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COMPATIBLE SYSTEMS
OF SYMPLECTIC GALOIS REPRESENTATIONS

AND THE INVERSE GALOIS PROBLEM, II:
TRANSVECTIONS AND HUGE IMAGE

SARA ARIAS-DE-REYNA, LUIS DIEULEFAIT AND GABOR WIESE

This article is the second part of a series of three articles about compatible
systems of symplectic Galois representations and applications to the inverse
Galois problem.

This part is concerned with symplectic Galois representations having a
huge residual image, by which we mean that a symplectic group of full di-
mension over the prime field is contained up to conjugation. A key ingredi-
ent is a classification of symplectic representations whose image contains a
nontrivial transvection: these fall into three very simply describable classes,
the reducible ones, the induced ones and those with huge image. Using the
idea of an .n; p/-group of Khare, Larsen and Savin, we give simple condi-
tions under which a symplectic Galois representation with coefficients in a
finite field has a huge image. Finally, we combine this classification result
with the main result of the first part to obtain a strengthened application to
the inverse Galois problem.

1. Introduction

This article is the second of a series of three about compatible systems of symplectic
Galois representations and applications to the inverse Galois problem.

This part is concerned with symplectic Galois representations having a huge
image: for a prime `, a finite subgroup G � GSpn.F`/ is called huge if it contains
a conjugate (in GSpn.F`/) of Spn.F`/. By Corollary 1.3 below, this notion is the
same as the one introduced in Part I [Arias-de-Reyna et al. 2013].

Whereas the classification of the finite subgroups of Spn.F`/ appears very
complicated to us, it turns out that the finite subgroups containing a nontrivial
transvection can be very cleanly classified into three classes, one of which is that
of huge subgroups (see Theorem 1.1 below). Translating this group theoretic result
into the language of symplectic representations whose image contains a nontrivial

MSC2010: 11F80, 20G40, 12F12.
Keywords: compatible systems of symplectic Galois representations, inverse Galois problem.
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transvection, these also fall into three very simply describable classes: the reducible
ones, the induced ones and those with huge image (see Corollary 1.2).

Using the idea of an .n;p/-group of [Khare et al. 2008] (i.e., of a maximally
induced place of order p, in the terminology of Part I), some number theory allows
us to give very simple conditions under which a symplectic Galois representation
with coefficients in F` has huge image (see Theorem 1.5 below).

This second part is independent of the first, except for Corollary 1.6, which com-
bines the main results of Part I [Arias-de-Reyna et al. 2013] and the present Part II.
In Part III [Arias-de-Reyna et al. 2015], written in collaboration with Sug Woo Shin,
a compatible system satisfying the assumptions of Corollary 1.6 is constructed.

Statement of results. To fix terminology, we recall some standard definitions. Let
K be a field. An n-dimensional K-vector space V equipped with a symplectic form
(i.e., nonsingular and alternating), denoted by hv;wiD v�w for v;w 2V , is called
a symplectic K-space. A K-subspace W � V is called a symplectic K-subspace
if the restriction of h � ; � i to W �W is nonsingular (hence, symplectic). The general
symplectic group GSp.V;h � ; � i/ DW GSp.V / consists of those A 2 GL.V / such
that there is ˛ 2K�, the multiplier (or similitude factor) of A, such that we have
.Av/�.Aw/D˛.v�w/ for all v;w2V . The symplectic group Sp.V;h � ; � i/DWSp.V /
is the subgroup of GSp.V / of elements with multiplier 1. An element �2GL.V / is a
transvection if ��idV has rank 1, i.e., if � fixes a hyperplane pointwisely, and there is
a line U such that �.v/�v2U for all v2V . We will consider the identity as a “trivial
transvection”. Any transvection has determinant and multiplier 1. A symplectic
transvection is a transvection in Sp.V /. Any symplectic transvection has the form

Tv Œ�� 2 Sp.V / W u 7! uC�.u � v/v

with direction vector v2V and parameter �2K; see, e.g., [Artin 1957, pp. 137–138].
The classification result on subgroups of general symplectic groups containing a

nontrivial transvection which plays the key role in our approach is the following.

Theorem 1.1. Let K be a finite field of characteristic at least 5 and V a symplectic
K-vector space of dimension n. Then any subgroup G of GSp.V / which contains
a nontrivial symplectic transvection satisfies one of the following assertions:

(1) There is a proper K-subspace S � V such that G.S/D S .

(2) There are mutually orthogonal nonsingular symplectic K-subspaces Si � V

with i D 1; : : : ; h of dimension m for some m < n such that V D
Lh

iD1 Si

and for all g 2 G, there is a permutation �g 2 Symh (the symmetric group
on f1; : : : ; hg) with g.Si/ D S�g.i/. Moreover, the action of G on the set
fS1; : : : ;Shg thus defined is transitive.

(3) There is a subfield L of K such that the subgroup generated by the symplectic
transvections of G is conjugated (in GSp.V /) to Spn.L/.
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In Section 2 we show how this theorem can be deduced from results of Kan-
tor [1979]. In a previous version of this article, we gave a self-contained proof,
which is still available on arXiv. For our application to Galois representations, we
provide the following representation theoretic reformulation of Theorem 1.1.

Corollary 1.2. Let ` be a prime at least 5, let � be a compact topological group and

� W �! GSpn.F`/

a continuous representation (for the discrete topology on F`). Assume that the image
of � contains a nontrivial transvection. Then one of the following assertions holds:

(1) � is reducible.

(2) There is a closed subgroup � 0 ¨ � of finite index h j n and a representation
�0 W � 0! GSpn=h.F`/ such that �Š Ind�� 0.�

0/.

(3) There is a finite field L of characteristic ` such that the subgroup generated by
the symplectic transvections in the image of � is conjugated (in GSpn.F`/) to
Spn.L/; in particular, the image is huge.

The following corollary shows that the definition of a huge subgroup of GSpn.F`/,
which we give in Part I [Arias-de-Reyna et al. 2013], coincides with the simpler
definition stated above.

Corollary 1.3. Let K be a finite field of characteristic ` � 5, V a symplectic
K-vector space of dimension n, and G a subgroup of GSp.V / which contains a
symplectic transvection. Then the following are equivalent:

(i) G is huge.

(ii) There is a subfield L of K such that the subgroup generated by the symplectic
transvections of G is conjugated (in GSp.V /) to Spn.L/.

Combining the group theoretic results above with .n;p/-groups, introduced
by [Khare et al. 2008], some number theory allows us to prove the following
theorem. Before stating it, let us collect some notation.

Set-up 1.4. Let n;N be positive integers with n even and N D N1 � N2 with
gcd.N1;N2/D 1. Let L0 be the compositum of all number fields of degree � n=2,
which are ramified at most at the primes dividing N2 (which is a number field).
Let q be a prime which is completely split in L0, and let p be a prime dividing
qn� 1 but not dividing qn=2� 1, and p � 1 .mod n/.

Theorem 1.5. Assume Set-up 1.4. Let k 2 N, ` 6D p; q be a prime such that
` > kn! C 1 and ` − N . Let �q W GQqn ! Q�

`
be a character satisfying the

assumptions of Lemma 3.1, and N�q the composition of �q with the reduction map
Z`! F`. Let N̨ WGQq

! F�
`

be an unramified character.
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Let
� WGQ! GSpn.F`/

be a Galois representation, ramified only at the primes dividing Nq`, satisfying
that a twist by some power of the cyclotomic character is regular in the sense of
Definition 3.2 with tame inertia weights at most k, and such that

(1) ResGQ

GQq
.�/D Ind

GQq

GQqn
. N�q/˝ N̨ ,

(2) the image of � contains a nontrivial transvection and

(3) for all primes `1 dividing N1, the image under � of I`1
, the inertia group at `1,

has order prime to n!.

Then the image of � is a huge subgroup of GSpn.F`/.

Combining Theorem 1.5 with the results of Part I [Arias-de-Reyna et al. 2013]
of this series yields the following corollary.

Corollary 1.6. Assume Set-up 1.4. Let �� D .��/� (where � runs through the
finite places of a number field L) be an n-dimensional a. e. absolutely irreducible
a. e. symplectic compatible system, as defined in Part I [Arias-de-Reyna et al. 2013],
for the base field Q, which satisfies the following assumptions:

� For all places �, the representation �� is unramified outside Nq`, where ` is
the rational prime below �.

� There are a 2 Z and k 2N such that, for all but possibly finitely many places �
of L, the reduction mod � of �a

`
˝ �� is regular in the sense of Definition 3.2,

with tame inertia weights at most k.

� The multiplier of the system is a finite order character times a power of the
cyclotomic character.

� For all primes ` not belonging to a density zero set of rational primes, and for
each � j `, the residual representation N�� contains a nontrivial transvection in
its image.

� For all places � not above q, one has

ResGQ

GQq
.��/D Ind

GQq

GQqn
.�q/˝˛;

where ˛ W GQq
! L�

�
is some unramified character and �q W GQqn ! Z� is

a character such that its composite with the embedding Z� ,!Q�
`

given by �
satisfies the assumptions of Lemma 3.1 for all primes `−pq. In the terminology
of Part I, q is called a maximally induced place of order p.

� For all primes `1 dividing N1 and for all but possibly finitely many places �, the
group N��.I`1

/ has order prime to n! (where I`1
denotes the inertia group at `1).
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Then we obtain:

(a) For all primes ` not belonging to a density zero set of rational primes, and for
each � j `, the image of the residual representation N�� is a huge subgroup of
GSpn.F`/.

(b) For any d j p�1
n

there exists a set Ld of rational primes ` of positive density
such that for all ` 2 Ld , there is a place � of L above ` satisfying that the
image of N� proj

�
is PGSpn.F`d / or PSpn.F`d /.

The proofs of Theorem 1.5 and Corollary 1.6 are given in Section 3.

Remark 1.7. It is natural to ask which of the two alternatives in Corollary 1.6(b)
actually holds. It is very hard to give a general answer. The same indeterminacy
occurs in [Khare et al. 2008] (see its arXiv version arXiv:math/0610860v3).

In the very special case, when there is no residual inner twist at a prime �, the
multiplier determines which case one is in. More precisely, by definition there
is no residual inner twist at � if the residue fields modulo � of E�� (the field of
definition of ��) and K�� (the projective field of definition of ��) coincide (see
[Arias-de-Reyna et al. 2013, Section 4]); call it F. In that case, if the image of
N�� is huge, up to conjugation we have Spn.F/ � N��.GQ/ � GSpn.F/ and thus
PSpn.F/� N�

proj
�
.GQ/� PGSpn.F/. The first inclusion is an equality if and only if

the multiplier of N�� is a square in F; otherwise the second inclusion is an equality.
When n D 2, in [Dieulefait and Wiese 2011] the difference between the field

of definition and the projective one could be controlled due to special choices of
modular forms; this allowed distinguishing between the two possibilities and, for
every d � 1, realising the simple group PSL2.F`d / as a Galois group over Q for a
positive density set of primes `.

If the two residue fields do not coincide, the multiplier is not enough to distinguish
between the two cases.

2. Symplectic representations containing a transvection

This section is devoted to Theorem 1.1. This theorem can be deduced from more
general results, like those of [Guralnick and Saxl 2003]. We prefer to deduce it from
the results of Kantor [1979], together with some representation theory of groups.
We hope that the detailed and quite elementary proof we give on page 6 will be of
value to the number theory community.

Throughout the section, our setting will be the following: `� 5 denotes a prime
number, n an even positive integer and V a symplectic n-dimensional vector space
over a finite field K of characteristic `.

Kantor’s classification result. Kantor [1979] classifies subgroups of classical linear
groups which are generated by a conjugacy class of elements of long root subgroups.

http://arXiv.org/abs/math/0610860v3


6 SARA ARIAS-DE-REYNA, LUIS DIEULEFAIT AND GABOR WIESE

In this paper, we are only concerned with subgroups of the symplectic group Sp.V /.
This case is addressed in [Kantor 1979, §11].

We need some notation in order to state his result. First of all, recall that in the
symplectic case, the elements of long root subgroups are precisely the symplectic
transvections. Given a subgroup H �Sp.V /, denote by O`.H / the maximal normal
`-subgroup contained in H , denote by ŒH;H � the commutator subgroup of H , and
by ZSp.V /.H / the centraliser of H in Sp.V /. Below we state the result of Kantor
in the symplectic case (leaving aside the cases of characteristic 2 and 3).

Theorem 2.1 (Kantor). Assume that ` � 5, and let H � Sp.V / be a subgroup
satisfying the following conditions:

(1) There exists a set X�H consisting of transvections, closed under conjugation
in H , which generates H .

(2) O`.H /� ŒH;H �\ZSp.V /.H /.

(3) H does not preserve any nonsingular subspace of V .

Then there is a subfield L of K such that H is conjugated (in Sp.V /) to Spn.L/.

We will apply this result in the case when H is an irreducible subgroup. In this
case, conditions (2) and (3) are satisfied. We elaborate on condition (2). Let W �V

be the subspace of elements that are left invariant by all elements in O`.H /. Since
O`.H / is an `-group acting on a finite `-group V , the cardinality of W is divisible
by ` (see Lemma 1 of Chapter IX of [Serre 1979]); hence W 6D f0g. Moreover, since
O`.H / is a normal subgroup of H , it follows that H stabilises W . But H is an
irreducible group; hence W DV and O`.H /DfIdg. Furthermore, if we take into ac-
count that the conjugate of a transvection is again a transvection, we can reformulate
condition (1) as follows: “the transvections contained in H generate H”, or simply
“H is generated by transvections”. This discussion proves the following corollary.

Corollary 2.2. Assume that `� 5, and let H � Sp.V / be an irreducible subgroup
which is generated by transvections. Then there is a subfield L of K such that H is
conjugated (in Sp.V /) to Spn.L/.

Proof of the group theoretic results. We will make use of the following facts about
transvections, the simple proofs of which are omitted.

Lemma 2.3. Let TuŒ�� 2 Sp.V / be a symplectic transvection. Then

(a) For any A 2GSp.V / with multiplier ˛ 2K�, we have ATuŒ��A
�1 D TAu

�
�
˛

�
.

(b) Suppose W �V is a K-vector subspace stabilised by TuŒ�� with �2K�. Then
we have

(1) u 2W or u 2W ?;
(2) u 2W ?, TuŒ��jW D idW .
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Proof of Theorem 1.1. Let G � GSp.V / be a subgroup which contains a nontrivial
transvection. If the action of G on V is reducible, we are in case (1) of the theorem.
Assume that the action of G on V is irreducible, and define the subgroup H WD h� 2

G W � is a transvectioni. Note that H is nontrivial. If the action of H on V is irre-
ducible, we can apply Corollary 2.2 to the group H and conclude that H is conjugate
in GSp.V / to Spn.L/ for some subfield L�K. This is case (3) of the theorem.

Assume then that the action of H on V is reducible. Let W � V be a K-vector
subspace on which H acts irreducibly. By Lemma 2.3(a), the group H is a normal
subgroup of G. Thus we can apply Clifford’s theorem (see [Curtis and Reiner 1981,
(11.1)]), to obtain g1; : : : ;gr 2G such that we have the equality of H -modules

(2-1) V D

rM
iD1

giW:

We first remark that W is not the trivial H -module, as otherwise H would
act trivially on V and thus H would be the trivial group. Now consider W 0 D

hu 2W W 9� 2 K� W TuŒ�� 2 H i. As W is a nontrivial H -module, W 0 ¤ 0. Let
Tv Œ�� 2H and u 2W 0. By Lemma 2.3(b), v 2W 0 or v 2W ?. In both cases, we
have Tv Œ��.u/D uC�.u � v/v 2W 0, showing that H preserves W 0, so that the
irreducibility of W implies W 0 DW .

Let zW D gW be a conjugate of W for which we assume zW ¤ W , so that
zW \W D0 since W is irreducible. We have just seen that there are w1; : : : ;wm2W

spanning W and �1; : : : ; �m2K� such that Tw1
Œ�1�; : : : ;Twm

Œ�m�2H . As H also
preserves zW , Lemma 2.3(b) shows wi 2

zW ? for 1 � i � m. This proves two
things. Firstly, W � zW ? and this means that the decomposition (2-1) of V is
into mutually orthogonal spaces. From this it follows these subspaces are also
symplectic, i.e., that the pairing is nondegenerate on each subspace. Secondly,
Tw1

Œ�1� is the identity on zW , but it is nontrivial on W (e.g., by the nondegeneration
of W , there is u 2W such that u �w1 ¤ 0, whence Tw1

Œ�1�.u/¤ u). Hence, W

and zW are nonisomorphic as H -modules.
Considering the composite maps gW ,! V

projection
�����! giW , in view of the

irreducibility of the giW and the fact that giW 6Š gj W for i ¤ j , it follows
that gW is one of the giW . Thus, G acts on the set fg1W; : : : ;gr W g. If this
action were not transitive, then the sum of the spaces in one orbit would be a
proper nontrivial G-submodule of V , contradicting the irreducibility of V . Thus,
all statements of case (2) of the theorem are proved. �
Proof of Corollary 1.2. Since � is compact and the topology on F` is discrete, the
image of � is a subgroup of GSpn.K/ for a certain finite field K of characteristic `.
Therefore one of the three possibilities of Theorem 1.1 holds for G WD im.�/. If the
first holds, then � is reducible, and if the third holds, then im.�/ contains a group
conjugate to Spn.L/ for some subfield L of K.



8 SARA ARIAS-DE-REYNA, LUIS DIEULEFAIT AND GABOR WIESE

Assume now that the second possibility holds. We use notation as in Theorem 1.1.
Let � 0 be fg 2 � j �g.1/ D 1g, the stabiliser of the first subspace. This is a
closed subgroup of � of finite index. Choose coset representatives and write
� D

Fh0

iD1gi�
0. The set fS1 j  2 �g contains h0 elements, namely precisely the

giS1 for i D 1; : : : ; h0. As the action of G on the decomposition is transitive, this
set is precisely fS1; : : : ;Shg, whence hD h0. Define �0 as the restriction of � to � 0

acting on S1. Then as a � 0-representation, we have the isomorphism

V Š

hM
iD1

Si Š

hM
iD1

giS1:

Proposition (10.5) of ~10A of [Curtis and Reiner 1981] implies �D Ind�� 0.�
0/. �

Proof of Corollary 1.3. Assume that G contains a subgroup conjugate (in GSp.V /)
to Spn.F`/. In particular, G does not fix any proper subspace S � V , nor any
decomposition V D

Lh
iD1 Si into mutually orthogonal nonsingular symplectic

subspaces. Hence by Theorem 1.1, there is a subfield L of K such that the subgroup
generated by the symplectic transvections of G is conjugated (in GSp.V /) to Spn.L/.
The other implication is clear. �

3. Symplectic representations with huge image

In this section we establish Theorem 1.5.

.n; p/-groups. As a generalisation of dihedral groups, in [Khare et al. 2008], Khare,
Larsen and Savin introduce so-called .n;p/-groups. We briefly recall some facts
and some notation to be used. For the definition of .n;p/-groups, we refer to
[loc. cit.]. Let q be a prime number, and let Qqn=Qq be the unique unramified
extension of Qq of degree n (inside a fixed algebraic closure Qq). Assume p is a
prime such that the order of q modulo p is n. Recall that Q�qn ' �qn�1 �U1 � qZ,
where �qn�1 is the group of .qn�1/-th roots of unity and U1 the group of 1-units.
Let ` be a prime distinct from p and q. Assuming that p; q > n, in [loc. cit.], the
authors construct a character �q WQ

�
qn !Q�

`
that satisfies the three properties of

the following lemma, which is proved in [loc. cit., Section 3.1].

Lemma 3.1. Let �q WQ
�
qn !Q�

`
be a character satisfying:

� �q has order 2p.

� �qj�qn�1�U1
has order p.

� �q.q/D�1.

This character gives rise to a character (which by abuse of notation we call also �q)
of GQqn by means of the reciprocity map of local class field theory.
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Let
�q D Ind

GQq

GQqn
.�q/:

Then �q is irreducible and symplectic, in the sense that it can be conjugated to
take values in Spn.Q`/, and the image of the reduction N�q of �q in Spn.F`/ is an
.n;p/-group. Moreover, if N̨ WGQq

! F�
`

is an unramified character, then N�q˝ N̨

is also irreducible.

Note that also the reduction of �q is IndGQq
GQqn

. N�q/, which is an irreducible rep-
resentation. Here N�q is the composite of �q and the projection Z`� F`. To see
why the last assertion is true, note that to see that

N�q˝ N̨ D Ind
GQq

GQqn
. N�q˝ . N̨ jGQqn

//

is irreducible, it suffices to prove that the n characters

N�q˝ . N̨ jGQqn
/; . N�q˝ . N̨ jGQqn

//q; : : : ; . N�q˝ . N̨ jGQqn
//q

n�1

are different (see [Serre 1977, Proposition 23, Chapter 7]). But the order of the
restriction of N�q˝ . N̨ jGQqn

/ to the inertia group at q is p (since N̨ is unramified),
and the order of q mod p is n.

Regular Galois representations. In our result we assume that our representation
� is regular, which is a condition on the tame inertia weights of �.

Definition 3.2 (regularity). Let ` be a prime number, n a natural number, V an
n-dimensional vector space over F` and � WGQ` !GL.V / a Galois representation,
and denote by I` the inertia group at `. We say that � is regular if there exists an
integer s between 1 and n, and for each i D 1; : : : ; s, a set Si of natural numbers in
f0; 1; : : : ; `�1g, of cardinality ri , with r1C� � �C rs D n, say Si D fai;1; : : : ; ai;ri

g,
such that the cardinality of S D S1[� � �[Ss equals n (i.e., all the ai;j are distinct)
and such that, if we denote by Bi the matrix

Bi �

0BBBB@
 

bi
ri

0

 
bi`
ri

: : :

0  
bi`

ri�1

ri

1CCCCA
with  ri

our fixed choice of fundamental character of niveau ri and bi D ai;1C

ai;2`C � � �C ai;ri
`ri�1, then

�jI` �

0B@ B1 �

: : :

0 Bs

1CA :
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The elements of S are called tame inertia weights of �. We will say that � has
tame inertia weights at most k if S � f0; 1; : : : ; kg. We will say that a global
representation � WGQ! GL.V / is regular if �jGQ`

is regular.

Lemma 3.3. Let � WGQ` ! GLn.F`/ be a Galois representation which is regular
with tame inertia weights at most k. Assume that ` > kn!C 1. Then all the n!-th
powers of the characters on the diagonal of �jI` are distinct.

Proof. We use the notation of Definition 3.2. Assume we have that the n!-th powers
of two characters of the diagonal coincide, say

(3-1)  
n!.c0Cc1`C���Ccri�1`

ri�1/
ri

D  
n!.d0Cd1`C���Cdrj�1`

rj�1
/

rj ;

where c0; : : : ; cri�1; d0; : : : ; drj�1 are distinct elements of S1[ � � � [Ss .
Let  ri rj be a fundamental character of niveau rirj such that

 
ˆ
.i;j /

i
ri rj D  ri

and  
ˆ
.i;j /

j

ri rj D  rj ;

where
ˆ
.i;j/
i D

`ri rj � 1

`ri � 1
and ˆ

.i;j/
j D

`ri rj � 1

`rj � 1
:

We can write (3-1) above as

 
ˆ
.i;j /

i
n!.c0Cc1`C���Ccri�1`

ri�1/
ri rj D  

ˆ
.i;j /

j
n!.d0Cd1`C���Cdrj�1`

rj�1
/

ri rj :

In other words, `ri rj � 1 divides the quantity

C0D
ˇ̌
ˆ
.i;j/
i n!.c0Cc1`C� � �Ccri�1`

ri�1/�ˆ
.i;j/
j n!.d0Cd1`C� � �Cdrj�1`

rj�1/
ˇ̌
:

Note that C0 is nonzero because modulo ` it is congruent to n!.c0 � d0/, and by
assumption all elements in S1[� � �[Ss are in different congruence classes modulo `.
But jc0C c1`C � � � C cri�1`

ri�1j � k.1C `C � � � C `ri�1/ D k.`ri � 1/=.`� 1/.
Analogously jd0 C d1`C � � � C drj�1`

rj�1j < k.`rj � 1/=.` � 1/. Thus C0 is
bounded above by

max
ˇ̌̊
ˆ
.i;j/
i n!.c0Cc1`C� � �Ccri�1`

ri�1/
ˇ̌
;
ˇ̌
ˆ
.i;j/
j n!.d0Cd1`C� � �Cdrj�1`

rj�1/
ˇ̌	

� n!k

�
`ri rj � 1

`� 1

�
< n!k.`ri rj�1

C 2`ri rj�2/:

Since `� 2� n!k, we have `2� 1> `2� 4� n!k.`C 2/ and thus

C0 < n!k.`ri rj�1
C 2`ri rj�2/D n!k.`C 2/`ri rj�2 < `ri rj � 1:

Hence `ri rj � 1 cannot divide C0. �
We will now use these lemmas to study the ramification at ` of an induced

representation under the assumption of regularity (possibly after a twist by a power
of the cyclotomic character) and boundedness of tame inertia weights.
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Proposition 3.4. Let n;m; k 2 N, a 2 Z and let ` > kn!C 1 be a prime, K=Q a
finite extension such that ŒK WQ��mDn, � WGK!GLm.F`/ a Galois representation
and let ˇ D IndGQ

GK
�. If �a

`
˝ˇ is regular with tame inertia weights at most k, then

K=Q does not ramify at `.

Proof. Assume that K=Q ramifies at `; we will derive a contradiction. First of all,
let us fix some notation: let N=Q be the Galois closure of K=Q, and let us fix a
prime � of N above `. Denote by I` � GQ the inertia group at `, I`;w � I` the
wild inertia group at ` and IN � GN the inertia group at the prime �. Let W be
the F`-vector space underlying �. For each  2 GQ, let K D  .K/ and define
� WGK ! GL.W / by �.�/D �.��1/.

Let us now pick any  2 GQ, � 2 I` and � 2 IN . Since I`=I`;w is cyclic, we
have that the commutator ��1����1 belongs to I`;w. Since IN � I` is normal,
��1�� 2 IN �GN �GK , so we may apply � and conclude

�.��1��/�.��1/D �.��1����1/ 2 �.I`;w/I

hence �.��1��/ and �.�/ have exactly the same eigenvalues.
Since N=Q ramifies in `, we may pick � 2 I` nGN , and since N D

Q
2GQ

K,
there exists some  2 GQ such that � 62 GK . This implies that ˇ.� /.W / \

ˇ. /.W /D 0. Choose now a set of left-coset representatives f1GK ; : : : ; dGK g

of GK in GQ with 1 D  and 2 D � ; Mackey’s formula [Curtis and Reiner
1981, 10.13] implies that

ResGQ

GN
IndGQ

GK
�D

dM
iD1

Res
Gi K

GN

i�:

Therefore ˇ.�/ is a block-diagonal matrix, where one block is �.�/ and another
block is ��.�/ D �.��1��/. But, by hypothesis, the tame inertia weights of
�a
`
˝ˇ are bounded. By Lemma 3.3, we have that the n!-powers of the characters

on the diagonal of �a
`
˝ˇjI` are all different, which implies that the characters on

the diagonal of ˇjIN
are all different. Thus �.�/ and �.��1��/ cannot have the

same eigenvalues for all � 2 IN . �

Representations induced in two ways. We need a proposition concerning repre-
sentations induced from different subgroups of a certain group G.

Proposition 3.5. Let G be a finite group, N EG, H �G. Assume .G WN /Dn, and
let p > n be a prime. Let K be a field of characteristic coprime to jGj containing
all jGj-th roots of unity. Let S be a KŒH �-module, � WN !K� a character, say
� D �1 ˝ �2, where �1 W N ! K� (resp. �2 W N ! K�) has order equal to a
nontrivial power of p (resp. not divisible by p). Assume

� WD IndG
H .S/D IndG

N .�/;

and furthermore the n characters f��
1
W � 2G=N g are different. Then N �H .
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Following [Serre 1977, 7.2], if G is a finite group and we are given two
G-modules V1 and V2, we will define hV1;V2iG WD dim HomG.V1;V2/. It is
known (Lemma 2 of Chapter 7 of [loc. cit.]) that, if '1 and '2 are the characters of
V1 and V2, then

hV1;V2iG D h'1; '2iG WD
1

jGj

X
g2G

'1.g
�1/'2.g/:

Before giving the proof, we will first prove a lemma.

Lemma 3.6. Let G be a group, N E G and H � G such that .G W H / � n. Let
p be a prime such that p > n, let K be a field of characteristic coprime to jGj
containing all jGj-th roots of unity, and let � WN !K� be a character whose order
is a nontrivial power of p. Then ResN

H\N� is not trivial.

Proof. Assume ResN
H\N� is trivial. Then H \N � ker�. But ker��N , and the

index .N W ker�/ is at least p. Therefore .N WH \N /� p. But on the other hand
p > n� .G WH /� .HN WH /D .N WN \H /, a contradiction. �
Proof of Proposition 3.5. Observe that � is irreducible. Namely, there is a well-
known criterion characterising when an induced representation is irreducible (see
[Serre 1977, Proposition 23, Chapter 7]). In particular, since N is normal in G,
we have that IndG

N� is irreducible if and only if � is irreducible (which clearly
holds) and, for all g 2G=N , .ResG

N .�//
h is not isomorphic to ResG

N .�/. This last
condition holds because the n characters f��

1
W � 2G=N g are different, and �2 has

order prime to p.
Since � is irreducible, we have that

1D h�; �iG D hIndG
H .S/; IndG

N .�/iG D hS;ResG
H IndG

N .�/iH D � � � ;

where in the last step we used Frobenius reciprocity. Now we apply Mackey’s
formula [Curtis and Reiner 1981, 10.13] on the right-hand side; note that, since N

is normal, HnG=N 'G=.H �N /:

� � � D

�
S;

M
2G=.H �N /

IndH
H\N ResN

H\N .�
 /

�
H

D

X
2G=.H �N /

�
S; IndH

H\N ResN
H\N .�

 /

�
H

:

Hence there is a unique  2G=.H �N / such that

hS; IndH
H\N ResN

H\N .�
 /iH D 1:

If we prove that, for all  , IndH
H\N ResN

H\N .�
 / is irreducible, then we will have

S ' IndH
H\N ResN

H\N .�
 /
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(for some  ); hence dim.S/ D .H W H \ N /. But, on the other hand, since
�D IndG

H .S/D IndG
N .�/, we have that dim.S/ � .G WH /D .G WN /, so

dim.S/D
.G WHN /.HN WN /

.G WHN /.HN WH /
D
.H WN \H /

.N WN \H /
;

and therefore the conclusion is that .N WN \H /D 1; in other words, N �H .
Therefore to conclude, we only need to see that IndH

H\N ResN
H\N .�

 / is irre-
ducible. Since conjugation by  plays no role here, let us just assume  D 1. We
apply again the criterion characterising when an induced representation is irreducible.
In particular, since H \N is normal in H , we have that IndH

H\N ResN
H\N .�/ is

irreducible if and only if ResN
H\N .�/ is irreducible (which clearly holds) and, for

all h 2H=N \H , .ResN
H\N .�//

h is not isomorphic to ResN
H\N .�/.

So pick h 2H nN . We have

.ResN
H\N .�//

h
D ResN

H\N .�
h/:

Assume ResN
H\N .�

h/ D ResN
H\N .�/. In particular, we obtain ResN

H\N .�
h
1
/ D

ResN
H\N .�1/. By Lemma 3.6, we have �1D�

h
1

as characters of N . But for all � 2
G=N , we know that ��

1
¤�1. Now it suffices to note that H=.H\N / ,!G=N . �

Proofs. Finally we carry out the proof of Theorem 1.5.

Lemma 3.7. Assume Set-up 1.4. Let k 2N, ` 6Dp; q be a prime such that `>kn!C1

and ` − N . Let �q W GQqn ! Q�
`

be a character satisfying the assumptions of
Lemma 3.1, and N�q the composition of �q with the reduction map Z` ! F`. Let
N̨ WGQq

! F�
`

be an unramified character.
Let � WGQ! GSpn.F`/ be a Galois representation, ramified only at the primes

dividing Nq`, such that a twist by some power of the cyclotomic character is regular
in the sense of Definition 3.2 with tame inertia weights at most k, and satisfying (1)
and (3) of Theorem 1.5. Then � is not induced from a representation of an open
subgroup H ¨GQ.

Proof. Let H �GQ be an open subgroup, say of index h, and �0 WH !GLn=h.F`/

a representation such that
�Š IndGQ

H
.�0/:

Call S1 and V , with S1 � V , the spaces underlying �0 and �, respectively, so that
�D IndGQ

H .S1/. Recall that by assumption

ResGQ

GQq
.�/D Ind

GQq

GQqn
. N�q/˝ N̨ :

We want to compute ResGQ

GQq
IndGQ

H .S1/. Let us apply Mackey’s formula [Curtis
and Reiner 1981, 10.13]. By Lemma 3.1 we know that

ResGQ

GQq
IndGQ

H
.S1/D Ind

GQq

GQqn
. N�q/˝ N̨
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is irreducible, so there can only be one summand in the formula; hence

ResGQ

GQq
IndGQ

H
.S1/D Ind

GQq

GQq\H
ResH

GQq\H .S1/;

and therefore

(3-2) Ind
GQq

GQq\H
ResH

GQq\H .S1/D Ind
GQq

GQqn
. N�q/˝ N̨ :

We now apply Proposition 3.5 to (3-2). Note that

ResGQ

GQq
�D Ind

GQq

GQqn
. N�q/˝ N̨ D Ind

GQq

GQqn
. N�q˝ . N̨ jGQqn

//:

We can write N�q˝. N̨ jGQqn
/ D N�1 ˝ N�2, where N�1 has order a power of p and

N�2 has order prime to p. Note that the restriction of N�q˝ . N̨ jGQqn
/ to the inertia

group Iq of GQq
coincides with the restriction of N�q , which has order p. Thus

. N�1˝ N�2/jIq
D N�qjIq

D N�1jIq
. Since the order of q mod p is n, we know that the

n characters N�1jIq
; N�

q
1
jIq
; : : : ; N�

qn

1
jIq

are distinct. We can take G D �.GQq
/ in the

statement of Proposition 3.5, whose order is a divisor of 2np � ord. N̨ / and, hence,
prime to `. It thus follows that GQqn � .GQq

\H /.
Note that, on the one hand

nD dim V D dim.IndGQ

H
S1/D .GQ WH / dim.S1/:

On the other hand,

nD dim.Ind
GQq

GQq\H
ResH

GQq\H .S1//D .GQq
WGQq

\H / dim.S1/I

hence .GQ WH /D .GQq
WGQq

\H /.
Let L be the number field such that H D Gal.Q=L/. Now Gal.Q=L/\GQq

D

Gal.Qq=Lq/, where q is a certain prime of L above q and Lq denotes the completion
of L at q. The inclusion GQqn �Gal.Qq=Lq/means that we have the field inclusions

Qq �Lq �Qqn �Qq

and ŒLq WQq �D .GQq
WGQq

\H /D .GQ WH /D ŒL WQ�; hence q is inert in L=Q.
Let `1 be a prime dividing N1, let zL=Q be a Galois closure of L=Q, ƒ1 a prime

of zL above `1 and I1 the inertia group of ƒ1 over Q. Since gcd.j�.I`1
/j; n!/D 1

and Gal. zL=Q/ has order dividing n!, we get that the projection of �.I1/� �.I`1
/

into �.GQ/=�.G zL/ is trivial. Thus, �.I1/ � �.G zL/. Hence zL=Q is unramified
at `1 and so is L=Q.

To sum up, we know that L can only be ramified at the primes dividing Nq`.
But L cannot ramify at q since Lq � Qqn (and Qqn is an unramified extension
of Qq). We just saw that L cannot ramify at the primes dividing N1. We also know
that L cannot be ramified at ` (see Proposition 3.4). Hence L only ramifies at the
primes dividing N2. By the choice of q, it is completely split in L, and at the same
time inert in L. This shows LDQ and H DGQ. �
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Now we can easily prove the main group theoretic result.

Proof of Theorem 1.5. Let G D Im�. Since G contains a transvection, one of the
following three possibilities holds (cf. Corollary 1.2):

(1) � is reducible.
(2) There exists an open subgroup H ¨GQ, say of index h with n=h even, and a

representation �0 WH ! GSpn=h.F`/ such that �Š IndGQ

H �0.
(3) The group generated by the transvections in G is conjugated (in GSpn.F`/) to

Spn.F`r / for some exponent r .

By Lemma 3.1, G acts irreducibly on V ; hence the first possibility cannot occur.
By Lemma 3.7, the second possibility does not occur. Hence the third possibility
holds, and this finishes the proof of the theorem. �

Proof of Corollary 1.6. This follows from the main theorem of Part I [Arias-de-
Reyna et al. 2013] concerning the application to the inverse Galois problem. In
order to be able to apply it, there are two things to check: Firstly, we note that ��
is maximally induced of order p at the prime q. Secondly, the existence of a
transvection in the image of N�� together with the special shape of the representation
at q allow us to conclude from Theorem 1.5 that the image of N�� is huge for all � j `,
where ` runs through the rational primes outside a density zero set. �
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ON THE NUMBER OF LINES IN THE LIMIT SET
FOR DISCRETE SUBGROUPS OF PSL(3, C)

WALDEMAR BARRERA, ANGEL CANO AND JUÁN NAVARRETE

Given a discrete subgroup G ⊂ PSL(3, C), acting on the complex projective
plane, P2

C
, in the canonical way, we list all possible values for the number of

complex projective lines and for the maximum number of complex projective
lines lying in the complement of each of: the equicontinuity set of G, the
Kulkarni discontinuity region of G, and maximal open subsets of P2

C
on which

G acts properly discontinuously.

1. Introduction

A classical result in the theory of Kleinian groups states that the limit set of an
infinite Kleinian group consists of one, two, or uncountably many points. If the
number of points in the limit set is smaller or equal to two then the Kleinian group
is called elementary. On the other hand, if the number of points in the limit set is
greater than two then the group is called nonelementary and its limit set is a perfect
set.

In this paper, we prove an analogous result for complex Kleinian groups acting
on P2

C
. We recall that G ⊂ PSL(3,C) is a complex Kleinian group, whenever

there exists a G-invariant nonempty open set U ⊂ P2
C

where G acts properly and
discontinuously.

There is no standard definition of limit set in the theory of complex Kleinian
groups, and we use the following three notions of limit set for a complex Kleinian
group: The Myrberg limit set P2

C
\ Eq(G) (see Section 3A), the Kulkarni limit

set P2
C
\�(G) (see Section 3B), and the complement of a maximal G-invariant

open subset of P2
C

where G acts properly and discontinuously. In what follows,
we denote by Umax(G) any maximal open subset of P2

C
where G acts properly and

discontinuously.
The main results in this paper are the following:
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Theorem 1.1. If G ⊂ PSL(3,C) is an infinite discrete subgroup and U is equal
to one of Eq(G), �(G), or Umax(G), then the number of complex projective lines
contained in P2

C
\U is equal to 1, 2, 3, or ∞. Moreover, if there are infinitely

many complex projective lines contained in P2
C
\U, then there exists a perfect set of

complex projective lines contained in P2
C
\U.

Theorem 1.2. If G ⊂ PSL(3,C) is an infinite discrete subgroup and U is equal to
one of Eq(G),�(G), or Umax(G), then the maximum number of complex projective
lines in general position contained in P2

C
\U is equal to 1, 2, 3, 4, or∞.

We begin our exposition with a brief section on projective geometry. The material
in this section is standard. Also, we set the notation we use throughout the paper.

In Section 3, we recall the definitions of equicontinuity set, Myrberg limit set,
Kulkarni limit set, and Kulkarni discontinuity region. Also, we include some useful
results such as Theorem 3.4 and Proposition 3.6. Finally, we recall the definition of
complex Kleinian group.

In Section 4, we use Segre’s embedding to prove that the set of effective lines is
closed in (P2

C
)∗. Consequently, the union of all effective lines for a discrete group

G ⊂ PSL(3,C) is a closed set of P2
C

and this union is equal to the complement of
the equicontinuity set of G, except in one case; see Corollary 4.5. The existence of
loxodromic elements, whenever the limit set contains at least three lines in general
position, is proved in Proposition 4.10.

In Section 5, we include all results needed to prove the main Theorem 1.1. In
order to give a sketch of the proof of this theorem, and for the reader’s convenience,
we use the notation λ(U ) and µ(U ) to denote the number of complex projective
lines contained in P2

C
\U and the maximum number of complex projective lines

in general position contained in P2
C
\U, respectively. A sketch of the proof of

Theorem 1.1 is as follows:
Since G is an infinite group, µ(U ) ≥ 1 (see the proof of [Cano et al. 2013,

Proposition 3.3.4]).
If µ(U )≤ 3 and λ(U ) <∞, then λ(U )= µ(U ) (see Propositions 5.4 and 5.6).
If 1<µ(U )≤ 3 and λ(U )=∞, then there exists a perfect set of lines contained

in the complement of U (see Proposition 5.7).
If µ(U )≥ 4, then the complement of U is the union of a perfect set of lines (see

Proposition 5.15).
In Section 6, we prove Theorem 1.2. The sketch of the proof is the following:

We assume that 4 < µ(U ) <∞ and we find precisely two points called vertices
such that each one of these points lies in infinitely many lines contained in P2

C
\U

(see Proposition 6.5). Moreover, if the line ` is contained in P2
C
\U and does not

pass through one of these vertices then its orbit contains infinitely many lines. Since
µ(U ) <∞, we obtain another vertex, contradicting Proposition 6.5.
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The last section contains examples showing all distinct possible values that λ(U )
and µ(U ) can take.

2. Preliminaries and notation

We recall that the complex projective plane P2
C

is defined as

P2
C := (C

3
\ {0})/C∗,

where C∗ = C \ {0} acts on C3
\ {0} by the usual scalar multiplication. This is a

compact connected complex 2-dimensional manifold. Let [ ] :C3
\ {0}→P2

C
be the

quotient map. If β = {e1, e2, e3} is the standard basis of C3, we write [ej ] = ej , for
j = 1, 2, 3, and if z = (z1, z2, z3) ∈ C3

\ {0} then we write [z] = [z1 : z2 : z3]. Also,
`⊂ P2

C
is said to be a complex line if [`]−1

∪ {0} is a complex linear subspace of
dimension 2. Given two distinct points [z], [w] ∈ P2

C
, there is a unique complex

projective line passing through [z] and [w]; such a complex projective line is called
a line, for short, and it is denoted by←−−→[z], [w]. Consider the action of C∗ on GL(3,C)

given by the usual scalar multiplication. Then

PGL(3,C)= GL(3,C)/C∗

is a Lie group whose elements are called projective transformations. Now let
[[ ]] :GL(3,C)→ PGL(3,C) be the quotient map, g ∈ PGL(3,C) and g ∈GL(3,C),
we say that g is a lift of g if [[g]] = g. One can show that PGL(3,C) is a Lie group
which acts transitively, effectively, and by biholomorphisms on P2

C
via [[g]]([w])=

[g(w)], where w ∈ C3
\ {0} and g ∈ GL(3,C).

We could have considered the action of the cube roots of unity {1, ω, ω2
} ⊂ C∗

on SL(3,C) given by the usual scalar multiplication, in which case

PSL(3,C)= SL(3,C)/{1, ω, ω2
} ∼= PGL(3,C).

We denote by M3×3(C) the space of all 3×3 matrices with entries in C equipped
with the standard topology. The quotient space

SP(3,C) := (M3×3(C) \ {0})/C∗

is called the space of pseudoprojective maps of P2
C

and it is naturally identified
with the projective space P8

C
. Since GL(3,C) is an open, dense, C∗-invariant

set of M3×3(C) \ {0}, we obtain that the space of pseudoprojective maps of P2
C

is a compactification of PGL(3,C) (or PSL(3,C)). As in the case of projective
maps, if s is an element in M3×3(C) \ {0}, then [s] denotes the equivalence class
of the matrix s in the space of pseudoprojective maps of P2

C
. Also, we say that

s ∈M3×3(C) \ {0} is a lift of the pseudoprojective map S whenever [s] = S.
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Let S be an element in (M3×3(C)\{0})/C∗ and s a lift to M3×3(C)\{0} of S. The
matrix s induces a nonzero linear transformation s :C3

→C3, which is not necessarily
invertible. Let Ker(s)( C3 be its kernel and let Ker(S) denote its projectivization
to P2

C
, taking into account that Ker(S) :=∅ whenever Ker(s)= {(0, 0, 0)}.

3. Discontinuous actions on P2
C

Definition 3.1. Let G⊂PSL(3,C) be a discrete group. We say that G acts properly
and discontinuously on the open nonempty G-invariant set U ⊂ P2

C
if and only if,

for each pair of compact subsets C, D ⊂U, the set

{g ∈ G : g(C)∩ D 6=∅}
is finite.

3A. The equicontinuity set.

Definition 3.2. The equicontinuity set for a family F of endomorphisms of P2
C

,
denoted Eq(F) is defined as the set of points z ∈ P2

C
for which there is an open

neighborhood U of z such that { f |U : f ∈ F} is a normal family.

Definition 3.3. Let G ⊂ PSL(3,C) be a discrete group. If

G ′ = {S is a pseudoprojective map of P2
C : S is a cluster point of G};

then the Myrberg limit set [1925] is defined as the set

3Myr(G)=
⋃

S∈G ′
Ker(S).

Myrberg [1925] shows that G acts properly and discontinuously on P2
C
\3Myr(G).

Theorem 3.4 [Barrera et al. 2011a]. If G ⊂ PSL(3,C) is a discrete group, then:

(i) The group G acts properly and discontinuously on Eq(G).

(ii) The equicontinuity set of G satisfies:

Eq(G)= P2
C \3Myr(G)

(iii) If U is an open G-invariant subset such that P2
C
\U contains at least three

complex lines in general position, then U ⊂ Eq(G).

3B. The Kulkarni discontinuity region.

Definition 3.5 [Kulkarni 1978]. If G ⊂ PSL(3,C) is a group, then:

• The set L0(G) is the closure of the set of points in P2
C

with infinite isotropy
group.

• The set L1(G) is the closure of the set of cluster points of the orbit Gz, where z
runs over P2

C
\ L0(G).
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• The set L2(G) is the closure of the set of cluster points of the family of
compact sets {g(K ) : g ∈ G}, where K runs over all the compact subsets of
P2

C
\ (L0(G)∪ L1(G)).

The Kulkarni limit set of G is defined as

3Kul(G)= L0(G)∪ L1(G)∪ L2(G).

The Kulkarni discontinuity region of G is defined as

�(G)= P2
C \3Kul(G).

Kulkarni [1978] proves that G acts properly and discontinuously on the set
�(G). However, �(G) is not necessarily the maximal open subset of P2

C
where

G acts properly and discontinuously. It is proved in [Barrera et al. 2011a] that
Eq(G)⊂�(G) whenever G ⊂ PSL(3,C) is discrete.

Proposition 3.6. If H is a finite index subgroup of G ⊂ PSL(3,C), then

(i) L0(H)= L0(G),

(ii) L1(H)= L1(G),

(iii) L2(H)= L2(G),

(iv) 3Kul(H)=3Kul(G) and �(H)=�(G).

Proof. Let us assume that m = [G : H ] and

G =
m⋃

i=1

Hγi .

(i) It is not hard to see that L0(H)⊂ L0(G). Now, if x ∈ P2
C

and |Isot(x,G)| =∞,
then there exists a sequence of distinct elements (gn)⊂ G such that

gn(x)= x for all n ∈ N.

We can assume there exists 1≤ i0 ≤ m such that

gn = hnγi0 for all n ∈ N.

Hence, (h̃n)⊂ H , where h̃n = hnh−1
1 , is a sequence of distinct elements in H such

that h̃n(x)= x for all n ∈ N. Therefore x ∈ L0(H).

(ii) It is not hard to check that L1(H) ⊂ L1(G). Conversely, if (gn) ⊂ G is a
sequence of distinct elements and x ∈ P2

C
\ L0(G)= P2

C
\ L0(H), such that

gn(x)→ z as n→∞,

then we can assume that

gn(x)= hn(γi0(x))→ z as n→∞,
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where γi0(x) ∈ P2
C
\ L0(G)= P2

C
\ L0(H). It follows that z ∈ L1(H).

(iii) It is not hard to check that L2(H)⊂ L2(G). Conversely, let us assume z is a
cluster point of the family

{gn(K ) : n ∈ N},

where (gn)⊂G is a sequence of distinct elements and K ⊂P2
C
\(L0(G)∪L1(G))=

P2
C
\ (L0(H)∪ L1(H)) is a compact set. We can assume there exists 1 ≤ i0 ≤ m

such that
gn = hnγi0 for all n ∈ N.

It follows that z is a cluster point of the family

{hn(γi0(K )) : n ∈ N},

where (hn) ⊂ H is a sequence of distinct elements and γi0(K ) ⊂ P2
C
\ (L0(G)∪

L1(G))= P2
C
\ (L0(H)∪ L1(H)) is a compact set. Therefore z ∈ L2(H).

(iv) It follows from (i), (ii), and (iii). �

Definition 3.7 [Cano et al. 2013]. We say that G⊂PSL(3,C) is a complex Kleinian
group if there exists a G-invariant nonempty open subset of P2

C
where G acts properly

and discontinuously.

4. Some useful results

Definition 4.1. We say ` is an effective line for the discrete group G ⊂ PSL(3,C)

if there exists a pseudoprojective transformation S ∈ G ′ such that `= Ker(S). The
set of effective lines for G is denoted by E(G), or simply E when there is no danger
of confusion.

