=


(1, 2d, 0) if g = 0,
(1, 2(d − g), 2g+ 2) if d ≥ g ≥ 1,
(1, 0, d + g+ 2) if d ≤ g and d ≡ g,
(1, 2, d + g+ 1) if d < g and d 6≡ g.

(2) Stable maps f :6g→ R2 whose triples (i, c, n) are

(i, c, n)=
{
(1, 0, 0) if g = 0,
(1, 2g+ 2, 1) otherwise.

Degree d ≥ 0 stable maps f :6g→ S2 whose triples (i, c, n) are

(i, c, n)=


(1, 2d, 0) if g = 0,
(1, 2(g+ 2), 0) if d = 0 and g ≥ 1,
(1, 2(d + g), 0) otherwise.

On the other hand, there exists a degree one stable map T 2
→ S2 whose triple

(i, c, n) is equal to (1, 2, 3); see [Kamenosono and Yamamoto 2009] for the details.
By applying modification (5) or (6), (9), (11) for stable maps 6g → R2 and

6g→ S2 in these lists, and a stable map T 2
→ S2 whose triple (i, c, n) is equal to

(1, 2, 3), we obtain the desired stable maps 6g→ S2. �

Then, by applying modifications (1) and (2), (3), (10) inductively to stable maps
6g → S2 in Proposition 2.3, we obtain each stable map 6g → S2 in the list of
Theorem 1.2(3) and (4).

Let i ≥ 1 with i ≥ g+d . By applying modifications (1) and (2), (3), (10) to degree
zero stable maps 6g→ S2 whose triples (i, c, n) are (g+ 1, 0, 0) and (g+ 2, 2, 0),
we obtain each stable map 6g→ S2 in the list of Theorem 1.2(5).

Thus, we obtain all stable maps 6g→ S2 whose triples (i, c, n) are in the lists
of Theorem 1.2.
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3. Proof of Theorems 1.1 and 1.2

3A. Preparation. In this subsection, some notions concerning the apparent contour
of a stable map M→ S2 of a closed surface are introduced, where M is a closed
surface and S2 is oriented.

Let ϕ : M → S2 be a stable map whose contour is nonempty. Let S(ϕ) =
S1 ∪ · · · ∪ S` be the decomposition of S(ϕ) into the connected components and set
γi = ϕ(Si ) (i = 1, . . . , `). Note that γ (ϕ)= γ1∪· · ·∪γ`. Let m(ϕ) be the smallest
number of elements in the set ϕ−1(y), where y ∈ S2 runs over all regular values
of ϕ. Fix a regular value∞ such that ϕ−1(∞) consists of m(ϕ) points. For each γi ,
denote by Ui the component of S2

\ γi which contains∞. Note that ∂Ui ⊂ γi .
Orient γi so that at each fold point image, the surface is “folded to the left hand

side.” More precisely, for a point y ∈ γi which is not a cusp or a node, choose a
normal vector v of γi at y such that ϕ−1(y′) contains more elements than ϕ−1(y),
where y′ is a regular value of ϕ close to y in the direction of v. Let τ be a tangent
vector of γi at y such that the ordered pair (τ, v) is compatible with the given
orientation of S2. It is easy to see that τ gives a well-defined orientation for γi .

Definition 3.1. A point y ∈ ∂Ui \{cusps, nodes} is said to be positive if the normal
orientation v at y points toward Ui . Otherwise, it is said to be negative.

A component γi is said to be positive if all points of ∂Ui \ {cusps, nodes} are
positive; otherwise, γi is said to be negative. The number of positive and negative
components is denoted by i+ and i−, respectively. Note that there is at least one
negative component unless S( f )=∅.

Definition 3.2. A point y ∈ ∂Ui \ {cusps, nodes} is called an admissible starting
point if y is a positive point of a positive component γi (or a negative point of a
negative component). Note that for each i , there always exists an admissible starting
point on γi .

Definition 3.3. Suppose that y ∈ γi is an admissible starting point and Q ∈ γi is
a node. Let α : [0, 1] → γi be a parametrization consistent with the orientation,
singular only when the image is a cusp such that α−1(y)= {0, 1}. Then, there are
two numbers 0< t1 < t2 < 1 satisfying α(t1)= α(t2)= Q.

We say that Q is positive if the orientation of S2 at Q defined by the ordered
pair (α′(t1), α′(t2)) coincides with that of S2 at Q; negative, otherwise.

