Vol. 281, No. 1, 2016

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Components of spaces of curves with constrained curvature on flat surfaces

Nicolau C. Saldanha and Pedro Zühlke

Vol. 281 (2016), No. 1, 185–242
Abstract

Let S be a complete flat surface, such as the Euclidean plane. We obtain direct characterizations of the connected components of the space of all curves on S which start and end at given points in given directions, and whose curvatures are constrained to lie in a given interval, in terms of all parameters involved. Many topological properties of these spaces are investigated. Some conjectures of L. E. Dubins are proved.

Keywords
curve, curvature, Dubins path, flat surface, topology of infinite-dimensional manifolds
Mathematical Subject Classification 2010
Primary: 53A04
Secondary: 53C42, 57N20
Milestones
Received: 5 November 2014
Revised: 16 July 2015
Accepted: 19 July 2015
Published: 9 February 2016
Authors
Nicolau C. Saldanha
Departamento de Matemática
Pontifícia Universidade Católica do Rio de Janeiro
Rua Marquês de Sao Vicente 225
Rio de Janeiro, RJ 22453-900
Brazil
Pedro Zühlke
Instituto de Matemática e Estatística
Universidade de São Paulo
Rua do Matão 1010
IME - Cidade Universitária
São Paulo, SP 05508-090
Brazil