Proposition 4.2. If G ⊂ PSL(3,C) is a discrete group then E is a closed subset of
(P2

C
)∗, where (P2

C
)∗ denotes the space of complex projective lines in P2

C
.

Proof. We assume that (`n) is a sequence in E such that `n → ` as n→∞. For
each n ∈N, there exists Sn ∈G ′⊂ SP(3,C) such that `n =Ker(Sn). Since SP(3,C)

is compact, we can assume that Sn→ S ∈ SP(3,C) as n→∞. Moreover, S ∈ G ′

because G ′ is closed.
In order to prove that `= Ker(S) we use the Segre embedding:

ψ : P2
C ×P2

C→ SP(3,C)

ψ([v], [t])=

t1v
t2v
t3v

= [(v1 t v2 t v3 t
)]
,

where
v =

(
v1 v2 v3

)
and t =

t1
t2
t3

.
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We notice that the image of ψ is precisely the set of pseudoprojective transfor-
mations in SP(3,C) whose kernel is equal to one line. In fact, [v] can be identified
with Ker(ψ([v], [t])). Since ψ is continuous, it follows that ψ(P2

C
×P2

C
) is compact

in SP(3,C), so it is closed. Therefore, Ker(S) is equal to one line.
Set ψ−1(Sn) = ([vn], [tn]), for each n ∈ N, and ψ−1(S) = ([v], [t]). Since

ψ−1
: ψ(P2

C
×P2

C
)→ P2

C
×P2

C
is continuous, it follows that ψ−1(Sn)→ ψ−1(S)

as n→∞. Therefore [vn] → [v] as n→∞. In other words, `n→ Ker(S). �

Corollary 4.3. If G ⊂ PSL(3,C) is a discrete subgroup then⋃
`∈E

`⊂ P2
C

is a closed set.

Proof. If (xn) is a sequence of points in
⋃
`∈E ` such that xn→ x as n→∞, then

for each n ∈ N there exists `n ∈ E such that xn ∈ `n . Since (P2
C
)∗ is compact and E

is closed, we can assume that `n→ ` ∈ E as n→∞. It follows that x ∈ ` and

x ∈
⋃
`∈E

`. �

The following lemma is a generalization of a classical result in Kleinian groups
theory. See, for example, [Maskit 1988, Proposition II.C.6].

Lemma 4.4. If g ∈ PSL(3,C) is a complex homothety such that 3Kul(g)= `∪ {p}
and h ∈ PSL(3,C) is a transformation such that h(`) = ` and h(p) 6= p then the
subgroup 〈g, h〉 ⊂ PSL(3,C) is not discrete.

Proof. We can assume that `=←−→e1, e2 and p = e3. Then

g =

a 0 0
0 a 0
0 0 a−2

, where 0< |a|< 1 and h =

h11 h12 h13

h21 h22 h23

0 0 h33


are lifts of g and h respectively. Since h(p) 6= p, either h13 6= 0 or h23 6= 0.

By straightforward computations [gn, h] is induced by the matrix:1 0 (a3n
− 1)h13/h33

0 1 (a3n
− 1)h23/h33

0 0 1

.
It follows that the sequence of distinct elements [gn, h] ∈ 〈g, h〉 converges to the
transformation in PSL(3,C) induced by the matrix1 0 −h13/h33

0 1 −h23/h33

0 0 1

.
Hence, 〈g, h〉 is not discrete. �
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Corollary 4.5. If G ⊂ PSL(3,C) is a discrete subgroup then 3Myr(G) and
⋃
`∈E `

are equal except in the case when 3Myr(G) is equal to a disjoint union of one line
and one point.

Proof. Clearly
⋃
`∈E `⊂3Myr(G).

If 3Myr(G) is equal to one line, then G contains a parabolic element, hence
3Myr(G)⊂

⋃
`∈E `.

If we assume that 3Myr(G) is not equal to one line and x ∈3Myr(G) \
⋃
`∈E `

then {x} = Ker(S) for some S ∈ G ′. It follows that Im(S) is an effective line by
[Barrera et al. 2011a, Lemma 3.2(ii)]. Thus, x does not lie on the line Im(S).
Hence, G contains a complex homothety with an isolated fixed point not lying in
the closed set

⋃
`∈E `. To see this, consider a “round” closed neighborhood U of x

disjoint from the closed set
⋃
`∈E `. Since S ∈G ′, there exists a sequence of distinct

elements gn ∈ G such that gn→ S uniformly on compact subsets of P2
C
\Ker(S).

Now, by [loc. cit.] there exists a subsequence of gn denoted the same, such that
g−1

n ( · )→ x as n→∞ uniformly on compact subsets of P2
C
\ Im(S). For n large

enough, g−1
n sends U into its interior. It follows that gn is loxodromic, with a fixed

point in the interior of U. This gn is necessarily a complex homothety, because
otherwise U would intersect

⋃
`∈E `.

If
⋃
`∈E ` is not equal to one line then there is an effective line, `0, different from

the fixed line of the complex homothety. We reach a contradiction because we can
iterate `0 with respect to the complex homothety and obtain that its isolated fixed
point is in the closed set

⋃
`∈E `.

If
⋃
`∈E ` is equal to one line then, by hypothesis, there exists points y 6= x such

that y /∈
⋃
`∈E `. It follows that there exist two distinct complex homotheties with

one common fixed line, so G is not discrete by Lemma 4.4. �

Notation 4.6. Let U ⊂ P2
C

be an open set.

• The number of lines contained in P2
C
\U is denoted by λ(U ).

• The maximum number of lines in general position contained in P2
C
\ U is

denoted by µ(U ).

There are examples of discrete groups G ⊂ PU(2, 1)⊂ PSL(3,C) such that

�(G)= Eq(G)= H2
C.

Thus, in this case, the set ⋃
`∈E

`= P2
C \H2

C

is big enough as to contain infinitely many lines which are not effective lines. On
the other hand, we have the following:

Remark 4.7. If G ⊂ PSL(3,C) is a discrete subgroup, then:
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(i) µ(Eq(G))= 1 if and only if there is only one effective line for G.

(ii) If we assume that 3Myr(G) 6= P2
C

then the maximum number of effective lines
for G in general position is equal to two if and only if µ(Eq(G)) = 2. (It could
happen that 3Myr(G)= P2

C
but the maximum number of effective lines in general

position is equal to two, for example in the double suspension of a Picard group.
See Example (iii) in Section 7B.)

(iii) If we assume that 3Myr(G) 6= P2
C

then the maximum number of effective lines
for G in general position is equal to three if and only if µ(Eq(G))= 3. (It could
happen that 3Myr(G)= P2

C
but the maximum number of effective lines in general

position is equal to three, for example, in the suspension of a Picard group extended
by an infinite group. See Example (ii) in Section 7C)

Lemma 4.8. If G ⊂ PSL(3,C) is a subgroup, and there exists S ∈ G ′ ⊂ SP(3,C)

such that Ker(S) is a line and Im(S) /∈ Ker(S), then G contains a loxodromic
element.

Proof. There exists a sequence of distinct elements gn ∈ G such that gn → S as
n→∞, uniformly on compact subsets of P2

C
\Ker(S). In particular, if V ⊂ P2

C
is

an open “ball” containing the point Im(S), such that V ∩Ker(S) = ∅ then there
exists N > 0 such that n ≥ N implies that gn(V )⊂ V. Therefore, gn is loxodromic
for every n ≥ N ; see [Navarrete 2008, Definition 6.1]. �

Lemma 4.9. If G ⊂ PSL(3,C) is a subgroup and there exists S, T ∈G ′⊂ SP(3,C)

such that Ker(S) and Ker(T ) are lines, Im(T ) /∈ Ker(S) and Im(S) /∈ Ker(T ), then
G contains a loxodromic element.

Proof. Let (gn) and (hn) be sequences of distinct elements in G such that gn→ S
and hn→ T as n→∞. Then the sequence fn := gn ◦hn of elements of G satisfies
that fn → S ◦ T as n →∞ and Im(S ◦ T ) = Im(S) /∈ Ker(T ) = Ker(S ◦ T ). It
follows from Lemma 4.8 that G contains a loxodromic element. �

Proposition 4.10. Let G ⊂ PSL(3,C) be a discrete subgroup and U 6=∅ be equal
to Eq(G), �(G) or Umax(G). If µ(U )≥ 3 then G contains a loxodromic element

Proof. The hypothesis µ(U )≥ 3 and Theorem 3.4(iii) imply that U = Eq(G).
By Corollary 4.5, 3Myr(G) = P2

C
\ Eq(G) 6= P2

C
is the union of effective lines

for G. Therefore, there exist three pseudoprojective maps S1, S2, S3 ∈G ′⊂SP(3,C)

such that Ker(S1),Ker(S2),Ker(S3) are three lines in general position. If Im(Sj ) /∈

Ker(Sj ) for some 1≤ j ≤ 3 then Lemma 4.8 implies that G contains a loxodromic
element. Hence, we can assume that

Im(S1) ∈ Ker(S1), Im(S2) ∈ Ker(S2), Im(S3) ∈ Ker(S3).
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In this case, it is not hard to check that there exists i 6= j , 1 ≤ i, j ≤ 3, such that
Im(Si ) /∈ Ker(Sj ) and Im(Sj ) /∈ Ker(Si ). By Lemma 4.9, there exists a loxodromic
element. �

5. Counting lines

Definition 5.1. If p is a point and ` is a line such that p /∈ `, then there is a
projection from P2

C
\ {p} to `, denoted by

π = πp,` : P
2
C \ {p} → `,

π(z)=←→z,p ∩ `.

Let G ⊂ PSL(3,C) be a group, and p ∈ P2
C

a point such that Gp = p, then there
is a group morphism given by

5=5p,` : G→ Bihol(`),

5(g)(x)= π(g(x)).

Lemma 5.2. Let G ⊂ PSL(3,C) be a discrete subgroup. If V ⊂ P2
C

is an open
G-invariant set such that µ(V ) = 2, then there is a point p ∈ P2

C
\V such that

Gp = p.

Proof. Let L= {` ∈ (P2
C
)∗ : `⊂ P2

C
\V }. Since µ(V )= 2, it follows that

⋂
`∈L ` is

equal to one point denoted p. If g ∈ G then g(L)= L, so

g(p)= g
(⋂
`∈L

)̀
=

⋂
`∈L

g(`)=
⋂
`∈L

`= p. �

Lemma 5.3. Let G ⊂ PSL(3,C) be a discrete subgroup and V ⊂P2
C

a G-invariant
open set such that L0(G)⊂ P2

C
\V. If 3≤ λ(V ) <∞ and µ(V )= 2, then:

(i) If ` is any line not containing the G fixed point, p, then 5p,`(G) is finite.

(ii) The normal subgroup Ker(5) has finite index in G.

(iii) There exists h0 ∈ PSL(3,C) such that every element in h0 Ker(5)(h0)
−1 of

infinite order has a lift to SL(3,C) of the form1 b 0
0 1 0
0 0 1

.
(iv) If h0 is as in (iii), then the set A consisting of all a3

∈ C∗, such that there exists
g ∈ h0 Ker(5)h−1

0 with a lift of the form:a−2 b c
0 a 0
0 0 a

,
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is a finite subgroup of C∗.

(v) There is a line `0 such that Eq(G)= P2
C
\ `0. Moreover, L0(G)= `0.

(vi) The Kulkarni discontinuity region �(G) is equal to P2
C
\ `0 = Eq(G).

Proof. Set L= {` ∈ (P2
C
)∗ : `⊂ P2

C
\V } and n0 = |L|. Since µ(V )= 2 then every

line in L passes through a point denoted by p, and Gp = p.

(i) Since {g(`) : g ∈ G, ` ∈ L} = L, it follows that F := π
(⋃

`∈L(` \ {p})
)

is a
5(G)-invariant set whose cardinality is n0 ≥ 3. Thus

0 =
⋂
x∈F

Isot(x,5(G))

is a normal subgroup of 5(G) with finite index. Moreover, every element in F is
fixed by 0. Since F contains more than three elements we conclude that 0 = {Id}.
Therefore 5(G) is finite.

(ii) The normal subgroup Ker(5) has finite index because G/Ker(5)∼=5(G) is
finite.

(iii) We can assume, by conjugating, that Ge1 = e1 and projection 5=5e1,
←−→e2,e3 .

If g ∈ Ker(5) then any lift for g in SL(3,C) has the form

g =

a−2 b c
0 a 0
0 0 a

, where a ∈ C∗ and b, c ∈ C.

If g is diagonalizable, then there are v1, v2 ∈ C3 such that {e1, v1, v2} is an
eigenbasis for g whose respective eigenvalues are {a−2, a, a}. Consequently,
←−→
v1, v2 ⊂ L0(g)⊂ L0(G)⊂P2

C
\V and e1 /∈

←−→
v1, v2, which contradicts the hypothesis

that µ(V )= 2. Therefore, g is not diagonalizable, which implies that a−2
= a, so

g has a lift of the form

(1) g =

1 b c
0 1 0
0 0 1

, where b, c ∈ C.

We can assume that there is an element g0 ∈ Ker(5) such that g0 has a lift
g0 ∈ SL(3,C) given by

(2) g0 =

1 1 0
0 1 0
0 0 1

.
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If we assume that there is an element g1 ∈ Ker(5) which has a lift g1 ∈ SL(3,C)

given as in (1) with c 6= 0, then for every n ∈ N,

gn
0 g1 =

1 b+ n c
0 1 0
0 0 1

.
By straightforward computations, we see that

`n =
←−−−−−−−−−−−→
[e1], [0 : −c : b+ n] ⊂ L0(gn

0 g1)⊂ L0(G)⊂ P2
C \V.

Moreover, `n 6= `m whenever n 6= m. Thus L contains infinitely many lines, which
contradicts the hypothesis that λ(V ) <∞.

(iv) By straightforward computations, the set A is a subgroup of C∗. By (iii), every
element in Ker(5) is elliptic or parabolic. It follows that A ⊂ S1. Assume that A
is infinite; then there is a sequence a3

n ⊂ A of distinct elements such that a1/2
n → 1

as n→∞. For each n ∈ N, let gn ∈ Ker(5) with a lift gn ∈ SL(3,C) of the form

gn =

an bn cn

0 a−1/2
n 0

0 0 a−1/2
n

, where bn, cn ∈ C.

If g0 is as in (2), then

g−1
n g0 gn =

1 a−3/2
n 0

0 1 0
0 0 1

→
1 1 0

0 1 0
0 0 1


as n→∞, a contradiction to the hypothesis that G is discrete.

(v) Let H denote the finite index subgroup of h0 Ker(5)h−1
0 consisting of all

elements with a lift of the form 1 b c
0 1 0
0 0 1

.
We can assume, by (iii), that each element of infinite order, h ∈ H has a lift

h ∈ SL(3,C) which is given by

h =

1 a 0
0 1 0
0 0 1

.
It follows that Eq(H)= P2

C
\
←−→e1, e3. Since H has finite index in h0 Ker(5)h−1

0 ,

Eq(h0Gh−1
0 )= Eq(h0 Ker(5)h−1

0 )= Eq(H)= P2
C \
←−→e1, e3.

Finally, L0(h0Gh−1
0 )= L0(h0 Ker(5)h−1

0 )= L0(H)=
←−→e1, e3.
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(vi) G acts properly and discontinuously on Eq(G)= P2
C
\ `0. Since Ker(5) has

finite index in G and every element of infinite order has canonical form as in (2),
we notice that G does not contain loxoparabolic elements. It follows by [Barrera
et al. 2014a, Theorem 1.2] that �(G)= P2

C
\ `0. �

Proposition 5.4. Let G ⊂ PSL(3,C) be a discrete subgroup and U ⊂ P2
C

be one of
Eq(G), �(G), or Umax(G). If µ(U )= 2 and λ(U ) <∞, then λ(U )= 2.

Proof. If U is either Eq(G) or �(G) and 2 < λ(U ) <∞, then by Lemma 5.3(v)
and (vi), Eq(G) = �(G) = P2

C
\ ` for some line `. Thus, µ(U ) = 1 = λ(U ), a

contradiction.
If U =Umax(G) and 2<λ(U ) <∞ then L0(G)=P2

C
\Eq(G) by Lemma 5.3(v).

Since G acts properly and discontinuously on U, it follows that L0(G)⊂ P2
C
\U.

Thus, U⊂Eq(G), so U=Eq(G) is the complement of one line in P2
C

, a contradiction
of the hypothesis that µ(U )= 2. �

Lemma 5.5. Let G ⊂ PSL(3,C) be a discrete group and V ⊂ P2
C

be an open
G-invariant set such that L0(G) ⊂ P2

C
\V. If µ(V ) = 3 and 3 < λ(V ) <∞, then

there is a line `1 and p ∈ P2
C
\ `1 such that

Eq(G)= P2
C \ (`1 ∪ {p})= P2

C \ L0(G)

Proof. Let us assume that n0 = λ(V ) > 3. If we define

L= {` ∈ (P2
C)
∗
: `⊂ P2

C \V } = {`1, . . . , `n0},

then the group

G0 =

n0⋂
i=1

Isot(`i ,G)

is a finite index normal subgroup of G. Since µ(U ) = 3 then, conjugating by a
projective transformation, we can assume that

`1 =
←−→e1, e2, `2 =

←−→e2, e3, `3 =
←−→e3, e1.

It follows that every element g ∈ G0 has a lift g ∈ SL(3,C) of the form

g =

g11 0 0
0 g22 0
0 0 g33

, where g11 g22 g33 = 1.

If `j is any line in L \ {`1, `2, `3} then e1 ∈ `j or e2 ∈ `j or e3 ∈ `j , because
µ(V ) = 3. We assume, without loss of generality, that e3 ∈ `j for all lines `j in
L\{`1, `2, `3}. Set5=5e3,`1 and π=πe3,`1 , and notice that π(e1), π(e2), π(`j\e3)

are three distinct fixed points in `1 for the group5(G0), so5(G0)={Id}. Therefore,
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for each g ∈ G0, there is a nonzero complex number g2
33 such that g ∈ SL(3,C)

given by

g =

g33 0 0
0 g33 0
0 0 g−2

33


is a lift of g. We conclude that

Eq(G)= Eq(G0)= P2
C \ (`1 ∪ {e1}). �

Proposition 5.6. Let G ⊂ PSL(3,C) be a discrete subgroup and U ⊂ P2
C

be one of
Eq(G),�(G), or Umax(G). If µ(U )= 3 and λ(U ) <∞ then λ(U )= 3.

Proof. Given that µ(U )= 3, Theorem 3.4(iii) implies that U = Eq(G). If λ(U ) > 3
then applying Lemma 5.5, we obtain thatµ(U )=1, a contradiction to the hypothesis
that µ(U )= 3. Therefore λ(U )= 3. �

Proposition 5.7. Let G ⊂ PSL(3,C) be a discrete subgroup and ∅ 6=U ⊂ P2
C

be
equal to on of Eq(G), �(G), or Umax(G). If µ(U ) ∈ {2, 3} and λ(U ) =∞, then
there is a perfect set of lines contained in P2

C
\U, so there are uncountably many

lines contained in P2
C
\U.

First, we consider the case when µ(U )= 2. In this case, there exists a fixed point
of G corresponding to the intersection point of any two distinct lines contained in
P2

C
\U. We can assume that e3 is this fixed point. Hence every element g ∈ G is

induced by a unique matrix of the form

(3) g =

g11 g12 0
g21 g22 0
g31 g32 1


If we set 5 = 5e3,

←−→e1,e2 : G → Bihol(←−→e1, e2), then we consider the subcases
depending on whether 5(G) is not elementary or not discrete, elementary of two
limit points, elementary of one limit point, or finite. These subcases are considered
in Lemmas 5.8, 5.12, 5.13, and 5.14.

The subgroup Ker(5) also plays an important role in the proof of Proposition 5.7
in the case when µ(U ) = 2, and we prove in Lemma 5.9 that Ker(5) contains a
free abelian finite index subgroup H, consisting of all elements of infinite order and
the identity. Moreover, we prove in Lemma 5.10 that necessarily the rank of H is
smaller or equal to 2. This result is analogous to the first Bieberbach theorem with
the difference that H does not have maximal rank.

Lemma 5.8. Let G ⊂ PSL(3,C) be a discrete subgroup and ∅ 6=U ⊂ P2
C

be equal
to one of Eq(G), �(G), or Umax(G). If µ(U ) = 2, λ(U ) =∞, and 5(G) is not
elementary or not discrete then there is a perfect set of lines contained in P2

C
\U.
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Proof. The action of 5(G) over the line←−→e1, e2 represents the action of the group
G on the full pencil of lines passing through the point e3. Since 5(G) is not
elementary or not discrete, we have that for any line ` passing through e3 (except
for a finite number of lines), the closure of the set {g(`) : g ∈ G} contains a perfect
set of lines. Since λ(U )=∞, there exists a line ` contained in P2

C
\U such that

{g(`) : g ∈ G} ⊂ P2
C \U

contains a perfect set of lines. �

Lemma 5.9. The set H ⊂ Ker(5), consisting of all elements of infinite order and
the identity, is a free abelian finite index normal subgroup of Ker(5). Moreover,
every element in H is induced by a matrix of the form

(4) h =

 1 0 0
0 1 0

h31 h32 1

.
Hence, H is isomorphic to a discrete subgroup of C2.

Proof. Let us assume that h ∈Ker(5) has infinite order and it is induced by a matrix
of the form

(5) h =

 a 0 0
0 a 0

h31 h32 1

.
If |a| 6= 1 then h is a complex homothety and {e3}∪`h is the set of fixed points of h,
where `h is a line not passing through e3. It is a contradiction of the hypothesis that
µ(U )= 2. Hence |a| = 1.

If we assume that a 6= 1 then h is an elliptic element of infinite order, so G is
not discrete, contradiction. Therefore, a = 1 and every element in H is induced by
a matrix of the form (4). It follows immediately that H is a free abelian normal
subgroup of Ker(5).

If H = {Id} then Ker(5) is a discrete subgroup and every element in Ker(5)
has finite order. It follows that Ker(5) is finite.

If H 6= {Id} then there exists h ∈ H induced by a matrix of the form (4) where
(h31, h32) 6= (0, 0). If g ∈ Ker(5) is induced by a matrix of the form

(6) g =

 a 0 0
0 a 0

g31 g32 1

,
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then g−nhgn
∈ H is induced by a matrix of the form

(7) h =

 1 0 0
0 1 0

an h31 an h32 1

.
It follows that H is a finite index subgroup of Ker(5). Otherwise, there exists a
sequence of distinct elements of H tending to an element in PSL(3,C). �

Lemma 5.10. Let H be as in Lemma 5.9. If H has rank at least 3, then H is not a
complex Kleinian group.

Proof. Let us assume that H contains the free abelian group generated by

h1 =

 1 0 0
0 1 0
a1 b1 1

, h2 =

 1 0 0
0 1 0
a2 b2 1

, h3 =

 1 0 0
0 1 0
a3 b3 1

,
where {(a1, b1), (a2, b2), (a3, b3)} is an R-linearly independent set of vectors, and
{(a1, b1), (a2, b2)} is a C-linearly independent set of vectors.

Conjugating by an element in PGL(3,C), we can assume that (a1, b1)= (1, 0),
(a2, b2)= (0, 1), and (a3, b3)= (λ, µ), where λ /∈ R.

If m, n, k are integers, not all zero, then the element

hn
1 hm

2 hk
3 =

 1 0 0
0 1 0

n+ kλ m+ kµ 1


has the property that

Ker(hn
1hm

2 hk
3)= L0(hn

1hm
2 hk

3)

is the complex line in P2
C

, passing through e3 and defined by

{[z1 : z2 : z3] ∈ P2
C : (n+ kλ)z1+ (m+ kµ)z2 = 0}.

Moreover, this complex line can be identified via dual vector with the point

[n+ kλ : m+ kµ : 0].
Now, the set

{[n+ kλ : m+ kµ : 0] : m, n, k are integers, not all zero}

is dense in the set {[A : B : 0] : A, B ∈C not both zero} which is identified with the
set of all lines in P2

C
passing through e3.

Now, let us assume that H acts properly and discontinuously on the open set U ⊂
P2

C
. Since, P2

C
\U is a closed set containing every line of the form Ker(hn

1hm
2 hk

3)=

L0(hn
1hm

2 hk
3), for m, n, k ∈ Z, not all zero, it follows that P2

C
\ U contains the

complete pencil of lines passing through e3. Therefore, U =∅. �
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Lemma 5.11. Let H be a free abelian group of rank 2, as in Lemma 5.9, acting
properly and discontinuously on the open set U ⊂ P2

C
. If H is generated by

transformations h1 and h2 induced by the matrices

h1 =

 1 0 0
0 1 0
a1 b1 1

, h2 =

 1 0 0
0 1 0
a2 b2 1

,
and {(a1, b1), (a2, b2)} is a basis of C2 then P2

C
\U contains a perfect set of lines.

Proof. As in the proof of Lemma 5.10, conjugating if needed, we can assume that
(a1, b1)= (1, 0) and (a2, b2)= (0, 1).

If m, n are integers, not both zero, then the element

hn
1 hm

2 =

1 0 0
0 1 0
n m 1


has the property that

Ker(hn
1hm

2 )= L0(hn
1hm

2 )

is the complex line in P2
C

, passing through e3 and defined by

{[z1 : z2 : z3] ∈ P2
C : nz1+mz2 = 0}.

Moreover, this complex line can be identified with the point

[n : m : 0].

Now, the set

{[n : m : 0] : m, n are integers, not both zero }

is dense in the set of lines {[A : B : 0] : A, B ∈ R not both zero } ∼= P1
R.

Since, P2
C
\U is a closed set containing every line of the form Ker(hn

1hm
2 ) =

L0(hn
1hm

2 ), for m, n ∈ Z, not both zero, it follows that P2
C
\U contains a circle of

lines passing through e3. �

Lemma 5.12. Let G⊂PSL(3,C) be a discrete subgroup and ∅ 6=U ⊂P2
C

be equal
to one of Eq(G), �(G), or Umax(G). If µ(U ) = 2 and 5(G) is elementary with
two limit points, then λ(U ) = 2 or there exists a perfect set of lines contained in
P2

C
\U.

Proof. Since 5(G) is elementary with two limit points, there exists a G-invariant
set of two lines passing through e3; we can assume that←−→e1, e3 and←−→e2, e3 are these
two lines. Moreover, we can assume that each one of these lines is G-invariant
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(up to a finite index subgroup). It follows that every element in G is induced by a
matrix of the form

(8)

g11 0 0
0 g22 0

g31 g32 1

.
By Lemma 5.10, H has rank at most 2, and we consider the cases according to

the rank of this group. If the rank of H is 2 and we assume that the hypotheses of
Lemma 5.11 are satisfied, then P2

C
\U contains a perfect set of lines. Hence, we

can assume that the rank of H is 2 and H is generated by two elements h1 and h2,
induced by the matrices

h1 =

 1 0 0
0 1 0
a1 b1 1

, h2 =

 1 0 0
0 1 0
ωa1 ωb1 1

,
where ω ∈ C \R.

Since 5(G) is elementary with two limit points, there exists an element g ∈ G
induced by a matrix of the form (8) where |g11| 6= |g22|.

Since g−1hg ∈ H , it follows that

(9) (g11a1, g22b1)= m(a1, b1)+ nω(a1, b1), for some m, n ∈ Z.

If a1 6= 0 6= b1 then, by (9),

g11 = m+ nω = g22,

a contradiction. Hence, a1 = 0 or b1 = 0.
We can assume that a1 = 0; then for every g1, g2 ∈ G we have [g1, g2] ∈ H , and

by a straightforward computation, we can conjugate G so that every element in this
conjugate group is induced by a matrix of the formg11 0 0

0 g22 0
0 g32 1

.
Moreover, G contains a finite index abelian subgroup, G0, generated by the elements1 0 0

0 1 0
0 b1 1

,
1 0 0

0 1 0
0 ωb1 1

,
ζ 0 0

0 1 0
0 y 1

,
where b1 ∈ C \ {0}, ω ∈ C \ R and |ζ | < 1. It follows that Eq(G) = Eq(G0) =

P2
C
\ (
←−→e1, e3 ∪

←−→e2, e3). Therefore, λ(Eq(G))= λ(Eq(G0))= 2.
If U is an open set where G acts properly and discontinuously, then←−→e1, e3 =

L0(G0)⊂ P2
C
\U. If µ(U )= 2, there exists another line ` passing through e3 such
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that `⊂ P2
C
\U. By hypothesis, 5(G) is an elementary group of two limit points,

it follows that←−→e2, e3 ⊂ G · `⊂ P2
C
\U. Hence,

(10) U ⊂ P2
C \ (
←−→e1, e3 ∪

←−→e2, e3)= Eq(G).

In the case when U =�(G), it is known that Eq(G)⊂�(G)=U ; hence

U = P2
C \ (
←−→e1, e3 ∪

←−→e2, e3).

Therefore, λ(U )= 2.
In the case when U = Umax(G), it follows from (10) that U = Eq(G), and

λ(U )= 2.
The case when H has rank one is analogous and we omit it. Finally, when

H = {Id}, the group is a finite extension of a cyclic group generated by a loxo-
dromic element. It follows that Eq(G) = �(G) is the complement of two lines
in P2

C
. On the other hand, every maximal open set, U, where the action of G is

properly discontinuous, is equal to the complement of one line and one point or the
complement of one single line. �

Lemma 5.13. Let G ⊂ PSL(3,C) be a discrete subgroup and ∅ 6= U ⊂ P2
C

be
equal to one of Eq(G), �(G), or Umax(G). If µ(U )= 2, λ(U )=∞, and 5(G) is
elementary with one limit point, then there exists a perfect set of lines contained in
P2

C
\U.

Proof. Since 5(G) is elementary with one fixed point, we can assume that←−→e2, e3

is a G-invariant line, and every element in G is induced by a unique matrix of the
form

(11)

g11 0 0
g21 g11 0
g31 g32 1

.
Now, the rank of the finite index abelian subgroup H ⊂Ker(5) (see Lemmas 5.9

and 5.10) is at most 2.
If the rank of H is at most 2 and the hypotheses of Lemma 5.11 are not satisfied,

then we can assume, conjugating with the appropriate matrix, that every element of
H is induced by a matrix of the form

(12)

 1 0 0
0 1 0

h31 0 1

.
(Alternatively, it can be of the form1 0 0

0 1 0
0 h32 1

,
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but the proof is analogous.) It follows that H acts properly and discontinuously on
P2

C
\
←−→e2, e3, so Ker(5) acts properly and discontinuously on P2

C
\
←−→e2, e3.

Now, we prove that G acts properly and discontinuously on P2
C
\
←−→e2, e3. Let (gn)

be a sequence of distinct elements of G such that gn(C)∩D 6=∅ for some compact
subsets C, D ⊂ P2

C
\
←−→e2, e3. Since 5(G) is elementary with one limit point, we can

assume that 5(gn)=5(g1) for every n ∈ N, so g−1
1 gn ∈ Ker(5) for every n ∈ N.

It follows that

g−1
1 gn(C)∩ g−1

1 (D) 6=∅,

contradicting the fact that Ker(5) acts properly and discontinuously on P2
C
\
←−→e2, e3.

It follows, by [Barrera et al. 2014a, Theorem 1.2], that λ(U )≤ 2, a contradiction.
Hence, the rank of H is equal to 2 and hypotheses of Lemma 5.11 are satisfied.
Therefore, P2

C
\U contains a perfect set of lines. �

Lemma 5.14. Let G⊂PSL(3,C) be a discrete subgroup and ∅ 6=U ⊂P2
C

be equal
to one of Eq(G), �(G), or Umax(G). If µ(U ) = 2 and 5(G) is finite, then there
exists a perfect set of lines contained in P2

C
\U.

Proof. Since 5(G) is finite, it follows that Ker(5) has finite index in G. By
Lemma 5.9, H has finite index in G. Thus,

�(G)=�(H)= Eq(H)= Eq(G)

By Lemma 5.10, H has rank at most 2. First, we assume that H has rank 1. Then
µ(�(H)) = µ(Eq(H)) = 1, and �(H) is a maximal open subset where G acts
properly and discontinuously, contradicting the hypothesis µ(U )= 2. Therefore,
H has rank 2.

In the case when H does not satisfy the hypotheses of Lemma 5.11, �(H)=
Eq(H) is the complement of one line in P2

C
, and again �(H) is a maximal open set

where G acts properly and discontinuously, contradicting the hypothesis µ(U )= 2.
It follows that H has rank 2, and it satisfies the hypotheses of Lemma 5.11.

Therefore, P2
C
\U contains a perfect set of lines. �

Proof of Proposition 5.7. If µ(U ) = 2 then the result is obtained by applying
Lemmas 5.8, 5.12, 5.13, and 5.14.

Now, we consider the case when µ(U )= 3 and λ(U )=∞; then there exists a
point p and a line ` not passing through p such that G · p = p and G · `= `. We
can assume that p = e3 and ` =←−→e1, e2, so every element g ∈ G is induced by a
matrix of the form

(13) g =

g11 g12 0
g21 g22 0
0 0 g33
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Since µ(U )= 3, by Theorem 3.4(iii), we obtain U ⊂ Eq(G). It follows that

U = Eq(G),

whenever U is a maximal open set where G acts properly and discontinuously or
U is Kulkarni domain of discontinuity. Hence, it suffices to prove Proposition 5.7
for U = Eq(G).

If we set, as before, 5 = 5e3,
←−→e1,e2 : G → Bihol(←−→e1, e2), then we consider the

subcases depending on whether 5(G) is not elementary or not discrete, elementary
with two limit points, elementary with one limit point, or finite.

In the case when 5(G) is not elementary or not discrete, one can prove that
there exists a perfect set of lines contained in P2

C
\U as in the proof of Lemma 5.8.

In the case when 5(G) is finite, Ker(5) is a finite index subgroup of G, then

Eq(G)= Eq(Ker(5)).

Since every element in Ker(5) is induced by a matrix of the formg11 0 0
0 g11 0
0 0 g33

,
it follows that P2

C
\Eq(G)=P2

C
\Eq(Ker(5)) is at most←−→e1, e2∪{e3}, contradicting

the hypothesis. Therefore, 5(G) cannot be finite.
If5(G) is Euclidean — i.e., elementary with one limit point — then there exists a

finite index subgroup of G such that every element of this subgroup can be induced
by a matrix of the form 1 g12 0

0 1 0
0 0 g33

.
It follows that λ(Eq(G))≤ 2, contradicting the hypothesis. Therefore, 5(G) cannot
be Euclidean.

If 5(G) is a two limit points elementary group, then there exists a finite index
subgroup of G such that every element of this subgroup can be induced by a matrix
of the form g11 0 0

0 g22 0
0 0 g33

.
It follows that λ(Eq(G))≤ 3, contradicting the hypothesis. Therefore, 5(G) cannot
be elementary with two limit points. �

Some examples of groups as in the statement of Proposition 5.7 are given in
Sections 7B and 7C.
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Proposition 5.15. Let G ⊂ PSL(3,C) be a discrete subgroup and U ⊂P2
C

be equal
to one of Eq(G), �(G), or Umax(G). If µ(U ) ≥ 4 then λ(U ) = ∞. Moreover
P2

C
\U is the union of a perfect set of lines, so there are uncountably many lines

contained in P2
C
\U.

Proof. If U =�(G) then U = Eq(G), by [Barrera et al. 2011a, Theorem 3.6]. If
U = Umax(G). Thus, U = Eq(G) by maximality. Hence, it suffices to prove the
statement for U = Eq(G). If 3Myr(G)= P2

C
\Eq(G)= P2

C
then there is nothing to

prove, so we assume 3Myr(G) 6= P2
C

.
Finally, we prove that E(G) is a perfect set. By Proposition 4.2, E(G) is closed.

Moreover, if ` is an effective line for G, then ` = Ker(S) for some S ∈ G ′ so it
follows from in [op. cit., Lemma 3.2(3)] that there is a sequence of distinct effective
lines accumulating at ` (because the maximum number of effective lines for G is at
least 4, by Remark 4.7). �

Proof of Theorem 1.1. First of all, λ(U )≥ 1 because the complement of an open
subset of P2

C
, where the infinite discrete group G ⊂ PSL(3,C) acts properly and

discontinuously, always contains a line.

• If µ(U )= 1 then λ(U )= 1.

• If µ(U ) = 2 then there are two subcases depending on whether λ(U ) <∞
or λ(U )=∞. If λ(U ) <∞ then λ(U )= 2, by Proposition 5.4. In the other
case, λ(U )=∞ and Proposition 5.7 implies that there exists a perfect set of
lines contained in P2

C
\U.

• If µ(U ) = 3 then there are two subcases depending on whether λ(U ) <∞
or λ(U )=∞. If λ(U ) <∞ then λ(U )= 3, by Proposition 5.6. In the other
case, by Proposition 5.7, there is a perfect set of lines contained in P2

C
\U.

• If µ(U )≥ 4 then Proposition 5.15 implies that λ(U )=∞ and P2
C
\U is the

union of a perfect set of lines. �

6. Proof of Theorem 1.2

Lemma 6.1. Let G ⊂ PSL(3,C) be a discrete subgroup and ` a G-invariant line
such that the action of G restricted to ` is trivial, then:

(i) If there is an element in G with infinite order and a diagonalizable lift, then G
is conjugate to a subgroup of PSL(3,C) such that every element has a lift to
SL(3,C) of the forma 0 0

0 a 0
0 0 a−2

, where a ∈ C∗.
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(ii) If G does not contain an element with infinite order and diagonalizable lift,
then G is conjugate to a subgroup of PSL(3,C) such that every element has a
lift to SL(3,C) of the forma 0 b

0 a c
0 0 a−2

, where |a| = 1.

Proof. (i) After conjugating with a projective transformation, we can assume that
`=
←−→e1, e2 and there exists g0 ∈ G with a lift g0 ∈ SL(3,C) of the forma0 0 0

0 a0 0
0 0 a−2

0

, where |a0|< 1.

On the other hand, each element g ∈ G has a lift g ∈ SL(3,C) of the form

(14)

g11 0 g13

0 g11 g23

0 0 g−2
11

.
If g13 6= 0 or g23 6= 0 for some g ∈G, then Lemma 4.4 implies that G is not discrete.
Therefore, g13 = 0= g23 for every g ∈ G.

(ii) As before, we can assume that every g ∈G has a lift g ∈ SL(3,C) as in (14). If
for some g ∈ G we assume that |g11| 6= 1, then g11 6= g−2

11 and g is diagonalizable,
so we have a contradiction. �

Proposition 6.2. Let G ⊂ PSL(3,C) be an infinite discrete subgroup and ` a
G-invariant line such that G acts trivially on `, then there exists a point p such that

Eq(G)= `∪ {p}.

Proof. By Lemma 6.1 we have two cases according to whether there is an element
in G of infinite order with a diagonalizable lift or there is not such an element in G.
In the first case, Eq(G)= `∪{p} where p is the isolated fixed point of any element
in G of infinite order. In the second case, Eq(G)= `. �

Lemma 6.3. Let G ⊂ PSL(3,C) be a discrete subgroup such that each element
g ∈ G has a lift g ∈ SL(3,C) of the formg11 0 0

0 g22 g23

0 g32 g33

.
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Then the maximum number of effective lines for G in general position is at most 3.
In particular, if 3Myr(G) 6= P2

C
, then

µ(Eq(G))≤ 3.

Proof. If (gn) ⊂ G is a sequence of distinct elements in G such that gn → S in
SP(3,C) as n→∞, then S is induced by a matrix of the form

0 6= s =

s11 0 0
0 s22 s23

0 s32 s33

.
Since G is discrete,

s11(s22s33− s23s32)= 0.

Hence, Ker(S) is equal to the point e1, a line passing through e1, the line←−→e2, e3, or
a point in←−→e2, e3. �

Definition 6.4. If U ⊂ P2
C

is an open set and L is a set of lines in general position
contained in P2

C
\U, then we say the point v ∈ P2

C
\U is a vertex for U and L

whenever:

• There are infinitely many lines contained in P2
C
\U passing through v.

• There exist two distinct lines `1, `2 in L passing through v.

Proposition 6.5. Let G ⊂ PSL(3,C) be a discrete group and U ⊂ P2
C

be one of
Eq(G),�(G), or Umax(G). If 4 ≤ µ(U ) <∞ then, for each set L consisting of
lines in general position contained in P2

C
\U such that |L| = µ(U ):

(i) There are precisely two vertices for U and L.

(ii) If ` is a line not containing vertices for U, then the G-orbit of ` is infinite.

Proof. If U is equal to �(G) or Umax(G), then the hypothesis µ(U ) ≥ 4 and
Theorem 3.4(iii) imply that U = Eq(G). Hence it suffices to prove the lemma in
the case U = Eq(G).

(i) Since |L| = µ(U ) < ∞, every line contained in P2
C
\ U passes through an

intersection point of lines in L. By Proposition 5.15, λ(U ) = ∞. Hence, there
exists at least one vertex for U and L.

Given thatµ(U )<∞, the set of vertices for U and L is finite and it is G-invariant.
It follows that the isotropy subgroup of any vertex for U and L has finite index in G.

Since µ(U ) ≥ 4, P2
C
\U is a union of lines (see Corollary 4.5). If we assume

that there is only one vertex for U and L then

P2
C \U =

(⋃
`∈B

)̀
∪

(⋃
`∈A

)̀
,
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where B is the closed set of lines contained in P2
C
\U passing through the vertex,

and A is the set of lines contained in P2
C
\U not passing through the vertex.

Since there is only one vertex, the G-invariant set A contains finitely many lines.
If `0 ∈A then the subgroup G0 = Isot(`0,G) has finite index in G, so the open set
U0 = P2

C
\
((⋃

`∈B `
)
∪ `0

)
is G0-invariant. It follows from Theorem 3.4 iii) that

U0 ⊂ Eq(G0)= Eq(G).

Thus, 3= µ(U0)= µ(Eq(G))≥ 4, a contradiction. Therefore, there exist at least
two vertices for U and L.

If we assume that the vertices for U and L do not lie on a line, then there are three
vertices of U and L in general position. Moreover, we can assume that {e1, e2, e3}

are those vertices. Thus every element in the finite index subgroup

G1 =

3⋂
j=1

Isot(ej ,G)⊂ G

is induced by a diagonal matrix. It follows from Lemma 6.3 that

3≥ µ(Eq(G1))= µ(Eq(G))≥ 4,

a contradiction. Therefore, the vertices for U and L lie in a complex line.
If we assume that there are more than two vertices for U and L then there exist

three distinct vertices, v1, v2, v3 for U and L contained in a line `. The finite index
subgroup

G1 =

3⋂
j=1

Isot(v j ,G)⊂ G

fixes three distinct points in the line `, so it acts trivially on `. It follows from
Proposition 6.2 that

µ(Eq(G1))= 1,

contradicting the fact that Eq(G1)= Eq(G) and µ(Eq(G)) ≥ 4. Therefore, there
are precisely two vertices for U and L.

(ii) If we assume there exists a line `0 with finite G-orbit and not passing through
any vertex v1 or v2 for U, then

G2 = Isot(`0,G)∩ Isot(v1,G)∩ Isot(v2,G)

is a finite index subgroup of G fixing the points

v1, v2, `0 ∩
←−→
v1, v2.
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Thus, G2 acts trivially on←−→v1, v2, so Eq(G) = Eq(G2) is the complement of the
union of a line and a point (by Proposition 6.2), contradicting the hypothesis that
µ(Eq(G))≥ 4. �

Proof of Theorem 1.2. On the contrary, let us assume that 4 < µ(U ) <∞. Then
there is a finite set of lines in general position, L, such that `⊂ P2

C
\U for every

` ∈ L, and |L| = µ(U ). By Proposition 6.5(i), there are precisely two vertices for
U and L. Let us denote by v1 and v2 these two vertices. Since µ(U ) > 4, there
is a line in L not passing through v1 nor v2. By Proposition 6.5(ii), this line has
infinite G-orbit, then there is another vertex for U and L distinct from v1, v2, a
contradiction. Therefore, µ(U ) is equal to 1, 2, 3, 4, or∞. In Sections 7A to 7E
we give examples of infinite discrete subgroups G ⊂ PSL(3,C) with corresponding
open sets U satisfying µ(U ) ∈ {1, 2, 3, 4,∞}. �

7. Examples

7A. One line complex Kleinian groups. (i) Suppose that G is the cyclic subgroup
of PSL(3,C) generated by a complex homothety g0 induced by a matrix of the
form a 0 0

0 a 0
0 0 a−2

, where 0< |a|< 1.

Then
�(G)= Eq(G)= P2

C \ (
←−→e1, e2 ∪ {e3})

is the maximal open subset of P2
C

where G acts properly and discontinuously. Hence
we have the table:

�(G) Eq(G) Umax(G)

λ 1 1 1
µ 1 1 1

(ii) If G ⊂ PGL(3,C) is the cyclic group generated by the loxoparabolic element
induced by the matrix 1 0 1

0 a 0
0 0 1

, 0< |a|< 1,

then
�(G)= P2

C \ (
←−→e1, e2 ∪

←−→e1, e3)= Eq(G)

However, G acts properly and discontinuously on P2
C
\
←−→e1, e2; see [Barrera et al.

2014a, Example 2.3]. Moreover, Umax = P2
C
\
←−→e1, e2 is the maximal open subset of
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P2
C

where G acts properly and discontinuously. Hence we have the table:

�(G) Eq(G) Umax(G)

λ 2 2 1
µ 2 2 1

(iii) The abelian group G, generated by two projective transformations induced by
the matrices in GL(3,C)1 0 1

0 a 0
0 0 1

 and

1 0 i
0 1 0
0 0 1

, where 0< |a|< 1,

satisfies the property that
�(G)= P2

C \
←−→e1, e2

is the maximal open subset of P2
C

, where G acts properly and discontinuously. On
the other hand,

Eq(G)= P2
C \ (
←−→e1, e2 ∪

←−→e1, e3),

and we have the table:

�(G) Eq(G) Umax(G)

λ 1 2 1
µ 1 2 1

Those subgroups of PGL(3,C) whose Kulkarni limit set is equal to one line are
classified in [Barrera et al. 2014a, Theorem 1.1].

If 3Kul(G) is equal to one line then �(G) is a maximal open subset of P2
C

where
G acts properly and discontinuously. (If an infinite subgroup G ⊂ PGL(3,C) acts
properly and discontinuously on the open set U ⊂ P2

C
then λ(U )≥ 1.)

Conversely, if P2
C
\ ` is maximal open set where G acts properly and discontin-

uously, then 3Kul(G) is equal to one line, except in the case when G contains a
cyclic subgroup of finite index generated by a loxoparabolic element; see [op. cit.,
Theorem 1.2].

In the case when 3Myr(G) is equal to one line, `, then G does not contain
loxoparabolic elements and it acts properly and discontinuously on P2

C
\ `, then

3Kul(G)= ` by the same theorem.

7B. Two line complex Kleinian groups. In this section we give some examples of
complex Kleinian groups such thatµ(�(G))=2,µ(Eq(G))=2, orµ(Umax(G))=2.
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(i) If g ∈ PGL(3,C) is an element induced by a matrix of the form

g =

g11 0 0
0 g22 0
0 0 g33

, where |g11|< |g22|< |g33|,

then the cyclic group G = 〈g〉 satisfies

�(G)= P2
C \ (
←−→e1, e2 ∪

←−→e2, e3)= Eq(G).

On the other hand, Umax(G)= P2
C
\ (
←−→e1, e2 ∪ {e3}) is a maximal open set where G

acts properly and discontinuously. Thus we have:

�(G) Eq(G) Umax(G)

λ 2 2 1
µ 2 2 1

(ii) Let G ⊂ PSL(3,C) be the group induced by matrices of the form:1 m n
0 1 0
0 0 1

, where m, n ∈ Z.

This group contains only parabolic elements (except for the identity) and satisfies
that U = �(G) = Eq(G) is the maximal open set where G acts properly and
discontinuously. Moreover, we have:

�(G) Eq(G) Umax(G)

λ ∞ ∞ ∞

µ 2 2 2

(iii) The double suspension construction. Given a subgroup G ⊂ PSL(2,C) we can
construct a new group Ĝ ⊂ PSL(3,C), called the double suspension of G, acting on
P2

C
in such way that the restriction of this action to the line at infinity is the action

of G on P1
C
∼= S2. See [Navarrete 2008; Seade and Verjovsky 2001]. The elements

in Ĝ are represented by all matrices of the forma b 0
c d 0
0 0 1

, where
(

a b
c d

)
∈ SL(2,C) induces an element in G.

In other words, Ĝ is a double covering of G. Moreover, when G is a classical
Kleinian group with limit set L(G), then 3Kul(Ĝ) = 3Myr(Ĝ) is equal to the
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complex cone with vertex e3 and base L(G) (considered as a subset of the line at
infinity←−→e1, e2). In symbols,

3Kul(Ĝ)=3Myr(Ĝ)=
⋃

x∈L(G)

←→e3, x .