The number of positive nodes on γi is denoted by N+i (and negative nodes by
N−i ). The definition of a positive or negative node on γi depends on the choice of
an admissible starting point y. However, it is known that the difference N+i − N−i
does not depend on the choice of y; see [Whitney 1941] for details. Thus, the
number N+ − N− =

∑k
i=1(N

+

i − N−i ) is well defined. Note that nodes arising
from γi ∩ γ j (i 6= j) play no role in the computation.
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Then, we obtain the following as an easy application of Pignoni’s formula.

Proposition 3.4 [Kamenosono and Yamamoto 2009; Pignoni 1993]. For a stable
map ϕ : M→ S2 of a closed surface of genus g, we have

(3-1) g = ε(M)
(
(N+− N−)+ 1

2 c(ϕ)+ (1+ i+− i−)−m(ϕ)
)
,

where ε(M) is equal to 1 if M is orientable, and 2 otherwise.

Note that even if a 5-tuple (N+, N−, c, i+, i−) satisfies formula (3-1), there may
not be a stable map f : M → S2 with S( f ) consisting of i+ + i− components,
c cusps, and N++ N− nodes.

In the following of this section, we assume that γi ∩ γ j =∅ if i 6= j because we
study the minimal number of nodes. Denote by U∞ ⊂ S2

\ γ (ϕ) the component
which contains∞. Denote by γ1 the component of γ (ϕ) which contains ∂U∞. Note
that γ1 is a negative component of ϕ. Then, the following lemmas and corollary
were obtained by Fukuda and Yamamoto.

Lemma 3.5 [Yamamoto 2010]. If γ1 has a node, then it has a negative node.

Lemma 3.6 [Yamamoto 2010]. If a positive component γi has a node, then it has a
positive node.

Corollary 3.7 [Fukuda and Yamamoto 2011]. If the number of negative components
of γ (ϕ) is equal to one and γ (ϕ) has a node, then it has a negative node.

Corollary 3.7 implies the following corollary.

Corollary 3.8. If the number of negative components of γ (ϕ) is equal to one and
γ1 has no node, then it has no node.

Formula (3-1) and Lemma 3.6 imply the following lemma.

Lemma 3.9. Suppose that g≥ 1 and f :6g→R2 is a stable map with 2≤ i( f )≤ g.
If γ1 has no node, then γ ( f ) has at least two negative components.

Proof. Assume that γ ( f ) has only one negative component. Then, Lemma 3.6 and
the assumption imply that γ ( f ) has no node. Then, by the geometrical condition
for a cusp, γ ( f ) has no cusps. Thus, the formula (3-1) implies the contradiction

0≤ g− i( f )=−1. �

By formula (3-1) and the three modifications (1), (2), and (3), in order to prove
Theorem 1.1, for a given triple (g, i, c), we only have to study the minimal number
of nodes among stable maps f :6g→R2 with S( f ) consisting of i components and
c cusps. Analogously, in order to prove Theorem 1.2, for a given 4-tuple (g, d, i, c),
we only have to study the minimal number of nodes among degree d stable maps
f :6g→ S2 with S( f ) consisting of i components and c cusps.
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Note that for a fixed pair (i+, i−), if we increase the number of negative node
by one, there are two ways to satisfy (3-1). One way is to increase the number of
cusps by two. This corresponds to modification (1). The other way is to increase
the number of positive node by one. This corresponds to modification (2).

Lemma 3.10. Let g ≥ 0 and d ≥ 0. If a degree d stable map f :6g→ S2 satisfies

1
2 c( f )≡ g+ d + i( f ) mod 2,

then f has at least one node.

Proof. If f has no node, then (3-1) implies that

g+m( f )+ 2i− = 1
2 c( f )+ 1+ i( f ). �

In particular, Lemma 3.10 implies that if a stable map f : 6g → R2 satisfies
1
2 c( f )≡ g+ i( f ) mod 2, then f has at least one node.

We recall a formula obtained by Eliasberg and Quine.

Theorem 3.11 [Eliashberg 1970; Quine 1978]. For a stable map f : M → N
between closed connected oriented surfaces, we have

(3-2) χ(M)− 2χ(M−)+
∑

qk is a cusp

sign(qk)= (deg f )χ(N )

where χ denotes the Euler characteristic, deg f denotes the mapping degree of f ,
M− is the closure of the set of regular points whose neighborhoods are mapped
by f in an orientation reversing way, and sign(qk) = ±1 is the sign of a cusp qk

defined as the local mapping degree.

