Vol. 281, No. 1, 2016

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
On the number of lines in the limit set for discrete subgroups of $\operatorname{PSL}(3,\mathbb{C})$

Waldemar Barrera, Angel Cano and Juán Navarrete

Vol. 281 (2016), No. 1, 17–49
Abstract

Given a discrete subgroup G PSL(3, ), acting on the complex projective plane, 2, in the canonical way, we list all possible values for the number of complex projective lines and for the maximum number of complex projective lines lying in the complement of each of: the equicontinuity set of G, the Kulkarni discontinuity region of G, and maximal open subsets of 2 on which G acts properly discontinuously.

Keywords
Kleinian groups, projective complex plane, discrete groups, limit set
Mathematical Subject Classification 2010
Primary: 32Q45, 37F30
Secondary: 37F45, 22E40
Milestones
Received: 19 December 2014
Revised: 14 July 2015
Accepted: 20 July 2015
Published: 9 February 2016
Authors
Waldemar Barrera
Facultad de Matemáticas
Universidad Autónoma de Yucatán
Anillo Periférico Norte Tablaje Cat
13615 Mérida
Mexico
Angel Cano
Instituto de Matemáticas
Universidad Nacional Autónoma de México
Av. Universidad S/N
Col. Lomas de Chamilpa, C.P.
62210 Cuernavaca
Mexico
Juán Navarrete
Facultad de Matemáticas
Universidad Autónoma de Yucatán
Anillo Periférico Norte Tablaje Cat
13615 Mérida
Mexico