If G is a nonelementary classical Kleinian group, then �(Ĝ) is the maximal
open subset of P2

C
where Ĝ acts properly and discontinuously. Thus:

�(Ĝ) Eq(Ĝ) Umax(Ĝ)

λ ∞ ∞ ∞

µ 2 2 2

7C. Three line complex Kleinian groups. (i) Let G be the group generated by
A, B ∈ PSL(3,C) where A and B are induced by the matrices

A=

1/2 0 0
0 1 0
0 0 2

, B =

0 0 1
1 0 0
0 1 0

.
Then

�(G)= P2
C \ (
←−→e1, e2 ∪

←−→e2, e3 ∪
←−→e3, e1)= Eq(G)

is a maximal open subset of P2
C

where G acts properly and discontinuously; see
[Barrera et al. 2011a, Example 4.3]. It follows that:

�(G) Eq(G) Umax(G)

λ 3 3 3
µ 3 3 3

(ii) [Cano et al. 2013, Subsection 5.5.1] If G ⊂ PSL(2,C) is a Kleinian group and
D ⊂ C∗ a discrete subgroup, then the suspension of G extended by the group D,
denoted by Susp(G,D) is the group generated by the double suspension and all the
elements in PSL(3,C) induced by diagonal matrices of the form:d 0 0

0 d 0
0 0 d−2

, where d ∈ D.

In the case when G ⊂ PSL(2,C) is a nonelementary Kleinian group and D⊂C∗

is an infinite discrete subgroup,

3Kul(Susp(G,D))=←−→e1, e2 ∪

( ⋃
x∈L(G)

←→x, e3

)
=3Myr(Susp(G,D)),
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and �(Susp(G,D)) = Eq(Susp(G,D)) is the maximal open subset of P2
C

where
Susp(G,D) acts properly discontinuously. Therefore:

�(Susp(G,D)) Eq(Susp(G,D)) Umax(Susp(G,D))

λ ∞ ∞ ∞

µ 3 3 3

7D. Four line complex Kleinian groups. See [Barrera et al. 2011b].
An element A ∈ SL(2,Z), is called a hyperbolic toral automorphism if none of

its eigenvalues lie on the unit circle. Any subgroup of PSL(3,C) conjugate to the
group

G A =

{(
Ak b
0 1

)
: b ∈ M(2× 1,Z), k ∈ Z

}
,

where A ∈ SL(2,Z) is a hyperbolic toral automorphism, is called a hyperbolic toral
group.

Theorem 7.1 [Barrera et al. 2011b]. Let G ⊂ PSL(3,C) be a discrete group. The
maximum number of complex lines in general position contained in Kulkarni’s limit
set is equal to four if and only if G contains a hyperbolic toral group whose index is
at most eight.

Furthermore, it is proved that�(G)=Eq(G). However�(G) is not the maximal
open subset of P2

C
where G acts properly and discontinuously. It can be shown that

there exist two open maximal sets U (1)
max, U (2)

max ⊂ P2
C

where G acts properly and
discontinuously.

For the reader’s convenience, we give a brief outline of the proof that the group
G A has the properties mentioned above. Let A ∈ SL(2,Z) be a hyperbolic toral
automorphism. We define

T =
(

t 0
0 1

)
, where t =

(
1 u
v 1

)
with u, v ∈ R−Q.

Hence the group ĜA = T GAT−1 is equal toαn 0 ky0+ lx0

0 α−n kx0+ lz0

0 0 1


where k, l, n ∈ Z and

x0 =
−1

uv−1
, y0 =

u
uv−1

, z0 =
v

uv−1
.

By straightforward computations, the Kulkarni limit set is
←−→e1, e2 ∪

⋃
r∈R

←−−−−−−→e1, [0 : r : 1] ∪
←−−−−−−→e2, [r : 0 : 1]
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It is not hard to check that the set of vertices is {e1, e2} and µ(Ĝ A) = 4, which
implies that �(Ĝ A)= Eq(Ĝ A). The group Ĝ A acts properly and discontinuously
on U (i)

max(Ĝ A)= P2
C
− Ci , i = 1, 2, where

C1 =
←−→e1, e2 ∪

⋃
r∈R

←−−−−−−→e1, [0 : r : 1] and C2 =
←−→e1, e2 ∪

⋃
r∈R

←−−−−−−→e2, [r : 0 : 1]

are maximal regions where the group Ĝ A acts properly and discontinuously. In
summary, we have the following table:

�(G) Eq(G) U (1)
max(G) U (2)

max(G)

λ ∞ ∞ ∞ ∞

µ 4 4 2 2

7E. Complex Kleinian groups with infinitely many lines. (i) If G ⊂ PU(2, 1)
then it is proved in [Navarrete 2006] that

3Kul(G)=
⋃

z∈L(G)

`z,

where L(G)⊂ ∂H2
C
= S3 denotes the Chen–Greenberg limit set of G considered as

acting on H2
C

by holomorphic isometries, and `z is the only tangent line to ∂H2
C

at z.
The Kulkarni region of discontinuity, �(G), is the maximal open subset where G
acts properly and discontinuously, whenever λ(�(G)) > 2. Moreover, it is proved
in [Cano and Seade 2010] that

3Myr(G)=
⋃

z∈L(G)

`z.

In the case when G satisfies L(G)= ∂H2
C

,

�(G)= H2
C = Eq(G)

is the maximal open subset where G acts properly and discontinuously. Thus we
have the table:

�(G) Eq(G) Umax(G)

λ ∞ ∞ ∞

µ ∞ ∞ ∞

If G ⊂ PU(2, 1) satisfies the property that L(G) is an R-circle, then we have the
same table as above; see [Cano et al. ≥ 2016].

(ii) In [Barrera et al. 2014b], it is shown that a family of complex Kleinian groups
Gn ⊂ PSL(3,R) exists, such that for all n ∈N, Gn is a free group, not conjugate in
PSL(3,C) to any subgroup of PU(2, 1). Gn has no invariant lines nor fixed points.
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The Kulkarni limit set 3Kul(Gn) contains at least five complex projective lines in
general position. Hence it contains infinitely many complex projective lines in
general position. Moreover, �(Gn)= Eq(Gn) is the maximal open subset of P2

C
,

where Gn acts properly and discontinuously. Thus we have the table:

�(Gn) Eq(Gn) Umax(Gn)

λ ∞ ∞ ∞

µ ∞ ∞ ∞
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GALOIS THEORY, FUNCTIONAL
LINDEMANN–WEIERSTRASS, AND MANIN MAPS

DANIEL BERTRAND AND ANAND PILLAY

We prove several new results of Ax–Lindemann type for semiabelian vari-
eties over the algebraic closure K of C(t), making heavy use of the Galois
theory of logarithmic differential equations. Using related techniques, we
also give a generalization of the theorem of the kernel for abelian varieties
over K . This paper is a continuation of earlier work by Bertrand and Pillay
(2010), as well as an elaboration on the methods of Galois descent intro-
duced by Bertrand (2009, 2011) in the case of abelian varieties.
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1. Introduction

This paper has three related themes, the common feature being differential Galois
theory and its applications.

Firstly, given a semiabelian variety B over the algebraic closure K of C(t), a
K-rational point a of the Lie algebra LG of its universal vectorial extension G = B̃,
and a solution y ∈ G(K diff) of the logarithmic differential equation

∂`nG(y)= a, a ∈ LG(K ),

we want to describe tr.deg
(
K ]

G(y)/K ]
G

)
in terms of gauge transformations over K

itself. Here K ]
G is the differential field generated over K by solutions of ∂`nG(−)=0

in K diff. Introducing this field as base presents both advantages and difficulties.
On the one hand, it allows us to use the differential Galois theory developed by
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Pillay [1998; 1997; 2004], thereby replacing the study of transcendence degrees
by the computation of a Galois group. On the other hand, we have only a partial
knowledge of the extension K ]

G/K . However, it was observed by Bertrand [2009;
2011] that in the case of an abelian variety, what we do know essentially suffices
to perform a Galois descent from K ]

G to the field K of the desired gauge trans-
formation. In Sections 2B and 3 of the present paper, we extend this principle to
semiabelian varieties B whose toric part is Gm , and give a definitive description of
tr.deg

(
K ]

G(y)/K ]
G

)
when B is an abelian variety.

The main application we have in mind of these Galois-theoretic results forms
the second theme of our paper, and concerns Lindemann–Weierstrass statements
for the semiabelian variety B over K , by which we mean the description of the
transcendence degree of expB(x) where x is a K-rational point of the Lie algebra
LB of B. The problem is covered in the above setting by choosing as data

a := ∂LG(x̃) ∈ ∂LG(LG(K )),

where x̃ is an arbitrary K-rational lift of x to G = B̃. This study was initiated
in our joint paper [2010], where the Galois approach was mentioned, but only
under the hypothesis that K ]

G = K , described as K-largeness of G. There are
natural conjectures in analogy with the well-known “constant” case (where B is
over C), although as pointed out in [Bertrand and Pillay 2010], there are also
counterexamples provided by nonconstant extensions of a constant elliptic curve by
the multiplicative group. In Sections 2C and 4 of this paper, we extend the main
result of [Bertrand and Pillay 2010] to the base K ]

G , but assuming the toric part
of B is at most 1-dimensional. Furthermore, we give in this case a full solution
of the Lindemann–Weierstrass statement when the abelian quotient of B is also
1-dimensional. This uses results from [Bertrand et al. 2013] which deal with the
“logarithmic” case. In this direction, we will also formulate an “Ax–Schanuel” type
conjecture for abelian varieties over K .

The third theme of the paper concerns the “theorem of the kernel”, which we
generalize in Sections 2D and 5 by proving that linear independence with respect
to End(A) of points y1, . . . , yn in A(K ) implies linear independence of

µA(y1), . . . , µA(yn)

with respect to C (this answers a question posed to us by Hrushovski). Here A is an
abelian variety over K = C(t)alg with C-trace 0 and µA is the differential-algebraic
Manin map. However, we will give an example showing that its C-linear extension
µA ⊗ 1 on A(K )⊗Z C is not always injective. In contrast, we observe that the
C-linear extension MK ,A⊗ 1 of the classical (differential-arithmetic) Manin map
MK ,A is always injective. Differential Galois theory and the logarithmic case of
nonconstant Ax–Schanuel are involved in the proofs.
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2. Statements of results

2A. Preliminaries on logarithmic equations. We give here a quick background
to the basic notions and objects so as to be able to state our main results in the next
subsections. The remaining Sections 3, 4, and 5 of the paper are devoted to the
proofs. We refer the reader to [Bertrand and Pillay 2010] for more details including
differential algebraic preliminaries.

We fix a differential field (K , ∂) of characteristic 0 whose field of constants CK is
algebraically closed (the reader will lose nothing by taking CK =C). We usually as-
sume that K is algebraically closed, and denote by K diff the differential closure of K .
We let U denote a universal differential field containing K , with constant field C. If
X is an algebraic variety over K we will identify X with its set X (U) of U points.

We start with algebraic ∂-groups, which provide the habitat of the (generalized)
differential Galois theory of [Pillay 1998; 1997; 2004] discussed later on. A
(connected) algebraic ∂-group over K is a (connected) algebraic group G over K
together with a lifting D of the derivation ∂ of K to a derivation of the structure sheaf
OG which respects the group structure. The derivation D may be identified with a
section s, in the category of algebraic groups, of the projection map T∂(G)→ G,
where T∂(G) denotes the twisted tangent bundle of G. This T∂(G) is a (connected)
algebraic group over K , which is a torsor under the tangent bundle TG, and is
locally defined by equations

n∑
i=1

∂P
∂xi

(x̄)ui + P∂(x̄)= 0,

for polynomials P in the ideal of G, where P∂ is obtained by applying the derivation
∂ of K to the coefficients of P . Notice for later use that for any differential
extension L/K , there is a group homomorphism G(L)→T∂G(L), which is given in
coordinates by (x1, . . . , xn) 7→ (x1, . . . , xn, ∂x1, . . . , ∂xn) and will be denoted by ∂ .

We write the algebraic ∂-group as (G, D) or (G, s). Not every algebraic group
over K has a ∂-structure. But when G is defined over the constants CK of K , there is
a privileged ∂-structure s0 on G which is precisely the 0-section of TG=T∂G. Given
an algebraic ∂-group (G, s) over K we obtain an associated “logarithmic derivative”
∂`nG,s(−) from G to the Lie algebra LG of G defined by ∂`nG,s(y)= ∂(y)s(y)−1,
where the product is computed in the algebraic group T∂(G). This is a differential
rational crossed homomorphism from G onto LG (at the level of U-points or points
in a differentially closed field) defined over K . Its kernel ker(∂`nG,s) is a differential
algebraic subgroup of G which we denote (G, s)∂ , or simply G∂ when the context
is clear. Now s equips the Lie algebra LG of G with its own structure of a ∂-group
(in this case a ∂-module) which we call ∂LG (depending on (G, s)) and again the
kernel is denoted (LG)∂ .
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In the case where G is defined over CK and s = s0, the map ∂`nG,s is precisely
Kolchin’s logarithmic derivative, taking y ∈ G to ∂(y)y−1. In general, as soon as s
is understood, we will abbreviate ∂`nG,s by ∂`nG .

By a logarithmic differential equation over K on the algebraic ∂-group (G, s), we
mean a differential equation ∂`nG,s(y)= a for some a ∈ LG(K ). When G = GLn

and s = s0 this is the equation for a fundamental system of solutions of a linear
differential equation Y ′=aY in vector form. And more generally, for G an algebraic
group over CK and s = s0, this is a logarithmic differential equation on G over
K in the sense of Kolchin. There is a well-known Galois theory here. In the
given differential closure K diff of K , any two solutions y1, y2 of ∂`nG(−) = a
in G(K diff) differ by an element in the kernel G∂ of ∂`nG(−). But G∂(K diff) is
precisely G(CK ). Hence K (y1) = K (y2). In particular, tr.deg(K (y)/K ) is the
same for all solutions y in K diff. Moreover, Aut(K (y)/K ) has the structure of
an algebraic subgroup of G(CK ): for any σ ∈ Aut(K (y)/K ), let ρσ ∈ G(CK ) be
such that σ(y) = yρσ . Then the map taking σ to ρσ is an isomorphism between
Aut(K (y)/K ) and an algebraic subgroup H(CK ) of G(CK ), which we call the
differential Galois group of K (y)/K . This depends on the choice of solution y,
but another choice yields a conjugate of H . Of course when G is commutative,
H is independent of the choice of y. In any case tr.deg(K (y)/K ) = dim(H), so
computing the differential Galois group gives us a transcendence estimate.

Continuing with this Kolchin situation, we have the following well-known fact,
whose proof we present in the setting of the more general situation considered in
Fact 2.2(i).

Fact 2.1 (for G/CK ). Suppose K algebraically closed. Then, tr.deg(K (y)/K ) is
the dimension of a minimal connected algebraic subgroup H of G, defined over CK ,
such that for some g ∈ G(K ), gag−1

+ ∂`nG(g) ∈ LH(K ). Moreover, H(CK ) is
the differential Galois group of K (y)/K .

Proof. Let H be a connected algebraic subgroup of G, defined over CK such that
H ∂(K diff) = H(CK ) is the differential Galois group of K (y) over K . Now the
H ∂(K diff)-orbit of y is defined over K in the differential algebraic sense, so the
H -orbit of y is defined over K in the differential algebraic sense. A result of Kolchin
on constrained cohomology (see Proposition 3.2 of [Pillay 1998], or Theorem 2.2
of [Bertrand 2011]) implies that this orbit has a K-rational point g−1. So, there
exists z−1

∈ H such that g−1
= yz−1, and z = gy, which satisfies K (y)= K (z), is

a solution of ∂`nG(−)= a′ where a′ = gag−1
+ ∂`nG(g). �

(Such a map LG(K )→ LG(K ) taking a ∈ LG(K ) to gag−1
+ ∂`nG(g) for

some g ∈ G(K ) is called a gauge transformation.)
Now in the case of an arbitrary algebraic ∂-group (G, s) over K , and logarithmic

differential equation ∂`nG,s(−)= a over K , two solutions y1, y2 in G(K diff) differ
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by an element of (G, s)∂(K diff) which in general may not be contained in G(K ).
(For instance, if (G =Ga, s) is the ∂-module attached to ∂y− y = 0, and a = 1− t ,
then y1 = t is rational over K = C(t), while y2 = t + et is transcendental over K .)
So to obtain both a transcendence statement independent of the choice of solution,
as well as a Galois theory, we should work over K ]

G,s which is the (automatically
differential) field generated by K and (G, s)∂(K diff). This field may be viewed as
a field of “new constants”, and its algebraic closure in K diff will be denoted by
K ] alg

G,s . As with ∂`nG and G∂ , we will abbreviate K ]
G,s as K ]

G , or even K ], when
the context is clear, and similarly for its algebraic closure.

Fixing a solution y ∈G(K diff) of ∂`nG(−)= a, for σ ∈Aut(K ](y)/K ]) we have
σ(y) = yρσ for unique ρσ ∈ G∂(K diff) = G∂(K ]) ⊆ G(K ]), and again the map
σ 7→ ρσ defines an isomorphism between Aut(K ](y)/K ]) and (H, s)∂(K diff) for
an algebraic ∂-subgroup H of (G, s), ostensibly defined over K ]. The ∂-group H
(or more properly H ∂ , or H ∂(K ])) is called the (differential) Galois group of K ](y)
over K ], and when G is commutative does not depend on the choice of y, just on
the data a ∈ LG(K ) of the logarithmic equation, and in fact only on the image of a
in the cokernel LG(K )/∂`nG G(K ) of ∂`nG . Again tr.deg(K ](y)/K ])= dim(H).
In any case, Fact 2.1 extends to this context with essentially the same proof. This
can also be extracted from Proposition 3.4 of [Pillay 1998] and the setup of [Pillay
2004]. For the commutative case (part (ii) below) see [Bertrand 2011, Theorem 3.2].
Note that in the present paper, it is this Fact 2.2(ii) we will use. Going to the
algebraic closure of K ] as in Fact 2.2(i) would force us to consider profinite groups,
for which our descent arguments may not work.

Fact 2.2 (for G/K ). Let y be a solution of ∂`nG,s(−) = a in G(K diff), and let
K ]
= K (G∂), with algebraic closure K ] alg. Then the following hold:

(i) The transcendence degree tr.deg(K ](y)/K ]) is the dimension of a minimal
connected algebraic ∂-subgroup H of G, which is defined over K ] alg such that
gag−1

+ ∂`nG,s(g) ∈ LH(K ] alg) for some g ∈ G(K ] alg). And H ∂(K ] alg) is
the differential Galois group of K ] alg(y)/K ] alg.

(ii) Suppose that G is commutative. Then the identity component of the differential
Galois group of K ](y)/K ] is H ∂(K ]), where H is the smallest algebraic
∂-subgroup of G defined over K ] such that a ∈ LH +Q · ∂`nG,s G(K ]).

Remark. We point out that when G is commutative, then in Facts 2.1 and 2.2,
the Galois group, say H̃ , of K ](y)/K ] is a unique subgroup of G, so its identity
component H must indeed be the smallest algebraic subgroup of G with the required
properties (see also [Bertrand 2011, Section 3.1]). Of course, H̃ is automatically
connected in Fact 2.2(i), where the base K ] alg is algebraically closed, but as
just announced, our proofs in Section 3 will be based on 2.2(ii). Now, in this
commutative case, the map σ 7→ ρσ described above depends Z-linearly on a. So, if
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N =[H̃ :H ] denotes the number of connected components of H̃ , then replacing a by
Na turns the Galois group into a connected algebraic group, without modifying K ]

nor tr.deg(K ](y)/K ]) = tr.deg(K ](N y)/K ]). Therefore, in the computations of
Galois groups later on, we will tacitly replace y by N y and determine the connected
component H of H̃ . But it turns out that in our main Conjecture 2.3 and in all
its cases under study here, we can then assume that y itself lies in H . Indeed,
y appears only via its class modulo G(K ), and in particular, modulo its torsion
subgroup (recall that K is algebraically closed). So, once we have proven that N y
lies in H , then a translate y′ of y by an N -torsion point will lie in H . Replacing
y by y′ does not modify the Galois group H̃ of K ](y) over K ], so we may assume
that y lies in H , in which case H̃ coincides with H , and will in the end always be
connected.1

2B. Galois-theoretic results. The question which we deal with in this paper is
when and whether in Fact 2.2, it suffices to consider H defined over K and g∈G(K ).
In fact it is not hard to see that the Galois group is defined over K , but the second
point is problematic. The case where (G, s) is a ∂-module, namely G is a vector
space V , and the logarithmic derivative ∂`nG,s(y) has the form ∇V (y)= ∂y− By
for some n× n matrix B over K , was considered in [Bertrand 2001], and shown
to provide counterexamples, unless the ∂-module (V,∇V ) is semisimple. The
rough idea is that the Galois group Gal(K ]

V /K ) of ∇V is then reductive, allowing
an argument of Galois descent from K ]

V to K to construct a K-rational gauge
transformation g. The argument was extended in [Bertrand 2009; 2011] to ∂-groups
(G, s) attached to abelian varieties, which by Poincaré reducibility are in a sense
again semisimple.

We will here focus on the almost semiabelian case namely certain ∂-groups
attached to semiabelian varieties, which provide the main source of nonsemisimple
situations. If B is a semiabelian variety over K , then B̃, the universal vectorial
extension of B, is a (commutative) algebraic group over K which has a unique
algebraic ∂-group structure. Let U be any unipotent algebraic ∂-subgroup of B̃.
Then B̃/U , which by [Bertrand and Pillay 2010, Lemma 3.4] also has a unique ∂-
group structure, is what we mean by an almost semiabelian ∂-group over K . When
B is an abelian variety A we call Ã/U an almost abelian algebraic ∂-group over K .
If G is an almost semiabelian algebraic ∂-group over K , then because the ∂-group
structure s on G is unique, the abbreviation K ]

G for K ]
G,s is now unambiguous.

Under these conditions, we make the following conjecture.

1We take the opportunity of this remark to mention two errata in [Bertrand 2011]: in the proof
of its Theorem 3.2, replace “of finite index” by “with quotient of finite exponent”; in the proof of
Theorem 4.4, use the reduction process described above to justify that the Galois group is indeed
connected.
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Conjecture 2.3. Let G be an almost semiabelian ∂-group over K = C(t)alg. Let
a ∈ LG(K ) and y ∈ G(K diff) be such that ∂`nG(y)= a. Then tr.deg

(
K ]

G(y)/K ]
G

)
is the dimension of the smallest algebraic ∂-subgroup H of G defined over K such
that a ∈ LH+∂`nG(G(K )), i.e., a+∂`nG(g) ∈ LH(K ) for some g ∈G(K ); H is,
equivalently, the smallest algebraic ∂-subgroup of G, defined over K , such that
y ∈ H + G(K )+ G∂(K diff). Moreover H ∂(K diff) is the Galois group of K ]

G(y)
over K ]

G .

The conjecture can be restated to say that there is a smallest algebraic ∂-subgroup
H of (G, s) defined over K such that a ∈ LH +∂`nG(G(K )) and it coincides with
the Galois group of K ]

G(y) over K ]
G . In comparison with Fact 2.2(ii), notice that

since K is algebraically closed, ∂`nG(G(K )) is already a Q-vector space, so we
do not need to tensor with Q in the condition on a.

A corollary of Conjecture 2.3 is the following special generic case, where an
additional assumption on nondegeneracy is made on a.

Conjecture 2.4. Let G be an almost semiabelian ∂-group over K = C(t)alg, and
let a ∈ LG(K ) and y ∈ G(K diff) satisfy the equation ∂`nG(y) = a. Assume that
a /∈ LH + ∂`nG G(K ) for any proper algebraic ∂-subgroup H of G, defined over
K (equivalently, y /∈ H +G(K )+G∂(K diff) for any proper algebraic ∂-subgroup
of G defined over K ). Then tr.deg

(
K ]

G(y)/K ]
G

)
= dim(G).

We will prove the following results in the direction of Conjectures 2.3 and (the
weaker) 2.4.

Proposition 2.5. Conjecture 2.3 holds when G is “almost abelian”.

The truth of the weaker Conjecture 2.4 in the almost abelian case is already
established in [Bertrand 2009, Section 8.1(i)]. This reference does not address
Conjecture 2.3 itself, even if in this case, the ingredients for its proof are there (see
also [Bertrand 2011]). So we take the liberty to give a reasonably self-contained
proof of Proposition 2.5 in Section 3.

As announced above, one of the main points of the Galois-theoretic part of this
paper is to try to extend Proposition 2.5 to the almost semiabelian case. Due to
technical complications, which will be discussed later, we restrict our attention
to the simplest possible extension of the almost abelian case, namely where the
toric part of the semiabelian variety is 1-dimensional, and also we sometimes just
consider the generic case. For simplicity we will state and prove our results for an
almost semiabelian G of the form B̃ for B semiabelian. So, the next theorem gives
Conjecture 2.4 for an extension by Gm of the universal vectorial extension of an
abelian variety.

Theorem 2.6. Suppose that B is a semiabelian variety over K = C(t)alg with toric
part of dimension ≤ 1. Let G = B̃, a ∈ LG(K ) and y ∈ G(K diff) be a solution of
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∂`nG(−) = a. Suppose that for no proper algebraic ∂-subgroup H of G defined
over K is y ∈ H +G(K ). Then tr.deg(K ]

G(y)/K ]
G)= dim(G) and G∂(K diff) is the

differential Galois group.

Note that the above hypothesis “y /∈ H + G(K ) for any proper algebraic
∂-subgroup of G over K ” is formally weaker than “y /∈ H + G(K )+ G∂(K diff)

for any proper algebraic ∂-subgroup of G over K ”, but nevertheless suffices, as
shown by the proof of Theorem 2.6 in Section 3B. More specifically, assume that
G = Ã for a simple abelian variety A/K , that A is traceless (i.e., that there is no
nonzero morphism from an abelian variety defined over C to A), that the maximal
unipotent ∂-subgroup UA of Ã vanishes, and that a = 0 ∈ LÃ(K ). Theorem 2.6
then implies that any y ∈ Ã∂(K diff) is actually defined over K , so K ]

Ã
= K . As in

[Bertrand 2009; 2011], this property of K-largeness of Ã (when UA = 0) is in fact
one of the main ingredients in the proof of Theorem 2.6. As explained in [Marker
and Pillay 1997] it is based on the strong minimality of Ã∂ (see [Hrushovski and
Sokolović 1994]) in the context above. But it has recently been noted in [Benoist
et al. 2014] that this K-largeness property can be seen rather more directly, using
only the simplicity of A.

Our last Galois-theoretic result requires the semiconstant notions introduced
in [Bertrand and Pillay 2010], although our notation will be a slight modification
of the notation there. First, a connected algebraic group G over K is said to be
constant if G is isomorphic (as an algebraic group) to an algebraic group defined
over C (equivalently, G arises via base change from an algebraic group GC over C).
For G an algebraic group over K , G0 will denote the largest (connected) constant
algebraic subgroup of G. We will concentrate on the case G = B̃ for a semiabelian
variety B over K , with 0→ T → B → A → 0 the canonical exact sequence,
where T is the maximal linear algebraic subgroup of B (which is an algebraic
torus) and A is an abelian variety. So now A0, B0 denote the constant parts of A, B,
respectively. The inverse image of A0 in B will be called the semiconstant part
of B and will now be denoted by Bsc. We call B semiconstant if B = Bsc, which
is equivalent to requiring that A = A0, and moreover allows the possibility that
B = B0 is constant. (Of course, when B is constant, B̃, which is also constant,
obviously satisfies Conjecture 2.3, in view of Fact 2.1.)

Theorem 2.7. Suppose that K = C(t)alg and that B = Bsc is a semiconstant semi-
abelian variety over K with toric part of dimension ≤ 1. Then Conjecture 2.3 holds
for G = B̃.

2C. Lindemann–Weierstrass via Galois theory. We are now ready to describe the
impact of the previous Galois-theoretic results on Ax–Lindemann problems, where
a = ∂LG(x̃) ∈ ∂LG(LG(K )).
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Firstly, from Theorem 2.6 we will deduce directly the main result of [Bertrand
and Pillay 2010, Theorem 1.4], when B is semiabelian with toric part at most Gm ,
but now with transcendence degree computed over K ]

B̃
.

Corollary 2.8. Let B be a semiabelian variety over K = C(t)alg such that the toric
part of B is of dimension ≤ 1 and Bsc = B0 (i.e., the semiconstant part Bsc of B is
constant). Let x ∈ LB(K ), and lift x to x̃ ∈ LB̃(K ). Assume that

(∗) for no proper algebraic subgroup H of B̃ defined over K is
x̃ ∈ LH(K )+ (LB̃)∂(K ),

which under the current assumptions is equivalent to demanding that for no proper
semiabelian subvariety H of B is x ∈ LH(K )+ LB0(C). Then

(i) any solution ỹ ∈ B(U) of ∂`n B̃(−)= ∂LB̃(x̃) satisfies

tr.deg
(
K ]

B̃
(ỹ)/K ]

B̃

)
= dim(B̃);

(ii) in particular, y := expB(x) satisfies tr.deg
(
K ]

B̃
(y)/K ]

B̃

)
= dim(B), i.e., is a

generic point over K ]

B̃
of B.

See [Bertrand and Pillay 2010] for the analytic description of expB(x) in (ii)
above. In particular expB(x) can be viewed as a point of B(U). We recall briefly the
argument. Consider B as the generic fiber of a family B→ S of complex semiabelian
varieties over a complex curve S, and x as a rational section x : S→ LB of the
corresponding family of Lie algebras. Fix a small disc U in S such that x :U→ LB
is holomorphic, and let exp(x)= y :U→B be the holomorphic section obtained by
composing with the exponential map in the fibers. So y lives in the differential field
of meromorphic functions on U , which contains K , and can thus be embedded over
K in the universal differentially closed field U. So talking about tr.deg

(
K ]

B̃
(y)/K ]

B̃

)
makes sense.

Let us comment on the methods. In [Bertrand and Pillay 2010] an essential
use was made of the so-called “socle theorem” (see Section 4.1 of [Bertrand and
Pillay 2010] for a discussion of this expression) in order to prove Theorem 1.4
there. As recalled in the introduction, a differential Galois-theoretic approach was
also mentioned [Bertrand and Pillay 2010, Section 6], but could be worked out only
when B̃ is K-large. In the current paper, we dispose of this hypothesis, and obtain a
stronger result, namely over K ]

B̃
, but for the time being at the expense of restricting

the toric part of B.
When B = A is an abelian variety, one obtains a stronger statement than

Corollary 2.8. This is Theorem 4.4 of [Bertrand 2011], which for the sake of
completeness we restate, and will deduce from Proposition 2.5 in Section 4A.

Corollary 2.9. Let A be an abelian variety over K = C(t)alg. Let x ∈ LA(K ), and
let B be the smallest abelian subvariety of A such that x ∈ LB(K )+ LA0(C). Let
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x̃ ∈ LÃ(K ) be a lift of x and let ỹ ∈ Ã(U) be such that ∂`n Ã(ỹ) = ∂LÃ(x̃). Then
B̃∂ is the Galois group of K ]

Ã
(ỹ) over K ]

Ã
, so

(i) tr.deg
(
K ]

Ã
(ỹ)/K ]

Ã

)
= dim(B̃)= 2 dim(B), and in particular,

(ii) y := expA(x) satisfies tr.deg
(
K ]

Ã
(y)/K ]

Ã

)
= dim(B).

We now return to the semiabelian context. Corollary 2.8 is not true without the
assumption that the semiconstant part of B is constant. The simplest possible coun-
terexample is given in Section 5.3 of [Bertrand and Pillay 2010]: B is a nonconstant
extension of a constant elliptic curve E0 by Gm , with judicious choices of x and x̃ .
Moreover x̃ will satisfy assumption (∗) in Corollary 2.8, but tr.deg(K (ỹ)/K )≤ 1,
which is strictly smaller than dim(B̃) = 3. We will use Theorems 2.6 and 2.7 as
well as material from [Bertrand et al. 2013] to give a full account of this situation
(now over K ]

B̃
, of course), and more generally, for all semiabelian surfaces B/K ,

as follows:

Corollary 2.10. Let B be an extension over K = C(t)alg of an elliptic curve E/K
by Gm . Let x ∈ LB(K ) satisfy

(∗) for any proper algebraic subgroup H of B, x /∈ LH + LB0(C).

Let x̃ ∈ LB̃(K ) be a lift of x , let x̄ be its projection to LE(K ), and let ỹ ∈ B̃(U) be
such that ∂`n B̃(ỹ)= x̃ . Then tr.deg

(
K ]

B̃
(ỹ)/K ]

B̃

)
= 3, unless x̄ ∈ LE0(C), in which

case tr.deg
(
K ]

B̃
(ỹ)/K ]

B̃

)
is precisely 1.

Here, E0 is the constant part of E . Notice that in view of (∗), E must descend to
C and B must be nonconstant (hence not isotrivial) if x projects to LE0(C).

2D. Manin maps. We finally discuss the results on the Manin maps attached to
abelian varieties. The expression “Manin map” covers at least two maps. The
original one was introduced by Manin [1963] (see also [Coleman 1990]), and
is discussed at the end of this section. Here we are mainly concerned with the
model-theoretic or differential algebraic Manin map (see [Buium and Cassidy 1999,
Section 2.5; Pillay 1997]). We identify our algebraic, differential algebraic groups
with their sets of points in a universal differential field U (or alternatively, points in a
differential closure of whatever differential field of definition we work over). So for
now let K be a differential field, and A an abelian variety over K . A has a smallest
Zariski-dense differential algebraic (definable in U) subgroup A], which can also
be described as the smallest definable subgroup of A containing the torsion. The
definable group A/A] embeds definably in a commutative unipotent algebraic group
(i.e., a vector group) by results of Buium, and results of Cassidy on differential
algebraic vector groups yield a (noncanonical) differential algebraic isomorphism
between A/A] and Gn

a where n = dim(A). This differential algebraic isomorphism
is defined over K , and we call it the Manin homomorphism.
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There is a somewhat more intrinsic account of this isomorphism. Let Ã be the
universal vectorial extension of A as discussed above, equipped with its unique
algebraic ∂-group structure, and let WA be the unipotent part of Ã. We have the
surjective differential algebraic homomorphism ∂`n Ã : Ã → LÃ. Note that if
ỹ ∈ Ã lifts y ∈ A, then the image of ỹ under ∂`n Ã modulo the subgroup ∂`n Ã(WA)

depends only on y. This gives a surjective differential algebraic homomorphism
from A to LÃ/∂`n(WA), which is defined over K , and which we call µA.

Remark 2.11. Any abelian variety A/K satisfies ker(µA)= A].

Proof. Let UA be the maximal algebraic subgroup of WA which is a ∂-subgroup
of Ã. Then Ã/UA has the structure of an algebraic ∂-group, and as explained in
[Bertrand and Pillay 2010], the canonical map π : Ã→ A induces an isomorphism
between ( Ã/UA)

∂ and A]. As (by functoriality) ( Ã)∂ maps onto ( Ã/UA)
∂ , the map

π : Ã→ A also induces a surjective map ( Ã)∂ → A]. Now, as the image of µA

is torsion-free, ker(µA) contains A]. On the other hand, if y ∈ ker(µA) and ỹ ∈ Ã
lifts y, then there is z ∈WA such that ∂`n Ã(ỹ)= ∂`n Ã(z). So ∂`n Ã(ỹ− z)= 0 and
π(ỹ− z)= y, hence y ∈ A]. �

Hence we call µA the (differential algebraic) Manin map. The target space
embeds in an algebraic vector group and thus has the structure of a C-vector space
which is unique (any definable isomorphism between two commutative unipotent
differential algebraic groups is an isomorphism of C-vector spaces).

Now assume that K = C(t)alg and that A is an abelian variety over K with
C-trace A0 = 0. Then the “model-theoretic/differential algebraic theorem of the
kernel” is (see Corollary K.3 of [Bertrand and Pillay 2010]):

Fact 2.12 (K = C(t)alg, A/K traceless). The kernel ker(µA)∩ A(K ) is precisely
the subgroup Tor(A) of torsion points of A.

In Section 5 we generalize Fact 2.12 by proving:

Theorem 2.13 (K = C(t)alg, A/K traceless). Let y1, . . . , yn ∈ A(K ). Suppose
that a1, . . . , an ∈ C are not all 0, and that a1µA(y1) + · · · + anµA(yn) = 0 in
L Ã(K )/∂`n Ã(WA). Then y1, . . . , yn are linearly dependent over End(A).

Note that on reducing to a simple abelian variety, Fact 2.12 is the special case
of Theorem 2.13 when n = 1. Hrushovski asked whether the conclusion of the
theorem can be strengthened to the linear dependence of y1, . . . , yn over Z. Namely,
is the extension µA⊗ 1 of µA to A(K )⊗Z C injective? An example of André (see
[Bertrand and Pillay 2010, p. 504; Lange and Birkenhake 1992, Chapter 9 §6]) of a
traceless abelian variety A with UA 6=WA yields a counterexample:
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Proposition 2.14. There exist

• a simple traceless 4-dimensional abelian variety A over K =C(t)alg, such that
End(A) is an order in a CM number field F of degree 4 over Q;

• four points y1, . . . , y4 in A(K ) which are linearly dependent over End(A), but
linearly independent over Z; and

• four complex numbers a1, . . . , a4, not all zero;

such that a1µA(y1)+ · · ·+ a4µA(y4)= 0.

In fact, for i = 1, . . . , 4, we will construct lifts ỹi ∈ Ã(K ) of the points yi , and
solutions x̃i ∈ LÃ(K diff) to the equations ∇(x̃i ) = ∂`n Ã ỹi (where we have set
∇ := ∇LÃ = ∂LÃ, with ∇|LWA = ∂`n Ã|WA in the identification WA = LWA), and will
find a nontrivial relation

(R) a1 x̃1+ · · ·+ a4 x̃4 := u ∈UA(K diff).

Since UA is a ∇-submodule of LÃ, this implies that a1∂`n Ã ỹ1+ · · · + a4∂`n Ã ỹ4

lies in UA. And since UA ⊆WA, this in turn shows that

a1µA(y1)+ · · ·+ a4µA(y4)= 0 in LÃ/∂`n Ã(WA),

contradicting the injectivity of µA⊗ 1.
We conclude with a remark on the more classical differential arithmetic Manin

map MK ,A, where the stronger version is true. Again A is an abelian variety over
K = C(t)alg with C-trace 0. As above, we let ∇ denote ∂LÃ : LÃ→ LÃ. The
map MK ,A is then the homomorphism from A(K ) to LÃ(K )/∇(LÃ(K )), which
attaches to a point y ∈ A(K ) the class MK ,A(y) of ∂`n Ã(ỹ) in LÃ(K )/∇(LÃ(K )),
for any lift ỹ of y to Ã(K ). This class is independent of the lift, since ∂`n Ã and ∂LÃ
coincide on WA = LWA. Again LÃ(K )/∇(LÃ(K )) is a C-vector space. The initial
theorem of Manin (see [Coleman 1990]) says that ker(MK ,A)= Tor(A)+ A0(C),
so in the traceless case the kernel is precisely Tor(A).

Proposition 2.15 (K = C(t)alg, A/K traceless). The C-linear extension

MK ,A⊗ 1 : A(K )⊗Z C→ LÃ(K )/∇(LÃ(K ))

is injective.

3. Computation of Galois groups

Here we prove the Galois-theoretic statements Proposition 2.5 and Theorems 2.6
and 2.7 stated in Section 2B. We assume throughout that K = C(t)alg.
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3A. The abelian case. Let us first set up the notation. Let A be an abelian variety
over K , and let A0 be its C-trace, which we view as a subgroup of A defined over C.
Let Ã be the universal vectorial extension of A. We have the short exact sequence
0→ WA→ Ã→ A→ 0. Let UA denote the (unique) maximal ∂-subgroup of Ã
contained in WA. By Remarque 7.2 of [Bertrand 2009], we have:

Fact 3.1. Ã∂(K diff)= Ã0(C)+Tor( Ã)+U ∂
A(K

diff).

Let us briefly remark that the ingredients behind Fact 3.1 include Chai’s theorem
(see [Chai 1991] and Appendix K of [Bertrand and Pillay 2010]), as well as the strong
minimality of A] when A is simple and traceless from [Hrushovski and Sokolović
1994]. As already pointed out in connection with K-largeness, the reference to
[Hrushovski and Sokolović 1994] can be replaced by the easier arguments from
[Benoist et al. 2014]. Let K ]

Ã
be the (automatically differential) field generated over

K by Ã∂(K diff), and likewise with K ]
UA

for (UA)
∂(K diff). So by Fact 3.1, K ]

Ã
= K ]

UA
.

Also, as recalled at the beginning of Section 8 of [Bertrand 2009], we have:

Remark 3.2. K ]
UA

is a Picard–Vessiot extension of K whose Galois group (a linear
algebraic group over C) is semisimple.

Proof of Proposition 2.5. Here, G is an almost abelian ∂-group over K . We first
treat the case where G = Ã.

Let y ∈ G(K diff) be such that a = ∂`nG(y) lies in LG(K ). Note that in the
setup of Conjecture 2.3, y could very well be an element of UA, for instance
when a ∈ LUA 'UA, so in a sense we are moving outside the almost abelian
context. In any case, let H be a minimal ∂-subgroup of G defined over K such
that y ∈ H +G(K )+G∂(K diff). Since G(K ) contains all the torsion points, H is
automatically connected. We will prove that H ∂(K diff) is the differential Galois
group of K ](y) over K ] where K ]

= K ]
G . We recall from the remark after Fact 2.2

on the commutative case that we can and do assume that this Galois group is
connected. Also, these statements imply that H is actually the smallest ∂-subgroup
of G over K such that y ∈ H +G(K )+G∂(K diff), as required.

Let H ∂
1 be the Galois group of K ](y) over K ] with H1 a ∂-subgroup of G which

on the face of it is defined over K ]. So, H1 is a connected ∂-subgroup of H, and
we aim to show that H = H1.

Claim. H1 is defined over K as an algebraic group.

Proof. It is enough to show that H ∂
1 is defined over K as a differential algebraic

group. This is a very basic model-theoretic argument, but may be a bit surprising at
the algebraic-geometric level, as K ](y) need not be a “differential Galois extension”
of K in any of the usual meanings. We use the fact that any definable (with param-
eters) set in the differentially closed field K diff which is Aut(K diff/K )-invariant,
is definable over K . This follows from model-theoretic homogeneity of K diff
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over K as well as elimination of imaginaries in DCF0. Now H ∂
1 (K

diff) is the set
of g ∈ G∂(K diff) such that y1g and y1 have the same type over K ] for some (any)
y1 ∈ G(K diff) such that ∂`nG(y1)= a. As a ∈ LG(K ) and K ] is setwise invariant
under Aut(K diff/K ), it follows that H ∂

1 (K
diff) is also Aut(K diff/K )-invariant, and

so defined over K . This proves the claim.

Note that since one of its translates by G(K ) lies in H , we may assume that
y ∈ H , whereby ∂`nG(y)= a ∈ LH(K ).

Let B be the image of H in A, and B1 the image of H1 in A. So B1 ≤ B are
abelian subvarieties of A. Let V be the maximal unipotent ∂-subgroup of H , and V1

the maximal unipotent subgroup of H1. So V1 ≤ V , and using the assumptions and
the claim, everything is defined over K . Note also that the surjective homomorphism
H → B induces an isomorphism between H/V and B̃/UB (where as above UB

denotes the maximal unipotent ∂-subgroup of B̃), and likewise for H1/V1 and the
quotient of B̃1 by its maximal unipotent ∂-subgroup.

Case I. B = B1.

Then by the previous paragraph, we have a canonical isomorphism ι (of ∂-groups)
between H/H1 and V/V1, defined over K , so there is no harm in identifying them,
although we need to remember where they came from. Let us denote V/V1 by V ,
a unipotent ∂-group. This isomorphism respects the logarithmic derivatives in the
obvious sense. Let ȳ denote the image of y in H/H1. So ∂`nH/H1(ȳ)= ā where ā
is the image of a in L(H/H1)(K ). Via ι we identify ȳ with a point in V (K ]) and
ā with ∂`nV (ȳ) ∈ L(V )(K ).

By Remark 3.2 we identify Aut(K ]/K ) with a group J (C) where J is a semi-
simple algebraic group. We have a natural action of J (C) on V ∂(K diff)= V ∂(K ]).
Now the latter is a C-vector space, and this action can be checked to be a (rational)
representation of J (C). On the other hand, for σ ∈ J (C), σ(ȳ) (which is well-defined
since ȳ is K ]-rational) is also a solution of ∂`nV (−)= ā, hence σ(ȳ)− ȳ∈V ∂(K diff).
The map taking σ to σ(ȳ)− ȳ is then a cocycle c from J (C) to V ∂(K diff) which is
a morphism of algebraic varieties. Now the corresponding H 1(J (C), V ∂(K diff))

is trivial as it equals ExtJ (C)(1, V ∂(K diff)), the group of isomorphism classes of
extensions of the trivial representation of J (C) by V ∂(K diff). But J (C) is semi-
simple, so reductive, whereby every rational representation is completely reducible
(see pp. 26 and 27 of [Mumford and Fogarty 1982], and [Bertrand 2001] for Picard–
Vessiot applications, which actually cover the case when a lies in LUA). Putting
everything together, the original cocycle is trivial. Therefore there is z̄ ∈ V ∂(K ])

such that σ(ȳ)− ȳ= σ(z)−z for all σ ∈ J (C). So σ(ȳ− z̄)= ȳ− z̄ for all σ . Hence
ȳ − z̄ ∈ (H/H1)(K ). Lift z̄ to a point z ∈ H ∂(K diff). So y− z ∈ V (K ). As K is
algebraically closed, there is d ∈ H(K ) such that y− z+ d ∈ H1. This contradicts
the minimal choice of H , unless H = H1. So the proof is complete in Case I.
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Case II. B1 is a proper subgroup of B.

Consider the group H1 ·V a ∂-subgroup of H , defined over K , which also projects
onto B1. It is now easy to extend H1 · V to a ∂-subgroup H2 of H over K such
that H/H2 is canonically isomorphic to B2, where B2 is a simple abelian variety,
and B2 denotes the quotient of B̃2 by its maximal unipotent subgroup. Now let ȳ
denote y/H2 ∈ H/H2. Hence ∂`nB2

(ȳ)= ā ∈ L(B2)(K ). As H1⊆ H2, ȳ ∈ B2(K ]).
Now we have two cases. If B2 descends to C, then ȳ generates a strongly normal
extension of K whose Galois group is a connected algebraic subgroup of B2(C). As
this Galois group will be a homomorphic image of the linear (in fact semisimple)
complex algebraic group Aut(K ]/K ), we have a contradiction unless ȳ is K-rational.
On the other hand, if B2 does not descend to C, then by Fact 2.2(ii) ȳ generates over
K a (generalized) differential Galois extension of K with Galois group contained
in B2

∂(K diff), which again will be a homomorphic image of a complex semisimple
linear algebraic group (cf. [Bertrand 2009, 8.2(i)]). We get a contradiction by
various possible means (for example as in Remarque 8.2 of [Bertrand 2009]) unless
ȳ is K-rational. So either way we are forced into ȳ ∈ (H/H2)(K ). But then, as K
is algebraically closed, y− d ∈ H2 for some d ∈ H(K ), again a contradiction. So
Case II is impossible. This concludes the proof of Proposition 2.5 when G = Ã.

Finally, consider a general almost abelian ∂-group G, given as a quotient of Ã by
a unipotent ∂-subgroup U ⊂UA defined over K . Taking the quotient by U ∂(K diff) of
the decomposition of Ã∂(K diff) given by Fact 3.1, we obtain a similar decomposition
for G∂(K diff). Therefore K ]

G = K ((UA/U )∂) is also a Picard–Vessiot extension
of K , and we deduce from Remark 3.2 that its Galois group is again semisimple. The
various cases of the previous proof therefore also apply to the quotient G = Ã/U ,
and Proposition 2.5 holds for any almost abelian ∂-group. �

3B. The semiabelian case. We now aim towards proofs of Theorems 2.6 and 2.7.
Here, G= B̃ for B a semiabelian variety over K , equipped with its unique algebraic
∂-group structure.

We have:

• 0→ T → B→ A→ 0, where T is an algebraic torus and A an abelian variety,
all over K ,

• G = B̃ = B×A Ã, where Ã is the universal vectorial extension of A, and

• 0→ T → G→ Ã→ 0.

We use the same notation for A as at the beginning of this section, namely

0−→WA −→ Ã −→ A −→ 0.

We denote by A0 the C-trace of A (so up to isogeny we can write A as a product
A0 × A1, all defined over K , where A1 has C-trace 0), and by UA the maximal
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∂-subgroup of Ã contained in WA. So UA is a unipotent subgroup of G, though not
necessarily one of its ∂-subgroups. Finally, we have the exact sequence

0−→ T ∂
−→G∂ π

−→ Ã∂ −→ 0.

Note that T ∂
= T (C). Let K ]

G be the (differential) field generated over K by
G∂(K diff). We have already noted above that K ]

Ã
equals K ]

UA
. So K ]

UA
< K ]

G , and
we deduce from the last exact sequence above the following:

Remark 3.3. G∂(K diff) is the union of the π−1(b) for b ∈ Ã∂ , each π−1(b) being
a coset of T (C) defined over K ]

UA
. Hence K ]

G is (generated by) a union of Picard–
Vessiot extensions over K ]

UA
, each with Galois group contained in T (C).

Proof of Theorem 2.6. Bearing in mind Proposition 2.5 we may assume that T =Gm .
We have a ∈ LG(K ) and y ∈ G(K diff) such that ∂`nG(y)= a and y /∈ H +G(K )
for any proper ∂-subgroup H of G. The latter is a little weaker than the condition
that a /∈ LH(K )+ ∂`nG(G(K )) for any proper H , but (thanks to Fact 3.1) will
suffice for the special case we are dealing with.