Then, Theorem 3.11 implies the following lemma.

Lemma 3.12. Let g ≥ 0, d ≥ 0, and f :6g→ S2 be a degree d stable maps. Then,
γ ( f ) has at least 2(d + 1− g− i) cusps.

Proof. Formula (3-2) implies that∑
qk is a cusp

sign(qk)= 2(d + g− 1+χ((6g)−).

On the other hand, we have χ(6g)− i ≤ χ((6g)−)≤ i . �

In particular, for a stable map f :6g→ R2, γ ( f ) has at least 2(g+1− i) cusps.
Theorem 3.11 also implies the following lemma.

Lemma 3.13 [Fukuda and Yamamoto 2011]. Let d ≥ 0 and f : 6g → S2 be a
degree d stable map. If i( f )≡ d + g mod 2, then γ ( f ) has at least two cusps.

In particular, for a stable map f : M→ R2, if i( f )≡ g mod 2, then γ ( f ) has at
least two cusps.

Furthermore, if the contour has no nodes, then we have the following lemma.
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Lemma 3.14. (1) Let g ≥ 0 and f :6g→ R2 be a stable map with 2≤ i( f )≤ g.
If γ ( f ) has no nodes, then c( f )≥ 2(g+ 3− i).

(2) Let g ≥ 0 and d ≥ 0, f :6g→ S2 be a degree d stable map with 2≤ i( f )≤ g.
If γ ( f ) has no nodes, then c( f )≥ 2(g+ d + 1− i).

Proof. Let us consider (1). Then, formula (3-1) implies that

g+ 2i−− 1− i( f )= 1
2 c( f ).

Then, Lemma 3.9 yields the conclusion.
The case (2) is also proved in a similar way. �

3B. Proof of Theorem 1.1.

Lemma 3.15. Let g ≥ 1 and f : 6g→ R2 be a stable map with 1 ≤ i( f ) ≤ g. If
c( f )≤ 2(g+ 2− i( f )), then n( f )≥− 1

2 c( f )+ g+ 3− i( f ).

Proof. Assume i( f )= 1. In this case, for a stable map f :6g→ R2 with i( f )= 1,
formula (3-1) implies that

(3-3) g− 1
2 c( f )= (N+− N−).

Then, Lemma 3.5 implies that

n( f )= N++ N− =− 1
2 c( f )+ g+ 2N− ≥− 1

2 c( f )+ g+ 2.

Assume i( f )≥ 2. If the negative component γ1 has a node, then formula (3-1)
and Lemma 3.5 imply that

n( f )= N++ N− ≥− 1
2 c( f )+ g+ 3− i( f ).

If the negative component γ1 has no node, then formula (3-1) and Lemma 3.9 also
imply that n( f )≥− 1

2 c( f )+ g+ 3− i( f ). �

Lemma 3.16. Let g ≥ 0 and f :6g→ R2 be a stable map. If c( f )≥ 2(g+ i( f )),
then N− ≥ 1

2 c( f )− g− i( f )+ 1.

Proof. Formula (3-1) and the inequality i+− i− ≥−i( f ) imply that

g ≥ (N+− N−)+ 1
2 c( f )+ (1− i( f )). �

Lemmas 3.10, 3.12, 3.13, 3.14(1), 3.15, and 3.16 prove Theorem 1.1 with
1≤ i ≤ g. Lemmas 3.12, 3.13, 3.14(1) and 3.16 prove Theorem 1.1 with i > g.

This complete the proof of Theorem 1.1.
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3C. Proof of Theorem 1.2. Lemmas 3.12 and 3.13 prove Theorem 1.2 with g = 0.
Lemma 3.13 proves Theorem 1.2(2) and (5).

Lemma 3.17. Let g≥ 1. For a degree zero stable map f :6g→ S2, if S( f ) consists
of one component and γ ( f ) has no nodes, then m( f )≥ 2.

Proof. Under the assumption, formula (3-1) implies that

g = 1
2 c( f )−m( f ).

By the geometrical condition for a cusp, if n( f )= 0 and m( f )= 0, then f has no
cusps. Then, we have g = 0, which is a contradiction. �

Lemma 3.17 and formula (3-1) imply the following lemma.