Fix a solution y of ∂`nG(−)= a in G(K diff) and let H ∂(K diff) be the differential
Galois group of K ]

G(y) over K ]
G . As said after Fact 2.2, there is no harm in assuming

that H is connected. So H is a connected ∂-subgroup of G, defined over K ]
G .

As in the proof of the claim in the proof of Proposition 2.5, we have:

Claim 1. H (equivalently H ∂ ) is defined over K .

We assume for a contradiction that H 6= G.

Case I. H maps onto a proper (∂-)subgroup of Ã.

This is similar to Case II in the proof of Proposition 2.5 above. Some additional
complications come from the structure of K ]

G . We will make use of Remark 3.3 all
the time.

As Ã is an essential extension of A by WA, it follows that we can find a connected
∂-subgroup H1 of G containing H and defined over K such that the surjection
G → Ã induces an isomorphism between G/H1 and A2, where A2 is a simple
abelian subvariety of A (over K of course) and A2 is the quotient of Ã2 by its
maximal unipotent ∂-subgroup. Let η and α be such that the quotient map taking G
to A2 takes y to η and also induces a surjection LG→ L(A2) which takes a to α.

As η= y/H1 and H⊆H1, we see that η is fixed by Aut
(
K ]

G(y)/K ]
G

)
, establishing

the following:

Claim 2. We have η ∈ A2(K
]
G).

On the other hand, η is a solution of the logarithmic differential equation
∂`n A2

(−)= α over K . By K-largeness of A2, we have K ]

A2
= K , hence K (η) is a

differential Galois extension of K whose Galois group is either trivial (in which
case η ∈ A2(K )), or equal to A2

∂(K diff), in view of the strong minimality of A2
∂ .
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Claim 3. We have η ∈ A2(K ).

Proof. Suppose not. We first claim that η is independent from K ]
UA

over K (in the
sense of differential fields). Indeed, the Galois theory would otherwise give us
some proper definable subgroup in the product of A2

∂(K diff) by the Galois group
of K ]

UA
over K (or equivalently, these two groups would share a nontrivial definable

quotient). As the latter is a complex semisimple algebraic group (Remark 3.2),
we get a contradiction. Alternatively, we could proceed as in Remarque 8.2 of
[Bertrand 2009].

So the Galois group of K ]
UA
(η) over K ]

UA
is A2

∂(K diff). As there are no nontrivial
definable subgroups of A2(K diff)×Gm(C)

n , we see that η is independent of K ]
G

over K ]
UA

, contradicting Claim 2.

By Claim 3, the coset of y modulo H1 is defined over K (differential alge-
braically), so as in the proof of Fact 2.1, as K is algebraically closed there is
y1 ∈ G(K ) in the same coset of H1 as y. So y ∈ H1 + G(K ), contradicting the
assumptions. Thus Case I is complete.

Case II. H projects onto Ã.

Our assumption that H is a proper subgroup of G and that the toric part is Gm

implies that (up to isogeny) G splits as T × H = T × Ã. This case is essentially
dealt with in [Bertrand 2009], but nevertheless we continue with the proof. We
identify G/H with T . So y/H = d ∈ T and the image a0 of a under the projection
G→ T is in LT (K ). As H ∂(K diff) is the Galois group of K ]

G(y) over K ]
G , we see

that y ∈ T (K ]
G). Now K (d) is a Picard–Vessiot extension of K with Galois group

a subgroup of Gm(C). Moreover, since G splits as T × Ã, we have G∂
= T ∂

× Ã∂ .
Hence by Fact 3.1, K ]

G = K ]

Ã
, and by Remark 3.2, it is a Picard–Vessiot extension

of K whose Galois group is a semisimple algebraic group in the constants. We
deduce from the Galois theory that d is independent from K ]

G over K , and hence
d ∈ T (K ). So the coset of y modulo H has a representative y1 ∈ G(K ) and
y ∈ H+G(K ), contradicting our assumption. This concludes Case II and the proof
of Theorem 2.6. �

Proof of Theorem 2.7. G = B̃ for B = Bsc a semiconstant semiabelian variety
over K and we may assume it has toric part Gm . So although the toric part is
still Gm , both the hypothesis and conclusion of Theorem 2.7 are stronger than in
Theorem 2.6.

We have 0→ Gm→ B→ A where A = A0 is over C. Hence Ã is also over C

and we have 0→Gm→ B̃→ Ã→ 0, and G = B̃. As Ã∂ = Ã(C)⊆ Ã(K ), we see:

Fact 3.4. G∂(K diff) is a union of cosets of Gm(C), each defined over K .

We are given a logarithmic differential equation ∂`nG(−) = a ∈ LG(K ) and
solution y ∈ G(K diff). We let H be a minimal connected ∂-subgroup of G, defined
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over K , such that a∈ LH+∂`nG(G(K )), or equivalently, y∈H+G(K )+G∂(K diff).
We want to prove that H ∂(K diff) is the Galois group of K ]

G(y) over K ]
G .

By Theorem 2.6, we may assume that H 6= G. Note that after translating y by
an element of G(K ) plus an element of G∂(K diff), we can assume that y ∈ H . If
H is trivial then everything is clear.

We go through the cases.

Case I. H = Gm .

Then by Fact 2.1, K (y) is a Picard–Vessiot extension of K , with Galois group
Gm(C), and all that remains to be proved is that y is algebraically independent from
K ] over K . Let z1, . . . , zn ∈ G∂(K diff), and we want to show that y is independent
from z1, . . . , zn over K (in the sense of DCF0). By Fact 3.4, K (z1, . . . , zn) is a
Picard–Vessiot extension of K and we can assume the Galois group is Gn

m(C).
Suppose towards a contradiction that tr.deg(K (y, z1, . . . , zn)/K ) < n+ 1, and so
must equal n. Hence the differential Galois group of K (y, z1, . . . , zn)/K is of the
form L(C) where L is the algebraic subgroup of Gn+1

m defined by xk xk1
1 · · · x

kn
n = 1

for k, ki integers such that k 6= 0 and not all ki = 0. It easily follows that in additive
notation, ky+k1z1+· · ·+knzn ∈G(K ). So ky is of the form z+g for z ∈G∂(K diff)

and g ∈ G(K ). Let z′ ∈ G∂ and g′ ∈ G(K ) be such that kz′ = z and kg′ = g. Then
k(y− (z′+ g′))= 0, so y− (z′+ g) is a torsion point of G and hence also in G∂ .
We conclude that y ∈ G∂(K diff)+G(K ), contradicting our assumptions on y. This
concludes the proof in Case I.

Case II. H projects onto Ã.

So our assumption that G 6= H implies that up to isogeny G is T × Ã, and so
defined over C. Now everything follows from Fact 2.1.

Case III. Otherwise.

This is more or less a combination of the previous cases. To begin, suppose H is
disjoint from T (up to a finite set). So H ≤ Ã is a constant group, and by Fact 2.1,
H ∂(K diff) = H(C) is the Galois group of K (y) over K . By Fact 3.4 the Galois
theory tells us that y is independent from K ]

G over K , so H(C) is the Galois group
of K ](y) over K ] as required.

So we may assume that T ≤ H . Let H1 ≤ H be the differential Galois group
of K ]

G(y) over K ]
G , and we suppose for a contradiction that H1 6= H . As in the

proof of Proposition 2.5, H1 is defined over K . By the remark after Fact 2.2, we
can assume that H1 is connected.

Case III(a). H1 is a complement of T in H (in the usual sense that H1× T → H
is an isogeny).

So y/H1 ∈ T (K ]
G). Let y1= y/H1. If y1 /∈ T (K ), then K (y1) is a Picard–Vessiot

extension of K with Galois group Gm(C). The proof in Case I above shows that
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y1 ∈ G∂(K diff)+G(K ), whereby y ∈ H1+G∂(K diff)+G(K ), contradicting the
minimality assumptions on H .

Case III(b). H1+ T is a proper subgroup of H .

Note that since we are assuming H1 6= H , the negation of Case III(a) forces Case
III(b) to hold. Let H2 = H1+ T , so H/H2 is a constant group, say H3, which is a
vectorial extension of an abelian variety. Then y2 = y/H2 ∈ H3(K

]
G), and K (y2) is

a Picard–Vessiot extension of K with Galois group a subgroup of H3(C). Fact 3.4
and the Galois theory imply that y2 ∈ H3(K ). Hence y ∈ H2+G(K ), contradicting
the minimality of H again.

This completes the proof of Theorem 2.7. �

3C. Discussion on nongeneric cases. We complete this section with a discussion
of some complications arising when one would like to drop either the genericity
assumption in Theorem 2.6, or the restriction on the toric part in both Theorems
2.6 and 2.7.

Let us first give an example which will have to be considered if we drop the
genericity assumption in Theorem 2.6, and give some positive information as well
as identify some technical complications. Let A be a simple abelian variety over
K which has C-trace 0 and such that UA 6= 0. (Note that such an example appears
below in Section 5B connected with Manin map issues.) Let B be a nonsplit
extension of A by Gm , and let G = B̃. We have π : G→ Ã with kernel Gm , and
let H be π−1(UA), a ∂-subgroup of G. Let a ∈ LH(K ) and y ∈ H(K diff) with
d`nH (y) = a. We have to compute tr.deg

(
K ]

G(y)/K ]
G

)
. Conjecture 2.3 predicts

that it is the dimension of the smallest algebraic ∂-subgroup H1 of H such that
y ∈ H1+G(K )+G∂(K diff).

Lemma 3.5. With the above notation, suppose y /∈ H1+G(K )+G∂(K diff) for any
proper algebraic ∂-subgroup H1 of H over K . Then tr.deg

(
K ]

G(y)/K ]
G

)
= dim(H)

(and H is the Galois group).

Proof. Let z and α be the images of y and a, respectively, under the maps H→UA

and LH→ L(UA)=UA induced by π :G→ Ã. So ∂`n Ã(z)= α with α ∈ L Ã(K ).

Claim. We have z /∈U + Ã(K )+ Ã∂(K diff) for any proper algebraic ∂-subgroup U
of UA over K .

Proof of claim. Suppose otherwise. Then lifting suitable z2∈ Ã(K ) and z3∈ Ã(K diff)

to y2 ∈G(K ) and y3 ∈G∂(K diff), respectively, we see that y− (y2+ y3) ∈ π
−1(U ),

a proper algebraic ∂-subgroup of H , a contradiction.

As in Case I in the proof of Proposition 2.5 above, we may now conclude
that tr.deg

(
K ]

Ã
(z)/K ]

Ã

)
= dim(UA), and UA is the Galois group. Now K ]

G is a
union of Picard–Vessiot extensions of K ]

Ã
= K ]

UA
, each with Galois group Gm (by
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Remark 3.3), so the Galois theory tells us that z is independent from K ]
G over K ]

Ã
.

Hence the differential Galois group of K ]
G(z) over K ]

G is U ∂
A . But then the Galois

group of K ]
G(y) over K ]

G will be the group of ∂-points of a ∂-subgroup of H which
projects onto UA. The only possibility is H itself, because otherwise H splits as
Gm ×UA as a ∂-group, which contradicts (v) of Section 2 of [Bertrand 2009]. This
completes the proof. �

Essentially the same argument applies if we replace H by the preimage under π
of some nontrivial ∂-subgroup of UA. So this shows that the scenario described right
before Lemma 3.5 reduces to the case where a ∈ LT where T is the toric part Gm

(of both G and H ), and we may assume y ∈ T (K diff). We would like to show (in
analogy with Lemma 3.5) that if y /∈G(K )+G∂(K diff) then tr.deg

(
K ]

G(y)/K ]
G

)
=1.

Of course already K (y) is a Picard–Vessiot extension of K with Galois group T (C),
and we have to prove that y is independent from K ]

G over K . One deduces from
the Galois theory that y is independent from K ]

UA
over K . It remains to show that

for any z1, . . . , zn ∈ G∂(K diff), y is independent from z1, . . . , zn over K ]
UA

. If not,
the discussion in Case I of the proof of Theorem 2.7 gives that y = z+ g for some
z ∈G∂(K diff) and g ∈G(K ]

UA
), but an additional argument seems necessary to yield

a contradiction.
Similar and other issues arise when we want to drop the restriction on the toric

part. For example in Case II in the proof of Theorem 2.6, we can no longer deduce
the splitting of G as T × Ã. And in the proof of Theorem 2.7, both the analogues
of Case I (H = T ) and Case II (H projects on to Ã) present technical difficulties.

4. Lindemann–Weierstrass

We here prove Corollaries 2.8, 2.9, and 2.10.

4A. General results.

Proof of Corollary 2.8. We first prove (i). Write G for B̃. Let x̃ ∈ LG(K ) be a
lift of x and ỹ ∈ G(U) a solution of ∂`nG(−) = x̃ . We refer to Section 1.2 and
Lemma 4.2 of [Bertrand and Pillay 2010] for a discussion of the equivalence of the
hypotheses

x /∈ LH(K )+ LB0(C) for any proper semiabelian subvariety H of B,

and

(∗) x̃ /∈ LH(K )+ (LG)∂(K ) for any proper algebraic subgroup H of G over K .

Let a=∂LG(x̃). So ỹ is a solution of the logarithmic differential equation (over K )
∂`nG(−)= a. We want to show that tr.deg

(
K ]

G(ỹ)/K ]
G

)
= dim(G). If not, we may

assume that ỹ ∈ G(K diff), and so by Theorem 2.6, ỹ ∈ H +G(K ) for some proper
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connected algebraic ∂-subgroup H of G defined over K . Extend H to a maximal
proper connected ∂-subgroup H1 of G defined over K . Then G/H1 is either

(a) Gm , or

(b) a simple abelian variety A0 over C, or

(c) the quotient of Ã1 by a maximal unipotent ∂-subgroup, where A1 is a simple
abelian variety over K with C-trace 0.

Let x ′, y′ be the images of x̃, ỹ under the map G → G/H1 and induced map
LG→ L(G/H1). So both x ′ and y′ are K-rational. Moreover the hypothesis (∗) is
preserved in G/H1 (by our assumptions on G and Lemma 4.2(ii) of [Bertrand and
Pillay 2010]). As ∂`nG/H1(y

′)= ∂L(G/H1)(x
′), we have a contradiction in each of

the cases (a), (b), and (c) listed above, by virtue of the truth of Ax–Lindemann in the
constant case, as well as Manin–Chai (Proposition 4.4 in [Bertrand and Pillay 2010]).

(ii) Immediate as in [Bertrand and Pillay 2010]: choosing ỹ = expG(x̃), then
expB(y) is the projection of ỹ on B. �

Proof of Corollary 2.9. This is like the proof of Corollary 2.8. So x ∈ LA(K ). Let
x̃ ∈ LÃ(K ) lift x and let ỹ ∈ Ã(K diff) be such that ∂`n Ã(ỹ)= ∂LÃ(x̃)= a, say. Let
B be a minimal abelian subvariety of A such that x ∈ LB(K )+ LA0(C), and we
want to prove that tr.deg

(
K ]

Ã
(ỹ)/K ]

Ã

)
= dim(B̃).

Claim. We may assume that x ∈ LB(K ), x̃ ∈ LB̃(K ), and ỹ ∈ B̃(K diff).

Proof of claim. Let x = x1+ c for x1 ∈ LB and c ∈ LA0(C). Let x̃1 ∈ LB̃(K ) be
a lift of x1 and c̃ ∈ LÃ0(C) be a lift of c. Finally let ỹ1 ∈ B̃(K diff) be such that
∂`n Ã(ỹ1) = ∂LÃ(x̃1) = a1, say. As x̃1+ c̃ projects onto x , it differs from x̃ by an
element z ∈ LW (K ). Now ∂LÃ(z)= ∂`n Ã(z). So

a = ∂LÃ(x̃)= ∂LÃ(x̃1+ c̃+ z)= ∂LÃ(x̃1)+ ∂`n Ã(z)= a1+ ∂`n Ã(z).

Hence ∂`n(ỹ1+ z)= a, and so ỹ1+ z differs from ỹ by an element of Ã∂ . Hence
tr.deg

(
K ]

Ã
(ỹ1)/K ]

Ã

)
= tr.deg

(
K ]

Ã
(ỹ1)/K ]

Ã

)
. Moreover the same hypothesis remains

true of x1 (namely B is minimal such that x1 ∈ LB+ LA0(C)). So we can replace
x, x̃, ỹ by x1, x̃1, ỹ1.

As recalled in the proof of Corollary 2.8 (see Corollary H.5 of [Bertrand and
Pillay 2010]), the condition that x /∈ B1(K ) + LA0(C) for any proper abelian
subvariety B1 of B is equivalent to

(∗) x̃ /∈ LH(K )+ (LÃ)∂(K ) for any proper algebraic subgroup H
of B̃ defined over K .

Now we can use the Galois-theoretic result Proposition 2.5, namely the truth of
Conjecture 2.3 for Ã, as above. That is, if to obtain a contradiction we suppose
tr.deg

(
K ]

Ã
(ỹ)/K ]

Ã

)
< dim(B̃), then ỹ ∈ H + Ã(K )+ ( Ã)∂(K diff) for some proper
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connected algebraic ∂-subgroup of B̃, defined over K , and moreover H ∂ is the
differential Galois group of K ]

Ã
(ỹ)/K ]

Ã
. As at the end of the proof of Corollary 2.8

above, we get a contradiction by choosing H1 to be a maximal proper connected
algebraic ∂-subgroup of Ã containing H and defined over K . This concludes the
proof of Corollary 2.9. �

4B. Semiabelian surfaces. We first recall the counterexample from Section 5.3
of [Bertrand and Pillay 2010]. This example shows that in Corollary 2.8, we
cannot drop the assumption that the semiconstant part is constant. We go through
it again briefly. Let B over K be a nonconstant extension of a constant elliptic
curve E = E0 by Gm , and let G = B̃. Let x̃ ∈ LG(K ) map onto a point x̌ in
LẼ(C) which itself maps onto a nonzero point x̄ of LE(C). As pointed out in
[Bertrand and Pillay 2010], we have (LG)∂(K )= (LGm)(C), whereby x̃ satisfies
the hypothesis (∗) from Corollary 2.8: x̃ /∈ LH(K )+ (LG)∂(K ) for any proper
algebraic subgroup H of G. Let a = ∂LG(x̃) ∈ LG(K ), and ỹ ∈ G(K diff) such that
∂`nG(ỹ)= a. Then as the image of a in LẼ is 0, ỹ projects onto a point of Ẽ(C),
and hence ỹ is in a coset of Gm defined over K , whereby tr.deg(K (ỹ)/K )≤ 1, so
a fortiori the same is true with K ]

G in place of K . A consequence of Corollary 2.10,
in fact the main part of its proof, is that with the above choice of x̃ , we have
tr.deg

(
K ]

G(ỹ)/K ]
G

)
= 1 (as announced in [Bertrand et al. 2013, Footnote 5]).

Proof of Corollary 2.10. Let us fix notation: B is a semiabelian variety over K
with toric part Gm and abelian quotient a not necessarily constant elliptic curve
E/K , with constant part E0; G denotes the universal vectorial extension B̃ of B
and Ẽ the universal vectorial extension of E . For x ∈ LB(K ), x̃ denotes a lift of x
to a point of LG(K ), x̄ denotes the projection of x to LE(K ), and x̌ denotes the
projection of x̃ to LẼ(K ).

Recall the hypothesis (∗) in Corollary 2.10: x /∈ LH + LB0(C) for any proper
algebraic subgroup H of B. As pointed out after the statement of Corollary 2.10,
under this hypothesis, the condition x̄ ∈ LE0(C) can occur only if B is semiconstant
and not constant. Indeed, if B were not semiconstant then E0 = 0, so x ∈ LGm ,
contradicting the hypothesis on x . And if B were constant then B= B0 and x̄ would
have a lift in LB0(C), whereby x ∈ LGm + LB0(C), contradicting the hypothesis.

Now if the semiconstant part of B is constant, then we can simply quote
Corollary 2.8, bearing in mind the paragraph above which rules out the possibility
that x̄ ∈ LE0(C). So we will assume that Bsc 6= B0, namely E = E0 and B0 = Gm .

Case I. We have x̄ ∈ LE(C) (= LE0(C) as E = E0).

This is where the bulk of the work goes. We first check that we are essentially in
the situation of the “counterexample” mentioned above. The argument is a bit like in
the proof of the claim in Corollary 2.9. Note that x̄ 6=0 by hypothesis (∗). Let x̌ ′ be a
lift of x̄ to a point in LẼ(C) (noting that Ẽ is also over C). Then x̌ ′= x̌−β for some
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β ∈ LGa(K ). Let x̃ ′= x̃−β. Let a′= ∂LG(x̃ ′). Then (as ∂LG(β)= ∂`nG(β), under
the usual identifications) a′= a+∂`nG(β), and if ỹ′ ∈G is such that ∂`nG(ỹ′)= a′

then ∂`nG(ỹ′−β)= a. As β ∈ G(K ), tr.deg
(
K ]

G(ỹ
′)/K ]

G

)
= tr.deg

(
K ]

G(ỹ)/K ]
G

)
.

The end result is that we can assume that x̃ ∈ LG(K ) maps onto x̌ ′ ∈ LẼ(C)
which in turn maps on to our nonzero x̄ ∈ LE(C), precisely the situation in the
example above from Section 5.1 of [Bertrand and Pillay 2010]. So to deal with
Case I, we need to prove:

Claim 1. We have tr.deg
(
K ]

G(ỹ)/K ]
G

)
= 1.

Proof of Claim 1. Remember that a denotes ∂LG(x̃). Now by Theorem 2.7, it
suffices to prove that a /∈ ∂`nG(G(K )).

We assume for a contradiction that there is s̃ ∈ G(K ) such that

(†) a = ∂LG(x̃)= ∂`nG(s̃).

This is the semiabelian analogue of a Manin kernel statement, which can probably
be studied directly, but we will deduce the contradiction from [Bertrand et al.
2013]. Let x̃1 = logG(s̃) be a solution given by complex analysis to the linear
inhomogeneous equation ∂LG(−) = ∂`nG(s̃). Namely, with notations as in the
appendix to [Bertrand and Pillay 2010] (generalizing those given after Corollary 2.8
above), a local analytic section of LGan/San such that expG(x̃1)= s̃. Let ξ ∈ (LG)∂

be x̃ − x̃1. Then ξ lives in a differential field (of meromorphic functions on some
disc in S) which extends K and has the same constants as K , namely C. As ξ is
the solution of a linear homogeneous differential equation over K , it follows that
ξ lives in (LG)∂(K diff). Hence, as x̃ ∈ LG(K ), this implies that x̃1 ∈ LG(K ]

LG)

where K ]
LG is the differential field generated over K by (LG)∂(K diff).

Now from Section 5.1 of [Bertrand et al. 2013], K ]
LG coincides with the “field

of periods” Fq attached to the point q ∈ Ê(K ) which parametrizes the extension B
of E by Gm . Hence from (†) we conclude that Fq(logG(s̃))= Fq .

Let s ∈ B(K ) be the projection of s̃, and p ∈ E(K ) the projection of s. By the
discussion in Section 5.1 of [Bertrand et al. 2013], Fpq(logB(s)) = Fq(logG(s̃)).
Therefore, Fq = Fpq = Fpq(logB(s)).

Now as x̃ ∈ LG(K ) maps onto the constant point x̌ ∈ LẼ(C), so also s̃ maps
onto a constant point p̌ ∈ Ẽ(C) and hence p ∈ E(C). So we are in Case (SC2) of the
proof of the Main Lemma of [Bertrand et al. 2013, Section 6], namely p constant
while q nonconstant. The conclusion of (SC2) is that logB(s) is transcendental over
Fpq if p is nontorsion. So the previous equality forces p ∈ E(C) to be torsion.

Let s̃tor∈G(K ) be a torsion point lifting p, hence s̃−s̃tor is a K-point of the kernel
of the surjection G→ E . Thus s̃ = s̃tor+ δ+β where β ∈ Ga(K ) and δ ∈ Gm(K ).
Taking logs, putting again ξ = x̃ − x̃1, and using that logG(−) restricted to Ga(K )
is the identity, we see that x̃ = ξ + logG(s̃tor)+ logG(δ)+ β = ξ

′
+ logGm

(δ)+ β
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where ξ ′ ∈ (LG)∂ . It follows that ` = logGm
(δ) ∈ K ]

G = Fq . But by Lemma 1 of
[Bertrand et al. 2013] (proof of Main Lemma in isotrivial case, but reversing roles
of p and q), such ` is transcendental over Fq unless δ is constant.

Hence δ ∈ Gm(C), whereby logGm
(δ) ∈ LGm(C) so is in (LG)∂(K diff), and we

conclude that x̃ − β ∈ (LG)∂(K diff). As also x̃ − β ∈ LG(K ), from Claim III in
Section 5.3 of [Bertrand and Pillay 2010] (alternatively, using the fact that K ]

LG = Fq

has transcendence degree 2 over K ), we conclude that x̃ −β ∈ LGm(C) whereby
x̃ ∈ LGa(K ) + LGm(C), contradicting that x projects onto a nonzero element
of LE . This contradiction completes the proof of Claim 1 and hence of Case I of
Corollary 2.10.

Case II. The point x̄ ∈ LE(K )\LE(C) is a nonconstant point of LE(K )= LE0(K ).

Let ỹ ∈ G(K diff) be such that ∂`nG(ỹ) = a = ∂LG(x̃). Let y̌ be the projection
of ỹ to Ẽ . Hence ∂`n Ẽ(y̌) = ∂LÃ(x̌) (remembering that x̌ is the projection of x̃
to LẼ). Noting that x̌ lifts x̄ ∈ LE(K ), and using our case hypothesis, we can
apply Corollary 2.9 to E to conclude that tr.deg(K (y̌)/K )= 2 with Galois group
Ẽ∂(K diff)= Ẽ(C). (In fact as E is constant this is already part of the Ax–Kolchin
framework and appears in [Bertrand 2008].)

Claim 2. We have tr.deg
(
K ]

G(y̌)/K ]
G

)
= 2.

Proof of Claim 2. Fact 3.4 applies to the current situation, showing that K ]
G is a

directed union of Picard–Vessiot extensions of K each with Galois group some
product of Gn

m(C)’s. As there are no proper algebraic subgroups of Ẽ(C)×Gn
m(C)

projecting onto each factor, it follows from the Galois theory that y̌ is independent
from K ]

G over K , yielding Claim 2.

Now K ]
G(ỹ)/K ]

G is a differential Galois extension with Galois group of the form
H ∂(K diff) where H is a connected algebraic ∂-subgroup of G. So H ∂ projects onto
the (differential) Galois group of K ]

G(y̌) over K ]
G , which by Claim 2 is Ẽ∂(K diff).

In particular, H projects onto Ẽ . If H is a proper subgroup of G, then projecting
H and Ẽ to B and E , respectively, shows that B splits (up to isogeny), so B = B0

is constant, contradicting the current assumptions. Hence the (differential) Galois
group of K ]

G(ỹ) over K ]
G is G∂(K diff), whereby tr.deg

(
K ]

G(ỹ)/K ]
G

)
is 3. This

concludes the proof of Corollary 2.10. �

4C. An Ax–Schanuel conjecture. As a conclusion to the first two themes of the
paper, we may say that both at the Galois-theoretic level and for Lindemann–
Weierstrass, we have obtained rather definitive results for families of abelian
varieties, and working over a suitable base K ]. There remain open questions
for families of semiabelian varieties, such as Conjecture 2.3, as well as dropping the
restriction on the toric part in Theorems 2.6 and 2.7 and Corollaries 2.8 and 2.10.
It also remains to formulate a qualitative description of tr.deg

(
K ](expB(x))/K ]

)
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where B is a semiabelian variety over K of dimension > 2, and x ∈ LB(K ), under
the nondegeneracy hypothesis that x /∈ LH + LB0(C) for any proper semiabelian
subvariety H of B.

Before turning to our third theme, it seems fitting to propose a more general
Ax–Schanuel conjecture for families of abelian varieties:

Conjecture 4.1. Let A be an abelian variety over K =C(S) for a curve S/C, and let
F be the field of meromorphic functions on some disc in S. Let K ] now denote K ]

LÃ
(which contains K ]

Ã
). Let x̃, ỹ be F-rational points of L Ã, Ã, respectively, such that

exp Ã(x̃) = ỹ, and let y be the projection of ỹ on A. Assume that y /∈ H + A0(C)

for any proper algebraic subgroup H of A. Then tr.deg(K ](x̃, ỹ)/K ])≥ dim( Ã).

We point out that the assumption concerns y, and not the projection x of x̃
to LA. Indeed, the conclusion would in general not hold true under the weaker
hypothesis that x /∈ LH + LA0(C) for any proper abelian subvariety H of A. As a
counterexample, take for A a simple nonconstant abelian variety over K , and for x̃
a nonzero period of LÃ. Then x 6= 0 satisfies the hypothesis above and x̃ is defined
over K ]

= K ]

LÃ
, but ỹ = exp Ã(x̃)= 0, so tr.deg(K ](x̃, ỹ)/K ])= 0.

Finally, here is a concrete corollary of the conjecture. Let E : y2
= x(x−1)(x−t)

be the universal Legendre elliptic curve over S=C\{0, 1}, and let ω1(t), ω2(t) be a
basis of the group of periods of E over some disk, so K ]

=K ]

LẼ
is the field generated

over K =C(t) by ω1, ω2 and their first derivatives. Let ℘ =℘t(z), ζ = ζt(z) be the
standard Weierstrass functions attached to {ω1(t), ω2(t)}. For g ≥ 1, consider 2g
algebraic functions α(i)1 (t), α

(i)
2 (t) ∈ K alg, i = 1, . . . , g, and assume that the vectors(

1
0

)
,

(
0
1

)
,

(
α1
(1)

α2
(1)

)
, . . . ,

(
α1
(g)

α2
(g)

)
are linearly independent over Z. Then the 2g functions

℘
(
α
(i)
1 ω1+α

(i)
2 ω2

)
, ζ
(
α
(i)
1 ω1+α

(i)
2 ω2

)
, i = 1, . . . , g,

of the variable t are algebraically independent over K ]. In the language of [Bertrand
et al. 2013, Section 3.3], this says in particular that a g-tuple of Z-linearly indepen-
dent local analytic sections of E/S with algebraic Betti coordinates forms a generic
point of Eg/S. Such a statement is not covered by our Lindemann–Weierstrass
results, which concern analytic sections with algebraic logarithms.

5. Manin maps

5A. Injectivity. We here prove Theorem 2.13 and Proposition 2.15. Both state-
ments will follow fairly quickly from Fact 5.1 below, which is Theorem 4.3 of
[Bertrand 2011] and relies on the strongest version of “Manin–Chai”, namely
formula (2∗) from Section 4.1 of [Bertrand 2011]. We should mention that a more
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direct proof of Proposition 2.15 can be extracted from the proof of Proposition
J.2 (Manin–Coleman) in [Bertrand and Pillay 2010]. But we will stick with the
current proof below, as it provides a good introduction to the counterexample in
Section 5B.

We set up some notation: K is C(t)alg as usual, A is an abelian variety over K ,
and A0 is the C-trace of A. For y ∈ Ã(K ), we let ȳ be its image in A(K ). Let
b = ∂`n Ã(y). We consider the differential system in unknown x :

∇LÃ(x)= b,

where we write ∇LÃ for ∂LÃ. Let K ]

LÃ
be the differential field generated, over K ,

by (LÃ)∂(K diff). So for x a solution in LÃ(K diff), the differential Galois group
of K ]

LÃ
(x) over K ]

LÃ
pertains to Picard–Vessiot theory, and is well-defined as a

C-subspace of the C-vector space (LÃ)∂(K diff).

Fact 5.1 (A = any abelian variety over K = C(t)alg). Let y ∈ Ã(K ). Let B
be the smallest abelian subvariety of A such that a multiple of ȳ by a nonzero
integer is in B + A0(C). Let x be a solution of ∇LÃ(−) = b in L Ã(K diff). Then
the differential Galois group of K ]

LÃ
(x) over K ]

LÃ
is (LB̃)∂(K diff). In particular,

tr.deg
(
K ]

LÃ
(x)/K ]

LÃ

)
= dim B̃ = 2 dim B.

Proof of Theorem 2.13. Here, the abelian variety A has C-trace 0. By assumption
we have y1, . . . , yn ∈ A(K ) and a1, . . . , an ∈ C not all 0 such that

a1µA(y1)+ · · ·+ anµA(yn)= 0

in LÃ(K )/∂`n Ã(WA). Lifting yi to ỹi ∈ Ã(K ), we derive that

a1∂`n Ã(ỹ1)+ · · ·+ an∂`n Ã(ỹn)= ∂`n Ã(z)

for some z ∈WA. Via our identification of WA with LWA we write the right hand
side as ∇LÃz with z ∈ LWA ⊂ LÃ. Let x̃i ∈ LÃ be such that ∇LÃ(x̃i ) = ∂`n Ã(ỹi ).
Hence a1 x̃1+ · · ·+ an x̃n − z ∈ (LÃ)∂ , and there exists d ∈ (LÃ)∂ such that

a1 x̃1+ · · ·+ an x̃n − d = z ∈ LWA.

Suppose for a contradiction that y1, . . . , yn are linearly independent with respect
to End(A). Then no multiple of y = (y1, . . . , yn) by a nonzero integer lies in any
proper abelian subvariety B of the traceless abelian variety An

= A × · · · × A.
By Fact 5.1, we have tr.deg(K ](x̃1, . . . , x̃n)/K ]) = dim( Ãn), where we have set
K ]
:= K ]

LÃn = K ]

LÃ
. So, the points x̃1, . . . , x̃n of LÃ are generic and independent

over K ]. Hence, because a1, . . . , an are in C and therefore K ], it follows that
a1 x̃1 + · · · + an x̃n is a generic point of LÃ over K ]. And as d is a K ]-rational
point of (LÃ)∂ , also a1 x̃1+ · · · + an x̃n − d = z is a generic point of LÃ over K ],
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so cannot lie in its strict subspace LWA. This contradiction concludes the proof of
Theorem 2.13. �

Proof of Proposition 2.15. We use the same notation as at the end of Section 2D,
and recall that A is traceless. Furthermore, the functoriality of MK ,A in A allows
us to assume that A is a simple abelian variety.

Step I. We show, as in the proof of Theorem 2.13, that if MK ,A(y1), . . . ,MK ,A(yn)

are C-linearly dependent, then y1, . . . , yn are End(A)-linearly dependent. Indeed,
assume that ai ∈ C are not all 0 and that a1 MK ,A(y1)+ · · · + an MK ,A(yn)= 0 in
the target space LÃ(K )/∇(LÃ(K )). Lifting yi to ỹi ∈ Ã(K ), we derive that

a1∂`n Ã(ỹ1)+ · · ·+ an∂`n Ã(ỹn) ∈ ∇(LÃ(K )).

Letting x̃i ∈ LÃ(K diff) be such that ∇ x̃i = ∂`n Ã(ỹi ), we obtain a K-rational point
z ∈ LÃ(K ) such that

a1 x̃1+ · · ·+ an x̃n − z := d ∈ (LÃ)∂(K diff).

Taking K ]
:= K ]

LÃ
as in the proof of Theorem 2.13, we get

tr.deg(K ](x̃1, . . . , x̃n)/K ]) < dim( Ãn).

Hence by Fact 5.1, some integral multiple of (y1, . . . , yn) lies in a proper abelian
subvariety of An , whereby y1, . . . , yn are End(A)-linearly dependent.

Step II. Assuming that y1, . . . , yn are End(A)-linearly dependent, given by Step I,
as well as the relation on the point d above with not all ai = 0, we will show that
the points yi are Z-linearly dependent. Equivalently we will show that if a similar
relation holds with the ai linearly independent over Z, then y = (y1, . . . , yn) is
a torsion point of An . Let x̃ = (x̃1, . . . , x̃n). Let B be the connected component
of the Zariski closure of the group Z · y of multiples of y in An . By Fact 5.1,
the differential Galois group of K ](x̃) over K ]

:= K ]

LÃ
is (LB̃)∂ . More precisely,

the set of σ(x̃)− x̃ as σ varies in Aut∂(K ](x̃)/K ]) is precisely (LB̃)∂ ⊆ (LÃn)∂ .
Since z and d are defined over K ], the relation on d implies that

∀(c̃1, . . . , c̃n) ∈ (LB̃)∂ , a1c̃1+ · · ·+ an c̃n = 0.

Let now

B=
{
α = (α1, . . . , αn) ∈ (End(A))n = Hom(A, An) : α(A)⊆ B ⊂ An}.

Claim. Assume that a1, . . . , an are linearly independent over Z. Then any α ∈B is
identically 0.

It follows from the claim that B = 0 and hence some multiple of y by a nonzero
integer vanishes, namely y is a torsion point of An . This completes the proof of
Step II, hence of Proposition 2.15, and we are now reduced to proving the claim.
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Proof of claim. Since A is simple, End(A) is an order in a simple algebra D over
Q. For i = 1, . . . , n, denote by ρ(αi ) the C-linear map induced on (LÃ)∂ by the
endomorphism αi of A. So we view (LÃ)∂ as a complex representation, of degree
2 dim A, of the Z-algebra End(A), or more generally, of D. Let f 2 be the dimension
of D over its center F , let e be the degree of F over Q and let R be a reduced
representation of D, viewed as a complex representation of degree e f . As the
representation ρ is defined over Q (since it preserves the Betti homology), ρ is
equivalent to the direct sum R⊕r of r = 2 dim A/e f copies of R (cf. [Shimura and
Taniyama 1961, Section 5.1]). Furthermore,

R : D→Mat f (F ⊗C)' (Mat f (C))
e
⊂Mate f (C)

extends by C-linearity to an injection R⊗ 1 : D⊗C' (Mat f (C))
e
⊂Mate f (C).

Recall now that a1c̃1+ · · · + an c̃n = 0 for any (c̃1, . . . , c̃n) in (LB̃)∂ . Applied
to the image under α = (α1, . . . , αn) ∈ B of the generic element of (LÃ)∂ , this
relation implies that

a1ρ(α1)+ · · ·+ anρ(αn)= 0 ∈ EndC((LÃ)∂).

So a1 R(α1)+ · · ·+ an R(αn)= 0 in (Mat f (C))
e. From the injectivity of R⊗ 1 on

D⊗C and the Z-linear independence of the ai , we derive that each αi ∈ D vanishes,
hence α = 0, proving the claim. �

5B. A counterexample. We conclude with the promised counterexample to the
injectivity of µA⊗ 1, namely Proposition 2.14.

Construction of A. We will use Yves André’s example of a simple traceless abelian
variety A over C(t)alg with 0 6= UA ( WA (cf. [Bertrand and Pillay 2010], just
before Remark 3.10). Since UA 6=WA, this A is not constant, but we will derive this
property and the simplicity of A from another argument, borrowed from [Lange
and Birkenhake 1992, Chapter 9 §6].

We start with a CM field F of degree 2k over Q, over a totally real number field
F0 of degree k≥2, and denote by {σ1, σ̄1, . . . , σk, σ̄k} the complex embeddings of F .
We further fix the CM type S := {σ1, σ̄1, 2σ2, . . . , 2σk}. By [Lange and Birkenhake
1992, Chapter 9 §6], we can attach to S and to any τ ∈H (the Poincaré half-plane,
or equivalently, the open unit disk) an abelian variety A = Aτ of dimension g = 2k
and an embedding of F into End(A)⊗Q such that the representation r of F on WA

is given by the type S. The representation ρ of F on LÃ is then r⊕ r̄ , equivalent to
twice the regular representation. (The notation used by [Lange and Birkenhake 1992]
here read: e0 = k, d = 1,m = 2, r1 = s1 = 1, r2 = · · · = re0 = 2, s2 = · · · = se0 = 0,
so, the product of the Hri ,si of [loc. cit.] is just H. Also, [loc. cit.] considers the
more standard “analytic” representation of F on the Lie algebra LA = LÃ/WA,
which is r̄ in our notation.)
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From the bottom of [Lange and Birkenhake 1992, p. 271], one infers that the
moduli space of such abelian varieties Aτ is an analytic curve H/0. But Shimura
has shown that it can be compactified to an algebraic curve X (cf. [Lange and
Birkenhake 1992, p. 247]). So, we can view the universal abelian variety Aτ = A
of this moduli space as an abelian variety over C(X), hence as an abelian variety A
over K = C(t)alg. This will be our A; it is by construction not constant — and it is
a fourfold if we take k = 2, as we will in what follows.

Finally, since A is the general element over H/0, Theorem 9.1 of [Lange and
Birkenhake 1992] and the hypothesis k ≥ 2 imply that End(A)⊗Q is equal to F .
Therefore, A is a simple abelian variety, necessarily traceless since it is not constant.
We denote by O the order End(A) of F .

Action of F and of ∇ on LÃ. For simplicity, we will now restrict to the case k = 2,
but the general case (requiring 2k points) would work in exactly the same way.
So, F is a totally imaginary quadratic extension of a real quadratic field F0, and
LÃ is 8-dimensional. As said in [Bertrand and Pillay 2010], and by definition of
the CM-type S, the action ρ of F splits LÃ into eigenspaces for its irreducible
representations σ ’s, as follows:

• WA = Dσ1 ⊕ Dσ̄1 ⊕ Pσ2 , where the D’s are lines and Pσ2 is a plane;

• LA lifts to LÃ into D′σ1
⊕ D′σ̄1

⊕ Pσ̄2 , with the same notation.

Since ∇ := ∇LÃ = ∂LÃ commutes with the action ρ of F and since A is not
constant, we infer that the maximal ∂-submodule of WA is

UA = Pσ2,

while WA+∇(WA)=5σ1 ⊕UA⊕5σ̄1 , with the planes

5σ1 = Dσ1 ⊕ D′σ1
,

5σ̄1 = Dσ̄1 ⊕ D′σ̄1
,

each stable under ∇ (just as is Pσ̄2 , of course). In fact, for our proof, we only need
to know that Pσ2 ⊂UA.

Now let ỹ ∈ Ã(K ) be a lift of a point y ∈ A(K ). Going into a complex analytic
setting, we choose a logarithm x̃ ∈ L Ã(K diff) of ỹ, locally analytic on a small disk
in X(C). Let further α ∈ O, which canonically lifts to End( Ã). Then ρ(α)x̃ is a
logarithm of α · ỹ ∈ Ã(K ), and therefore satisfies

∇(ρ(α)x̃)= ∂`n Ã(α · ỹ).

In fact, this appeal to analysis is not necessary; the formula just says that ∂`n Ã
(and ∇) commutes with the actions of O. But once one ỹ and one x̃ are chosen, it
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will be crucial, for the desired relation (R) following Proposition 2.14, that we take
these ρ(α)x̃ as solutions to the equations on the O-orbit of ỹ.

Concretely, if
x̃ = xσ2 ⊕ xσ1 ⊕ xσ̄1 ⊕ xσ̄2

is the decomposition of x̃ in

LÃ = Pσ2 ⊕5σ1 ⊕5σ̄1 ⊕ Pσ̄2,

then for any α ∈ O, we have

ρ(α)(x̃)= σ2(α)xσ2 ⊕ σ1(α)xσ1 ⊕ σ̄1(α)xσ̄1 ⊕ σ̄2(α)xσ̄2 .

Conclusion. Let y ∈ A(K ) be a nontorsion point of the simple abelian variety A,
for which we choose at will a lift ỹ to Ã(K ) and a logarithm x̃ ∈ LÃ(K diff). Let
{α1, . . . , α4} be an integral basis of F over Q. We will consider the 4 points
yi = αi · y of A(K ), i = 1, . . . , 4. Since the action of O on A is faithful, they are
linearly independent over Z. For each i = 1, . . . , 4, we consider the lift ỹi = αi ỹ of
yi to LÃ(K ), and set as above x̃i = ρ(αi )x̃ , which satisfies ∇(x̃i )= ∂`n Ã ỹi .

We claim that there exist complex numbers a1, . . . , a4, not all zero, such that

u := a1 x̃1+ · · ·+ a4 x̃4 =
(
a1ρ(α1)+ · · ·+ a4ρ(α4)

)
(x̃) ∈UA(K diff),

i.e., such that in the decomposition above of LÃ = Pσ2 ⊕5σ1 ⊕5σ̄1 ⊕ Pσ̄2 , the
components of u = uσ2 ⊕ uσ1 ⊕ uσ̄1 ⊕ uσ̄2 on the last three planes vanish.

The whole point is that the complex representation σ̂⊕2 of F which ρ induces on
5σ1 ⊕5σ̄1 ⊕ Pσ̄2 is twice the representation σ̂ := σ1⊕ σ̄1⊕ σ̄2 of F on C3, and so,
does not contain the full regular representation of F . More concretely, the 4 vectors
σ̂ (α1), . . . , σ̂ (α4) of C3 are of necessity linearly dependent over C, so, there exists
a nontrivial linear relation

a1σ̂ (α1)+ · · ·+ a4σ̂ (α4)= 0 in C3

(where the complex numbers ai lie in the normal closure of F). Therefore, any
element x̃σ̂ = (xσ1, xσ̄1, xσ̄2) of 5σ1 ⊕5σ̄1 ⊕ Pσ̄2 satisfies(

a1σ̂
⊕2(α1)+ · · ·+ a4σ̂

⊕2(α4)
)
x̃σ̂ = 0 in 5σ1 ⊕5σ̄1 ⊕ Pσ̄2

(viewing each σ̂⊕2(αi ) as a (6× 6) diagonal matrix inside the (8× 8) diagonal
matrix ρ(αi )), i.e., the 3 plane-components uσ1, uσ̄1, uσ̄2 of u all vanish, and u
indeed lies in Pσ2 , and so in UA.

The existence of such a point u = a1 x̃1 + · · · + a4 x̃4 in UA(K diff) establishes
relation (R) of Section 2D, and concludes the proof of Proposition 2.14.
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MORSE AREA AND SCHARLEMANN–THOMPSON WIDTH
FOR HYPERBOLIC 3-MANIFOLDS

DIANE HOFFOSS AND JOSEPH MAHER

Scharlemann and Thompson define a numerical complexity for a 3-manifold
using handle decompositions of the manifold. We show that for compact
hyperbolic 3-manifolds, this is linearly related to a definition of metric com-
plexity in terms of the areas of level sets of Morse functions.

1. Introduction 83
2. Morse area bounds Scharlemann–Thompson width 86
3. Scharlemann–Thompson width bounds Morse area 98
Acknowledgements 101
References 101

1. Introduction

Let M be a closed Riemannian 3-manifold, and let f WM !R be a Morse function;
i.e., f is a smooth function, all of whose critical points are nondegenerate, and for
which distinct critical points have distinct images in R. We define the area of f to be
the maximum area of any level set Ft Df

�1.t/ over all points x 2R. We define the
Morse area of M to be the infimum of the area of all Morse functions f WM ! R.

For hyperbolic 3-manifolds, the hyperbolic metric is a topological invariant by
Mostow rigidity, and the critical points of a Morse function determine a handle
decomposition of the manifold, so one might hope that Morse area is related to a
topological measure of complexity defined in terms of handle decompositions of the
manifold. We show that Morse area is linearly related to a definition of topological
complexity we call Scharlemann–Thompson width or linear width, and which we
now describe.

For a closed (possibly disconnected) surface S , we define the complexity, or
genus, of S to be the sums of the genera of each connected component. For a
compact (possibly disconnected) surface with boundary, we define the genus of S
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to be the genus of the surface obtained by capping off all boundary curves with
discs. We shall write j@S j for the number of boundary components of S .

A handlebody is a compact 3-manifold with boundary, homeomorphic to the
regular neighborhood of a graph in R3. Up to homeomorphism, a handlebody is
determined by the genus g of its boundary surface. Every 3-manifold M has a
Heegaard splitting, which is a decomposition of the manifold into two handlebodies.
This immediately gives a notion of complexity for a 3-manifold, called the Heegaard
genus, which is the smallest genus of any Heegaard splitting of the 3-manifold.

There is a refinement of this, due to Scharlemann and Thompson [1994], which we
now describe. Let S be a closed surface, which need not be connected. A compres-
sion body C is a compact 3-manifold with boundary, constructed by attaching some
number of 2-handles to one side S � f0g of S � I . We do not require compression
bodies to be connected. We shall refer to S � f1g as the top boundary @CC of
the compression body, and the other boundary components of C as the lower
boundary @�C . The lower boundary may be disconnected, even if C is connected,
and any 2-sphere components are capped off with 3-balls. In particular, if a maximal
number of nonparallel 2-handles are attached, then the resulting compression body is
a handlebody, so a handlebody is a special case of a compression body. A generalized
Heegaard splitting, which we shall call a linear splitting, is a decomposition of
a closed 3-manifold M into a linearly ordered sequence of compression bodies
C1; : : :C2n, which need not be connected, such that the upper boundary of an odd
numbered compression body C2iC1 is equal to the top boundary of the compression
body C2iC2, and the lower boundary of C2iC1 is equal to the lower boundary of the
previous compression body C2i . For the even numbered compression bodies C2i ,
the top boundary is equal to the upper boundary of C2i�1, and the lower boundary is
equal to the lower boundary of C2iC1. In the case of the first and last compression
bodies C1 and C2n, the lower boundaries are empty. Let Hi be the sequence of sur-
faces consisting of the upper boundaries of the compression bodies C2i�1 and C2i ;
these are often referred to as the odd surfaces, and the surfaces corresponding to
the lower boundaries as the even surfaces. A linear splitting has a natural height
function, i.e., a Morse function onto R, in which each odd or even surface, which
may not be connected, is the pre-image of a single point, and the compression
bodies are the pre-images of the closed intervals determined by these points.

The complexity c.Hi/ of the surface Hi is the genus of Hi , i.e., the sum of the
genera of each connected component, and the width of the linear splitting is the
maximum value of c.Hi/ over all upper boundaries. The Scharlemann–Thompson
width, which we shall also refer to as the linear width, of a 3-manifold M is the
minimum width over all possible linear splittings. As a Heegaard splitting is a
special case of a linear splitting, the Heegaard genus of M is an upper bound for
the linear width of M .
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There is a refinement of linear width known as thin position, which we discuss
when we use it in Section 3.

Results. In order to bound Morse area in terms of linear width, we shall assume
the following result announced by Pitts and Rubinstein [1986] (see also [Rubinstein
2005]).

Theorem 1.1 [Pitts and Rubinstein 1986; Rubinstein 2005]. Let M be a Riemann-
ian 3-manifold with a strongly irreducible Heegaard splitting. Then the Heegaard
surface is isotopic to a minimal surface, or to the boundary of a regular neighbor-
hood of a nonorientable minimal surface with a small tube attached vertically in
the I-bundle structure.

A full proof of this result has not yet appeared in the literature, though recent
progress has been made by Colding and De Lellis [2003], De Lellis and Pellandrini
[2010], and Ketover [2013].

We shall show this:

Theorem 1.2. There is a constant K > 0 such that for any closed hyperbolic
3-manifold,

(1) K.linear width.M //6Morse area.M /6 4�.linear width.M //;

where the right-hand bound holds assuming Theorem 1.1.

Our methods are effective, and the constant K may be estimated using a bound
on the Margulis constant for H3, though we omit the details of this calculation, as
our methods seem unlikely to give an optimal constant.

Outline. In Section 2, we show how to bound linear width in terms of Morse area. A
bound on the Morse area of M gives a Morse function f WM!R with bounded area
level sets, but with no a priori bound on the topological complexity of the level sets.

We use a Voronoi decomposition of M to give a polyhedral approximation of
the Morse function, which we now describe in a simple case. Let V be a Voronoi
decomposition of M in which every Voronoi cell Vi is a topological ball, and has size
bounded above and below; i.e., there is an �>0 such that B.xi ; �=2/�Vi�B.xi ; �/,
where xi is the center of the Voronoi cell. Let Mt be the sublevel set of the Morse
function, i.e., MtDf

�1..�1; t �/. The sublevel sets are a monotonically increasing
collection of subsets of M , which start off empty, and eventually contain all of M ;
so, in particular, for each Voronoi cell Vi , there is a ti such that the volume of
Mt \B.xi ; �=2/ is exactly half the volume of B.xi ; �=2/, and we shall call ti the
cell splitter for the Voronoi cell Vi . Furthermore, we may assume that the ti are
distinct for distinct Voronoi cells. This gives a linear order to the Voronoi cells, and
we wish to show that constructing the manifold by adding the Voronoi cells in this
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order gives a bounded linear-width handle decomposition for M . Let Pt be the
union of the Voronoi cells whose cell splitters ti are at most t . Each Voronoi cell
is a ball, with a bounded number of faces, so adding a Voronoi cell corresponds to
adding a bounded number of handles. It remains to show that the boundary of each
Pt has genus bounded in terms of the area of the level set Ft D f

�1.t/. Let Vi

and Vj be two adjacent Voronoi cells, with Vi contained in Pt and Vj outside Pt ,
so their common face is a subset of @Pt . Consider the sequence of balls B.x; �=2/,
as x runs along the geodesic from xi to xj . At least half the volume of B.xi ; �=2/

is contained in Mt , and at most half the volume of B.xj ; �=2/ is contained in Mt ;
so there is an x such that exactly half the volume of B.x; �=2/ is contained in Mt ,
and so there is a lower bound on the area of Ft \B.x; �=2/. Therefore, a bound
on the area of Ft gives a bound on the number of faces of @Pt . As each face has
a bounded number of edges, this gives a bound on the genus of @Pt , and hence a
bound on the linear width of M , though this bound depends on �.

In order to produce a bound which works for any compact hyperbolic mani-
fold M , we use the Margulis lemma and the thick-thin decomposition for hyperbolic
manifolds. There is constant �, called a Margulis constant, such that any compact
hyperbolic manifold may be decomposed into a thick part X�, where each point has
injectivity radius greater than �, and a thin part, where each point has injectivity
radius at most �, and which is a disjoint union of solid tori. If we choose �
sufficiently small, then we may choose a Voronoi decomposition of the thick part in
which each Voronoi cell has size bounded above and below, and run the argument
in the previous paragraph to control the genus of @Pt inside the thick part. We do
not control the complexity of @Pt in the thin part, but as each component of the thin
part is a solid torus, we may cap off @Pt \X� with surfaces parallel to Pt \ @X�,
while still obtaining bounds on the genus. In order to bound the number of handles
corresponding to adding a Voronoi cell, we use a result of Kobayashi and Rieck
[2011] which gives bounds on the topological complexity of the intersection of a
Voronoi cell with the thin part.

The key problem for the upper bound is that the techniques of Pitts and Rubinstein
use sweepouts, so although their minimax construction produces a sweepout of
bounded area, we do not know how to directly replace a bounded area sweepout
with a bounded area foliation. However, the upper bound is obtained in recent work
of Colding and Gabai [2015], using work of Colding and Minicozzi [2015] on the
mean curvature flow, and we describe their results in Section 3.

2. Morse area bounds Scharlemann–Thompson width

In this section we show that we can bound the Scharlemann–Thompson width of a
hyperbolic manifold in terms of its Morse area. We will approximate level sets by
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surfaces which are unions of faces of Voronoi cells, and we start by describing the
properties of the Voronoi decompositions that we will use.

Voronoi cells. We will approximate the level sets of f by surfaces consisting of
faces of Voronoi cells. We now describe in detail the Voronoi cell decompositions
we shall use, and their properties.

A polygon in H3 is a compact convex subset of a hyperbolic plane whose
boundary consists of a finite number of geodesic segments. A polyhedron in H3 is
a convex topological 3-ball in H3 whose boundary consists of a finite collection of
polygons. A polyhedral cell decomposition of H3 is a cell decomposition in which
every 3-cell is a polyhedron, each 2-cell is a polygon, and the edges are all geodesic
segments. We say a cell decomposition of a hyperbolic manifold M is polyhedral
if its preimage in the universal cover gives a polyhedral cell decomposition of H3.

Let X D fxig be a discrete collection of points in 3-dimensional hyperbolic
space H3. The Voronoi cell Vi determined by xi 2X consists of all points of M

which are closer to xi than any other xj 2X , i.e.,

Vi D fx 2 H3
j d.x;xi/6 d.x;xj / for all xj 2X g:

We shall call xi the center of the Voronoi cell Vi , and we shall write VDfVig for the
collection of Voronoi cells determined by X . Voronoi cells are convex sets in H3,
and hence topological balls. The set of points equidistant from both xi and xj is a
totally geodesic hyperbolic plane in H3. A face F of the Voronoi decomposition
consists of all points which lie in two distinct Voronoi cells Vi and Vj , so F is
contained in a geodesic plane. An edge e of the Voronoi decomposition consists
of all points which lie in three distinct Voronoi cells Vi ;Vj and Vk , which is a
geodesic segment, and a vertex v is a point lying in four distinct Voronoi cells
Vi ;Vj ;Vk and Vl . By general position, we may assume that all edges of the Voronoi
decomposition are contained in exactly three distinct faces, the collection of vertices
is a discrete set, and there are no points which lie in more than four distinct Voronoi
cells. We shall call such a Voronoi decomposition a regular Voronoi decomposition,
and it is a polyhedral decomposition of H3 if every cell is compact. As each edge
is 3-valent, and each vertex is 4-valent, this implies that the dual cell structure is
a simplicial triangulation of H3, which we shall refer to as the dual triangulation.
The dual triangulation may be realised in H3 by choosing the vertices to be the
centers xi of the Voronoi cells and the edges to be geodesic segments connecting
the vertices, and we shall always assume that we have done this. In this case, the
triangles and tetrahedra are geodesic triangles and geodesic tetrahedra in H3.

Given a collection of points X D fxig in a hyperbolic 3-manifold M , let zX be
the pre-image of X in the universal cover of M , which is isometric to H3. We say a
subset of H3 is equivariant if it is preserved by the covering translations determined
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by the quotient M . As zX is equivariant, the k-skeleton of the corresponding
Voronoi cell decomposition V of H3 is also equivariant for 0 6 k 6 3, as are the
k-skeletons of the dual triangulation.

We now show that the interior of each Voronoi cell V is mapped down homeo-
morphically by the covering projection. Suppose y is a point in the interior of a
Voronoi cell V with center x, so d.x;y/ < d.x0;y/ for any other x0 2X . Let g be
a covering translation, which is an isometry, so d.x;y/D d.gx;gy/. As covering
translations act freely, this implies that gy lies in the interior of the Voronoi cell
corresponding to gx 6D x. Therefore interior.V / has disjoint translates under the
group of covering translations, and so is mapped down homeomorphically into M ,
though the covering projection may identify distinct faces of a Voronoi cell under
projection into M .

By abuse of notation, we shall refer to the resulting polyhedral decomposition
of M as the Voronoi decomposition V of M . By general position, we may assume
that V is regular. The dual triangulation also projects down to a triangulation of M ,
which we will also refer to as the dual triangulation, though this triangulation may
no longer be simplicial.

We say a collection X D fxig of points in M is �-separated if the distance
between any pair of points is at least �, i.e., d.xi ;xj /> � for all i 6D j .

Definition 2.1. Let M be a compact hyperbolic 3-manifold. We say a Voronoi
decomposition V is �-regular if it is regular and it arises from a maximal collection
of �-separated points.

We shall write B.x; r/ for the closed metric ball of radius r about x in M ,

B.x; r/D fy 2M j d.x;y/6 rg;

which need not be a topological ball. As the cells of an �-regular Voronoi decom-
position are determined by a maximal collection of �-separated points in M , each
Voronoi cell is contained in a metric ball of radius � about its center. Furthermore,
as the points xi are distance at least � apart, each Voronoi cell contains a metric
ball of radius �=2 about its center, i.e.,

B.xi ; �=2/� Vi � B.xi ; �/:

One useful property of �-regular Voronoi decompositions is that the boundary of
any union of Voronoi cells is an embedded surface, in fact an embedded normal
surface in the dual triangulation, as we now describe.

A simple arc in the boundary of a tetrahedron is a properly embedded arc in a
face of the tetrahedron with endpoints in distinct edges. A triangle in a tetrahedron
is a properly embedded disc whose boundary is a union of three simple arcs, and
a quadrilateral is a properly embedded disc whose boundary is the union of four
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simple arcs. A normal surface in a triangulated 3-manifold is a surface that intersects
each tetrahedron in a union of normal triangles and quadrilaterals.

Proposition 2.2. Let M be a compact hyperbolic manifold, and let V be an
�-regular Voronoi decomposition. Let P be a union of Voronoi cells in V , and
let S be the boundary of P . Then S is an embedded surface in M .

Proof. The collection of Voronoi cells P intersects a tetrahedron T in the dual
triangulation in a regular neighborhood of the vertices of T . If a tetrahedron T has
one or three vertices corresponding to Voronoi cells in P , then S intersects T in a
single normal triangle. If T has exactly two vertices corresponding to Voronoi cells
in P , then S intersects T in a single normal quadrilateral. Therefore S consists
of at most one triangle or quadrilateral in each tetrahedron, and so is an embedded
normal surface. �

We shall write injM .x/ for the injectivity radius of M at x, i.e., the radius of the
largest embedded ball in M centered at x. We shall write inj.M / for the injectivity
radius of M , which is defined to be

inj.M /D inf
x2M

injM .x/:

We shall say a Voronoi cell Vi with center xi is a deep Voronoi cell if the
injectivity radius at xi is at least 4�, i.e., injM .xi/ > 4�, and, in particular, this
implies that the metric ball B.xi ; 3�/ is a topological ball. We shall also call centers,
faces, edges and vertices of deep Voronoi cells deep. We shall write W for the
subset of V consisting of deep Voronoi cells. The fact that a deep Voronoi cell Vi has
injectivity radius at least 4� at its center xi guarantees that every adjacent Voronoi
cell is also a topological ball.

We now show that there are bounds, which only depend on �, on the number
of faces of a deep Voronoi cell, and the number of edges and faces of a deep
Voronoi cell.

Proposition 2.3. Let M be a compact hyperbolic 3-manifold with an �-regular
Voronoi decomposition V , and let W be the collection of deep Voronoi cells. Then
there is a number J , which only depends on �, such that each deep Voronoi cell
Wi 2W has at most J faces, edges and vertices.

Proof. Let W be a deep Voronoi cell with center x, and with faces F1; : : : ;Fn. Let
xi be the center of the Voronoi cell Wi adjacent to the face Fi . As W is deep, the
Voronoi cell Wi is also a topological ball.

If two Voronoi cells share a common face, then the distance between their centers
is at most 2�. Therefore all of the centers of the Voronoi cells corresponding to the
faces of W are contained in the metric ball B.x; 2�/. This implies that the balls
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of radius �=2 around the xi are contained in the metric ball B.x; 5�=2/. As the
B.xi ; �=2/ are all disjoint, this implies that the number of faces is at most

J1 D
volH3.B.x; 5�=2//

volH3.B.x; �=2//
:

Note that J1 is also an upper bound for the maximum number of edges in any face
of a Voronoi cell because every edge of that face is contained in another face in
that cell. So the total number of edges is at most J 2

1
, and by the formula for Euler

characteristic, the number of vertices is at most J 2
1
CC . Therefore we may choose J

to be J 2
1
C 2. �

A similar volume bound argument to the one above proves the following:

Proposition 2.4. Let M be a compact hyperbolic 3-manifold with an �-regular
Voronoi decomposition V . Then there is a number L, which depends only on �, such
that for any deep Voronoi center xi , the number of Voronoi centers contained in
B.xi ; 3�/ is at most L.

Polyhedral surfaces. We may choose a Morse function f WM ! R such that the
complexity of f is within some small ı > 0 of the infimum, i.e.,

area.Ft /6Morse area.M /C ı

for all t 2 R. We now describe how to use the Morse function f to give a linear
ordering to the Voronoi cells in V .

Definition 2.5. Let M be a compact hyperbolic 3-manifold, and let f WM ! R be
a Morse function. Given t 2 R, define the sublevel set of M at t , which we shall
denote Mt , to be the subset of M consisting of the union of all level sets Ft with
t 2 .�1; t �, i.e.,

Mt D f
�1..�1; t �/:

For t sufficiently small, Mt is the empty set, and for t sufficiently large, Mt is
equal to all of M . The region Mt varies continuously in t and is monotonically
increasing in t .

Definition 2.6. Let M be a compact hyperbolic 3-manifold with an �-regular
Voronoi decomposition V . Let f WM ! R be a Morse function. For each Voronoi
cell Vi with center xi , there is a unique ti 2 R such that the surface Fti

divides the
metric ball B.xi ; �=2/ exactly in half by volume, i.e.,

vol.Mt \B.xi ; �=2//D
1
2

vol.B.xi ; �=2//:

We call this ti the cell splitter of Vi .
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R

f
Ft t

St

Pt

Figure 1. A polyhedral surface St determined by a level set Ft .

Definition 2.7. We say that a Morse function f WM!R is generic with respect to a
Voronoi decomposition V if the cell splitters for distinct Voronoi cells Vi correspond
to distinct points ti 2 R, and no cell splitter is also a critical point for the Morse
function. We say a point t 2 R is generic if it is not a critical point for the Morse
function, and is not a cell splitter.

We may assume that f is generic by an arbitrarily small perturbation of f , and
we shall always assume that f is generic from now on.

Definition 2.8. Let M be a compact hyperbolic 3-manifold with an �-regular
Voronoi decomposition V , and let f WM !R be a generic Morse function. Let V be
the Voronoi decomposition ordered by the order inherited from the cell splitters ti .
Given t 2 R, Let Mt be the sublevel set of M at t . We define Pt , the polyhedral
approximation to Mt , to be the union of the Voronoi cells Vi with ti 6 t , and call
St D @Pt the polyhedral surface determined by t 2 R.

The polyhedral surface St is a union of faces of the Voronoi cells, and so is a
normal surface in the dual triangulation. We shall write kStk for the number of
Voronoi faces the polyhedral surface St contains. We shall write kSt \Wk for the
number of faces in the polyhedral surface St \W , which may have boundary. A
schematic picture of a polyhedral surface is given in Figure 1.

In this section, we will show the following bound on the complexity of the
polyhedral surface in the deep part W .

Proposition 2.9. Let M be a compact hyperbolic 3-manifold, with an �-regular
Voronoi decomposition V , deep part W , and a generic Morse function f WM ! R.
For t 2R, let St be the polyhedral surface associated to t . Then there is a constant K,
which only depends on �, such that

j@.St \W/j6K area.Ft /;

genus.St \W/6K area.Ft /:
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In particular, this bounds the genus of St\W as a constant times the Morse width
of M , where the constant depends only on �. We start by showing that the area of the
level sets bounds the number of faces of the polyhedral surface in the deep part W .

Proposition 2.10. Let M be a compact hyperbolic 3-manifold, with an �-regular
Voronoi decomposition V , deep part W , and a generic Morse function f WM ! R.
For t 2R, let St be the polyhedral surface associated to t . Then there is a constant K,
which only depends on �, such that

kSt \Wk6K area.Ft /:

Proof. Let Pt be the polyhedral approximation to Mt . Let C be a face of St \W ,
and let Wi and Wj be the two adjacent Voronoi cells in V . Up to relabeling, we may
assume that Wi is contained in Pt , and Wj is not. Let  be a geodesic connecting
xi to xj , and consider B.s; �=2/ for s 2  . As Wi and Wj are deep, the metric
balls B.xi ; �=2/, B.xj ; �=2/ and B.s; �=2/ are all topological balls, isometric to
the ball B.x; �=2/ in H3. At least half of the volume of B.xi ; �=2/ is contained
in Pt , and strictly less than half of the volume of B.xj ; �=2/ is contained in Pt ,
so there is some s 2  such that exactly half the volume of B.s; �=2/ is contained
in Pt . There is a constant A, depending only on �, such that any surface dividing a
ball in hyperbolic space into regions of equal volume has area at least A. In fact,
we may take A to be the area of the equatorial disc, which is 2�.cosh.�=2/� 1/;
see, for example, [Bachman et al. 2004].

Recall that the Voronoi decomposition has a dual triangulation in which each edge
is a geodesic segment, and we shall write � for the geodesic graph in M formed
by the 1-skeleton of the dual triangulation. We shall write �d for the subset of �
consisting of vertices corresponding to deep Voronoi cells, and edges connecting
two deep Voronoi cells, and we shall refer to this as the deep graph. Each geodesic
edge between two deep Voronoi cells has length strictly less than 2�. Therefore the
choice of geodesic is unique for the Voronoi cells in W , as its length is smaller than
the injectivity radius at each deep Voronoi cell center xi . By Proposition 2.3, the
geodesic dual graph �d has valence at most J .

Claim 2.11. Consider a collection of points fsig such that each point si lies in a
distinct edge i of the deep graph �d . Then any ball B.si ; �=2/ intersects at most
L other balls B.sj ; �=2/, where L is the constant from Proposition 2.4.

Proof of Claim 2.11. If two balls B.si ; �=2/ and B.sj ; �=2/ intersect, then the
distance between their corresponding edges i and j is at most �, and so there is a
pair of vertices, xk 2 i and xl 2 j with d.xk ;xl/6 3�. By Proposition 2.4, there
are at most L other vertices within distance 3� of a given vertex. Therefore the total
number of balls intersecting B.si ; �=2/ is at most L, which only depends on �. �
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If there are N faces in St then there are at least N=L disjoint balls B.si ; �=2/,
each containing a part of Ft of area at least A. Therefore, the total number of faces
is at most

(2) kSt \Wk6 L

A
area.Ft /;

where the constants only depend on �, as required. �
We now show that the bound on the number of faces of St in the deep part W

gives a bound on the genus of St \W .

Proposition 2.12. Let M be a compact hyperbolic 3-manifold, with an �-regular
Voronoi decomposition V , deep part W , and a generic Morse function f WM ! R.
For t 2R, let St be the polyhedral surface associated to t . Then there is a constant J ,
which only depends on �, such that

j@.St \W/j6 JkSt \Wk;
genus.St \W/6 JkSt \Wk;

where J is the constant from Proposition 2.3.

Proof. We shall write S for St to simplify notation. The first bound follows as each
boundary component must contain at least one edge, so the number of boundary
components is at most the number of edges in S \W , which is at most JkS \Wk
by Proposition 2.3.

We shall write yS for the surface S\W with all boundary curves capped off with
discs. Recall that the genus of a disconnected surface is the sum of the genera of
each component, and this in turn is equal to the number of connected components
minus half the Euler characteristic, i.e.,

genus. yS/D j yS j � 1
2
�. yS/;

where j yS j is the number of connected components of yS .
As capping off with discs does not change the number of connected components,

this is at most the number of connected components of S \W , which is at most the
number of faces kS \Wk. Furthermore, capping off boundary components with
discs may only increase the Euler characteristic, so

genus. yS/6 kS \Wk� 1
2
�.S \W/:

Therefore
genus. yS/6 kS \Wk� 1

2
.V �ECF /;

where V;E and F are the numbers of vertices, edges and faces of S \W . As each
face of a deep Voronoi cell has at most J edges, this implies

genus. yS/6 .1CJ=2/kS \Wk:

As we may assume that J is at least 2, this gives the second inequality. �
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Proposition 2.9 now follows immediately from Propositions 2.10 and 2.12.

Capped surfaces. We have constructed surfaces with bounded complexity in the
deep part. The complement of the deep part is contained in a union of solid tori by
the Margulis lemma, and we now explain how to cap off the surfaces in the deep
part with surfaces in the solid tori to produce bounded genus surfaces.

We will use the Margulis lemma and the thick-thin decomposition for finite
volume hyperbolic 3-manifolds, which we now review. Given a number � > 0, let
X� DMŒ�;1/ be the thick part of M , i.e., the union of all points x of M with
injM .x/> �. We shall refer to the closure of the complement of the thick part as
the thin part and denote it by T� DM nX�.

The Margulis lemma states that there is a constant �0 > 0, such that for any
compact hyperbolic 3-manifold, the thin part is a disjoint union of solid tori, and
each of these solid tori is a regular metric neighborhood of an embedded closed
geodesic of length less than �0. We shall call a number �0 for which this result
holds a Margulis constant for H3. If �0 is a Margulis constant for H3, then so is �
for any 0 < � < �0, and furthermore, given � and �0, there is a number ı > 0

such that Nı.T�/� T�0
. For the remainder of this section, we shall fix a pair of

numbers .�; �/ such that there are Margulis constants 0<�1<�<�2, a number ı
such that Nı.T�/� T�2

nT�1
, and �D 1

4
minf�1; ıg. We shall call .�; �/ a choice

of MV -constants for H3. This choice of constants ensures that the deep part W
is nonempty.

Let .�; �/ be a choice of MV -constants, and consider an �-regular Voronoi decom-
position of M . The fact that Nı.T�/�T�2

nT�1
means that we adjust the boundary

of T� by an arbitrarily small isotopy so that it is transverse to the Voronoi cells, and
we will assume that we have done this for the remainder of this section. Our choice
of � implies that the thick part X� is contained in the Voronoi cells in the deep part,
i.e., X� �

S
Wi2W Wi , so, in particular, @X� D @T� is contained in the deep part.

Furthermore, as � < ı, each deep Voronoi cell hits at most one component of T�.
Each boundary component of the surface St\X� is contained in T�, so St\X�

is a properly embedded surface in X�. We now bound the number of boundary
components of St \X� in terms of the number of polyhedral faces in the deep part,
kSt \Wk.

Proposition 2.13. Let .�; �/ be MV -constants, and let M be a compact hyperbolic
3-manifold with thin part T�, an �-regular Voronoi decomposition V with deep
part W , and a generic Morse function f . Let St be a polyhedral surface in M .
Then there is a constant J , depending only on �, such that

genus.St \X�/6 JkSt \Wk;
j@.St \X�/j6 2JkSt \Wk:
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Proof. The properly embedded surface St \X� is obtained from St \W by cutting
St \W along simple closed curves and discarding some connected components.
This does not increase the genus, which gives the first bound, using Proposition 2.12.

Each face C of a Voronoi cell is a totally geodesic convex polygon, and a
component of T� lifts to a convex set in the universal cover H3, so C \ T� is a
convex subset of C . Therefore C \ @T� consists either of a simple closed curve,
or a collection of properly embedded arcs which have at most two endpoints in
each edge of C , so there are at most as many arcs as the number of edges of C .
Therefore, the number of components of C \ @T� has at most (number of faces of
St \W) plus (number of edges of St \W) components, and this gives the second
bound, again using Proposition 2.12. �

We now wish to cap off the properly embedded surfaces St \X� with properly
embedded surfaces in T� to form closed surfaces. For each torus Ti in @T�, let Ui

be the subsurface consisting of @Ti \Mt . Let SCt D .S \X�/[
S

i Ui , and we
shall call the resulting closed surface the T -capped surface SCt . We now bound
the genus of the resulting T -capped surfaces.

Proposition 2.14. Let .�; �/ be MV -constants, and let M be a compact hyperbolic
3-manifold with thin part T�, an �-regular Voronoi decomposition V with deep
part W , and a generic Morse function f . Let St be a polyhedral surface in M ,
and let SCt be the corresponding T -capped surface. Then there is a constant K,
depending only on �, such that

genus.SCt /6K area.Ft /:

Furthermore, for any finite collection of generic points fuig in R, the corresponding
T -capped surfaces fSCui

g may be isotoped to be disjoint.

Proof. By Proposition 2.10, it suffices to bound the genus of the T -capped surface
in terms of the number of polyhedral faces of the surface in the deep part. We will
show

genus.SCt /6 .5J C 1/kSt \Wk;

where J is the constant from Proposition 2.3, which only depends on �.
Each surface Ui is a subsurface of a torus, and so consists of a union of planar

surfaces, together with at most one surface which is a torus with (possibly many)
boundary components.

Capping off components of St \X� with planar surfaces cannot increase the
genus by more than twice the number of boundary components, and capping off with
punctured tori increases the genus by at most the number of boundary components,
plus the number of punctured tori. As each Voronoi cell hits at most one component
of T�, there are at most kSt \Wk components of the Ui surfaces which may be
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punctured tori. This implies

genus.SCt /6 genus.St \X�/C 2j@.St \X�/jC kSt \Wk:

Using the bounds from Proposition 2.13, we obtain

genus.SCt /6 .5J C 1/kSt \Wk;

as required.
Finally, we show that for any finite collection of generic points fuig in R, we may

isotope the corresponding T -capped surfaces to be disjoint. To simplify notation,
given a generic point ui 2 R, we will write Mi and Si for the corresponding
polyhedral approximation and polyhedral surface determined by ui .

For any two distinct points ui < uj in R, the polyhedral approximation Mi is a
strict subset of Mj , so Si and Sj are disjoint normal surfaces. Let T be a single
solid torus component of T�. Take a small product neighborhood @T � Œ0; 1�, and
choose the parameterization such that @T � f0g is equal to @T , and the product
neighborhood is contained in T . Let Ui be the subsurface of @T given by @T \Mi .
Let UCi be the properly embedded surface in the product @T � Œ0; 1� given by
placing Ui at depth i=n, together with a product neighborhood of the boundary @Ui

connecting Ui to the boundary of Si , i.e.,

UCi D .Ui � fi=ng/[ .@Ui � Œ0; i=n�/:

As the submanifolds Mi are strictly nested, the subsurfaces Ui are also strictly
nested, i.e., Ui �Uj for i < j , and so the resulting surfaces Si[UCi are disjoint. �

Bounded handles. We now bound the number of handles between a pair of T-capped
surfaces SCi and SCj whose corresponding points in ui and uj in R bound an interval
containing a single cell splitter.

Proposition 2.15. Let .�; �/ be MV -constants and M be a hyperbolic 3-manifold
with an �-regular Voronoi decomposition V and a generic Morse function f WM !R.
Let u1<u2 be a pair of points in R, which bound an interval containing a single cell
splitter t . Let SC

1
and SC

2
be T -capped surfaces corresponding to the level sets for

u1 and u2, bounding regions P1 and P2, with P1 � P2. Then P2 is homeomorphic
to a manifold obtained from P1 by adding at most 60J 2 maxfkSi \Wkg handles,
where J is the constant from Proposition 2.3, which depend only on �.

We start by observing that attaching a compression body P to a 3-manifold Q

by a subsurface S of the upper boundary component of P , requires a number of
handles which is bounded in terms of the Heegaard genus of P , and the number of
boundary components of the attaching surface.

Proposition 2.16. Let Q be a compact 3-manifold with boundary and let RDQ[P ,
where P is a compression body of genus g, attached to Q by a homeomorphism
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along a (possibly disconnected) subsurface S contained in the upper boundary
component of P of genus g. Then R is homeomorphic to a 3-manifold obtained
from Q by the addition of at most .4 genus.P /C 2j@S j/ 1-and 2-handles, where
j@S j is the number of boundary components of S .

Proof. Recall that the genus of a disconnected surface with boundary is the sum
of the genus of each closed component obtained by capping off all boundary
components with discs. Therefore, the genus of S is at most the genus of P .
For a connected surface of genus g with b boundary components, cutting along
a nonseparating arc with endpoints in the same boundary component produces a
surface of genus g � 1 with bC 1 boundary components. A planar surface with
b boundary components may be cut into at most b discs by b � 1 nonseparating
arcs. Therefore we may choose at most 2gC b arcs which cut the surface S into at
most gCb discs. We can add a 1-handle to Q for each arc, and then a 2-handle for
each disc, to produce a manifold QC which is homeomorphic to Q union a regular
neighborhood of @P . We may then form R by adding at most g 2-handles. The
total number of 1- and 2-handles required is at most 4gC 2b. �

Proof of Proposition 2.15. Let V be the Voronoi cell corresponding to the single cell
splitter t contained in the interval Œu1;u2�. The surfaces SC

1
and SC

2
are parallel

everywhere, except in a regular neighborhood of V . If the Voronoi cell V is disjoint
from T�, then it is a ball, and is attached to P1 along a subsurface consisting
of a union of faces of V . Therefore the number of boundary components of the
attaching surface is at most J , where J is the constant from Proposition 2.3, so by
Proposition 2.16, P2 is obtained from P1 by attaching at most 2J handles.

If the Voronoi cell V intersects T�, then P2 is obtained from P1 by adding regions
of V n T�, which we shall refer to as the complementary regions, together with
regions of T�\.P2nP1/. The complementary regions may not be topological balls,
but Kobayashi and Rieck [2011] show that they are handlebodies of bounded genus.

Proposition 2.17 [Kobayashi and Rieck 2011]. Let � be a Margulis constant
for H3 and M be a finite volume hyperbolic 3-manifold; let 0 < � < �, and let
V be a regular Voronoi decomposition of M arising from a maximal collection of
�-separated points. Then there is a number G, depending only on � and �, such
that for any Voronoi cell Vi , there are at most G connected components of Vi \X�,
each of which is a handlebody of genus at most G, attached to T� by a surface with
at most G boundary components.

We state a simplified version of their result which suffices for our purposes. Their
stated result involves extra parameters d and R, but if d is chosen close to 0, then R

is close to �, and we obtain the result above. Their proof involves showing that in
the universal cover, for any point p in T�\Vi , projection to @T� along geodesic rays
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based at p gives a topological product structure to Vi\X� as .Vi\@T�/�I . An ex-
amination of their proof shows that we may choose GD 3J , where J is the constant
from Proposition 2.3. Then Proposition 2.16 implies that adding the complementary
regions of a Voronoi cell which intersects @T� requires at most 6G2D54J 2 handles.

However, if the Voronoi cell intersects a solid torus component T of T�, then
the surfaces SC

1
and SC

2
need not be parallel inside T , and so we now bound

the number of handles needed to add the region corresponding to .P2 nP1/\T .
If U2 is equal to all of @T , then the additional region is a solid torus attached
along @T n U1, so adding this region requires at most 4C 2j@U1j handles, by
Proposition 2.15. If U2 is not equal to all of @T , then this region is homeomorphic
to .U2 � Œ0; 1�/ n

�
U1 �

�
0; 1

2

��
, and so is homeomorphic to U2 � I , which is a

handlebody of genus at most j@U2j. The region is attached along U2, so adding
this region requires at most 4j@U2jC 2j@U1j handles, and so in either case, at most
4JkS2\WkC 2JkS1\Wk are required.

Therefore P2 may be constructed from P1 by adding at most

54J 2
C 4JkS2\WkC 2JkS1\Wk6 60J 2 maxfkSi \Wkg

handles, as required. �
The manifold M may be constructed by adding the Voronoi cells in the order

arising from the cell splitters ti in R. Choose a finite collection of generic points
fuig, so that each pair of adjacent cell splitters is separated by one of the ui , and
let fSCi g be the corresponding collection of T -capped surfaces. The linear width is
at most the largest genus of any surface in the collection fSCi g, plus the maximum
number of handles added by attaching a single Voronoi cell. Therefore the bounds
from Propositions 2.14 and 2.15 imply

linear width.M /6 .5J C 1/K.Morse area.M //C 60J 2K.Morse area.M //:

As J is at least 1, this gives

linear width.M /6 .66J 2K/Morse width.M /:

The constants J and K only depend on the choice of MV -constants, which may
be chosen independently of the hyperbolic 3-manifold M , and so this completes
the proof of the left-hand bound of Theorem 1.2.

3. Scharlemann–Thompson width bounds Morse area

We will show linear bounds for Morse area in terms of Scharlemann–Thompson
width, assuming the Pitts and Rubinstein result, Theorem 1.1; i.e., we will show the
right-hand bound of Theorem 1.2. This result is due to Gabai and Colding [2015,
Appendix A], using recent work of Colding and Minicozzi [2015], but we give a brief
description for the convenience of the reader, as they do not state this result explicitly.
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We will use properties of a refinement of linear width, known as thin position,
which we now describe. Let fHig be the collection of upper boundaries of compres-
sion bodies in the linear splitting, and let c.Hi/ be the complexity of the surface Hi ,
i.e., the sum of the genera of its connected components. We say that the complexity
of the linear splitting is the collection of integers fc.Hi/g, arranged in decreasing
order. A linear splitting which gives the minimum complexity of all possible linear
splittings in the lexicographic ordering on sets of integers is called a thin position
linear splitting. Scharlemann and Thompson [1994] showed that thin position linear
splittings have the following property.

Theorem 3.1 [Scharlemann and Thompson 1994]. Let H be a linear splitting that
is in thin position. Then every even surface is incompressible in M and the odd
surfaces form strongly irreducible Heegaard surfaces for the components of M cut
along the even surfaces.

If follows from [Freedman et al. 1983] that the incompressible surfaces may be
chosen to be disjoint least area minimal surfaces, and in fact the odd surfaces may
also be chosen to be disjoint minimal surfaces, possibly up to compression; see, for
example, [Lackenby 2006] or [Renard 2014] for a detailed statement of the result
in this case. In a hyperbolic manifold, the intrinsic curvature of a minimal surface
is at most �1, so the Gauss–Bonnet formula gives an upper bound for the area of
the minimal surface. Therefore the area of a minimal surface of genus g is at most
�2��.S/6 4�g.

We say that a hyperbolic 3-manifold M has least area boundary if its boundary
components are (possibly empty) least area minimal surfaces, and we say that a
Heegaard splitting H for M is minimal if it is isotopic to an unstable minimal
surface. The right-hand bound of Theorem 1.2 is a consequence of the following
result of Colding and Gabai [2015], which constructs bounded area foliations for a
pair of compression bodies with least area lower boundaries, sharing a common
minimal Heegaard splitting surface.

Theorem 3.2 [Colding and Gabai 2015]. Let M be a hyperbolic manifold, with
(possibly empty) least area boundary, with a minimal Heegaard splitting H of
genus g. Then, assuming Theorem 1.1, the manifold M has a (possibly singular)
foliation by compact leaves, containing the boundary surfaces as leaves, such that
each leaf has area at most 4�g.

As they do not state this explicitly in their paper, we give a brief outline for the
convenience of the reader.

Definition 3.3. A mean convex foliation on a Riemannian 3-manifold with boundary
is a smooth codimension-1 foliation, possibly with singularities of standard type,
such that each leaf is mean convex.
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In a 3-manifold, a foliation with singularities of “standard type” means that almost
all leaves are completely smooth (i.e., without any singularities). In particular, any
connected subset of the singular set is completely contained in a leaf. Furthermore,
the entire singular set is contained in finitely many (compact) embedded Lips-
chitz curves with cylinder singularities together with a countable set of spherical
singularities.

The following result is shown by Colding and Gabai [2015].

Theorem 3.4 [Colding and Gabai 2015, Appendix A]. Let † be an unstable min-
imal surface in a hyperbolic manifold M . Then there is a regular neighborhood
of † with a smooth mean convex product foliation †t , t 2 Œ��; ��, with nonminimal
boundary leaves †�� and †�.

In particular, each leaf in the foliation has area at most 4�g. As the boundary
leaves †�� and †� are nonminimal mean convex surfaces, we may apply the mean
curvature flow results of Colding and Minicozzi [2015], which show that the mean
curvature flow gives rise to a mean convex foliation with standard singularities. As
the mean curvature flow gives a foliation by surfaces of decreasing area, the only
possible singularities which may arise are disc compressions, 2-spheres collapsing
to a point or tori collapsing to circles. In particular, each nonsingular leaf bounds a
compression body in the interior of the compression body it is contained in.

If all leaves eventually collapse, then the compression body has empty lower
boundary, i.e., it is a handlebody, and this gives a mean convex foliation, and hence
area-decreasing foliation, of the handlebody. Otherwise, the mean curvature flow
limits to a stable minimal surface � whose components bound compression bodies
together with the lower boundary of the original compression body.

If the stable minimal surface � is not equal to the stable boundary of the com-
pression body, then it bounds a subcompression body with stable boundary, whose
standard Heegaard splitting is strongly irreducible, so we may apply the argument
again. Anderson [1985] and White [1987] showed that there are only finitely many
minimal surfaces of bounded genus in a compact Riemannian manifold, and so this
process may occur only finitely many times, resulting in a foliation of the entire
compression body. This completes the proof of Theorem 3.2.

Finally we deduce the right-hand bound of Theorem 1.2 from Theorem 3.2.

Proof of right-hand bound of Theorem 1.2. By Theorem 1.1, the irreducible Hee-
gaard surface for a hyperbolic 3-manifold M with stable boundary is either isotopic
to an unstable minimal surface †, to which we may apply Theorem 3.2 directly,
or isotopic to a regular neighborhood of a one-sided stable minimal surface union
a small tube parallel to one of the normal fibers. In the latter case, the Heegaard
surface bounds a handlebody on at least one side, and cutting along the stable one-
sided surface leaves a compression body homeomorphic to the Heegaard surface
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cut along the disc corresponding to the tube, where all boundary components are
stable minimal surfaces. As the standard Heegaard splitting of a compression body
is strongly irreducible, we may now apply Theorem 3.2 in this case as well. �
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RICCI TENSOR OF REAL HYPERSURFACES

MAYUKO KON

Let M be a real hypersurface of a complex space form Mn(c), c 6= 0, and
suppose that the structure vector field ξ is an eigen vector field of the Ricci
tensor S, which satisfies Sξ = βξ where β is a function. We show that if
(∇X S)Y is proportional to ξ for any vector fields X and Y orthogonal to ξ ,
then M is a Hopf hypersurface, and if it is perpendicular to ξ , then M is a
ruled real hypersurface.

1. Introduction

Takagi [1973] gave a classification of the homogeneous real hypersurface (see also
[Takagi 1975a; 1975b]). As a consequence of this result, the structure vector ξ
of any homogeneous real hypersurface in CPn is principal. If ξ satisfies this
property, then M is said to be a Hopf hypersurface. When the ambient manifold is
a complex hyperbolic space, Lohnherr [1998] (see also [Lohnherr and Reckziegel
1999]) discovered a homogeneous ruled real hypersurface in CH n that is not a Hopf
hypersurface, and further examples were given (see [Berndt and Brück 2001]). The
classification theorem for homogeneous real hypersurfaces in CH n , n ≥ 2, was
given by Berndt and Tamaru [2007].

When a real hypersurface is Hopf, fundamental formulas are simple. So many
classification theorems are given under that assumption (see, for example, [Nieber-
gall and Ryan 1997]). Kimura [1986] has given a classification of Hopf hypersur-
faces of CPn , n ≥ 2, with constant principal curvatures. He showed that a real
hypersurface in CPn with constant principal curvatures is a Hopf hypersurface if
and only if it is an open part of a homogeneous real hypersurface. A classification
theorem for Hopf hypersurfaces with constant principal curvatures in CH n , n ≥ 2,
was given by Berndt [1989].

On the other hand, the Ricci tensor of the real hypersurfaces is an interesting
subject. It is well known that any real hypersurface of Mn(c), c 6= 0, is not Einstein.
If the Ricci tensor S is of the form S(X, Y ) = ag(X, Y )+ bη(X)η(Y ), then the
real hypersurface is said to be pseudo-Einstein. The classification theorems for
pseudo-Einstein real hypersurfaces in a complex space form Mn(c) have been

MSC2010: primary 53C40; secondary 53C55, 53C25.
Keywords: real hypersurface, Ricci tensor.
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completed [Cecil and Ryan 1982; Kim and Ryan 2008; Kon 1979; Montiel 1985].
Ki [1989] showed that there are no real hypersurfaces with parallel Ricci tensor,
∇S = 0, in Mn(c), n ≥ 3. Several conditions that weaken the condition ∇S = 0
have been studied (see [Ki et al. 1990; Suh 1990]).

We focus on the Ricci tensor S and consider a condition Sξ = βξ , where β is a
function. We note that this condition contains not only Hopf hypersurfaces, Aξ =αξ ,
but also some non-Hopf hypersurfaces. For example, ruled hypersurfaces, which
are an important example of non-Hopf hypersurfaces, also satisfy Sξ = βξ . Under
this assumption, we study some Hopf hypersurfaces and ruled real hypersurfaces
according to the direction of a covariant differentiation of S.

Our main result is the following theorem:

Theorem 1.1. Let M be a connected real hypersurface of Mn(c), c 6= 0, and
suppose that the Ricci tensor S of M satisfies Sξ = βξ for some function β.

(1) If (∇X S)Y is proportional to the structure vector field ξ for any vector fields
X and Y orthogonal to ξ , then M is a Hopf hypersurface.

(2) If (∇X S)Y is perpendicular to the structure vector field ξ for any vector fields
X and Y orthogonal to the structure vector field ξ , then M is a ruled real
hypersurface.

When n = 2, the author gave a corresponding result in [Kon 2014].

2. Preliminaries

Let Mn(c) denote the complex space form of complex dimension n (real dimen-
sion 2n) with constant holomorphic sectional curvature 4c. We denote by J the
almost complex structure of Mn(c). The Hermitian metric of Mn(c) is denoted by G.

Let M be a real (2n−1)-dimensional hypersurface immersed in Mn(c). Through-
out this paper, we suppose that M is connected. We denote by g the Riemannian
metric induced on M from G. We take the unit normal vector field N of M in Mn(c).
For any vector field X tangent to M , we define φ, η and ξ by

J X = φX + η(X)N , J N =−ξ,

where φX is the tangential part of J X , φ is a tensor field of type (1,1), η is a
1-form, and ξ is the unit vector field on M . We call ξ the structure vector field. Then

φ2 X =−X + η(X)ξ, φξ = 0, η(φX)= 0

for any vector field X tangent to M . Moreover, we have

g(φX, Y )+g(X, φY )=0, η(X)=g(X, ξ), g(φX, φY )=g(X, Y )−η(X)η(Y ).

Thus (φ, ξ, η, g) defines an almost contact metric structure on M .
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We denote by ∇̃ the operator of covariant differentiation in Mn(c), and by ∇ the
operator of covariant differentiation in M determined by the induced metric. Then
the Gauss and Weingarten formulas are given respectively by

∇̃X Y =∇X Y + g(AX, Y )N , ∇̃X N =−AX,

for any vector fields X and Y tangent to M .
For the contact metric structure on M , we have

∇Xξ = φAX, (∇Xφ)Y = η(Y )AX − g(AX, Y )ξ.

We call A the shape operator of M . If the shape operator A of M satisfiesAξ=αξ
for some function α, then M is called a Hopf hypersurface. By the Codazzi equation,
we have the following result (see [Maeda 1976]).

Proposition A. Let M be a Hopf hypersurface in Mn(c), n ≥ 2. If X ⊥ ξ and
AX = λX , then α = g(Aξ, ξ) is constant and

(2λ−α)AφX = (λα+ 2c)φX.

We offer an important example of a non-Hopf hypersurface. Take a regular curve
γ in Mn(c)with tangent vector field X . At each point of γ there is a unique complex
projective or hyperbolic hyperplane cutting γ so as to be orthogonal to X and J X .
The union of these hyperplanes is called a ruled real hypersurface (see [Kimura
and Maeda 1989; Lohnherr and Reckziegel 1999; Niebergall and Ryan 1997]).

We remark that the shape operator A is η-parallel if it satisfies g((∇X A)Y, Z)= 0
for any X , Y and Z orthogonal to ξ .

We denote by R the Riemannian curvature tensor field of M . Then the equation
of Gauss is given by

R(X, Y )Z

= c{g(Y, Z)X − g(X, Z)Y + g(φY, Z)φX − g(φX, Z)φY − 2g(φX, Y )φZ}

+ g(AY, Z)AX − g(AX, Z)AY,

and the equation of Codazzi by

(∇X A)Y − (∇Y A)X = c{η(X)φY − η(Y )φX − 2g(φX, Y )ξ}.

From the equation of Gauss, the Ricci tensor S of M is given by

(1) g(SX, Y )= (2n+1)cg(X, Y )−3cη(X)η(Y )+ tr Ag(AX, Y )− g(AX, AY ),

where tr A is the trace of A. Taking a covariant differentiation, we have

(2) g((∇X S)Y, Z)=−3cg(Y, φAX)η(Z)−3cg(φAX, Z)η(Y )+(X trA)g(AY, Z)

+ trAg((∇X A)Y, Z)− g((∇X A)AY, Z)− g((∇X A)Y, AZ).
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Now we develop some lemmas needed to prove our main theorem. Suppose n≥3.

Lemma 2.1. Let M be a real hypersurface in a complex space form Mn(c), n ≥ 3,
c 6= 0. If there exists an orthonormal frame {ξ, e1, . . . , e2n−2} on a sufficiently small
neighborhood N of x ∈ M such that the shape operator A can be represented as

A =


α h1 0 · · · 0
h1 a1

0 a2
...

...
. . . 0

0 · · · 0 a2n−2

 ,
then we have

(aj − ak)g(∇ei ej , ek)− (ai − ak)g(∇ej ei , ek)= 0,(3)

(aj − a1)g(∇ei ej , e1)− (ai − a1)g(∇ej ei , e1)= h1(ai + aj )g(ei , φej ),(4)

h1g(∇ei ej , e1)− h1g(∇ej ei , e1)= {2c− 2ai aj +α(ai + aj )}g(φei , ej ),(5)

(ej ai )= (aj − ai )g(∇ei ej , ei ),(6)

(e1ai )= (a1− ai )g(∇ei e1, ei ),(7)

(a1− aj )g(∇ei e1, ej )+ (aj − ai )g(∇e1ei , ej )= ai h1g(ei , φej ),(8)

(ei h1)= {2c− 2a1ai +α(ai + a1)}g(ei , φe1)− h1g(∇e1ei , e1),(9)

(ei a1)= h1(2ai + a1)g(ei , φe1)+ (ai − a1)g(∇e1ei , e1),(10)

(ξai )= h1g(∇ei e1, ei ),(11)

h1g(∇ei e1, ej )+ (aj − ai )g(∇ξei , ej )= (c+ aiα− ai aj )g(ei , φej ),(12)

(ei h1)= (c+ aiα− a1ai + h2
1)g(ei , φe1)+ (ai − a1)g(∇ξei , e1),(13)

(eiα)= h1(α− 3ai )g(ei , φe1)− h1g(∇ξei , e1),(14)

(e1h1)= (ξa1),(15)

(e1α)= (ξh1),(16)

(a1− ai )g(∇ξe1, ei )− h1g(∇e1e1, ei )= (c+ a1α− a1ai − h2
1)g(ei , φe1),(17)

for any i, j ≥ 2, i 6= j .

Proof. By the equation of Codazzi, we have

g((∇ei A)e1− (∇e1 A)ei , ej )= 0,

where i, j = 2, . . . , 2n− 2. On the other hand, we have

g((∇ei A)e1− (∇e1 A)ei , ej )

= g(∇ei (Ae1)− A∇ei e1−∇e1(Aei )+ A∇e1ei , ej )

= (a1− aj )g(∇ei e1, ej )+ (aj − ai )g(∇e1ei , ej )+ ai h1g(φei , ej ).
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Thus we obtain (8). We obtain the other results through similar computations. �

We remark that these equations hold in the case that M is a Hopf hypersurface,
i.e., h1 = 0. When n = 2, we showed the corresponding result in [Kon 2014].

We define the subspace Lx ⊂ Tx(M) as the smallest subspace that contains ξ
and is invariant under the shape operator A. Then M is Hopf if and only if Lx is
one-dimensional at each point x .

Lemma 2.2. Let M be a real hypersurface of Mn(c). If the Ricci tensor S of M
satisfies Sξ = βξ for some function β, then dim Lx ≤ 2 at each point x of Mn(c).