Lemma 3.18. Let g ≥ 1 and f : 6g → S2 be a degree zero stable map with
1≤ i( f )≤ g. If c( f )≤ 2(g+ 3− i( f )), then n( f )≥− 1

2 c( f )+ g+ 3− i( f ).

Proof. Formula (3-1) implies that

n( f )= N++ N− = g+ 2i−− i( f )− 1
2 c( f )− 1+ 2N−.

Consider the case that i( f )= 1. Then, by Lemma 3.5, n( f )≥−1
2 c( f )+ g+ 2.

Note that there is no degree zero stable map f :6g→ S2 with S( f ) consisting of
one component and no nodes unless g = 0.

Now consider the case that 2 ≤ i( f ) ≤ g. If γ1 has a node, then Lemma 3.5
implies that

n( f )≥− 1
2 c( f )+ g+ 3− i( f ).

If γ1 has no node, then Lemma 3.9 also implies the same inequality. �

Let f :6g→ S2 be a degree zero stable map with no nodes and 2≤ i( f )≤ g.
If m( f )= 0, then f induces a stable map 6g→R2 whose triple (i, c, n) is equal

to that of f . Then, Lemma 3.9 and formula (3-1) imply that

g+ 4≤ g+ 2i− = 1
2 c( f )+ (1+ i( f )).

This inequality shows that c( f )≥ 2(g+ 3− i( f )).
If m( f ) 6= 0, then Lemma 3.5 and formula (3-1) imply that

g+ 4≤ g+m( f )+ 2i− = 1
2 c( f )+ (1+ i( f )).

This inequality also shows that c( f )≥ 2(g+ 3− i( f )).
Thus, Lemma 3.10 and Lemmas 3.12, 3.18 prove Theorem 1.2(1).
Lemma 3.17 and formula (3-1) imply the following lemma.

Lemma 3.19. Let g ≥ 1 and d ≥ 1, f : 6g → S2 be a degree d stable map with
1≤ i( f )≤ g+d−1. If c( f )≤ 2(g+d−i), then n( f )≥−1

2 c( f )+g+d+3−i( f ).
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Proof. Let us consider the case i( f )= 1. In this case, the formula (3-1) implies that

n( f )= N++ N− ≥− 1
2 c( f )+ g+ d + 2N−

Then, Lemma 3.5 yields the conclusion.
Let us consider the case 2≤ i( f )≤ g+ d − 1. If i− = 1, then the formula (3-1)

implies that

n( f )= N++ N− ≥− 1
2 c( f )+ g+ d + 1− i( f )+ 2N−.

Thus, Lemma 3.5 and Corollary 3.8 yield the conclusion. If i− ≥ 2, then the
formula (3-1) implies that

n( f )= N++ N− ≥− 1
2 c( f )+ g+ d + 3− i( f )+ 2N−. �

Thus, Lemma 3.10 and Lemmas 3.12, 3.19 prove Theorem 1.2(3) and (4). It
completes the proof of Theorem 1.2.

4. Problems

In this section, we pose some problems which concern the number of the singularities
of stable maps between surfaces.

Problem 4.1. Study the triples (i, c, n) of stable maps M→ N (N =R2 or N = S2)
of closed and nonorientable surfaces.

Pignoni [1993] (see also [Kamenosono and Yamamoto 2009]) observed that
there are differences between (i, c + n)-minimal contours and (i, c, n)-minimal
contours — see Remark 1.4 for the definitions — of C∞ maps of the real projective
plane into R2 and S2.

Figure 13 shows that the contours of stable maps S2
→R2 whose triples (i, c, n)

are equal to (2, 2, 2). Figure 14 also shows that the contours of stable maps T 2
→R2

whose triples (i, c, n) are equal to (2, 0, 4).

Problem 4.2. Introduce notions which distinguish two contours in Figure 13 (or 14).
Then, study contours of stable maps between surfaces under the notions.

Figure 13. Contours of stable maps S2
→R2 whose triples (i, c, n)

are (2, 2, 2).
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Figure 14. Contours of stable maps T 2
→R2 whose triples (i, c, n)

are (2, 0, 4).

Problem 4.2 makes the second step toward classifying generic C∞ maps of
closed surfaces into R2 or S2 up to right-left equivalence.