Proof. By (1), we have

0= g(Sξ, Y )=−g(A2ξ, Y )

for any Y orthogonal to ξ and Aξ . So A2ξ is spanned by ξ and Aξ . Thus we see
that dim Lx ≤ 2. �

Suppose that M is not a Hopf hypersurface and that Sξ =βξ . By Lemma 2.2, we
can take an orthonormal frame {ξ, e1, . . . , e2n−2}, locally, such that A is of the form

A =


α h1 0
h1 a1

a2
. . .

0 a2n−2

 ,
where h1= g(Ae1, ξ), ai = g(Aei , ei ) for i=1, . . . , 2n−2, g(Aei , ej )=0 for i 6= j
and α = g(Aξ, ξ). By (1), we obtain

Sξ = (2n− 2)cξ + (tr A)(h1e1+αξ)− A(h1e1+αξ)

= (tr A−α− a1)h1e1+{(2n− 2)c+ (tr A)α− h2
1−α

2
}ξ = βξ.

So we see that
trA = α+ a1, a2+ · · ·+ a2n−2 = 0.

Moreover, (1) implies that the Ricci tensor S can be represented as

S =


β 0
λ1

. . .

0 λ2n−2

 ,
where β and λi satisfy

β = (2n− 2)c+ (αa1− h2
1), λ1 = (2n+ 1)c+ (αa1− h2

1),

λj = (2n+ 1)c+ tr A · aj − a2
j , j = 2, . . . , 2n− 2.
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3. Real hypersurfaces with η-parallel Ricci tensor

In this section, we consider the additional condition that the Ricci operator S is
η-parallel, that is,

g((∇X S)Y, Z)= 0

for any vector fields X , Y and Z orthogonal to ξ . This is equivalent to the condition
that (∇X S)Y is proportional to ξ [Suh 1990].

Theorem 3.1. Let M be a real hypersurface of Mn(c), c 6= 0, with η-parallel Ricci
tensor. If the Ricci tensor S of M satisfies Sξ = βξ for some function β, then M is
a Hopf hypersurface.

Before proving Theorem 3.1, we need the following lemma.

Lemma 3.2. Let M be a real hypersurface of Mn(c), c 6= 0, with η-parallel Ricci
tensor. If the Ricci tensor S of M satisfies Sξ =βξ for some function β, then we have

g((R(W, X)S)Y, Z)=−g(SφAX, Z)g(φAW, Y )− g(SφAX, Y )g(φAW, Z)

+ g(SφAW, Z)g(φAX, Y )+ g(SφAW, Y )g(φAX, Z)

− g((∇ξ S)Y, Z)g((φA+ Aφ)X,W )

for any X, Y , Z and W orthogonal to ξ .

Proof. Since S is η-parallel, we have

g((R(W, X)S)Y, Z)

= g(R(W, X)SY, Z)− g(R(W, X)Y, SZ)

= g(∇W∇X SY −∇X∇W SY −∇[W,X ]SY, Z)

− g(∇W∇X Y −∇X∇W Y −∇[W,X ]Y, SZ)

=−g((∇X S)Y,∇W Z)+ g(∇W (S∇X Y ), Z)+ g((∇W S)Y,∇X Z)

− g(∇X (S∇W Y ), Z)− g((∇[W,X ]S)Y, Z)− g(∇W∇Y , SZ)

+ g(∇X∇W Y, SZ)

=−g((∇X S)Y, ξ)g(ξ,∇W Z)+ g((∇W S)∇X Y, Z)

+ g((∇W S)Y, ξ)g(ξ,∇X Z)− g((∇X S)∇W Y, Z)

− g((∇ξ S)Y, Z)g(ξ, [W, X ])

=−g(SφAX, Y )g(φAW, Z)+ g(SφAW, Z)g(φAX, Y )

+ g(SφAW, Y )g(φAX, Z)− g(SφAX, Z)g(φAW, Y )

− g((∇ξ S)Y, Z)g((φA+ Aφ)X,W ). �

From Lemma 3.2 we obtain the following:
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Lemma 3.3. Let M be a real hypersurface of Mn(c), c 6= 0, with η-parallel Ricci
tensor. Suppose that the Ricci tensor S of M satisfies Sξ = βξ for some function β.
If SY = λY and if Y is orthogonal to ξ , then we have

g((∇ξ S)Y, Y )g((φA+ Aφ)X,W )= 0

for any X , Y and W orthogonal to ξ .

Proof of Theorem 3.1.
In the following, we suppose that M is not a Hopf hypersurface. We work in an

open set where h1 6= 0.

Case (I): First we consider the case g((∇ξ S)Y, Y )= 0.

Lemma 3.4. β, λ1, . . . , λ2n−2 are constant.

Proof. Since the Ricci tensor S is η-parallel and since g((∇ξ S)Y, Y )= 0, we have

0= g((∇Z S)Y, Y )= g(∇Z SY, Y )− g(S∇Z Y, Y )= Zλ

for any tangent vector field Z. So we see that λ1, . . . , λ2n−2 are constant. On the
other hand, since β = λ1− 3c, we see that β is also constant. �

Lemma 3.5. If λi 6= λj , i, j = 1, . . . , 2n−2, then we have g(∇X ei , ej )= 0 for any
X orthogonal to ξ .

Proof. Since we have Sei = λi ei and Sej = λj ej and since S is η-parallel, we obtain

0= g((∇X S)ei , ej )= (λi − λj )g(∇X ei , ej ). �

If λ1=· · ·=λ2n−2=λ, then M is pseudo-Einstein, i.e., SX=λX+(β−λ)η(X)ξ ,
and so it is a Hopf hypersurface (see [Kon 1979]).

Suppose that M is non-Hopf and that there exist λt and λj , t, j ≥ 2, satisfying
λ1 6= λt and λt 6= λj . By Lemma 3.5,

g(∇j∇t et , ej )=−g(∇et et ,∇ej ej )

=−g(∇et et , ξ)(ξ,∇ej ej )−
∑

k

g(∇et et , ek)g(ek,∇ej ej )

=−g(et , φAet)g(φAej , ej )= 0,

g(∇t∇j et , ej )=−g(∇ej et ,∇et ej )=−g(∇ej et , ξ)g(ξ,∇et eg)

=−g(et , φAej )g(φAet , ej )=−aj at g(et , φej )g(φet , ej ).

On the other hand, from (8),

(a1− at)g(∇ej e1, et)+ (at − aj )g(∇e1ej , et)+ aj h1g(φej , et)= 0.

From Lemma 3.5, we have g(∇ej e1, et)= 0, g(∇e1ej , et)= 0. Since h1 6= 0,

aj g(φej , et)= 0,
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from which we obtain
g(∇et∇ej et , ej )= 0.

Moreover, we have

g(∇[ej ,et ]et , ej )= g(∇ξet , ej )g(ξ, [ej , et ])

= g(∇ξet , ej )(−g(φAej , et)+ g(φAet , ej ))

= g(∇ξet , ej )(at − aj )g(φet , ej )

= g(∇ξet , ej )at g(φet , ej ).

Using (12), we see that

(c+ ajα− aj at)g(φej , et)+ h1g(∇ej e1, et)+ (at − aj )g(∇ξej , et)= 0.

From these equations, we obtain

cg(φej , et)
2
+ at g(φej , et)g(∇ξej , et)= 0.

Hence we have
g(∇[ej ,et ]et , ej )=−cg(φej , et)

2.

Therefore,
g(R(ej , et)et , ej )= cg(φej , et)

2.

On the other hand, the equation of Gauss implies

g(R(ej , et)et , ej )= c+ 3cg(φej , et)
2
+ at aj .

From these equations, we have

c(1+ 2g(φej , et)
2)+ at aj = 0.

Sine c 6= 0, we see that at 6= 0 and aj 6= 0. Thus g(φej , et) = 0 and c+ at aj = 0.
So we can represent A as

A =



α h1

h1 a1

a
. . .

a
b
. . .

b


by setting a = aj , b = at and taking a suitable permutation of {e2, . . . , e2n−2}.
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Suppose there exist j and t such that g(φej , e1) 6= 0 and g(φet , e1) 6= 0. Then
φej and φet satisfy

φej =
∑

k

g(φej , ek)ek + g(φej , e1)e1, Aek = aek,

φet =
∑

l

g(φet , el)el + g(φet , e1)e1, Ael = bel .

So we have
0= g(φej , φet)= g(φej , e1)g(φet , e1),

from which we see that g(φej , e1)= 0 or g(φet , e1)= 0, and hence Aφe1 = aφe1

or Aφe1 = bφe1.
When Aφe1 = aφe1, we have Aφet = bφet . By (4),

(b− a1)g(∇etφet , e1)− (b− a1)g(∇φet et , e1)+ 2h1bg(φet , φet)= 0.

Thus we obtain b = 0, which contradicts c + ab = 0 and c 6= 0. By a similar
computation, the case Aφe1 = bφe1 does not occur.

Next we consider the case λ2=· · ·=λ2n−2 6=λ1. We set λ=λj , j=2, . . . , 2n−2.
From Lemma 3.5, we have g(∇X e1, ei )= 0, i ≥ 2, for any X orthogonal to ξ .

By (4) and (5),

h1(ai + aj )g(φei , ej )= 0, (2c− 2ai aj +α(ai + aj ))g(φei , ej )= 0.

Since aj satisfies
λ= (2n+ 1)c+ tr A · aj − a2

j ,

we can represent A as

A =



α h1

h1 a1

a
. . .

a
b
. . .

b


by taking a suitable permutation of {e2, . . . , e2n−2}.

There exist i and j satisfying g(φei , ej ) 6= 0. Therefore, using h1 6= 0,

ai + aj = 0, 2c− 2ai aj +α(ai + aj )= 0.

We notice that tr A = a1+ α and
∑2n−2

j=2 aj = ka+ lb = 0, where k and l are the
multiplicities of a and b, respectively.
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When ai = aj = a, then we have ai + aj = 2a = 0. Combining this with the
above equations, we obtain b = 0 and c = 0. This is a contradiction. Similarly, the
case ai = aj = b does not occur.

Next, when ai = a, aj = b and a = b, we have a = b = 0 and c = 0. This is a
contradiction.

Finally we consider the case ai = a, aj = b and a 6= b. Then we have a=−b 6= 0.
Since ka + lb = 0, we obtain k = l. This contradicts the fact that M is an odd-
dimensional real hypersurface.

Case (II): Next we consider the case

(18) g((φA+ Aφ)X,W )= 0

for any X and W orthogonal to ξ .
Since {ξ, φe1, . . . , φe2n−2} is an orthonormal basis of the tangent space, we have

trA = g(Aξ, ξ)+
2n−2∑
i=1

g(Aφei , φei )

= α−

2n−2∑
i=1

g(φAei , φei )= α−

2n−2∑
i=1

g(Aei , ei ).

Since tr A = α+
∑2n−2

i=1 g(Aei , ei ), we obtain
∑2n−2

i=1 g(Aei , ei )= 0 and tr A = α.
On the other hand, from trA= a1+α, we have a1 = 0. Substituting X = e1 in (18),
we see that g(Aφe1,W )= 0 for any W orthogonal to ξ . Since

g(Aφe1, ξ)= g(φe1, Aξ)= 0,

we have Aφe1 = 0. Without loss of generality, we can set φe1 = e2. From (13) and
(17), we obtain

(e2h1)= c+ h2
1,(19)

(c− h2
1)+ h1g(∇e1e2, e1)= 0.(20)

On the other hand, since S is η-parallel, putting X = Y = e1 and Z = e2 into (2),
we have

0= trAg((∇e1 A)e1, e2)− g((∇e1 A)Ae1, e2)= h2
1g(e1,∇e1e2).

Since h1 6= 0, we have g(∇e1e2, e1) = 0. Combining this with (20), we see that
h2

1 = c. This contradicts (19), finishing the proof. �

We remark that Suh [1990] and Maeda [2013] classified Hopf hypersurfaces of
nonflat complex space forms with η-parallel Ricci tensor.
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4. Ruled real hypersurfaces

In the previous sections, under the condition that the Ricci tensor S of M satisfies
Sξ =βξ , we gave sufficient conditions for M to be a Hopf hypersurface with respect
to the covariant derivative of the Ricci tensor of S. The purpose of this section is to
give a condition on the Ricci tensor for M to be a ruled real hypersurface.

Theorem 4.1. Let M be a real hypersurface of Mn(c), c 6= 0. If the Ricci tensor S
of M satisfies Sξ = βξ for some function β and if g((∇X S)Y, ξ)= 0 for any vector
fields X and Y orthogonal to ξ , then M is a ruled real hypersurface.

Proof. To prove Theorem 4.1, we need the following proposition:

Proposition 4.2. Let M be a real hypersurface of Mn(c), c 6=0. If the Ricci tensor S
of M satisfies Sξ = βξ for some function β and if g((∇X S)Y, ξ)= 0 for any vector
fields X and Y orthogonal to ξ , then M is not Hopf.

Proof. Suppose that M is a Hopf hypersurface. Then we have Aξ = αξ , and hence
Sξ = βξ . We note that α is constant. Therefore, we have

g((∇X S)Y, ξ)= g((∇X S)ξ, Y )

= g(∇X Sξ, Y )− g(SφAX, Y )

= βg(φAX, Y )− g(φAX, SY )

for any X and Y orthogonal to ξ . We take an orthonormal basis {ξ, e1, . . . , e2n−2}

that satisfies e2i = φe2i−1, i = 1, . . . , n− 1, and set Aet = at et , t = 1, . . . , 2n− 2.
Then we have Aφet = atφet since M is Hopf. Then the Ricci operator S satisfies
Sξ = βξ and Set = λt et , t = 1, . . . , 2n− 2, where

β = (2n− 2)c+ tr A ·α−α2, λt = (2n+ 1)c+ tr A · at − a2
t .

Thus we obtain

0= (β − λt)g(φAX, et)=−(β − λt)g(X, Aφet)

for any X orthogonal to ξ . Since Aξ = αξ , we have g(Aφet , ξ)= 0. From these
equations, we have:

Lemma 4.3. If β 6= λt , then Aφet = 0, that is, āt = 0.

We suppose β 6= λt . Then, from (1), we have

λt = g(Sφet , φet)= (2n+ 1)c.

Using Proposition A and c 6= 0, we have α 6= 0 and

at =−
2c
α
.



114 MAYUKO KON

If β 6= λt and β 6= λt = g(Sφet , φet), then we have at = at = 0. This is a
contradiction. Thus we obtain:

Lemma 4.4. If β 6= λt , then β = λt = (2n+ 1)c.

Since M is not Einstein, there exists a t such that β 6= λt . So we see that λt

satisfies β = λt = λt or β = λt 6= λt .
When β = λt = λ̄t , since β = (2n+ 1)c, we have

0= at(tr A− at).

So we obtain at = 0 or at = tr A. If at = 0, then āt =−2c/α. There exists an s that
satisfies λs 6= β, and hence as =−2c/α. Thus we have

β 6= λs = (2n+ 1)c+ tr A
(
−2c
α

)
−

(
−

2c
α

)2
.

Thus λ̄t = λs 6= β. This is a contradiction. So we see that at = tr A 6= 0. In the
following, we set a = at = tr A. Since at = āt = tr A, we have

(2a−α)a = (αa+ 2c).

Thus a satisfies a2
−αa−c= 0, and hence a turns to be constant. In the following,

we set a1 =−2c/α and ā1 = a2 = 0.
Next we compute g(R(e1, e2)e2, e1). By the equation of Gauss,

g(R(e1, e2)e2, e1)= g(R(e1, φe1)φe1, e1)= 4c.

Using (7), a1g(∇e2e1, e2)= 0. Since a1 6= 0, we have g(∇e2e2, e1)= 0. Moreover,

g(∇e2e2, e2)= 0, g(∇e2e2, ξ)=−g(e2, φAe2)= 0.

When k ≥ 3, by (6),
ak g(∇e2e2, ek)= 0.

When ak 6= 0, we have g(∇e2e2, ek)= 0. By (10), g(∇e1e1, e2)= 0. Moreover,

g(∇e1e1, e1)= 0, g(∇e1e1, ξ)= 0.

Since k ≥ 3, by (10) and the fact that a1 is constant,

(a1− ak)g(∇e1ek, e1)= 0.

By a1 6= 0, if ak = 0, then g(∇e1e1, ek)= 0. Thus we have

2n−2∑
k=1

g(∇e1e1, ek)g(ek,∇e2e2)= 0.
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So we have

g(∇e1∇e2e2, e1)= e1g(∇e2e2, e1)− g(∇e2e2,∇e1e1)

=−

∑
k

g(∇e2e2, ek)g(ek,∇e1e1)= 0,

g(∇e2∇e1e2, e1)= e2g(∇e1e2, e1)− g(∇e1e2,∇e2e1)=−g(∇e1φe1,∇e2e1)

= g(∇e1e1, φ∇e2e1)= g(∇e1e1,∇e2e2)= 0,

and

g(∇[e1,e2]e2, e1)

= g(∇ξe2, e1)g(ξ, [e1, e2])+
∑
k≥3

g(∇ke2, e1)g(ek, [e1, e2])

=−a1g(∇ξe2, e1)+
∑
k≥3

g(∇ek e2, e1)g(ek,∇e1e2)−
∑
k≥3

g(∇ek e2, e1)g(ek,∇e2e1).

By (13),
a1g(∇ξe2, e1)= c.

Using (4), we have

g(∇ek e2, e1)=
ak−a1

a1
g(∇e2e1, ek).

On the other hand, by (8),

g(∇ek e2, e1)=
ak
a1

g(∇e1e2, ek).

So we obtain∑
k≥3

g(∇ek e2, e1)(ek,∇e1e2)−
∑
k≥3

g(∇ek e2, e1)g(ek,∇e2e1)

=

∑ (ak−a1)

a1
g(∇e2e1, ek)g(ek,∇e1e2)−

∑ ak
a1

g(∇e1e2, ek)(ek,∇e2e1)

=−

∑
g(∇e2e1, ek)g(ek,∇e1e2)

=−

∑
g(∇e2e1, φek)g(φek,∇e1e2)

=

∑
g(∇e2e2, ek)g(ek,∇e1e1)= 0.

Thus we have
g(R(e1, e2)e2, e1)= c,

from which we obtain c = 0. This is a contradiction. Hence we see that M is not
Hopf. Thus we have proven Proposition 4.2. �
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From Proposition 4.2, if g((∇X S)Y, ξ)= 0 for X, Y ∈ H , then M is not Hopf. In
the following, we suppose that M is not Hopf, that is, h1 6= 0. Then, by Lemma 2.2,
we can take an orthonormal basis {ξ, e1, . . . , e2n−2} such that

(21) Aξ = αξ + h1e1, Ae1 = a1e1+ h1ξ, Aej = aj ej , j = 2, . . . , 2n− 2,

trA = α+ a1, a2+ · · ·+ a2n−2 = 0.

Then we have

β = g(Sξ, ξ)= (2n− 2)c+ (a1α− h2
1),

λ1 = g(Se1, e1)= (2n+ 1)c+ (a1α− h2
1),

λj = g(Sej , ej )= (2n+ 1)c+ tr A · aj − a2
j , j ≥ 2.

By the assumption, for any X and Y orthogonal to ξ ,

0= g((∇X S)ξ, Y )= g(∇X Sξ, Y )− g(SφAX, Y ).

We set SY = λY . Then we have

0= (β − λ)g(φAX, Y ).

Since β 6= λ1, we see that

g(φAX, e1)=−g(AX, φe1)=−g(X, Aφe1)= 0

for any X ∈ H . We also have g(ξ, Aφe1) = 0. Thus we have Aφe1 = 0. In the
following, we set φe1 = e2. Then we have

0= (β − λ2)g(φAe1, e2)= (−3c+ a1α− h2
1)a1.

Lemma 4.5. If h1 6= 0, then a2 = 0. Moreover, a1 = 0 or a1α− h2
1 = 3c.

Case (I): Suppose a1 = 0.
Since a1 = a2 = 0, (13) implies

(e2h1)= c+ h2
1.

If β = (2n+ 1)c = λ2, then h2
1 =−3c and e2h1 = 0. Then we have h2

1 =−c and
c = 0. This is a contradiction. So we have:

Lemma 4.6. If a1 = 0, then β 6= (2n+ 1)c = λ2.

For any X ∈ H , we see that

(β − λk)g(φAX, ek)= 0, k ≥ 3.

If β 6= λk , then g(Aφek, X) = 0, and moreover g(Aφek, ξ) = 0. This shows that
Aφek = 0 and that φek is a principal vector of A. We set

λ̄k = g(Sφek, φek).
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Since a1α− h2
1 6= 3c, we have λ̄k = (2n+ 1)c 6= β. Then, from

(β − λ̄k)g(φAX, φek)= 0,

we have g(Aek, X)= 0. We also have g(Aek, ξ)= 0 since k ≥ 3. Hence we obtain
Aek = 0 for ek satisfying β 6= λk .

We next consider the case β = λj for some j ≥ 3. If β = λj = λi , then

β = (2n+ 1)c+ tr A · aj − a2
j = (2n+ 1)c+ tr A · ai − a2

i .

Therefore, at most two aj are different. By this equation, we have

0= (aj − ai )(tr A− (aj + ai )).

If aj = ai = a for all j and i , then (21) implies
∑

aj = 0. Thus we have all aj = 0,
j = 2, . . . , 2n− 2. Since a1 = 0, M is a ruled real hypersurface.

Let us suppose that two aj are different. We set

Ta = {X | AX = aX, X ∈ Hx}, Tb = {X | AX = bX, X ∈ Hx},

where β = λa = λb, a 6= b. We notice tr A= a+b. If a = 0 or b= 0, then, by (21),
a = b = 0. This contradicts the assumption that a 6= b. So we obtain a 6= 0 and
b 6= 0. We notice that dim Ta + dim Tb is even number.

Let ei , ej ∈ Ta . By (8) and (12),

−ag(∇ei e1, ej )+ ah1g(φei , ej )= 0,

(c+ aα− a2)g(φei , ej )+ h1g(∇ei e1, ej )= 0.

From these, we obtain

(c+ aα− a2
+ h2

1)g(φei , ej )= 0.

If there exist ei and ej such that g(φei , ej ) 6= 0, then

c+ aα− a2
+ h2

1 = 0.

On the other hand, we have

β = (2n− 2)c− h2
1 = (2n+ 1)c+ trA · a− a2.

Since tr A = α+ a1 = α, we have

3c+αa− a2
+ h2

1 = 0.

Therefore, we have 2c = 0. This contradicts c 6= 0. Hence g(φei , ej )= 0 for all ei

and ej of Ta . So we have φTa ⊂ Tb. Similarly, we also have φTb⊂ Ta . Consequently,
we see that

φTa = Tb, φTb = Ta.
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If dim Ta = dim Tb = 1, then φTa = Tb. We see that if Aej = aej , then Aφej = bφej

and a+b= tr A. From (21), we have a+b= 0 and tr A= 0. Therefore, we obtain
tr A = α = 0.

We will prove that there is no real hypersurface that satisfies

a+ b = 0, α = 0, a1 = 0, a2 = 0, trA = 0,

and also
a2
− h2

1 = 3c.

By (5),

(22) (2c+ 2a2)g(φei , φei )− h1g(∇eiφei , e1)+ h1g(∇φei ei , e1)= 0.

On the other hand, we have

g(∇eiφei , e1)= g(φ∇ei ei , e1)=−g(∇ei ei , e2).

By (6),
(a2− ai )g(∇ei e2, ei )− (e2ai )= 0.

Using a2 = 0 and ai = a, we obtain

ag(∇ei ei , e2)= (e2a).

From this equation and a 6= 0, we have

g(∇ei ei , e2)=
(e2a)

a
.

On the other hand,

g(∇φei ei , e1)= g(φ∇φei ei , φe1)= g(∇φeiφei , e2).

By (6), we obtain
(a2+ a)g(∇φei e2, φei )+ (e2a)= 0,

and hence
g(∇φeiφei , e2)=

(e2a)
a

.

Substituting these equations into (22), we get

2(c+ a2)+ h1
(e2a)

a
+ h1

(e2a)
a
= 0.

Thus we have

(23) (c+ a2)a =−h1(e2a).

On the other hand, since a2
− h2

1 = 3c,

a(e2a)= h1(e2h1).
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Since a1 = a2 = 0, by (13), we have

e2h1 = c+ h2
1,

from which we obtain

e2a =
h1

a
(c+ h2

1).

Substituting this into (23), we get

(c+ a2)a =−
h2

1

a
(c+ h2

1)=−
1
a
(a2
− 3c)(a2

− 2c).

Thus we obtain

(a2
− c)2+ 2c2

= 0.

So we have c = 0. This is a contradiction. Consequently, if a1 = 0, then M is a
ruled real hypersurface.

Case (II): Suppose a1 6= 0.
We notice that a2 = 0 and αa1h2

1 = 3c by Lemma 4.5. So we have

(24) (Xa1)α+ a1(Xα)− 2h1(Xh1)= 0

for any tangent vector field X .

Lemma 4.7. ∇e1e1 and ∇e2e2 are perpendicular to ξ , e1 and e2.

Proof. By (14),

(e2α)= αh1+ h1g(∇ξe1, e2).

By (10),

(e2a1)= a1h1+ a1g(∇e1e1, e2).

Substituting these into (24), we get

2a1αh1+αa1g(∇e1e1, e2)+ a1h1g(∇ξe1, e2)− 2h1(e2h1)= 0.

By (9) and (13),

(e2h1)= (2c+αa1)+ h1g(∇e1e1, e2)= (5c+ h2
1)+ h1g(∇e1e1, e2),

(e2h1)= (c+ h2
1)+ a1g(∇ξe1, e2).

From these equations and (24), we have

2h1(a1α− h2
1− 3c)+ (a1α− h2

1)g(∇e1e1, e2)= 0.
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Since a1α− h2
1 = 3c, we have

g(∇e1e1, e2)= 0.

By (7), a1 6= 0 and a2 = 0,

g(∇e2e2, e1)= 0.

Moreover, we have

g(∇e2e2, ξ)=−g(e2, φAe2)= 0, g(∇e1e1, ξ)=−g(e1, φAe1)= 0.

These equations prove our lemma. �

Lemma 4.8. Suppose j ≥ 3. If aj = 0, then g(∇e1e1, ej ) = 0. If aj 6= 0, then
g(∇e2e2, ej )= 0.

Proof. By (6), we have

aj g(∇e2e2, ej )= 0, j ≥ 3.

If aj 6= 0, then g(∇e2e2, ej )= 0 for j ≥ 3. Suppose aj = 0, j ≥ 3. Then, by (10),
(14), (9) and (13),

(ej a1)= a1g(∇e1e1, ej ), (ejα)= h1g(∇ξe1, ej ),

(ej h1)= h1g(∇e1e1, ej ), (ej h1)= a1g(∇ξe1, ej ).

Substituting these into (24), we get

0= (ej a1)α+ a1(ejα)− 2h1(ej h1)

= αa1g(∇e1e1, ej )+ a1h1g(∇ξe1, ej )− h2
1g(∇e1e1, ej )− h1a1g(∇ξe1, ej )

= (αa1− h2
1)g(∇e1e1, ej ).

Since a1α− h2
1 = 3c, we have our lemma. �

Using these lemmas, we compute g(R(e1, e2)e2, e1). We note that e2 = φe1 and
a2 = 0. First, we have

g(∇e1∇e2e2, e1)= e1g(∇e2e2, e1)− g(∇e2e2,∇e1e1)

=−g(∇e2e2, ξ)g(ξ,∇e1e1)− g(∇e2e2, e1)g(e1,∇e1e1)

− g(∇e2e2, e2)g(e2,∇e1e1)−
∑
k≥3

g(∇e2e2, ej )g(ej ,∇e1e1)= 0.
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Next, we have

g(∇e2∇e1e2, e1)

= e2g(∇e1e2, e1)− g(∇e1e2,∇e2e1)

=−g(∇e1e2, ξ)g(ξ,∇e2e1)− g(∇e1e2, e1)g(e1,∇e2e1)

− g(∇e1e2, ξ)g(ξ,∇e2e1)−
∑
k≥3

g(∇e1e2, ek)g(ek,∇e2e1)

=−

∑
k≥3

g(∇e1e2, ek)g(ek,∇e2e1)=−
∑
k≥3

g(∇e1φe1, ek)g(φek, φ∇e2e1)

=

∑
k≥3

g(∇e1e1, φek)g(φek,∇e2e2)=
∑
l≥3

g(∇e1e1, el)g(el,∇e2e2)= 0.

Moreover, we obtain

g(∇[e1,e2]e2, e1)= g(∇ξe2, e1)g(ξ, [e1, e2])+ g(∇e1e2, e1)g(e1, [e1, e2])

+ g(∇e2e2, e1)g(e2.[e1, e2])+
∑
k≥3

g(∇ek e2, e1)g(ek, [e1, e2])

= g(∇ξe2, e1)g(ξ,∇e1e2)

+

∑
k≥3

(g(∇ek e2, e1)g(ek,∇e1e2)− g(∇ek e2, e1)g(ek,∇e2e1)).

On the other hand, by (8), when j ≥ 3,

a1g(∇ej e2, e1)− aj g(∇e1e2, ej )= 0,

(a1− aj )g(∇e2e1, ej )+ aj g(∇e1e2, ej )= 0.

Thus, if a1 = aj , then we see that aj 6= 0 and hence g(∇e1e2, ej )= 0 since a1 6= 0.
Next, when a1 6= aj we have

g(∇e2e1, ej )=−
aj

(a1− aj )
g(∇e1e2, ej ).

On the other hand,

g(∇ej e2, e1)=
aj

a1
g(∇e1e2, ej )=−

(a1− aj )

a1
g(∇e2e1, ej ).

So we have∑
k≥3

(g(∇ek e2, e1)g(ek,∇e1e2)− g(∇ek e2, e1)g(ek,∇e2e1)

=−

∑
k≥3

g(∇e2e1, ek)g(ek,∇e1e2)=−
∑
k≥3

g(φ∇e2e1, ek)g(φek,∇e1e2)

=

∑
l≥3

g(∇e1e1, el)g(el,∇e2e2)= 0.
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Thus we obtain

g(∇[e1,e2]e2, e1)= g(∇ξe2, e1)g(ξ,∇e1e2)

=−g(∇ξe2, e1)g(φAe1, e2)=−a1g(∇ξe2, e1),

and so
g(R(e1, e2)e2, e1)= a1g(∇ξe2, e1).

On the other hand, by (9),

−(2c+αa1)+ h1g(∇e1e2, e1)+ (e2h1)= 0.

Using Lemma 4.7 and a1α− h2
1 = 3c, we have

(e2h1)= 2c+αa1 = 5c+ h2
1.

By (13),
−(c+ h2

1)+ a1g(∇ξe2, e1)+ e2h1 = 0,

from which we obtain
a1g(∇ξe2, e1)=−4c,

and so
g(R(e1, e2)e2, e1)=−4c.

On the other hand, the equation of Gauss implies

g(R(e1, e2)e2, e1)= 4c,

and hence c = 0. This is a contradiction.
Consequently, M is a ruled real hypersurface.
From (2), any ruled real hypersurface satisfies g((∇X S)Y, ξ)= 0 for any X and Y

orthogonal to ξ , and Sξ = βξ for some function β. �

From Theorems 3.1 and 4.1, we have Theorem 1.1.
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MONOTONICITY FORMULAE AND VANISHING THEOREMS

JINTANG LI

We study Cartan–Hadamard manifolds with pinching conditions. Using
the stress-energy tensor, we establish some monotonicity formulae for vec-
tor bundle-valued p-forms and pluriharmonic maps between Kähler mani-
folds. Some vanishing theorems follow immediately from the monotonicity
formulae under suitable growth conditions on the energy of p-forms and
pluriharmonic maps.

1. Introduction

Harmonic maps between Riemannian manifolds are defined as the critical points of
energy functionals. They are important in both classical and modern differential
geometry. As is well-known, any harmonic map φ : Rn

→ Sm with finite energy
must be constant [Garber et al. 1979]. This result has been generalized by Sealey
[1982] to harmonic maps from a space form of nonpositive sectional curvature
to any Riemannian manifold with finite energy. In 1980, Baird and Eells [1981]
introduced and studied the stress-energy tensor for maps between Riemannian
manifolds. Sealey [≥ 2016] introduced the stress-energy tensor for vector bundle-
valued p-forms and established some vanishing theorems for L2 harmonic p-forms.
The stress-energy tensors have become a useful tool for investigating the energy
behavior of vector bundle-valued p-forms in various problems. Dong and Lin
[2014] introduced the notion of J-invariant p-forms on Kähler manifolds. They
established a monotonicity formula by means of the stress-energy tensor. Using
this monotonicity formula they proved the following vanishing theorem for vector
bundle-valued J-invariant p-forms satisyfing the conservation law:

Theorem A. Let M be a complex n-dimensional (n ≥ 3) complete Kähler manifold
with radial curvature Kr satisfying −a2

≤ Kr ≤ −b2 < 0 with a ≥ b > 0 and
(2n − 1)b − 2pa ≥ 0. Let ξ : E → M be a smooth Riemannian vector bundle

This research is supported by the Natural Science Foundation of Fujian Province of China (No.
2014J01022) and the Fundamental Research Funds for the Central Universities (No. 20720150008).
MSC2010: primary 53C43; secondary 53C55.
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over (M, g). If ω ∈ Ap(ξ) is J-invariant and satisfies the conservation law, that is,
div Sω = 0, then

1
rC

1

∫
Br1 (x0)

|ω|2 dv ≤ 1
rC

2

∫
Br2 (x0)

|ω|2 dv

for any 0< r1 < r2, where C = 2n− 2pa/b and Br (x0)⊆ M is a geodesic ball of
radius r centered at x0 in M. In particular, if

1
rC

∫
Br (x0)

|ω|2 dv→ 0 as r→+∞,

then ω = 0.

We shall establish a monotonicity formula for vector bundle-valued J-invariant
p-forms satisfying the conservation law by means of the stress-energy tensor too.
Using this monotonicity formula we can improve Theorem A as follows:

Theorem 1. Let M be a complex n-dimensional (n ≥ 3) complete Kähler manifold
with radial curvature Kr satisfying −a2

≤ Kr ≤ −b2 < 0 with a ≥ b > 0 and
(n− 1)b− (p− 1)a ≥ 0. Let ξ : E→ M be a smooth Riemannian vector bundle
over (M, g). If ω ∈ Ap(ξ) is J-invariant and satisfies the conservation law, that is,
div Sω = 0, then

1
sinhC(ar1)

∫
Br1 (x0)

cosh(ar)
[ 1

2 |ω|
2
−

1
p |i∂/∂rω|

2] dv

≤
1

sinhC(ar2)

∫
Br2 (x0)

cosh(ar)
[ 1

2 |ω|
2
−

1
p |i∂/∂rω|

2] dv

for any 0< r1 < r2, where C = [2(n− 2)b− 2(p− 2)a]/a. In particular, if∫
Br (x0)
|ω|2 dv

ea(C−1)r → 0 as r→+∞,

then ω = 0. (See Section 2 for the definition of i∂/∂rω.)

For the case of Cartan–Hadamard manifolds with some pinching conditions,
Xin [1986] established a monotonicity formula for vector bundle-valued p-forms
satisfying the conservation law by means of the stress-energy tensor. Using this
monotonicity formula, Xin proved the following vanishing theorem:

Theorem B. Let M be an n-dimensional (n ≥ 3) complete Riemannian manifold
with radial curvature Kr satisfying −a2

≤ Kr ≤ −b2 < 0 with a ≥ b > 0 and
(n− 1)b− 2pa ≥ 0. Let ξ : E→ M be a smooth Riemannian vector bundle over
(M, g). If ω ∈ Ap(ξ) satisfies the conservation law, that is, div Sω = 0, and

1
rC

∫
Br (x0)

|ω|2 dv→ 0 as r→+∞,

where C = n− 2pa/b, then ω = 0.
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We shall establish a monotonicity formula for vector bundle-valued p-forms
satisfying the conservation law by means of the stress-energy tensor. Using this
monotonicity formula we can improve Theorem B as follows:

Theorem 2. Let M be an n-dimensional (n ≥ 3) complete Riemannian manifold
with radial curvature Kr satisfying −a2

≤ Kr ≤ −b2 < 0 with a ≥ b > 0 and
(n− 1)b− (2p− 1)a ≥ 0. Let ξ : E→ M be a smooth Riemannian vector bundle
over (M, g). If ω ∈ Ap(ξ) satisfies the conservation law, that is, div Sω = 0, then

1
sinhC(ar1)

∫
Br1 (x0)

cosh(ar)
[ 1

2 |ω|
2
−

1
2p |i∂/∂rω|

2] dv

≤
1

sinhC(ar2)

∫
Br2 (x0)

cosh(ar)
[ 1

2 |ω|
2
−

1
2p |i∂/∂rω|

2] dv

for any 0 < r1 < r2, where C = [(n − 2)b− (2p− 2)a]/a and Br (x0) ⊆ M is a
geodesic ball of radius r centered at x0 in M. In particular, if∫

Br (x0)
|ω|2 dv

ea(C−1)r → 0 as r→+∞,

then ω = 0.

Siu [1980] introduced and studied pluriharmonic maps from a compact Kähler
manifold to a Kähler manifold. When the domain of such a map is complete, Dong
[2013] proved the following:

Theorem C. Let M be a complex n-dimensional (n ≥ 2) complete Kähler manifold
with radial curvature Kr satisfying Kr ≤−b2 < 0 with b > 0. Suppose φ : M→ N
is either a pluriharmonic map between Kähler manifolds or a harmonic map into a
Kähler manifold with strongly seminegative curvature. Then∫

Br1 (x0)
|∂̄φ|2 dv

r2(n−1)
1

≤

∫
Br2 (x0)

|∂̄φ|2 dv

r2(n−1)
2

and

∫
Br1 (x0)

|∂φ|2 dv

r2(n−1)
1

≤

∫
Br2 (x0)

|∂φ|2 dv

r2(n−1)
2

for any 0< r1 < r2. In particular, if∫
Br (x0)
|dφ|2 dv

r (2n−2) → 0 as r→+∞,

then φ is constant.

We can also improve Theorem C as follows:

Theorem 3. Let M be a complex n-dimensional (n ≥ 2) complete Kähler manifold
with radial curvature Kr satisfying Kr ≤−b2 < 0 with b > 0. Suppose φ : M→ N
is either a pluriharmonic map between Kähler manifolds or a harmonic map into a
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Kähler manifold with strongly seminegative curvature. Then∫
Br1 (x0)

cosh(br)|∂̄φ|2 dv

sinh2(n−1)(br1)
≤

∫
Br2 (x0)

cosh(br)|∂̄φ|2 dv

sinh2(n−1)(br2)
and ∫

Br1 (x0)
cosh(br)|∂φ|2 dv

sinh2(n−1)(br1)
≤

∫
Br2 (x0)

cosh(br)|∂φ|2 dv

sinh2(n−1)(br2)

for any 0< r1 < r2. In particular, if∫
Br (x0)
|dφ|2 dv

e(2n−3)br → 0 as r→+∞,

then φ is constant.

2. Preliminaries

Let (M, g) be an n-dimensional complete Riemannian manifold. Let ξ : E→ M
be a smooth Riemannian vector bundle over (M, g). Let Ap(ξ)= 0(3pT ∗M ⊗ E)
be the space of smooth p-forms on M with values in the vector bundle ξ : E→ M .
For ω ∈ Ap(ξ), we define the energy functional of ω by

E(ω)=
∫

M

1
2 |ω|

2 dvg.

The stress-energy tensor associated with E(ω) is defined by

(2-1) Sω(X, Y )= 1
2 |ω|

2g(X, Y )− (ω�ω)(X, Y ),

where ω�ω denotes the 2-tensor

(ω�ω)(X, Y )= 〈iXω, iYω〉.

Here 〈 · , · 〉 is the induced inner product on Ap−1(ξ) and iXω is the interior multi-
plication by the vector field X given by

(iXω)(Y1, . . . , Yp−1)= ω(X, Y1, . . . , Yp−1)

for ω ∈ Ap(ξ) and any vector fields Y1, . . . , Yp−1 on M .
Let D be any bounded domain of M with C1 boundary. We have the integral

formula [Dong 2013]

(2-2)
∫
∂D

Sω(X, ν) dv =
∫

D
{〈Sω,∇θX 〉+ (div Sω)(X)} dv,

where ν is the unit normal vector field along ∂D in D, and θX is the dual 1-form
of X and ∇θX is given by

(2-3) (∇θX )(Y, Z)= g(∇Y X, Z).



MONOTONICITY FORMULAE AND VANISHING THEOREMS 129

Proposition 2.1 [Greene and Wu 1979]. Let (M, g) be a complete Riemannian
manifold with a pole x0 and let r be the distance function relative to x0. Denote
by Kr the radial curvature of M. If −a2

≤ Kr ≤−b2 < 0, where a ≥ b > 0, then

b coth(br)[g− dr ⊗ dr ] ≤ Hess(r)≤ a coth(ar)[g− dr ⊗ dr ],

where Hess(r) is the Hessian of the distance function r .

3. Monotonicity formulae for Kähler manifolds

A Hermitian metric on a complex manifold M is a Riemannian metric g such
that g(JX, JY ) = g(X, Y ) for any X, Y ∈ TM , where J denotes the complex
structure of M . We say that (M, g) is a Kähler manifold if ∇J = 0, where ∇
is the Levi-Civita connection of g. A p-form ω ∈ Ap(ξ) is called J-invariant if
(ω � ω)(JX, JY ) = (ω � ω)(X, Y ). Now we consider J-invariant p-forms on
Kähler manifolds and can prove the following:

Theorem 3.1. Let M be a complex n-dimensional (n≥3) complete Kähler manifold
with radial curvature Kr satisfying −a2

≤ Kr ≤ −b2 < 0 with a ≥ b > 0 and
(n − 1)b ≥ (p − 1)a. Let ξ : E → M be a smooth Riemannian vector bundle
over (M, g). If ω ∈ Ap(ξ) is J-invariant and satisfies the conservation law, that is,
div Sω = 0, then

1
sinhC(ar1)

∫
Br1 (x0)

cosh(ar)
[ 1

2 |ω|
2
−

1
p |i∂/∂rω|

2] dv

≤
1

sinhC(ar2)

∫
Br2 (x0)

cosh(ar)
[ 1

2 |ω|
2
−

1
p |i∂/∂rω|

2] dv

for any 0 < r1 < r2, where C = [2(n− 2)b− 2(p− 2)a]/a and Br (x0) ⊆ M is a
geodesic ball of radius r centered at x0 in M.

Proof. If X = grad(ψ) is the gradient of a smooth function ψ on M , then θX = dψ
and ∇θX = Hess(ψ). Let ψ = cosh(ar). It is easy to see that

(3-1) Hess(cosh(ar))= a2 cosh(ar) dr ⊗ dr + a sinh(ar)Hess(r).

Let {ei , Jei } with en = ∂/∂r be an orthonormal frame field around x0 ∈M . Then,
for ω ∈ Ap(ξ), we have

(3-2) |ω|2 = 1
p

[
(ω�ω)

(
∂

∂r
,
∂

∂r

)
+ (ω�ω)

(
J ∂
∂r
, J ∂
∂r

)
+

n−1∑
λ=1

(ω�ω)(eλ, eλ)+
n−1∑
λ=1

(ω�ω)(Jeλ, Jeλ)
]

=
2
p

{
|i∂/∂rω|

2
+

n−1∑
λ=1

(ω�ω)(eλ, eλ)
}
.
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It follows from (3-1), (3-2) and Proposition 2.1 that

(3-3) 〈Sω,∇θX 〉

=
1
2 |ω|

2
〈g,Hess(ch(ar))〉−〈(ω�ω),Hess(ch(ar))〉

=
1
p |i∂/∂rω|

2
{∑

λ

a sinh(ar)Hess(r)(eλ,eλ)

+

∑
λ

a sinh(ar)Hess(r)(Jeλ, Jeλ)

−(p−1)a2 cosh(ar)− pa sinh(ar)Hess(r)
(
∂

∂r
,
∂

∂r

)
−(p−1)a sinh(ar)Hess(r)

(
J ∂
∂r
, J ∂
∂r

)}
+

∑
λ

1
p (ω�ω)(eλ,eλ)

{
a2 cosh(ar)+a sinh(ar)Hess(r)

(
J ∂
∂r
, J ∂
∂r

)
+

∑
µ

a sinh(ar)Hess(r)(eµ,eµ)+
∑
µ

a sinh(ar)Hess(r)(Jeµ, Jeµ)

− p Hess(cosh(ar))(eλ,eλ)− p Hess(cosh(ar))(Jeλ, Jeλ)
}

≥
1
p |i∂/∂rω|

2
{2(n−1)ab sinh(ar) coth(br)−2(p−1)a2 cosh(ar)}

+

∑
λ

1
p (ω�ω)(eλ,eλ){2(n−2)ab sinh(ar) coth(br)

−2(p−2)a2 cosh(ar)}

≥
1
p |i∂/∂rω|

2a cosh(ar){2(n−1)b−2(p−1)a}

+

∑
λ

1
p (ω�ω)(eλ,eλ)a cosh(ar){2(n−2)b−2(p−2)a}

≥

∑
λ

1
p (ω�ω)(eλ,eλ)a cosh(ar){2(n−2)b−2(p−2)a}.

On the other hand, we have

(3-4) Sω
(
X, ∂
∂r

)
=

1
2 |ω|

2a sinh(ar)− a sinh(ar)(ω�ω)
(
∂

∂r
,
∂

∂r

)
≤
[1

2 |ω|
2
−

1
p |i∂/∂rω|

2]a sinh(ar).

Substituting (3-3) and (3-4) into (2-2), we obtain

(3-5)
∫
∂Br (x0)

[ 1
2 |ω|

2
−

1
p |i∂/∂rω|

2]a sinh(ar) ds

≥

∫
Br (x0)

[1
2 |ω|

2
−

1
p |i∂/∂rω|

2]
[2(n− 2)b− 2(p− 2)a]a cosh(ar) dv.
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It can be seen from (3-5) that

(3-6)
cosh(ar)

∫
∂Br (x0)

[ 1
2 |ω|

2
−

1
p |i∂/∂rω|

2
]

ds∫
Br (x0)

[ 1
2 |ω|

2− 1
p |i∂/∂rω|2

]
cosh(ar) dv

≥
aC cosh(ar)

sinh(ar)
,

where C = [2(n− 2)b− 2(p− 2)a]/a.
Thus we obtain from (3-6)

(3-7) d
dr

ln
{∫

Br (x0)

[ 1
2 |ω|

2
−

1
p |i∂/∂rω|

2] cosh(ar) dv
}
≥

d
dr
{C ln[sinh(ar)]}.

Integrating (3-7) over [r1, r2], we have

(3-8) ln
∫

Br2 (x0)

[ 1
2 |ω|

2
−

1
p |i∂/∂rω|

2] cosh(ar) dv

− ln
∫

Br1 (x0)

[ 1
2 |ω|

2
−

1
p |i∂/∂rω|

2] cosh(ar) dv

≥ C ln[sinh(ar2)] −C ln[sinh(ar1)]. �

Now we can deduce the following vanishing theorem from the above monotonicity
formula.

Theorem 3.2. Let M be a complex n-dimensional (n≥3) complete Kähler manifold
with radial curvature Kr satisfying −a2

≤ Kr ≤ −b2 < 0 with a ≥ b > 0 and
(n− 1)b ≥ (p− 1)a. Let ξ : E→ M be a smooth Riemannian vector bundle over
(M, g). If the J-invariant p-form ω ∈ Ap(ξ) satisfies the conservation law, that is,
div Sω = 0, and ∫

Br (x0)
|ω|2 dv

ea(C−1)r → 0 as r→+∞,

where C = [2(n− 2)b− 2(p− 2)a]/a, then ω ≡ 0.

Proof. Case 1. If 1≥ (n− 1)b− (p− 1)a ≥ 0, i.e., C ≤ 1, it is obvious that ω ≡ 0.

Case 2. If (n − 1)b− (p− 1)a > 1, i.e., C > 1, using the fact coth(ar)→ 1 as
r→+∞ and our condition, we have

(3-9) 1
sinhC(ar2)

∫
Br2 (x0)

cosh(ar)
[ 1

2 |ω|
2
−

1
p |i∂/∂rω|

2] dv

≤

cosh(ar2)
∫

Br2 (x0)
1
2 |ω|

2 dv

sinhC(ar2)

=

∫
Br2 (x0)

1
2 |ω|

2 dv

ea(C−1)r2

[ ear2

sinh(ar2)

]C−1
coth(ar2)

→ 0 as r2→+∞.
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It follows from (3-9) and Theorem 3.1 that

(3-10) 1
2 |ω|

2
−

1
p |i∂/∂rω|

2
= 0, i.e., (ω�ω)(eλ, eλ)= 0.

Set X = r∂/∂r . It is easy to see from (3-10), (3-4), (3-3), (3-2) and (2-2) that

(3-11)
∫
∂Br (x0)

−
p−1

p
r |i∂/∂rω|

2 ds

=

∫
∂Br (x0)

[ r
2 |ω|

2
−r |i∂/∂rω|

2] ds

=

∫
∂Br (x0)

Sω
(
X, ∂
∂r

)
ds

=
1
p |i∂/∂rω|

2
{∑
λ

r Hess(r)(eλ,eλ)+
∑
λ

r Hess(r)
(
Jeλ, Jeλ

)
−(p−1)− pr Hess(r)

(
∂

∂r
,
∂

∂r

)
−(p−1)r Hess(r)

(
J ∂
∂r
, J ∂
∂r

)}
≥

∫
Br (x0)

1
p [2(n−1)br coth(br)− p+1−(p−1)ar coth(ar)]|i∂/∂rω|

2 dv

≥

∫
Br (x0)

1
p

{
(n−1)br coth(br)− p+1

+[(n−1)br−(p−1)ar ] coth(br)
}
|i∂/∂rω|

2 dv

≥

∫
Br (x0)

1
p [(n−1)br coth(br)− p+1]|i∂/∂rω|

2 dv

≥

∫
Br (x0)

1
p [n− p]|i∂/∂rω|

2 dv.

Using our condition (n− 1)b− (p− 1)a ≥ 0, we get n− p ≥ 0, which, together
with (3-11) and x coth x > 1 for x > 0, yields |i∂/∂rω|

2
= 0. �

4. Monotonicity formulae for Riemannian manifolds

Theorem 4.1. Let M be an n-dimensional (n ≥ 3) complete Riemannian manifold
with radial curvature Kr satisfying −a2

≤ Kr ≤ −b2 < 0 with a ≥ b > 0 and
(n− 1)b− (2p− 1)a ≥ 0. Let ξ : E→ M be a smooth Riemannian vector bundle
over (M, g). If ω ∈ Ap(ξ) satisfies the conservation law, that is, div Sω = 0, then

1
sinhC(ar1)

∫
Br1 (x0)

cosh(ar)
[ 1

2 |ω|
2
−

1
2p |i∂/∂rω|

2] dv

≤
1

sinhC(ar2)

∫
Br2 (x0)

cosh(ar)
[ 1

2 |ω|
2
−

1
2p |i∂/∂rω|

2] dv
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for any 0 < r1 < r2, where C = [(n − 2)b− (2p− 2)a]/a and Br (x0) ⊆ M is a
geodesic ball of radius r centered at x0 in M.

Proof. Set X = sinh(ar)∂/∂r , where ∂/∂r denotes the unit radial vector. Obviously,
the unit normal vector to ∂Br (x0) is ∂/∂r . Let {eλ, ∂/∂r} be an orthonormal frame
field on Br (x0), where λ= 1, . . . , n− 1. Then we have that

(4-1) ∇∂/∂r X = a cosh(ar) ∂
∂r

and ∇eλ X = sinh(ar)
∑
µ

hλµeµ,

where the −hλµ are the components of the second fundamental form of ∂Br (x0)

in Br (x0).
On the other hand, we have

(4-2) Hess(r)(eλ, eµ)= 〈eλ,∇∂/∂r eµ〉 = 〈eλ, hµνeν〉 = hλµ.

We can choose an orthonormal frame field {eλ} on ∂Br (x0) such that hλµ=δλµhλλ.
It follows from (4-1), (4-2), (2-1) and (2-3) that

(4-3) 〈Sω,∇θX 〉

=
1

2p |i∂/∂rω|
2
{

a cosh(ar)+sinh(ar)
∑
λ

hλλ−2pa cosh(ar)
}

+

n−1∑
λ=1

1
2p (ω�ω)(eλ, eλ)

{
a cosh(ar)+sinh(ar)

∑
µ

hνν−2p sinh(ar)hλλ

}
≥
[ 1

2 |ω|
2
−

1
2p |i∂/∂rω|

2]aC cosh(ar).

On the other hand, we have

(4-4) Sω
(
X, ∂
∂r

)
≤
[ 1

2 |ω|
2
−

1
2p |i∂/∂rω|

2] sinh(ar).

Substituting (4-3) and (4-4) into (2-2), we obtain

(4-5)
∫
∂Br (x0)

[1
2 |ω|

2
−

1
2p |i∂/∂rω|

2] sinh(ar) ds

≥

∫
Br (x0)

[1
2 |ω|

2
−

1
2p |i∂/∂rω|

2]aC cosh(ar) dv.

The proof is completed using (4-5) along with the same arguments used in the
proof of Theorem 3.1. �

Similarly, using Theorem 4.1 along with the same arguments used in the proof
of Theorem 3.2, we get the following vanishing theorem:

Theorem 4.2. Let M be an n-dimensional (n ≥ 3) complete Riemannian manifold
with radial curvature Kr satisfying −a2

≤ Kr ≤ −b2 < 0 with a ≥ b > 0 and
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(n− 1)b− (2p− 1)a ≥ 0. Let ξ : E→ M be a smooth Riemannian vector bundle
over (M, g). If ω ∈ Ap(ξ) satisfies the conservation law, that is, div Sω = 0, and∫

Br (x0)
|ω|2 dv

ea(C−1)r → 0 as r→+∞,

where C = [(n− 2)b− (2p− 2)a]/a, then ω ≡ 0.

5. Monotonicity formulae for pluriharmonic maps

Let M be a complex n-dimensional (n≥ 3) Kähler manifold. The complex structure
of M gives a decomposition of TMC into tangent vectors of types (1,0) and (0,1), i.e,

TMC
= T 1,0M ⊕ T 0,1M.

Let φ : M→ N be a smooth map between Kähler manifolds. Then we have the
following bundle maps:

∂φ : T 1,0 M→ T 1,0 N , ∂̄φ : T 0,1 M→ T 1,0 N ,

∂φ : T 1,0 M→ T 0,1 N , ∂φ : T 0,1 M→ T 0,1 N .

A direct computation gives

(5-1) |∂̄φ|2= 1
4

n∑
i=1

{
〈dφ(ei ),dφ(ei )〉+〈dφ(Jei ),dφ(Jei )〉−2〈dφ(Jei ), J ′dφ(ei )〉

}
and

(5-2) |∂φ|2= 1
4

n∑
i=1

{
〈dφ(ei ),dφ(ei )〉+〈dφ(Jei ),dφ(Jei )〉+2〈dφ(Jei ), J ′dφ(ei )〉

}
,

where {ei , Jei } is an orthonormal frame field on M , and J and J ′ are the complex
structures of M and N , respectively.

We introduce two 1-forms σ, τ ∈ A1(φ−1T N ) given by

σ(X)= dφ(X)+ J ′dφ(JX)
2

and τ(X)= dφ(X)− J ′dφ(JX)
2

for any X ∈ TM .

Lemma 5.1 [Dong 2013]. σ , τ are J-invariant, and |σ |2 = 2|∂̄φ|2, |τ |2 = 2|∂φ|2.

Siu [1980] introduced pluriharmonic maps. A smooth map φ : M→ N between
Kähler manifolds is called pluriharmonic if (∇dφ)(X, Y )= 0, for all X, Y ∈ T 1,0 M .

Lemma 5.2 [Dong 2013]. If a map φ : M → N between Kähler manifolds is
pluriharmonic, then we have div Sσ = div Sτ = 0, where Sσ = 1

2 |σ |
2g− σ � σ and

Sτ = 1
2 |τ |

2g− τ � τ .
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In this section, we will establish monotonicity formulae for pluriharmonic maps
and harmonic maps.

Theorem 5.3. Let M be a complex n-dimensional (n≥2) complete Kähler manifold
with radial curvature Kr satisfying Kr ≤−b2 < 0 with b > 0. Suppose φ : M→ N
is either a pluriharmonic map between Kähler manifolds or a harmonic map into a
Kähler manifold with strongly seminegative curvature. Then∫

Br1 (x0)
cosh(br)|∂̄φ|2 dv

sinh2(n−1)(br1)
≤

∫
Br2 (x0)

cosh(br)|∂̄φ|2 dv

sinh2(n−1)(br2)

and ∫
Br1 (x0)

cosh(br)|∂φ|2 dv

sinh2(n−1)(br1)
≤

∫
Br2 (x0)

cosh(br)|∂φ|2 dv

sinh2(n−1)(br2)

for any 0< r1 < r2.

Proof. When φ : M → N is a pluriharmonic map between Kähler manifolds, it
follows from Lemmas 5.1 and 5.2 and (3-4), in which p = 1 and ω = σ , that

(5-3) 〈Sσ ,∇θX 〉

≥ |i∂/∂rσ |
22(n− 1)b2 cosh(br)+ (σ � σ)(eλ, eλ)2(n− 1)b2 cosh(br)

= (n− 1)b2 cosh(br)|σ |2 = 2(n− 1)b2 cosh(br)|∂̄φ|2.

On the other hand, we have

(5-4) Sσ (X, v)≤ b sinh(br)|∂̄φ|2.

Substituting (5-3) and (5-4) into (2-2) yields

(5-5)
∫
∂Br

b sinh(br)|∂̄φ|2 ds ≥
∫

Br

2(n− 1)b2 cosh(br)|∂̄φ|2 dv.

When φ : M → N is a harmonic map into a Kähler manifold with strongly
seminegative curvature, we have

∫
Br
(div Sσ )(X) dv =

∫
Br
(div Sτ )(X) dv ≥ 0 [Dong

2013]. Then φ also satisfies the integral formula (5-5).
The proof is completed using (5-5) and the same arguments used in the proof of

Theorem 3.1. �

Similarly, using Theorem 5.3 along with the same arguments used in the proof
of Theorem 3.2, we get the following theorem:

Theorem 5.4. Let M be a complex n-dimensional (n≥2) complete Kähler manifold
with radial curvature Kr satisfying Kr ≤−b2 < 0 with b > 0. Suppose φ : M→ N
is either a pluriharmonic map between Kähler manifolds or a harmonic map into a
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Kähler manifold with strongly seminegative curvature. If∫
Br (x0)
|∂̄φ|2 dv

e(2n−3)br → 0
(

resp.

∫
Br (x0)
|∂φ|2 dv

e(2n−3)br → 0
)

as r→+∞

then φ is holomorphic (resp. antiholomorphic). In particular, if∫
Br (x0)
|dφ|2 dv

e(2n−3)br → 0 as r→+∞,

then φ is constant.
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JET SCHEMES OF THE CLOSURE OF NILPOTENT ORBITS

ANNE MOREAU AND RUPERT WEI TZE YU

We study in this paper the jet schemes of the closure of nilpotent orbits in
a finite-dimensional complex reductive Lie algebra. For the nilpotent cone,
which is the closure of the regular nilpotent orbit, all the jet schemes are
irreducible. This was first observed by Eisenbud and Frenkel, and follows
from a strong result of Mustat,ă (2001). Using induction and restriction of
“little” nilpotent orbits in reductive Lie algebras, we show that for a large
number of nilpotent orbits, the jet schemes of their closures are reducible.
As a consequence, we obtain certain geometric properties of these nilpotent
orbit closures.
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1. Introduction

Throughout this paper, the ground field will be the field C of complex numbers. We
shall work with the Zariski topology, and by variety we mean a reduced, irreducible,
and separated scheme of finite type over C.

For X a scheme of finite type over C and m ∈N, we denote by Jm(X) the m-th
jet scheme of X . It is a scheme of finite type over C whose C-valued points are
naturally in bijection with the C[t]/(tm+1)-valued points of X ; see, e.g., [Mustaţă
2001; Ein and Mustaţă 2009; Ishii 2011]. We have J0(X)' X and J1(X)' TX ,
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where TX is the total tangent bundle of X ; see Section 2 for more details about
generalities on jet schemes. From Nash [1995], it is known that the geometry of
the jet schemes is deeply related to the singularities of X . As an illustration of
that phenomenon, we have the following result, first conjectured by Eisenbud and
Frenkel [Mustaţă 2001, Introduction], which will be important for us.

Theorem 1 [Mustaţă 2001, Theorem 1]. Let X be an irreducible scheme of finite
type over C. If X is locally a complete intersection, then Jm(X) is irreducible for
every m ∈ N if and only if X has rational singularities.

According to Kolchin [1973], in contrast to the above theorem, the arc space
J∞(X) = lim

←−−
Jm(X) of X is always irreducible when X is irreducible. In this

paper, we shall be interested in the irreducibility of the jet schemes for the closure
of nilpotent orbits in a complex reductive Lie algebra.

Let G be a complex connected reductive algebraic group, g its Lie algebra,
and N(g) the nilpotent cone of g. It is the subscheme of g associated to the
augmentation ideal of C[g]G. It is a finite union of nilpotent G-orbits, and there is
a unique nilpotent orbit of g, called the regular nilpotent orbit and denoted by Oreg,
such that N(g)=Oreg.

According to Kostant [1963], the nilpotent cone is a complete intersection which
is irreducible, reduced, and normal. Furthermore, by [Hesselink 1976], it has
rational singularities. Hence by Theorem 1, the jet scheme Jm(N(g)) is irreducible
for every m > 1. In fact, by [Mustaţă 2001, Propositions 1.4 and 1.5], Jm(N(g))
is also a complete intersection which is reduced for every m > 1.

In [op. cit., Appendix], Eisenbud and Frenkel used these results to extend certain
results of Kostant [1963] in the setting of jet schemes. In particular, they proved that
C[Jm(g)] is free over the ring C[Jm(g)]

Jm(G) of Jm(G)-invariants of C[Jm(g)].
Other nilpotent orbit closures do not share these geometric properties in general.

Indeed, according to a recent result of Namikawa [2013], for a nonzero and non-
regular nilpotent orbit O, O is not a complete intersection. In addition, O does not
always have rational singularities since it is not always normal; see, e.g., [Levasseur
and Smith 1988; Kraft and Procesi 1982; Kraft 1989; Broer 1998; Sommers 2003].

Thus, it is quite natural to ask the following question.

Question 1. Let O be a nilpotent orbit of g, and m ∈ N∗. Is Jm(O) irreducible?

Answering Question 1 is the main purpose of this paper. For the zero orbit and
the regular orbit, the answer is positive for every m ∈ N. Outside these extreme
cases, we will see that these jet schemes are rarely irreducible.

Motivations. Since O is not a complete intersection for O nonzero and nonregular,
Theorem 1 cannot be applied directly to answer Question 1. Very recently, Brion
and Fu [2015] gave another proof of Namikawa’s result, which is more uniform and
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slightly shorter. An interesting question, posed by Michel Brion to the first author,
is whether jet schemes can be used to provide another proof of Namikawa’s result.

Let us explain how we can tackle this problem using jet schemes. Let O be a
nilpotent orbit of g. The singular locus of O is exactly O \O. This follows from
[Kaledin 2006, Lemma 1.4; Panyushev 1991]; see also [Henderson 2014, Section 2]
for a recent review. Moreover, we have

codimO(O \O)> 2.

For the nilpotent cone, we have precisely codimN(g)(N(g) \Oreg) = 2, and the
equality N(g)reg =Oreg is a consequence of [Kostant 1963, Theorem 9] (thus the
notation Oreg does not bear any confusion).

So, if we assume that O is a complete intersection, then O is normal and so it
has rational singularities by [Hinich 1991] or [Panyushev 1991]. Hence, in that
event, Mustat,ă’s Theorem implies that Jm(O) is irreducible for every m > 1. So
if we can show that Jm(O) is reducible for some m > 1, then we would obtain a
contradiction.1 The above was our original motivation to look into Question 1.

It may happen that a variety X is not a complete intersection, that X has rational
singularities, and that nonetheless Jm(X) is irreducible for every m > 1. The cone
over the Segre embedding

P1
×Pn−1 ↪→ P2n−1, n > 2,

shows that this situation is possible; see [Mustaţă 2001, Example 4.7]. We do not
know so far whether this situation may happen in the context of nilpotent orbit
closures.

More generally, following Nash’s philosophy, it would be interesting to under-
stand what kind of properties on the singularities of O we can deduce from the
study of Jm(O), m > 1. The fact that O is not a complete intersection (with O
nonzero and nonregular) whenever Jm(O) is reducible for some m ≥ 1 is one
illustration of such a phenomenon.

Nilpotent orbit closures also form an interesting family of varieties, providing
examples and counterexamples in the context of jet schemes. For instance, Exam-
ples 7.6 and 7.7 illustrate that the locally complete intersection hypothesis cannot
be removed from Lemma 2.7(3), and Theorem 2.8(3). Another example is that the
normality is not conserved when we pass to jet schemes. By Kostant, the nilpotent
cone N(g) is normal, and we show in Proposition 7.3 that Jm(N(g)), m > 1, is
not normal for a simple Lie algebra g.

1There are other approaches that use jet schemes to show that O is not a complete intersection; see
Example 7.2.
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Main results. Let us describe the main techniques used to study Question 1 and
summarize the main results of the paper. To avoid technical details, we shall assume
here that g is simple.

Let X be an irreducible variety, and m ∈ N. Then Jm(X) is irreducible if and
only if

π−1
X,m(Xsing)⊂ π

−1
X,m(Xreg),

where πX,m :Jm(X)→ X is the canonical projection from Jm(X) onto X (see
Section 2), Xreg is the smooth part of X , and Xsing is its complement (see Lemma 2.7).
This is our starting point.

For O a nilpotent orbit of g, the singular locus of O is O \O (see Section 3).
The above criterion leads us to the following two conditions which will be central
in our paper (see Definition 3.3).

Definition 1. Let O be a nilpotent orbit of g.

(1) We say that O verifies RC1 if π−1
O,1(0) is not contained in the closure of π−1

O,1(O).
(2) Let m ∈ N∗. We say that O verifies RC2(m) if for some nilpotent orbit O′

contained in O \O, we have dimπ−1
O,m(O

′)> dimπ−1
O,m(O).

Here the letters RC stand for “reducibility condition”.

It follows readily (see Lemma 3.4) that if a nilpotent orbit O of g verifies RC1,
then J1(O) is reducible. Similarly, if a nilpotent orbit O of g verifies RC2(m) for
some m ∈ N∗, then Jm(O) is reducible.

We have a characterization for the condition RC1 (see Proposition 3.6) which
allows us, for example, to show that the nilpotent orbits of sl2p(C), with p > 2,
associated with partitions of the form (2p) verify RC1 (see Example 3.7). Note that
these orbits do not verify RC2(1) (see again Example 3.7).

A nilpotent orbit O is called little if 0 < 2 dimO 6 dim g (see Definition 4.1).
For example, the minimal nilpotent orbit of g is little (see Corollary 4.3), and
the nilpotent orbits of sln(C) associated with partitions of the form (2p, 1q), with
p, q ∈ N∗, are little (see Example 4.4). There are many other examples (see
Section 4). Little nilpotent orbits verify both RC1 and RC2(m) for every m ∈ N∗

(see Proposition 4.2), and they turn out to be useful to study the reducibility of jet
schemes of many other orbits via “restriction” or “induction” of orbits.

Firstly, by “restriction” to some Levi subalgebras of g (see Proposition 4.6), we
can obtain from nilpotent orbits O which verify 0< 2 dimO < dim g examples of
nilpotent orbits which verify RC1 (and that are not necessarily little); see Table 1.
More precisely, as we shall see (in a slightly more general context) in Proposition 4.6,
we have:

Proposition 1. Let l be a Levi subalgebra of g with a center of dimension one, and
such that a := [l, l] is simple. Denote by A the connected subgroup of G whose
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Lie algebra is a. Let e be a nilpotent element of a and suppose that the following
conditions are satisfied:

(i) a contains a regular semisimple element of g,

(ii) 2 dim G . e < dim g.

Then A . e verifies RC1.

Secondly, by “induction”, we can reach from nilpotent orbits of reductive Lie
subalgebras of g many nilpotent orbits of g. Here, we consider induction in the
sense of Lusztig and Spaltenstein [1979]. We refer the reader to Section 5 for the
precise definition of a nilpotent orbit of g induced from another one in some proper
Levi subalgebra l of g. Our next statement says that condition RC2(m), for m ∈N∗,
passes through induction.

Theorem 2. Let l be a Levi subalgebra of g, Ol a nilpotent orbit of l and Og the
induced nilpotent orbit of g from Ol. If Ol verifies RC2(m) for some m ∈ N∗, then
Og also verifies RC2(m).

From this result, we are able to deal with a large number of nilpotent orbits.
First of all, any nilpotent orbit induced from a nilpotent orbit that has a little factor
verifies RC2(m) for every m ∈ N∗ (see Theorem 6.1). In particular, if g is not of
type A1, B2 = C2, or G2, then the subregular nilpotent orbit Osubreg of g verifies
RC2(m) for every m ∈ N∗ (see Corollary 6.2), and so Jm(Osubreg) is reducible for
every m ∈ N∗.

It turns out that many nilpotent orbits can be induced from a nilpotent orbit that
has a little factor. This allows us to obtain the following result when g is of type A
(see Theorem 6.5).

Theorem 3. Any nilpotent orbit of sln(C) associated with a nonrectangular parti-
tion of n verifies RC2(m) for every m ∈ N∗.

For the other simple Lie algebras of classical types, we have the following (see
Theorem 6.7).

Theorem 4. Let n ∈N∗, λ= (λ1, . . . , λt) be a partition of n, and λt+1= 0. Suppose
that there exist 16 k < `6 t such that λk > λk+1+ 2 and λ` > λ`+1+ 2.

(1) If O is a nilpotent orbit of son(C) whose associated partition is λ, then O
verifies RC2(m) for every m ∈ N∗.

(2) If n is even and O is a nilpotent orbit of spn(C) whose associated partition
is λ, then O verifies RC2(m) for every m ∈ N∗.
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While our result in the special linear case is exhaustive relative to induction,
in the orthogonal and symplectic cases, other nilpotent orbits can be obtained by
induction from a little orbit (see Theorem 6.7 and Remark 6.8). For a simple Lie
algebra of exceptional type, we have a list of nilpotent orbits which can be induced
from a little one (see Appendix C).

Organization of the paper. In Section 2, we state some basic properties on jet
schemes with some proofs for the convenience of the reader.

In Section 3, we recall some standard properties of nilpotent orbit closures, and
of their jet schemes. We introduce here the two sufficient conditions RC1 and
RC2(m), m > 1, to study the reducibility of these jet schemes, and we state some
first properties of these conditions.

Section 4 is devoted to little nilpotent orbits. We show that little nilpotent orbits
verify both RC1 and RC2(m) for every m > 1, and we show how they can be used
to prove condition RC1 via the “restriction” of orbits (see Proposition 4.6).

In Section 5, we study the induction of nilpotent orbits the sense of Luzstig
and Spaltenstein [1979]. The main result is that condition RC2(m), for m > 1,
passes through induction (see Theorem 5.6). We describe in Section 6 how to use
Theorem 5.6 to obtain the reducibility of nilpotent orbit closures in simple Lie
algebras according to their Dynkin type. The details of some of the conclusions are
presented in Appendices B and C.

We present in Section 7 some applications of our results to geometric properties
of nilpotent orbit closures. We also discuss in this section some open problems.

The standard notations relative to nilpotent orbits in classical simple Lie algebras
are gathered together in Appendix A. Appendix B contains some numerical data
for classical simple Lie algebras, and Appendix C summarizes our conclusions for
simple Lie algebras of exceptional type.

2. Generalities on jet schemes

In this section, we present some general facts on jet schemes. Our main references
on the topic are [Mustaţă 2001; Ein and Mustaţă 2009; Ishii 2011], and [de Fernex
et al. 2013, Chapter 8].

Let X be a scheme of finite type over C, and m ∈ N.

Definition 2.1. An m-jet of X is a morphism

Spec C[t]/(tm+1)−→ X.

The set of all m-jets of X carries the structure of a scheme Jm(X), called the m-th
jet scheme of X . It is a scheme of finite type over C characterized by the following
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functorial property: for every scheme Z over C, we have

Hom(Z ,Jm(X))= Hom(Z ×Spec C Spec C[t]/(tm+1), X).

The C-points of Jm(X) are thus the C[t]/(tm+1)-points of X . From Definition 2.1,
we have for example that J0(X) ' X and that J1(X) ' TX where TX denotes
the total tangent bundle of X .

For p∈ {0, . . . ,m}, the canonical projection C[t]/(tm+1)→C[t]/(t p+1) induces
a truncation morphism,

πX,m,p :Jm(X)→Jp(X).

We shall simply denote by πX,m the morphism πX,m,0,

πX,m :Jm(X)→J0(X)' X.

Also, the canonical injection C ↪→ C[t]/(tm+1) induces a morphism ιX,m : X →
Jm(X), and we have πX,m ◦ ιX,m = IdX . Hence ιX,m is injective and πX,m is
surjective. We shall always view X as a subscheme of Jm(X).

If f : X→ Y is a morphism of schemes, then we naturally obtain a morphism
fm :Jm(X)→Jm(Y ) making the following diagram commutative:

Jm(X)
fm //

πX,m

��

Jm(Y )

πY,m

��
X

f
// Y

Remark 2.2. In the case where X is affine, we have the following explicit descrip-
tion of Jm(X).

Let n ∈ N∗ and X ⊂ Cn be the affine subscheme defined by an ideal I =
( f1, . . . , fr ) of C[x1, . . . , xn]. Thus

X = Spec C[x1, . . . , xn]/I.

For k ∈ {1, . . . , r}, we extend fk as a map from (C[t]/(tm+1))n to C[t]/(tm+1) via
base extension. Then giving a morphism γ : Spec C[t]/(tm+1)→ X is equivalent
to giving a morphism γ ∗ : C[x1, . . . , xn]/I → C[t]/(tm+1), or to giving

γ ∗(xi )=

m∑
j=0

γ
( j)
i t j, 16 i 6 n

such that for any k ∈ {1, . . . , r},

fk(γ
∗(x1), . . . , γ

∗(xn))= 0 in C[t]/(tm+1).
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For k ∈ {1, . . . , r}, there exist functions f (0)k , . . . , f (m)k , which depend only on f , in
the variables γ = (γ ( j)

i ), for 16 i 6 n and 06 j 6 m, such that

(1) fk(γ
∗(x1), . . . , γ

∗(xn))=

m∑
j=0

f ( j)
k (γ ) t j.

The jet scheme Jm(X) is then the closed subscheme in C(m+1)n defined by the
ideal generated by the polynomials f ( j)

k , where k ∈ {1, . . . , r} and j ∈ {0, . . . ,m}.
More precisely,

Jm(X)'Spec C[x ( j)
1 , . . . , x ( j)

n : j=0, . . . ,m]
/
( f ( j)

k : k=1, . . . , r; j=0, . . . ,m).

In particular, if X is an n-dimensional vector space, then Jm(X)' C(m+1)n and
for p ∈ {0, . . . ,m}, the projection Jm(X)→Jp(X) corresponds to the projection
onto the first (p+ 1)n coordinates.

Example 2.3. Let us consider a concrete example. Let

X = Spec C[x, y, z]/(x2
+ yz)⊂ C3,

and let us compute J1(X) and J2(X). We have

(x0+ x1t + x2t2)2+ (y0+ y1t + y2t2)(z0+ z1t + z2t2)

= x2
0 + y0z0+ (2x0x1+ y0z1+ y1z0)t

+ (2x0x2+ x2
1 + y0z2+ y2z0+ y1z1)t2 mod t3.

Hence J1(X) is the subscheme of

J1(C
3)' C[x0, y0, z0, x1, y1, z1]

defined by the ideal
(x2

0 + y0z0, 2x0x1+ y0z1+ y1z0),

and J2(X) is the subscheme of

J2(C
3)' C[x0, y0, z0, x1, y1, z1, x2, y2, z3]

defined by the ideal

(x2
0 + y0z0, 2x0x1+ y0z1+ y1z0, 2x0x2+ x2

1 + y0z2+ y1z1+ y2z0).

We now list some basic properties that we need in the sequel. Their proofs can
found in [Ein and Mustaţă 2009, Lemma 2.3, Remarks 2.8 and 2.10].

Lemma 2.4. (1) For every open subset U of X , we have Jm(U )= π−1
X,m(U ).

(2) For every scheme Y, we have a canonical isomorphism

Jm(X × Y )'Jm(X)×Jm(Y ).
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(3) If G is a group scheme over C, then Jm(G) is also a group scheme over C.
Moreover, if G acts on X , then Jm(G) acts on Jm(X).

(4) If f : X → Y is a smooth surjective morphism between schemes, then fm is
also smooth and surjective for every m ∈ N∗.

Geometric properties. It is known that the geometry of the jet schemes Jm(X),
m > 1, is closely linked to that of X . More precisely, we can transport some
geometric properties from Jm(X) to X .

The following proposition gives examples of such phenomena.

Proposition 2.5 [Mumford et al. 1994; Ishii 2011, Theorem 3.5]. Let m ∈ N∗. If
Jm(X) is smooth (respectively, irreducible, reduced, normal, locally a complete
intersection) for some m, then so is X.

For smoothness, the converse is true, even with “every m” instead of “for some m”.
In fact, for smooth varieties, we have the following more precise statement.

Proposition 2.6 [Ein and Mustaţă 2009, Corollary 2.12]. If X is a smooth variety
of dimension n, then the truncation morphism πm,p, for p ∈ {0, . . . ,m}, is a locally
trivial projection with fiber isomorphic to C(m−p)n. In particular, Jm(X) is a
smooth variety of dimension (m+ 1)n.

For the other properties stated in Proposition 2.5, the converse is not true in
general. We refer to [Ishii 2011, §3] for counterexamples. We shall encounter
other counterexamples in this paper in the setting of nilpotent orbit closures. In
this setting, our main purpose is to study the irreducibility of jet schemes. The
following lemma gives a necessary and sufficient condition for the converse of
Proposition 2.5 to hold for irreducibility.

We denote by Xreg the smooth part of X , and by Xsing its complement.

Lemma 2.7. Assume that X is an irreducible reduced scheme of finite type over C,
and let m ∈ N∗.

(1) π−1
X,m(Xreg) is an irreducible component of Jm(X).

(2) Jm(X) is irreducible if and only if π−1
X,m(Xsing) is contained in π−1

X,m(Xreg).

(3) If X is a complete intersection, then Jm(X) is irreducible if and only if
dimπ−1

X,m(Xsing) < dimπ−1
X,m(Xreg).

In particular, if dimπ−1
X,m(Xsing)> dimπ−1

X,m(Xreg), then Jm(X) is reducible.

Proof. Part (3) is proved in [Mustaţă 2001, Proposition 1.4], and parts (1) and (2)
follow from its proof. More precisely, since Xreg is smooth and irreducible,
π−1

X,m(Xreg) is an irreducible closed subset of Jm(X) of dimension (m+ 1) dim X ;
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see Proposition 2.6. Then parts (1) and (2) follow easily from the fact that we have
the decomposition

Jm(X)= π−1
X,m(Xsing)∪π

−1
X,m(Xreg)

of closed subsets, and that π−1
X,m(Xsing) 6⊃ π

−1
X,m(Xreg). �

There are also subtle connections between the geometry of Jm(X), m > 1,
and the singularities of X which are important for us. In particular, according to
[Mustaţă 2001, Theorem 0.1, Propositions 1.5 and 4.12], we have the theorem:

Theorem 2.8 (Mustat,ă). Let X be an irreducible variety over C.

(1) If X is locally a complete intersection, then Jm(X) is irreducible for every
m > 1 if and only if X has rational singularities.

(2) If X is locally a complete intersection and if Jm(X) is irreducible for some
m > 1, then Jm(X) is also reduced.

(3) If X is locally a complete intersection, then (J1(X))reg = π
−1
X,1(Xreg).

Let us give an easy counterexample to the converse implication of Proposition 2.5
for normality. This example turns out to be a particular case of a more general
situation that will be studied in Proposition 7.3.

Example 2.9. Let X be as in Example 2.3. Then X is a complete intersection and
it is normal since the singular locus is reduced to {0} which has codimension 2
in X . Next, it is not difficult to verify that J1(X) is irreducible, reduced, and that
it is a complete intersection. But J1(X) is not normal. Indeed, by Theorem 2.8(3),

(J1(X))sing = π
−1
X,1({0})' {0}×C3.

Hence, the singular locus of J1(X) has codimension 1 in J1(X) since

dimJ1(X)= 2 dim X = 4.

Group actions. Let G be a connected algebraic group, acting on a variety X , and
m ∈ N. Denote by

ρ : G× X→ X, (g, x) 7→ g . x

the corresponding action. As stated in Lemma 2.4, the morphism

ρm :Jm(G× X)'Jm(G)×Jm(X)→Jm(X)

defines an action of Jm(G) on Jm(X).
Recall that we embed X into Jm(X) through ιX,m . For x ∈ X , let us denote by

Gx the stabilizer of x in G, and for m ∈N, we denote by Jm(G)x its stabilizer in
Jm(G). The following results are probably standard. Since we have not found any
reference, we shall include their proofs.
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Lemma 2.10. Let x ∈ X. Then,

Jm(G) . x =Jm(G . x), Jm(Gx)=Jm(G)x, π−1
G . x,m(G . x)=Jm(G . x).

Proof. The morphism G×{x}→G . x , (g, x) 7→ g . x is a submersion at all points
of G×{x}. Hence, according to [Hartshorne 1977, Chapter III, Proposition 10.4],
it is a smooth morphism onto G . x . So, by Lemma 2.4(4), the induced morphism
Jm(G)×{x} →Jm(G . x) is also smooth and surjective. Consequently, we have
the first equality Jm(G) . x =Jm(G . x).

By applying the first equality to the algebraic group Gx , we get Jm(Gx) . x =
Jm(Gx . x), whence the inclusion Jm(Gx)⊂Jm(G)x.

Conversely, let γ : Spec C[t]/(tm+1)→ G be an element of Jm(G)x. Then
ρm(γ, x)= x ; hence, viewing x as a morphism x : Spec C[t]/(tm+1)→ X ,

ρ(γ (τ), x(τ ))= x(τ ),

where τ is the unique element of Spec C[t]/(tm+1). Thus γ (τ) ∈ Gx and x(τ )= x .
So we have γ ∈Jm(Gx), and the second equality follows.

The third equality is a direct consequence of Lemma 2.4(1) since G . x is open
in its closure. �

Let g be the Lie algebra of G. We consider now the adjoint action of G on g.
For the results we present here, we refer the reader to [Mustaţă 2001, Appendix].
Denote by

gm := g⊗C C[t]/(tm+1)

the generalized Takiff Lie algebra whose Lie bracket is given by

[u⊗ x(t), v⊗ y(t)] = [u, v]⊗ x(t)y(t), u, v ∈ g, x(t), y(t) ∈ C[t]/(tm+1).

As Lie algebras, we have

Jm(g)' gm ' Lie(Jm(G)).

In the sequel, when there is no confusion, we shall use the notations gm and Gm for
Jm(g) and Jm(G) respectively. If a is a Lie subalgebra of g, then Jm(a)' am is
a Lie subalgebra of gm . In particular, for x ∈ g, we have (gm)

x
= (gx)m , where for

any subalgebra m of gk , with k > 0, mx stands for the centralizer of x in m.
We can identify gm with gm+1

'Jm(g) as a variety through the map

gm+1
→ gm, (x0, x1, . . . , xm) 7→ x0+ x1⊗ t + · · ·+ xm ⊗ tm.

Let Gm be a connected algebraic group whose Lie algebra is gm . Let C[gm] be
the coordinate ring of gm , and let C[gm]

Gm be the subring of Gm-invariants. We
conclude in this section with the following result.
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Lemma 2.11. For f ∈C[g]G, the polynomials f (0), . . . , f (m), defined in Remark 2.2,
are elements of C[gm]

Gm.

Proof. This is straightforward from the explicit description of the polynomials
f (0), . . . , f (m) given in Remark 2.2. �

3. Nilpotent orbit closures

From now on, we let G to be a connected reductive algebraic group over C, g its
Lie algebra, and N(g) the nilpotent cone of g. Recall that N(g) is the subscheme
of g defined by the augmentation ideal of C[g]G , and that N(g)=Oreg where Oreg

is the regular nilpotent orbit of g (see the introduction). As mentioned there, we are
interested in this paper in the irreducibility of jet schemes of the closure of nilpotent
orbits.

Recall that for an arbitrary nilpotent orbit O of g, the singular locus of O is O\O
and that codimO(O \O)> 2 (see Section 1).

Definition 3.1. Let O be a nonzero nilpotent orbit of g. Define gO to be the smallest
semisimple ideal of g containing O.

More precisely, if g' z(g)×s1×· · ·×sm , with z(g) the center of g and s1, . . . , sm

the simple factors of g, then O =O1×· · ·×Om , with Oi a nilpotent orbit of si for
i = 1, . . . ,m, and

gO = si1 × · · ·× sik ,

where {i1, . . . , ik} is the set of integers j ∈ {1, . . . ,m} such that Oj is nonzero. In
particular, if O is zero, then gO = 0, and if O is nonzero and g is simple, then
gO = g.

For O a nilpotent orbit of g, we denote by IO the defining ideal of O in gO.
Thus,

O = Spec C[gO]/IO.

Recall that O is conical, so IO is a homogeneous ideal.

Lemma 3.2. Let O be a nonzero nilpotent orbit of g. If f1, . . . , fs are homogeneous
generators of IO, then the minimum degree of the fi is exactly 2.

Proof. By the above discussion, O is a product of nilpotent orbits. We may therefore
assume that g= gO is simple.

Assume that for some i ∈ {1, . . . , s}, deg fi = 1. A contradiction is expected.
Let V be the intersection of all the hyperplanes Hg, g ∈ G, defined by the linear
form

g . fi : g→ C, x 7→ fi (g−1(x)).
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Since O is G-invariant and is contained in the zero locus of fi , O is contained in V.
Thus V is a nonzero G-invariant subspace of g which is different from g (because
V is contained in the hyperplane H1G ), whence the contradiction since g is simple.

The Casimir element, x 7→ 〈x, x〉 with 〈 · , · 〉 the Killing form of g, vanishes
on the nilpotent cone of g. Hence it is contained in IO. Since it has degree 2, the
minimal degree of the fi is exactly 2. �

To determine the reducibility of Jm(O) for O a (nonzero) nilpotent orbit of g,
we introduce the two sufficient conditions below.

Definition 3.3. Let O be a nilpotent orbit of g.

(1) We say that O verifies RC1 if π−1
O,1(0) is not contained in the closure of π−1

O,1(O).
(2) Let m ∈ N∗. We say that O verifies RC2(m) if for some nilpotent orbit O′

contained in O \O, we have dimπ−1
O,m(O

′)> dimπ−1
O,m(O)= (m+ 1) dimO.

The following Lemma directly results from Lemma 2.7(2).

Lemma 3.4. Let O be a nilpotent orbit of g.

(1) If O verifies RC1, then J1(O) is reducible.

(2) If O verifies RC2(m) for some m ∈ N∗, then Jm(O) is reducible.

The zero nilpotent orbit verifies neither RC1 nor RC2(m) for m ∈ N∗. Since
Jm(N(g)) is irreducible for every m ∈N∗ (see Section 1), the same goes for the
regular nilpotent orbit according to Lemma 3.4.

In view of the conditions above, let us study the zero fiber of πO,1 :J1(O)→O.
As in Section 2, we identify (gO)m with (gO)m+1

= gO× · · ·× gO︸ ︷︷ ︸
(m+1) factors

.

Lemma 3.5. Let O be a nonzero nilpotent orbit of g, and m ∈ N∗.

(1) We have π−1
O,1(0)' {0}× gO. In particular, dimπ−1

O,1(0)= dim gO.

(2) If m>2, then dimπ−1
O,m(0)>dimJm−2(O)+dim gO>m dimO+codimgO(O).

Part (2) of Lemma 3.5 remains valid for an affine variety in Cn defined by
homogeneous polynomials of degree at least 2. The special case where all the
generators have the same degree is treated in [Yuen 2007, Proposition 5.2].

Proof. Clearly we may assume that gO = g. Let f1, . . . , fr be homogeneous
generators of IO that we order so that 2= d1 6 . . .6 dr , with di = deg fi for any
i = 1, . . . , r (see Lemma 3.2).

(1) Through our identification, we can write

π−1
O,1(0)' {0}× {x ∈ g | fi (t x)= 0 mod t2 for any i = 1, . . . , r},

whence the statement since for any x ∈g and i ∈{1, . . . , r}, we have fi (t x)= tdi fi (x)
and di > 2.
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(2) Assume that m > 2. Let (x1, x2, . . . , xm−1) be an element of Jm−2(O), and
let xm ∈ g. Then for any i ∈ {1, . . . , r}, we get

fi (t x1+ t2x2+ · · ·+ tm xm)= fi (t x1+ t2x2+ · · ·+ tm−1xm−1) mod tm+1

since fi is homogeneous of degree at least 2. Hence,

fi (t x1+ t2x2+ · · ·+ tm xm)= tdi fi (x1+ t x2+ · · ·+ tm−2xm−1) mod tm+1.

But fi (x1 + t x2 + · · · + tm−2xm−1) = 0 mod tm−1 because (x1, x2, . . . , xm−1) ∈

Jm−2(O). So,

tdi fi (x1+ t x2+ · · ·+ tm−2xm−1)= 0 mod tm+1

since di > 2. In other words, (0, x1, x2, . . . , xm) is an element of π−1
O,m(0).

Thus we obtain an embedding from Jm−2(O)× g into π−1
O,m(0) given by

Jm−2(O)×g→π−1
O,m(0), ((x1, x2, . . . , xm−1), xm) 7→(0, x1, x2, . . . , xm−1, xm).

The assertions follows. �

Let O be a nonzero nilpotent orbit of g, and fix e ∈ O. The tangent space at e
to O is the space [e, g]. Consider the morphism

ηg,e : G×[e, g] → g, (g, x) 7→ g(x).

Proposition 3.6. The nonzero nilpotent orbit O verifies RC1 if and only if the
closure of the image of ηg,e is strictly contained in gO.

Proof. Since [e, g] = [e, gO], we may assume that g= gO. Thus, by the definition
of condition RC1, we have to show that π−1

O,1(0) is contained in

π−1
O,1(O)

if and only if ηg,e is dominant, i.e., G . [e, g] = g.
By Lemma 3.5(1), we have π−1

O,1(0)' {0}× g. On the other hand,

π−1
O,1(O)= G . ({e}× [e, g]).

So, if π−1
O,1(0)⊂ π

−1
O,1(O), then

{0}× g⊂ G . ({e}× [e, g])⊂ G . e×G . [e, g],

whence the inclusion g⊂ G . [e, g], and ηg,e is dominant.
For the other direction, observe that

π−1
O,1(O)
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is a closed bicone of g× g since O and O are both subcones of g. Here, by bicone,
we mean a subset of g× g stable under the natural (C∗ × C∗)-action on g× g.
Therefore, if G . [e, g] = g, then

G . ({e}× [e, g])= G . (C∗e×[e, g])⊃ {0}×G . [e, g] = {0}× g,

whence π−1
O,1(0)⊂ π

−1
O,1(O). �

Example 3.7. Let p ∈ N∗ with p > 2, and g= sl2p(C). In the notation of Appen-
dix A, we claim that the nilpotent orbit O(2p) of g associated with the partition (2p)

verifies RC1. According to Proposition 3.6, it suffices to prove that for the element

e :=
(

0 Ip

0 0

)
∈O(2p),

the morphism ηg,e is not dominant. We readily verify that [e, g] consists of matrices
of the form (

A C
0 −A

)
with A and C of size p. In particular, [e, g] is contained in the closed subset Z of g
consisting of the matrices whose characteristic polynomial is even. Since G([e, g])
and Z are both closed G-stable subsets of g, we get

G([e, g])⊂ Z.

The diagonal matrix diag(1, . . . , 1,−2p+1) is in g but does not lie in Z for p> 2.
Hence, Z is strictly contained in g, and ηg,e is not dominant. Thus O(2p) verifies
RC1.

According to Lemma 3.4(1), J1(O(2p)) is reducible. In fact, we can be more
precise. By [Weyman 2002, Theorem 1] (see also [Weyman 1989] or [Weyman
2003, Proposition 8.2.15]), the defining ideal of O(2p) is generated by the entries
of the matrix X2 as functions of X ∈ sl2p(C). It follows that J1(O(2p)) can be
identified with the scheme of pairs (X0, X1) ∈ sl2p(C)× sl2p(C) defined by the
equations X2

0 = 0 and X0 X1+ X1 X0 = 0. Using this identification, we obtain from
direct computations that

• J1(O(2p)) has exactly one irreducible component of dimension 4p2
=2 dimO(2p),

• all the other irreducible components have dimension 4p2
− 1, and π−1

O(2p ),1
(0) is

one of them.

Remark 3.8. Assume that g = gO. A nilpotent element e is distinguished if its
centralizer is contained in the nilpotent cone. In particular, if e is distinguished, then
the centralizer of an sl2-triple (e, h, f ) in g is zero, and the theory of representations
of sl2 shows that [e, g] contains gh, and hence contains a Cartan subalgebra of g.
Consequently, G . e does not verify RC1.
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Remark 3.9. Assume that g= gO. Since G×[e, g] and g are irreducible varieties,
ηg,e is dominant if and only if there is a nonempty open set U consisting of points a∈
G×[e, g] such that (dηg,e)a is surjective. The differential of ηg,e at a = (g, [e, x]),
with (g, x) ∈ G× g is given by

g×[e, g] → g, (v, [e, w]) 7→ [v, [e, x]] + g([e, w]).

Let us endow G×[e, g] with the action of G by left multiplication on the first factor.
Since ηg,e is G-equivariant, we may assume that a is of the form a = (1G, [e, x])
with x ∈ g. Then (dηg,e)a is surjective if and only if [g, [e, x]] + [e, g] = g.

Consequently, ηg,e is dominant if and only if there exists x ∈ g such that
[g, [e, x]]+ [e, g] = g. This allows us to affirm in some cases that ηg,e is dominant.
For example, for e in the nondistinguished nilpotent orbit O(32) of sl6(C), the map
ηg,e is dominant.

4. Little nilpotent orbits

We introduce in this section a family of nonzero nilpotent orbits which verify both
RC1 and RC2(m) for every m ∈ N∗. This family turns out to be useful to study the
reducibility of jet schemes of many other orbits.

Lemma 3.5 leads us to the following definition.

Definition 4.1. Let O be a nilpotent orbit of g and let gO be as in Definition 3.1.
We say that O is little if 0< 2 dimO 6 dim gO.

In particular, neither the zero orbit nor the regular nilpotent orbit is little.

Proposition 4.2. If O is a little nilpotent orbit of g, then O verifies RC1 and RC2(m)
for every m ∈ N∗.

Proof. Let O be a little nilpotent orbit of g. As in the preceding proofs, we may
assume that g= gO. According to Lemma 3.5(1), dimπ−1

O,1(0)= dim g, and since
π−1
O,1(O) has dimension 2 dimO6 dim g, it follows that O verifies RC2(1) and RC1.

Now let m > 2. According to Lemma 3.5(2), we have

dimπ−1
O,m(0)> m dimO+ codimg(O)> (m+ 1) dimO,

since codimg(O)> dimO because O is little. Hence O verifies RC2(m). �

When g is simple, there is a unique nonzero nilpotent orbit Omin, called the
minimal nilpotent orbit of g, of minimal dimension and it is contained in the closure
of all nonzero nilpotent orbits.

Corollary 4.3. Assume that g is simple and not of type A1. Then Omin is little. In
particular, Jm(Omin) is reducible for every m ∈ N∗.
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Proof. Let e ∈ Omin that we embed into an sl2-triple (e, h, f ) of g, and consider
the corresponding Dynkin grading,

g=
⊕
i∈Z

g(i) with g(i) := {x ∈ g | [h, x] = i x}.

By [Collingwood and McGovern 1993, Lemma 4.1.3],

dimO = dim g− dim g(0)− dim g(1).

In addition, since e ∈Omin, we have dim g(2)= 1 and g=
∑
−26i62 g(i) [Tauvel

and Yu 2005, Proposition 34.4.1]. As a result,

dim g− 2 dimO = dim g(0)− 2.

The Levi subalgebra g(0) contains a Cartan subalgebra which has dimension at
least two by our hypothesis. Hence, dim g− 2 dimO > 0, and so Omin is little. �

For classical simple Lie algebras, there are explicit formulas (see Appendix A)
for the dimension of nilpotent orbits. This allows us to readily obtain examples of
little nilpotent orbits.

Example 4.4. Let n ∈ N∗ and p, q ∈ N.

(i) A nilpotent orbit of sln(C) corresponding to a rectangular partition is never
little.

(ii) The nilpotent orbit O(2p,1q ) of sl2p+q(C) is little if and only if p, q ∈ N∗.

(iii) The nilpotent orbit O(p,1q ) of slp+q(C) is little for q � p.

Explicit computations suggest that it is unlikely that there is a nice description of
little nilpotent orbits in terms of partitions.

For the notation Pε(n), ε ∈ {0, 1}, and Oλ with λ ∈ Pε(n), n ∈ N∗, refer to
Appendix A.

Example 4.5. Let λ= (2p, 1q), with p ∈ N∗ and q ∈ N.

(i) If p is even, then λ ∈P1(n), and the nilpotent orbit Oλ of so2p+q(C) is little.

(ii) If q is even, then λ ∈P−1(n), and the nilpotent orbit Oλ of sp2p+q(C) is little
if and only if p 6 q(q + 1)/2.

The next proposition will allow us to produce new examples of nilpotent orbits
which verify RC1 by the “restriction” of certain little nilpotent orbits to Levi
subalgebras.

Recall that for O a nilpotent orbit of some reductive Lie algebra a, the semisimple
Lie algebra aO was defined in Definition 3.1.
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Proposition 4.6. Assume that g is simple. Let l be a Levi subalgebra of g with
center z(l), and denote by A the connected subgroup of G whose Lie algebra is
a := [l, l]. Let e be a nilpotent element of a and suppose that the following conditions
are satisfied:

(i) a contains a regular semisimple element of g,

(ii) aA . e = a,

(iii) 2 dim G . e 6 dim g− dim z(l).

Then A . e verifies RC1.

Proof. Define the following maps

θ : G× a→ g, (g, x) 7→ g(x), η = ηg,e : G×[e, g] → g, (g, x) 7→ g(x).