Appendix

In this section, we introduce the notions of an i-(c, n)-minimal contour and an
i-(n, c)-minimal contour for a C∞ map M→ N between surfaces. We study such
minimal contours.

Taishi Fukuda and the author [Fukuda and Yamamoto 2011] studied (c+ n)-
minimal contours among stable maps f :6g→ S2 homotopic to a given C∞ map
6g → S2 such that i( f ) = i , for each integer i ≥ 2. Let us call such a minimal
contour an i -(c+ n)-minimal contour. Note that the case g = 2 of [Fukuda and
Yamamoto 2011, Theorem 1.2] has one error. The correct table of i-(c+n)-minimal
contours for degree d ≥ 0 stable maps 62→ S2 is the following:

(c, n)=



(2(d − i − 1), 6) if 1≤ i ≤ d − 1,

(2, 4) or (6, 0) if i = d,

(0, 4) or (4, 0) if i = d + 1,

(2, 2) if (d, i)= (0, 2),

(2, 0) if i ≥ d + 2, i ≡ d mod 2, except (d, i)= (0, 2),

(0, 0) if i ≥ d + 2, i 6≡ d mod 2,

For a nonnegative integer i , let us consider (c, n)-minimal contours among stable
maps f :6g→ S2 homotopic to a given C∞ map 6g→ S2 such that i( f )= i . Let
us call such a minimal contour an i -(c, n)-minimal contour. Then, Theorems 1.1
and 1.2 imply the following proposition.

Proposition A.1. (1) The contour γ ( f ) of a stable map f :6g→ R2 is i -(c, n)-
minimal if and only if the pair (c, n) is one of the following:
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(c, n)=


(2, g+ 2− i) if g ≥ i and g ≡ i mod 2,
(0, g+ 3− i) if g ≥ i and g 6≡ i mod 2,
(2, 0) if g < i and g ≡ i mod 2,
(0, 0) if g < i and g 6≡ i mod 2.

(2) Let f : 6g → S2 be a degree d ≥ 0 stable map such that S( f ) consists of
i components. Then, the contour γ ( f ) is i-(c, n)-minimal if and only if the
pair (c, n) for γ ( f ) is one of the following:

g = 0:

(c, n)=


(2(d−i+1), 0) if 1≤ i ≤ d + 1,

(2, 0) if i ≥ d + 2, i ≡ d mod 2,

(0, 0) if i ≥ d + 2, i 6≡ d mod 2,

g ≥ 1:

(c, n)=



(2(d−g−i+1), 2+2g) if 1≤ i ≤ d − g+ 1,

(2, d + g− i + 2) if d − g+ 2≤ i < d + g− 1,
and i ≡ d + g mod 2,

(0, d + g− i + 3) if d − g+ 2≤ i ≤ d + g− 1,
and i 6≡ d + g mod 2,

(2, 2) if (d, i)= (0, g),

(2, 0) if i ≥ d + g, i ≡ d + g mod 2,
except (d, i)= (0, g),

(0, 0) if i ≥ d + g, i 6≡ d + g mod 2.

Let us study (n, c)-minimal contours among stable maps f :6g→ S2 homotopic
to a given C∞ map 6g→ S2 such that i( f )= i , for each integer i ≥ 1. Let us call
such a minimal contour an i -(n, c)-minimal contour. Then, Theorems 1.1 and 1.2
also imply the following proposition.

Proposition A.2. (1) The contour γ ( f ) of a stable map f :6g→ R2 is i -(n, c)-
minimal if and only if the pair (c, n) is one of the following:

i = 1:

(c, n)=
{
(0, 0) if g = 0,
(2g+ 2, 1) otherwise,

i ≥ 2:

(c, n)=


(2(g+ 3− i), 0) if g ≥ i,
(2, 0) if g < i and g ≡ i mod 2,
(0, 0) otherwise.
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(2) Let f : 6g → S2 be a degree d ≥ 0 stable map such that S( f ) consists of
i components. Then, the contour γ ( f ) is i-(n, c)-minimal if and only if the
pair (c, n) for γ ( f ) is one of the items below:

(c, n)=


(2(g+ 3− i), 0) if d = 0 and 1≤ i ≤ g,

(2(d + g+ 1− i), 0) if d 6= 0 and 1≤ i ≤ d + g− 1,

(2, 0) if i ≥ d + g and i ≡ d + g mod 2,

(0, 0) if i > d + g and i 6≡ d + g mod 2.
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