Observe that the image of each of these maps is irreducible. Moreover, for any x ∈ g,
the map g 7→ (g−1, g(x)) defines a bijection between Gθ (x) :={g∈G |g(x)∈a} and
θ−1({x}). Similarly, we have a bijection between Gη(x) := {g ∈ G | g(x) ∈ [e, g]}
and η−1({x}). These bijections are isomorphisms of varieties.

Step 1. We shall first compute the dimension of the image of θ .
Let L be the connected subgroup of G whose Lie algebra is l. By condition (i),

a contains regular semisimple elements of g. If s is such an element, then gs is a
Cartan subalgebra of l. Let g ∈ Gθ (s). Then g(s) ∈ a and gg(s)

= g(gs) is another
Cartan subalgebra of l. It follows that there exists τ ∈ L such that τg ∈ NG(g

s), with
NG(g

s) the normalizer of gs in G. Hence, g ∈ L NG(g
s). Thus, we have obtained

the inclusion Gθ (s)⊂ L NG(g
s). On the other hand, since L normalizes a, we get

L ⊂ Gθ (s) and therefore dim L 6 dim Gθ (s).
Let CG(g

s) and CL(g
s) be the centralizers of gs in G and L , respectively. Since

gs is a Cartan subalgebra, CG(g
s) is connected, so CG(g

s)= CL(g
s) is contained

in L . It follows that L NG(g
s) is a finite union of right L-cosets. We deduce that

dim θ−1({s})= dim Gθ (s)= dim L = dim a+ z(l).

Since the set of regular semisimple elements in g is open and dense, we obtain that
for s as above,

dim im θ = dim g+ dim a− dim θ−1({s})= dim g− dim z(l).

Step 2. We now consider the image of η.
Let (e, h, f ) be an sl2-triple of g. We easily check that c := Ch ⊕ ge is a Lie

subalgebra, and that c stabilizes [e, g]. Let C be the connected subgroup of G whose
Lie algebra is c. Then C is contained in Gη(x) for any x ∈ [e, g]. In particular,
dim Gη(x)> dim C = 1+ dim ge for x ∈ [e, g], and so

dim im η 6 dim g+ dim[e, g] − 1− dim ge
= 2 dim G . e− 1.
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Step 3. By condition (iii) and Steps 1 and 2, we deduce that dim im θ > dim im η.
Thus im θ 6⊂ im η. We claim that this implies that A . e is RC1. Let us suppose on
the contrary that A . e is not RC1. By condition (ii) and Lemma 3.5(1), π−1

A . e,1(0)=
{0}× a. So, π−1

A . e,1(0) is contained in

π−1
A . e,1(A . e).

Recall from the end of Section 2 the notation G1 and A1 for J1(G) and J1(A),
respectively. It follows that

{0}×G . a⊂ G1 . ({0}× a)⊂ G1 A1 . e ⊂ G1 . e,
whence

{0}×G . a⊂ G1 . e.

Since π−1
G . e,1(G . e) = G1 . e (see Lemma 2.10), it follows from the proof of

Proposition 3.6 that

G1 . e∩ ({0}× g)= π−1
G . e,1(G . e)∩ ({0}× g)= {0}×G . [e, g].

Hence we get im θ ⊂ im η and the contradiction. �

Suppose that g is simple. Let us fix a Cartan subalgebra h of g. Denote by 1
the root system relative to (g, h) and let us fix a system of simple roots 5. Given
S ⊂5, we denote 1S = ZS ∩1 the subroot system generated by S, and

lS = h⊕
⊕
α∈1S

gα

where gα denotes the root subspace relative to α. Then lS is a Levi subalgebra of g
and any Levi subalgebra of g is conjugate to one in this form.

Given S ⊂5, set t = [lS, lS] ∩ h. Then, lS verifies condition (i) if and only if
t 6⊂

⋃
α∈1 kerα. To check the latter condition, it is enough to verify that for every

α ∈1, there is β ∈ S such that 〈β∨, α〉 6= 0.
Thus not all Levi subalgebras of g verify condition (i) of Proposition 4.6. For

example, if g is simple of type B`, then a (maximal) Levi subalgebra whose
semisimple part is simple of type B`−1 does not verify the condition. The same
goes for a Levi subalgebra in type C` whose semisimple part is simple of type C`−1.

However, if g is simple of type D` and if l is a Levi subalgebra whose semisimple
part is simple of type D`−1, then l verifies the condition (i). Likewise, if g is simple
of type E7 and if l is a Levi subalgebra whose semisimple part is simple of type E6,
then l verifies the condition (i). Applying Proposition 4.6, we obtain examples of
nilpotent orbits in types D or E6 which verify RC1 that are not little.

We list in Table 1 some nilpotent orbits that we obtain in this way. In all the
examples presented in the table, the center of the Levi subalgebra is 1-dimensional,
and a is simple. The first and second columns give the type of the simple Lie
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g a G . e A . e

D6 D5 (3, 22, 15) (3, 22, 13)

D7 D6 (32, 18) (32, 16)

D9 D8 (32, 22, 18) (32, 22, 16)

D10 D9 (33, 111) (33, 19)

D10 D9 (42, 112) (42, 110)

D10 D9 (5, 22, 111) (5, 22, 19)

D10 D9 (5, 3, 112) (5, 3, 110)

E7 E6 (3A1)
′ 3A1

E7 E6 A2 A2

Table 1. Examples of nonlittle nilpotent orbits satisfying RC1

obtained by restriction.

algebras g and a. Condition (ii) is verified in view of the discussion above. We
describe the nilpotent orbits G . e and A . e in the third and fourth columns, respec-
tively. The description for an orbit in g of type D is given in terms of partitions (see
Appendix A), while for an orbit in g of type E6 or E7, it is given by its Bala–Carter
label.

Remark 4.7. (1) The first and last lines of Table 1 provide examples of a rigid 2

nilpotent orbit which verifies RC1 and which is not little.

(2) Propositions 3.6, 4.2, and 4.6, together with Remark 3.9, allow us to classify
all nilpotent orbits verifying RC1 in simple Lie algebras of exceptional type. They
are listed in Appendix C.

5. Induced nilpotent orbits

Let l be a proper Levi subalgebra of g, and let p be a parabolic subalgebra of g
with Levi decomposition p= l⊕ u so that u is the nilpotent radical of p. Let P, L ,
and U be the connected closed subgroups of G whose Lie algebra are p, l, and u,
respectively. Then P = LU.

The following definitions and results on induced nilpotent orbits are mostly
extracted from [Richardson 1974; Lusztig and Spaltenstein 1979]. We refer
to [Collingwood and McGovern 1993, Chapter 7] for a recent survey.

Theorem 5.1. Let Ol be a nilpotent orbit of l. There exists a unique nilpotent
orbit Og in g whose intersection with Ol + u is a dense open subset of Ol + u.
Moreover, the intersection of Og with Ol + u consists of a single P-orbit and
codimg(Og)= codiml(Ol).

2See Section 5 for the notion of rigid nilpotent orbit, and Appendices A and C for the description
of rigid nilpotent orbits in simple Lie algebras.
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The nilpotent orbit Og only depends on l, and not on the choice of a parabolic
subalgebra p containing it. The nilpotent orbit Og is called the induced nilpotent
orbit of g from Ol, and it is denoted by Indgl (Ol). A nilpotent orbit which is not
induced in a proper way from another one is called rigid. In type A, only the zero
orbit is rigid.

Remark 5.2. (1) Let s1, . . . , sn be the simple factors of [g, g] and denote by
z(g) the center of g. Then there are Levi subalgebras r1, . . . , rn of s1, . . . , sn ,
respectively, such that

l= z(g)× r1× · · ·× rn.

If Ol is a nilpotent orbit of l, then Ol = Or1 × · · · ×Orn , where Or1, . . . ,Orn are
nilpotent orbits in the semisimple parts of r1, . . . , rn , respectively. Then

Indgl (Ol)= Inds1
r1
(Or1)× · · ·× Indsn

rn
(Orn )= Ind[g,g]

[g,g]∩l(Ol).

(2) The induction property is transitive in the following sense [Collingwood and
McGovern 1993, Proposition 7.1.4]: if l1 and l2 are two Levi subalgebras of g with
l1 ⊂ l2, then

Indgl2(Indl2l1(Ol1))= Indgl1(Ol1).

(3) If �l is an L-orbit in Ol \Ol, then the induced nilpotent orbit of g from �l is
contained in Og \Og.

Let Ol be a nilpotent orbit of l and denote by Og the induced nilpotent orbit of g
from Ol. According to Theorem 5.1, Og∩ (Ol+u) is a single P-orbit that we shall
denote by Op; that is,

Op :=Og ∩ (Ol+ u).

Lemma 5.3. The orbits satisfy

Op =Ol+ u, Op ∩Og =Op, Og = G . (Ol+ u).

Proof. The first equality is obvious since Op is dense in Ol+ u by definition.
Next, the inclusion Op ⊂Op ∩Og is clear. To show the other inclusion, assume

that there is x ∈Op∩Og, with x 6∈Op. A contradiction is expected. Since x ∈Op\Op,
dim P . x < dim P . e. Hence,

dim gx > dim px > dim pe
= dim ge.

As a consequence, x is not in Og, whence the contradiction.
A proof of the last equality can be found in [op. cit., Theorem 7.1.3]. �

We have the following generalization.
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Lemma 5.4. The jet schemes satisfy

(1) Jm(Op)=Jm(Ol)+ um ,

(2) Jm(Op)∩Jm(Og)=Jm(Op)= (Jm(Ol)+ um)∩Jm(Og),

(3) Jm(Og) is the closure of Gm .Jm(Op).

Proof. (1) Since Op⊂Ol+u, we get Jm(Op)⊂Jm(Ol)+um because Jm(Ol)+um

is closed. Let e′ ∈Ol and x ∈ u be such that e := e′+ x is in Op. From the above
inclusion, we deduce that

dim p− dim pe 6 dim l− dim le
′

+ dim u= dim p− dim ge,

because dim le
′

= dim ge by Theorem 5.1. Since dim pe 6 dim ge, we get pe
= ge,

whence dim Jm(Op)= dim(Jm(Ol)+ um) by Lemma 2.10 and Proposition 2.6.
So Jm(Op) and Jm(Ol)+um are irreducible varieties of the same dimension, and
the equality follows.

(2) Taking into account Lemma 2.10 and Proposition 2.6, the result follows from
the same arguments as in the proof of the second equality of Lemma 5.3.

(3) By Lemma 2.10,

Jm(Og)= Gm .Jm(Op)⊂ Gm .Jm(Op).

As a result, the jet scheme Jm(Og) is in the closure of Gm .Jm(Op). On the other
hand, since Jm(Og) is Gm-stable, we get

Gm .Jm(Op)⊂Jm(Og).

So the closure of Gm .Jm(Op) is contained in Jm(Og), whence the expected
equality. �

Question 5.5. For m = 0, Gm .Jm(Op) is closed (see Lemma 5.3) essentially
because G/P is compact. For m > 1, Gm/Pm is a trivial fibration over G/P with
m-dimensional affine fiber. Can we show nevertheless that Gm . (Jm(Ol)+ um) is
closed, in other words that Jm(Og)= Gm . (Jm(Ol)+ um)?

Theorem 5.6. Let l be a Levi subalgebra of g, Ol a nilpotent orbit of l, and Og the
induced nilpotent orbit of g from Ol. If Ol verifies RC2(m) for some m ∈ N∗, then
Og also verifies RC2(m).

The rest of the section will be devoted to the proof of Theorem 5.6.

Definition 5.7. Let l be a Levi subalgebra of g. We say that l is a maximal Levi
subalgebra of g if the center of [g, g] ∩ l has dimension one.

Let us first assume that g is simple and that l is a maximal Levi subalgebra of g.
Thus, the center z(l) of l has dimension one. Let us fix a Cartan subalgebra h in l

and 1 the root system relative to (g, h). There exists a simple root system 5 and
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a subset 5′ ⊆ 5 verifying card(5 \5′) = 1 such that l is the sum of h and all
the α-root spaces for α in the root subsystem generated by 5′. Define z to be the
element in h such that

α(z)=
{

0 if α ∈5′,
1 if α ∈5 \5′.

Then z is a generator of z(l) and all the eigenvalues of ad z are integers.
Let m ∈ N. Then ad z induces a Z-grading on gm ,

gm =
⊕
k∈Z

gm(k) with gm(k) := {y ∈ gm | [z, y] = ky}.

Set
p=

⊕
k>0

g0(k) and u=
⊕
k>0

g0(k).

Then p is a parabolic subalgebra of g, where l= g0(0) is a Levi factor and whose
nilpotent radical is u. Denote by P, L , and U the connected closed subgroups of G
whose Lie algebras are p, l, and u, respectively.

Observe that

lm = z(l)m ⊕[lm, lm] = gm(0), pm =
⊕
k>0

gm(k), um =
⊕
k>0

gm(k).

Remark 5.8. Clearly, for any nonzero integer k, we have [z, gm(k)] = gm(k). In
particular, gm(0) = (gm)

z
= ugm(Cz) where ugm(Cz) is the normalizer of z in gm .

Also, if x ∈gm(k), with k ∈N∗, then x is ad-nilpotent, and ead x z= z+[x, z]= z−kx .

Lemma 5.9. Let λ ∈ C∗, x ∈ gm(0), and y ∈ um . If x is ad-nilpotent in gm then
there exists τ ∈Um such that τ(λz+ x + y)= λz+ x.

Proof. For some p>0, y= yp+t with yp ∈gm(p) and t ∈
∑

k>p+1 gm(k). Since x is
ad-nilpotent, the sequence ((ad x)ngm(p))n∈N is decreasing and (ad x)ngm(p)={0}
for n > dim gm(p). Let q ∈ N be such that yp ∈ (ad x)qgm(p). Then

e(1/pλ) ad yp(λz+ x + y)= λz+ e(1/pλ) ad yp x + e(1/pλ) ad yp t

= λz+ x + (1/pλ)[yp, x] + t ′ = λz+ x + y′

with t ′ ∈
∑

k>p+1 gm(k), y′ := (1/pλ)[yp, x] + t ′, and

(1/pλ)[yp, x] ∈ (ad x)q+1gm(p).

Therefore we may start again with y′. After a finite number of steps, we come to an
element in

∑
k>p+1 gm(k). Then we start again with p+1 instead of p and, after a

finite number of steps, we come to an element of the expected form, λz+ x . �



160 ANNE MOREAU AND RUPERT W.T. YU

Lemma 5.10. Let � be an L-orbit contained in Ol and let X be an irreducible
component of π−1

Ol,m
(�). Then

dim Gm . (z(l)+ X + um)= dim X + 2 dim um + 1.

Proof. Set
C := z(l)+ X + um .

Since � and � are L-stable, π−1
Ol,m

(�) is Lm-stable and so is X . In addition, z(l) is
Lm-stable too. Hence, C is Pm-stable because

Pm .C = LmUm . (z(l)+ X + um)= Lm . (z(l)+ X + um)⊂ C.

Observe also that the elements of X are all ad-nilpotent.
Consider the action of Pm on Gm×C given by ρ . (σ, c)= (σρ−1, ρ(c)). Denote

by (σ, c) the Pm-orbit of (σ, c) ∈ Gm ×C with respect to this action, and denote
by Gm ×Pm C the corresponding quotient space. The natural morphism

Gm ×C→ g, (σ, c) 7→ σ(c)

factors through the quotient and we obtain a morphism

ψ : Gm ×Pm C→ g

whose image is Gm .C . Since X and um are both closed cones, z = 1Gm (z) lies in
the image of ψ and

ψ−1(z)= {(σ, c) ∈ Gm ×Pm C | σ(c)= z}.

Let (σ, c) ∈ψ−1(z). Because z is ad-semisimple, c is also ad-semisimple. Since all
elements of X are ad-nilpotent, we deduce that c does not belong to X + um . Also,
since Um ⊂ Pm , we may assume by Lemma 5.9 that c is of the form λz+ x with
λ ∈ C∗ and x ∈ X . Since x ∈ gm(0) = (gm)

z , we deduce from the uniqueness of
the Jordan decomposition that c = λz. In particular, σ is in the normalizer NG(Cz)
of z in G, and c = σ−1(z).

According to Remark 5.8, the identity component of the centralizer CGm(z) of z
in Gm is contained in Pm and has finite index in NGm(Cz). Consequently, ψ−1(z)
is a finite set. Thus, we get that dim Gm .C = dim Gm×Pm C because they are both
irreducible subsets. To conclude, it suffices to observe that dim Gm − dim Pm =

dim um and dim C = 1+ dim X + dim um since z(l)= Cz. �

Since g is simple, its Killing form 〈 · , · 〉 is nondegenerate. Let us denote by φ
the element of C[g]G defined for all x ∈ g by

φ(x)= 〈x, x〉.
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By our choice of z, φ(z) is a nonzero positive integer. Set

C := z(l)+Ol+ u

Lemma 5.11. The nullvariety in C of φ is Ol+ u.

Proof. First of all, Ol+ u is contained in the nullvariety in C of φ. For the other
inclusion, let u = λz + x + y be in C , with λ ∈ C, x ∈ Ol, and y ∈ u, such that
φ(u)= 0. We have

0= φ(u)= 〈λz+ x + y, λz+ x + y〉 = λ2
〈z, z〉+ 〈x, x〉 = λ2

〈z, z〉

since u is orthogonal to p, z(l) is orthogonal to [l, l] ⊕ u, and 〈x, x〉 = φ(x) = 0.
Hence λ= 0 since φ(z) 6= 0. So, u lies in Ol+ u, whence the other inclusion. �

Let φ(0), . . . , φ(m) ∈ C[gm] be the polynomials as defined in Remark 2.2 relative
to φ. According to Lemma 2.11, they are Gm-invariant. In particular, φ(0) is
Gm-invariant.

Lemma 5.12. Let �l be an L-orbit contained in Ol and set �g := Indgl (�l). Then:

(1) the nullvariety in Gm . (z(l)+π
−1
Ol,m

(�l)+um) of φ(0) is contained in π−1
Og,m

(�g),

(2) dimπ−1
Og,m

(�g)> dimπ−1
Ol,m

(�l)+ 2 dim um .

Proof. Let us denote by Y the nullvariety in Gm . (z(l)+π
−1
Ol,m

(�l)+ um) of φ(0).
First of all, observe that Y contains 0 because each of the spaces z(l), π−1

Ol,m
(�l),

and um is a closed cone. In particular, Y is nonempty.

(1) Let u = g . (λz + x + y) be in Y, with g ∈ Gm , λ ∈ C, x ∈ π−1
Ol,m

(�l), and
y ∈ um , such that φ(0)(u) = 0. Since φ(0) is Gm-invariant, setting x0 := πOl,m(x)
and y0 := πu,m(y), we get

0= φ(0)(u)= φ(0)(λz+ x + y)= φ(λz+ x0+ y0)= λ
2φ(z)

by the computations of the proof of Lemma 5.11. Hence λ = 0 since φ(z) 6= 0.
So u lies in Gm . (π

−1
Ol,m

(�l)+ um). But

Gm . (π
−1
Ol,m

(�l)+ um)⊂ Gm . (Jm(Ol)+ um)⊂ Gm .Jm(Og)=Jm(Og)

because Jm(Og) is Gm-invariant. Thus Y is contained in Jm(Og). Then it remains
to observe that for u ∈ Y,

πOg,m(u) ∈ G . (�l + u)=�g

by Lemma 5.3. In conclusion, Y is contained in π−1
Og,m

(�g).

(2) Let X be an irreducible component of π−1
Ol,m

(�) of maximal dimension, and
let Y ′ be the nullvariety in Gm . (z(l) + X + um) of φ(0). The function φ(0) is
not identically zero on Gm . (z(l)+ X + um) since z ∈ Gm . (z(l)+ X + um) and
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φ(0)(z) = φ(z) 6= 0. Since Y ′ is irreducible, we deduce by Lemma 5.10 and our
choice of X that

dim Y ′ = dim Gm . (z(l)+ X + um)− 1

= dim X + 2 dim um = dimπ−1
Ol,m

(�l)+ 2 dim um,

whence the statement, by (1). �

Proposition 5.13. If for some L-orbit �l in Ol, we have

dimπ−1
Ol,m

(�l)> dimπ−1
Ol,m

(Ol),

then
dimπ−1

Og,m
(�g)> dimπ−1

Og,m
(Og),

where �g is the induced nilpotent orbit of g from �l.

Proof. Assume that for some L-orbit �l in Ol, we have

dimπ−1
Ol,m

(�l)> dimπ−1
Ol,m

(Ol).

Then by Lemma 5.12,

dimπ−1
Og,m

(�g)> dimπ−1
Ol,m

(�l)+ 2 dim um

> dimπ−1
Ol,m

(Ol)+ 2 dim um = (m+ 1) dimOl+ 2(m+ 1) dim u.

To conclude, it remains to observe that π−1
Og,m

(Og) has dimension

(m+ 1) dimOl+ 2(m+ 1) dim u

because dimOg = 2 dim u+ dimOl from Theorem 5.1. �

Remark 5.14. The above proof actually shows that π−1
Og,m

(�g) has dimension at
least 2(m+1) dim u+dimπ−1

Ol,m
(�l) even if�l does not verify the hypothesis of the

proposition. This can be used in practice to give an estimate of dimπ−1
Og,m

(Og \Og).

We are now in a position to prove the main result of the section.

Proof of Theorem 5.6. Let l be a Levi subalgebra of g. Then there is a finite sequence
of Levi subalgebras

l= l0 ⊂ l1 ⊂ l1 ⊂ · · · ⊂ lk = g

such that li−1 is a maximal Levi subalgebra of li for every i ∈ {1, . . . , k}.
Let Ol be a nilpotent orbit of l= l0 verifying RC2(m) for some m ∈ N, and set

for i ∈ {1, . . . , k},
Oli = Indlili−1

(Oli−1).

Since induction is transitive (see Remark 5.2(2)),

Og := Indgl (Ol)= Indlklk−1
(Indlk−1

lk−2
(· · · (Indl1l0(Ol0)))).
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So, in order to proof Theorem 5.6, we may assume that l is maximal in g. Let
us write Ol as a product Ol = Or1 × · · · ×Orn , with the rj as in Remark 5.2(1).
Since Ol verifies RC2(m), Orj verifies RC2(m) for some j ∈ {1, . . . , n}. Since l is
maximal in g, either rj = sj and Indsj

rj (Orj ) obviously verifies RC2(m) too, or rj is
maximal in sj and by Proposition 5.13, Indsj

rj (Orj ) verifies RC2(m) as well. Indeed,
since Orj verifies RC2(m), for some �rj in Orj \Orj ,

dimπ−1
Orj ,m

(�rj )> dimπ−1
Orj ,m

(Orj )

and Proposition 5.13 applies. In both cases, by Remark 5.2(3), we conclude that
Og := Indgl (Ol) verifies RC2(m). �

6. Consequence of Theorem 5.6

Theorem 5.6 allows us to answer the reducibility problem for many nilpotent orbits.
Recall from the beginning of Section 3 that if O is a nilpotent orbit of a reductive

Lie algebra g with simple factors s1, . . . , sm , then O =O1× · · ·×Om where Oi is
a nilpotent orbit of si . We shall say that O has a little factor if there exists i such
that Oi is a little nilpotent orbit of si .

The following result is a direct consequence of Theorem 5.6 and Proposition 4.2.

Theorem 6.1. Any nilpotent orbit induced from a nilpotent orbit that has a little
factor verifies RC2(m) for every m ∈ N∗.

When g is simple, there is a unique nilpotent orbit Osubreg of g, called the
subregular nilpotent orbit, such that N(g) \Oreg = Osubreg. It has codimension
rk g+ 2 in g.

Corollary 6.2. Assume that g simple and not of type A1, B2 = C2, or G2. Then
the subregular nilpotent orbit Osubreg of g verifies RC2(m) for every m ∈ N∗. In
particular, Jm(Osubreg) is reducible for every m ∈ N∗.

Proof. Assume first that g has type A2. Then g = sl3(C) and Osubreg = Omin =

O(2,1). Hence, Osubreg is little and verifies RC2(m) for every m ∈ N∗ according to
Corollary 4.3.

Assume now that g is simple with rank > 3. Then there exists a Levi subalgebra l
of g such that [l, l] is simple of type A2, and the subregular nilpotent orbit of g is
induced from that of [l, l] for dimension reasons (see Theorem 5.1). Therefore, the
theorem follows from the case sl3(C) and Theorem 6.1. �

Remark 6.3. Outside types A and B, the subregular nilpotent orbit of a simple Lie
algebra is distinguished. Thus Corollary 6.2 provides examples of distinguished
nilpotent orbits which verify RC2(m) for every m ∈N∗. In particular, according to
Remark 3.8, these nilpotent orbits verify RC2(1) but not RC1.
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Remark 6.4. For g= sp4(C)' so5(C), we can show that J1(Osubreg) is irreducible.
Let us detail this example where the computations are explicit. Let g= sp4(C).

The subregular nilpotent orbit is O(22). By Appendix A, it has dimension 6, and its
singular locus is the union of two nilpotent orbits, O(2,12) =Omin and the zero orbit.

Using [Weyman 2002, Theorem 1] — see also [Weyman 1989] or [Weyman 2003,
Proposition 8.2.15] — and the realization of sp4(C) as the set of anti-self-adjoint
matrices for the symplectic form, we can show that the defining ideal of O(22) is
generated by the entries of the matrix X2 as functions of X ∈ sp4(C).3 It follows that
J1(O(22)) can be identified with the scheme of pairs (X0, X1) ∈ sp4(C)× sp4(C)

defined by the equations X2
0 = 0 and X0 X1+ X1 X0 = 0.

Using this identification, we obtain from direct computations that

dimπ−1
O(22),1

(O(2,12))= 11 and dimπ−1
O(22),1

(0)= 10.

Furthermore, there are no smooth points of J1(O(22)) in

π−1
O(22),1

(O(2,12))∪π
−1
O(22),1

(0).

To see this, we have computed the dimension of the tangent space to J1(O(22)) at
generic points in π−1

O(22),1
(O(2,12)) and π−1

O(22),1
(0), and the smallest dimensions turn

out to be 13 and 14, respectively.
Now, if J1(O(22)) were reducible, it would have an irreducible component of

dimension 10 or 11 by the above equalities. This is not possible according to the
computations of the tangent space dimensions. Hence, J1(O(22)) is irreducible.

Classical types. We now summarize our conclusions for the case where g is simple
of classical type. We refer to Appendix A for the notation relative to the induction
of nilpotent orbits in the classical cases.

Theorem 6.5 (Type A). Let n∈N∗, n>2, and let λ∈P(n) be nonrectangular. Then
the nilpotent orbit Oλ of sln(C) verifies RC2(m) for every m ∈ N∗. In particular,
Jm(Oλ) is reducible for every m ∈ N∗.

Proof. Suppose that λ = (λ1, . . . , λr ) ∈P(n) is nonrectangular, with 1 < r < n.
Then there exists 16 p < r such that λp > λp+1. It follows that

λ= Indn
(n−p−r,p+r)3,

where

3=
(
(λ1− 2, . . . , λp − 2, λp+1− 1, . . . , λr − 1), (2p, 1r−p)

)
.

3Here, we have used the computer program Macaulay2 to check that these equations indeed
generate a reduced ideal.
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Thus any nonrectangular partition of n can be induced from a partition of the form
(2p, 1q) with p, q ∈ N∗. According to Example 4.4, O(2p,1q ) is little for p, q ∈ N∗.
Hence the theorem follows from Theorem 6.1. �

Remark 6.6. It is not difficult to see that rectangular partitions can only be induced
from a rectangular one. So they cannot be induced from a nilpotent orbit that has a
little factor (see Example 4.4).

In fact, for the rectangular case, the theorem is not true. First of all, it is obviously
not true for λ= (n) and λ= (1n). Let us look at some special cases.

(1) Let λ = (2p) with 2p = n. Then we saw in Example 3.7 that Oλ is RC1,
and that all the irreducible components of J1(Oλ) different from π−1

Oλ,1
(Oλ) have

codimension one. In particular, it is not RC2(1).

(2) Let λ = (32). By [Weyman 2002] — see also [Weyman 1989] or [Weyman
2003, Proposition 8.2.15] — the defining ideal of Oλ is generated by tr(X2) and the
entries of the matrix X3 as functions of X ∈ sl6(C). By Appendix A, the singular
locus of Oλ is the finite union of the nilpotent orbits Oµ with

µ ∈ {(3, 2, 1), (3, 13), (23), (22, 12), (2, 14), (16)} ⊂P(6),

and the respective dimensions of π−1
Oλ,1

(Oµ) are 47, 44, 44, 47, 44, 35. Note that
J1(Oλ) has dimension 48. Next, we obtain that the respective dimensions of the
tangent space to J1(Oλ) at generic points in π−1

Oλ,1
(Oµ), with µ running through

the above set, are 49, 51, 51, 48, 52, 69. Arguing as in Remark 6.4, we conclude
that J1(O) is irreducible.

Therefore, from Remark 6.6(1) and (2), we have complete answers for the
reducibility of J1(O) for any nilpotent orbit O in sln(C), for n 6 7, and for any
nilpotent orbit O in slp(C), with p a prime number.

In the other classical simple Lie algebras, we have the following result.

Theorem 6.7 (Types B, C, D). Let λ = (λ1, . . . , λt) ∈Pε(n) with ε ∈ {+1,−1},
and set λt+1 = 0.

(1) Suppose that ε =+1 and there exist 16 k < `6 t such that λk > λk+1+ 2 and
λ` > λ`+1+ 2, then the nilpotent orbit Oλ of son(C) verifies RC2(m) for every
m ∈ N∗.

(2) Suppose that ε =−1 and there exist 16 k < `6 t such that λk > λk+1+ 2 and
λ` > λ`+1+ 2, then the nilpotent orbit Oλ of spn(C) verifies RC2(m) for every
m ∈ N∗.

(3) Suppose that ε = +1 and that λ is very even. Then both OI
λ and OII

λ verify
RC2(m) for every m ∈ N∗. (See Appendix A for the definition of “very even”.)

In particular, Jm(Oλ) is reducible for every m ∈ N∗.
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Proof. Let λ = (λ1, . . . , λt) ∈Pε(n), set λt+1 = 0, and suppose that there exist
16 k < `6 t such that λk > λk+1+ 2 and λ` > λ`+1+ 2 as in the theorem. Then

λ= Indn,ε
(`+k,n−2(`+k)) 0

where

0 :=
(
(2k,1`−k); (λ1− 4, . . . , λk − 4, λk+1− 2, . . . , λ`− 2, λ`+1, . . . , λt)

)
.

So λ is induced from a partition in P(n) of the form (2p, 1q), with p, q ∈ N∗. By
Example 4.4, the partition (2p, 1q) is little. This concludes the proof of parts (1)
and (2) according to Theorem 6.1.

Finally, if λ ∈P1(n) is very even, then Oλ is induced from the nilpotent orbit
O(2t ) of so2t(C) which is little by Example 4.5. Again, we conclude, thanks to
Theorem 6.1. �

Remark 6.8. Unlike the type A case, in types B, C, D, orbits other than the ones
considered in Theorem 6.7 can be induced from little ones. For example, for
λ, p, q ∈ N∗ with p even, we have λ = ((2λ)p, (2λ− 1)q) ∈P1(2λ(p+ q)− q)
and λ does not verify the conditions of Theorem 6.7. However, we have

λ= ((2λ)p, (2λ− 1)q)= Ind2λ(p+q)−q,1
((λ−1)(p+q),2p+q)

(
(λ− 1)p+q, (2p, 1q)

)
Since the nilpotent orbit of so2p+q(C) corresponding to the partition (2p, 1q) is
little (see Example 4.5), Oλ verifies RC2(m) for all m ∈ N∗.

Unfortunately, in types B, C, D, we have not found a nice exhaustive description
of nilpotent orbits that can be reached by induction from a little nilpotent orbit.
Computations using GAP4 show that a big proportion of partitions can be induced
from little ones. See Appendix B for some numerical data.

Exceptional types. Our conclusions for the exceptional types are summarized in
Appendix C. More precisely, we can find in Appendix C the list of nilpotent orbits
in a simple Lie algebra of exceptional type which can be induced from a little one.

7. Applications, remarks and comments

We give in this section applications to geometric properties of nilpotent orbit
closures.

Nilpotent orbits closures and complete intersections. Let O be a nilpotent orbit
of the reductive Lie algebra g.

Theorem 7.1. If O verifies RC1 or RC2(m) for some m > 1, then O is not a
complete intersection.
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Proof. Since the singular locus of O is O \O (see Section 1), it has codimension at
least two in O. Hence, O is normal if it is a complete intersection. If so, by [Hinich
1991] or [Panyushev 1991], it has rational singularities. The theorem is then of
direct consequence of Theorem 2.8. �

In [Namikawa 2013; Brion and Fu 2015], the authors use symplectic resolutions
of singularities of nilpotent orbit closures to prove the above corollary for arbitrary
nilpotent orbits in g. The foregoing provides an alternative method to obtain that
result through jet schemes in a large number of cases (see Section 6). There are other
approaches in the jet scheme setting to show that O is not a complete intersection.
Let us give an example.

Example 7.2. The computations described in Remark 6.6(2), show that for generic

x ∈ π−1
O(32),1

(O(22,12)),

the tangent space at x of J1(O(32)) has dimension 48 = dimJ1(O(32)). Hence,
such an x is a smooth point of J1(O(32)), because J1(O(32)) is irreducible, which
does not belong to π−1

O(32),1
(O(32)). So,

(J1(O(32)))reg 6= π
−1
O(32),1

(O(32))

and by Theorem 2.8(3), O(32) is not a complete intersection.
Unfortunately, theses arguments cannot be used for the nilpotent orbit O(22) of

sp4(C) because, in this case, the computations of Remark 6.4 show that we exactly
have (J1(O(22)))reg = π

−1
O(22),1

(O(22)).

Examples and counterexamples. Our results provide many examples showing that
the converse of Proposition 2.5 for irreducibility is not true. Since the nilpotent cone
N(g) is normal, the following result illustrates that the converse of Proposition 2.5
for normality is also not true.

Proposition 7.3. Assume that g simple, and let m ∈ N. Then Jm(N(g)) is normal
if and only if m = 0.

Proof. Since J0(N(g))'N(g) is normal, we have to show that for any m ∈ N∗,
Jm(N(g)) is not normal.

Fix m ∈N∗. Let ` be the rank of g, and let p1, . . . , p` be homogeneous generators
of C[g]G so that

N(g)= Spec C[g]/(p1, . . . , p`).

By Remark 2.2, we get

Jm(N(g))' Spec C[gm]/(p
( j)
i | i = 1, . . . , `, j = 0, . . . ,m).

Since N(g) is a complete intersection with rational singularities, Jm(N(g)) is
irreducible and reduced by Theorem 2.8. So, it is generically reduced. Furthermore,



168 ANNE MOREAU AND RUPERT W.T. YU(
Jm(N(g))

)
reg consists of the set of x = x0 + x1t + . . . xm tm

∈Jm(N(g)) such
that, for i = 1, . . . , ` and j = 0, . . . ,m,

(2) dp( j)
i (x0, x1, . . . , xm) are linearly independent.

Let x0+x1t+· · ·+xm tm
∈gm . By [Raïs and Tauvel 1992, Lemma 3.3(i)], the vectors

dp( j)
i (x0, x1, . . . , xm) for i ∈ {1, . . . , `} and j ∈ {0, . . . ,m} are linearly independent

if and only if the vectors dp1(x0), . . . , dp`(x0) are linearly independent. But by
[Kostant 1963], the later condition is satisfied if and only if x0 is a regular element
of g. Therefore by (2),

(3)
(
Jm(N(g))

)
reg = π

−1
N(g),m(Oreg) and

(
Jm(N(g))

)
sing = π

−1
N(g),m(Osubreg)

since N(g) \Oreg = Osubreg. Then by Serre’s criterion, it is enough to show that
π−1
N(g),m(Osubreg) has codimension one in Jm(N(g)), or else that

(4) dimπ−1
N(g),m(Osubreg)> dimJm(N(g))− 1.

The zero orbit of sl2(C) has codimension 2 in N(sl2(C)). Hence, for dimension
reasons, Osubreg is the induced nilpotent orbit from 0 in any Levi subalgebra l of g
with semisimple part [l, l] isomorphic to sl2(C). So by Remark 5.14, in order to
prove (4), it suffices to show the statement for g= sl2(C).

If g= sl2(C), then Osubreg = 0, but by Lemma 3.5(2),

dimπ−1
N(sl2(C)),m(0)> dimJm−2(N(sl2(C)))+ dim sl2(C)

= 2(m− 1)+ 3= 2m+ 1,

whence the expected result since dimJm(N(sl2(C)))= 2(m+ 1)= 2m+ 2. �

Remark 7.4. For m = 1, (3) is also a consequence of Theorem 2.8(3).

We now give an example illustrating the fact that the converse of Proposition 2.5
is also not true for reducedness.

Example 7.5. The scheme J1(N(sl2(C))) is irreducible and reduced. We read-
ily obtain from the description of J1(N(sl2(C))) given in Example 2.3 that
J1(J1(N(sl2(C)))) is defined by the ideal J of

C[x0, y0, z0, x1, y1, z1, x ′0, y′0, z′0, x ′1, y′1, z′1]

generated by the polynomials
x2

0 + y0z0, 2x0x1+ y0z1+ y1z0,

2x0x ′0+ y0z′0+ z0 y′0, 2x0x ′1+ 2x1x ′0+ y0z′1+ y1z′0+ z1 y′0+ z0 y′1.

A computation made with the program Macaulay2 shows that J is not radical, and
that the radical of J is the intersection of two prime ideals. So, J1(J1(N(sl2(C))))
is neither reduced nor irreducible.
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Example 7.5 gives another piece of evidence that J1(N(sl2(C))) does not have
rational singularities (see Proposition 7.3). Indeed, if it did, then by Theorem 2.8,
J1(J1(N(sl2(C)))) would be irreducible (and reduced) because J1(N(sl2(C)))
is a complete intersection.

We now turn to other interesting phenomena.

Example 7.6. As has been observed in Example 3.7, for the nilpotent orbit O(2p)

of sl2p(C), with p > 2, J1(O(2p)) is reducible and

dimπ−1
O(2p ),1

((O(2p))sing) < dimπ−1
O(2p ),1

(O(2p)).

This shows that Lemma 2.7(3), does not hold in general if X is not a complete
intersection.

Example 7.7. As has been observed in Remark 6.6(2), for the nilpotent orbit O(32)

of sl6(C), J1(O(32)) is irreducible and

(J1(O(32)))reg 6= π
−1
O(32),1

(O(32)).

This shows that Theorem 2.8(3) is not true for varieties that are not locally complete
intersection.

Example 7.8. For the nilpotent orbit O(22) of sp4(C), we have observed (see
Remark 6.4) that

(J1(O(22)))reg = π
−1
O(22),1

(O(22)).

This shows that the equality of Theorem 2.8(3) may hold even if X is not locally a
complete intersection.

Questions and remarks. Although we have determined the reducibility of the
closure of many nilpotent orbits, we would like to complete the cases where our
methods do not apply. Here are some open questions.

Question 7.9. We have seen that jet schemes of nilpotent orbits in sln(C) corre-
sponding to rectangular partitions can be irreducible or reducible. Is there an explicit
characterization?

Question 7.10. In all our examples of nilpotent orbits O with J1(O) reducible,
the orbit O verifies RC1 or RC2(1). Are these conditions necessary or are there
examples of O for which J1(O) is reducible and that verify neither RC1 nor
RC2(1)?

We have used the reducibility of jet schemes to study the property of complete
intersection for nilpotent orbit closures. It is very likely that other geometric
properties of nilpotent orbit closures can be studied using jet schemes.
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Appendix A: Nilpotent orbits in classical simple Lie algebras

We fix in this appendix some notation and basic results, relative to nilpotent orbits
in simple Lie algebras of classical type. Our main references are [Collingwood
and McGovern 1993; Kempken 1983]. The results concerning the induction of
nilpotent orbits are mostly taken from [loc. cit.].

Let n ∈ N∗, and denote by P(n) the set of partitions of n. As a rule, unless
otherwise specified, we write an element λ of P(n) as a decreasing sequence
λ= (λ1, . . . , λr ) omitting the zeroes. Thus,

λ1 > · · ·> λr > 1 and λ1+ · · ·+ λr = n.

We shall denote the dual partition of a partition λ ∈P(n) by tλ. The concatena-
tion of two partitions λ and λ′ will be the rearrangement of the parts in decreasing
order, and shall be denoted by λ^ λ′.

Let us denote by > the partial order on P(n) relative to dominance. More
precisely, given λ= (λ1, . . . , λr ),µ= (µ1, . . . , µs) ∈P(n), we have λ > µ if

k∑
i=1

λi >
k∑

i=1

µi

for 16 k 6min(r, s).

Case sln(C). According to [Collingwood and McGovern 1993, Theorem 5.1.1],
nilpotent orbits of sln(C) are parametrized by P(n). For λ∈P(n), we shall denote
by Oλ the corresponding nilpotent orbit of sln(C), and if we write tλ= (d1, . . . , ds),
then

dimOλ = n2
−

s∑
i=1

d2
i .

Also, if λ,µ ∈P(n), then Oµ ⊂Oλ if and only if µ6 λ.
The Levi subalgebras of sln(C) are parametrized by compositions of n. Let

m = (m1, . . . ,mr ) be a composition of n and

λ= (λ(1), . . . ,λ(r)) ∈P(m1)× · · ·×P(mr ).

It corresponds to a nilpotent orbit in the Levi subalgebra associated to the composi-
tion m. Set

µ := tλ(1)^ · · ·^ tλ(r) and ν = tµ.

Then the partition associated to the induced nilpotent orbit from O(λ(1),...,λ(r)) is ν.
Note that we have νi =λ

(1)
i +· · ·+λ

(k)
i which is much simpler to compute in practice.

We shall denote ν by Indn
m(λ

(1), . . . ,λ(r)) and we shall say that ν is induced from
(λ(1), . . . ,λ(r)).
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Case son(C). For n ∈ N∗, set

P1(n) := {λ ∈P(n) | number of parts of each even number in λ is even}.

According to [Collingwood and McGovern 1993, Theorems 5.1.2 and 5.1.4], nil-
potent orbits of son(C) are parametrized by P(n), with the exception that each very
even partition λ ∈P1(n) (i.e., λ has only even parts) corresponds to two nilpotent
orbits. For λ ∈P1(n), not very even, we shall denote by Oλ the corresponding
nilpotent orbit of son(C). For very even λ ∈P1(n), we shall denote by OI

λ and OII
λ

the two corresponding nilpotent orbits of son(C). In fact, their union form a single
On(C)-orbit.

Let λ= (λ1, . . . , λr ) ∈P1(n) and tλ= (d1, . . . , ds). Then

dimO•λ =
n(n−1)

2
−

1
2

( s∑
i=1

d2
i − #{i | λi odd}

)
where O•λ is either Oλ, OI

λ, or OII
λ according to whether λ is very even or not. Using

the same notation, if λ,µ ∈P1(n), then O•µ (O•λ if and only if µ< λ.
Given λ ∈ P(n), there exists a unique λ+ ∈ P1(n) such that λ+ 6 λ, and if

µ ∈ P1(n) satisfies µ 6 λ, then µ 6 λ+. More precisely, let λ = (λ1, . . . , λn)

(adding zeroes if necessary). If λ ∈P1(n), then λ+ = λ, and if λ 6∈P1(n), set

λ′ = (λ1, . . . , λr , λr+1− 1, λr+2, . . . , λs−1, λs + 1, λs+1, . . . , λn)

where r is maximum such that (λ1, . . . , λr ) ∈P1(λ1+· · ·+λr ), and s is the index
of the first even part in (λr+2, . . . , λn). Note that r = 0 if such a maximum does not
exist, while s is always defined. If λ′ is not in P1(n), then we repeat the process
until we obtain an element of P1(n) which will be our λ+.

The Levi subalgebras in son(C) are parametrized by

L(n) :=
{
(p1, . . . , pk; r)

∣∣∣∣ 2
k∑

i=1

pi + r = n
}
.

Let (p1, . . . , pk; r)∈L(n), (λ(1), . . . ,λ(k))∈P(p1)×· · ·×P(pk) and µ∈P1(r),
and set

ν := Indn
(p1,...,pk ,r,pk ,...,p1)

(λ(1), . . . ,λ(k),µ,λ(k), . . . ,λ(1))

in the notation of the sln(C) case. Thus ν is the partition associated to the nilpotent
orbit in sln(C) induced from the nilpotent orbit in the Levi subalgebra of sln(C)
associated to the composition (p1, . . . , pk, r, pk, . . . , p1) and the multipartition
(λ(1), . . . ,λ(k),µ,λ(k), . . . ,λ(1)). The partition associated to the nilpotent orbit in-
duced from (λ(1), . . . ,λ(k);µ) is ν+. We shall denote ν+ by

Indn,+
(p1,...,pk ;r)(λ

(1), . . . ,λ(k);µ).
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The partition λ ∈P1(n) corresponds to a rigid orbit if and only if

(i) λi − λi+1 6 1 for all i , so the last part of λ is 1;

(ii) no odd number occurs exactly twice in λ.

Note that in the case that λ is a very even partition, ν+ is also very even, and we
obtain both nilpotent orbits corresponding to ν+ via induction of the nilpotent orbits
corresponding to λ; see [Collingwood and McGovern 1993, Theorem 7.3.3(iii)].

Case sp2n(C). For n ∈ N∗, set

P−1(2n) := {λ ∈P(2n) | number of parts of each odd number is even}.

According to [op. cit., Theorem 5.1.3], nilpotent orbits of sp2n(C) are parametrized
by P−1(2n). For λ = (λ1, . . . , λr ) ∈P−1(2n), we shall denote by Oλ the corre-
sponding nilpotent orbit of sp2n(C), and if we write tλ= (d1, . . . , ds), then

dimOλ = n(2n+ 1)− 1
2

( s∑
i=1

d2
i + #{i | λi odd}

)
.

As in the case of sln(C), if λ,µ ∈P−1(2n), then Oµ ⊂Oλ if and only if µ6 λ.
Given λ ∈P(2n), there exists a unique λ− ∈P−1(2n) such that λ− 6 λ, and if

µ ∈P−1(2n) satisfies µ≤ λ, then µ≤ λ−. The construction of λ− is the same as in
the orthogonal case except that s is the index of the first odd part in (λr+2, . . . , λ2n).

As in the orthogonal case, Levi subalgebras are parametrized by L(2n). Let us
conserve the same notations as in the orthogonal case. The partition associated to
the nilpotent orbit induced from (λ(1), . . . ,λ(k);µ) is ν−. We shall denote ν− by

Ind2n,−
(p1,...,pk ;r)(λ

(1), . . . ,λ(k);µ).

The partition λ ∈P−1(2n) corresponds to a rigid orbit if and only if

(i) λi − λi+1 6 1 for all i , so the last part of λ is 1;

(ii) no even number occurs exactly twice in λ.

Appendix B: Statistics in types B, C, and D

As mentioned in Remark 6.8, many nilpotent orbits in son(C) and sp2n(C) can be
obtained by induction from little nilpotent orbits. In particular, these induced orbits
verify RC2(m) for all m ∈ N∗. Computations using GAP4 gave us the following
numerical data supporting our claim.

For ε ∈ {−1,+1} and n ∈N∗, we denote by P`
ε (n) the set of partitions in Pε(n)

induced from little ones.
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Case son(C).

n #P`
1(n) #P1(n) n #P`

1(n) #P1(n) n #P`
1(n) #P1(n)

2 0 1 19 111 130 36 2370 2741
3 0 2 20 130 161 37 2821 3206
4 1 3 21 170 196 38 3265 3740
5 1 4 22 195 236 39 3852 4368
6 2 5 23 250 287 40 4460 5096
7 4 7 24 291 350 41 5242 5922
8 6 10 25 367 420 42 6064 6868
9 9 13 26 423 501 43 7086 7967

10 10 16 27 527 602 44 8182 9233
11 16 21 28 609 722 45 9536 10670
12 20 28 29 751 858 46 10986 12306
13 27 35 30 869 1016 47 12748 14193
14 32 43 31 1055 1206 48 14667 16357
15 45 55 32 1223 1431 49 16974 18803
16 52 70 33 1474 1687 50 19485 21581
17 73 86 34 1710 1981 51 22464 24766
18 83 105 35 2039 2331

Case sp2n(C).

n #P`
−1(2n) #P

−1(2n) n #P`
−1(2n) #P

−1(2n)

1 0 2 13 594 728
2 1 4 14 857 1040
3 3 8 15 1223 1472
4 9 14 16 1726 2062
5 15 24 17 2421 2864
6 28 40 18 3378 3948
7 45 64 19 4652 5400
8 77 100 20 6374 7336
9 119 154 21 8677 9904

10 182 232 22 11728 13288
11 273 344 23 15755 17728
12 409 504 24 21061 23528

Appendix C: Tables for exceptional types

We list on the next few pages nilpotent orbits in a simple Lie algebra of exceptional
type specifying when possible whether they are RC1 or RC2(m). Condition RC1 is
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Type G2. e1 < e2

O dimO RC1 RC2 rigid

A1 [0, 1] 6
√
← little

√
← little

√

Ã1 [1, 0] 8 × ?
√

G2(a1) [2, 0] 10 × ? ×

Type F4. e1 e2 > e3 e4

O dimO RC1 RC2 rigid

A1 [1, 0, 0, 0] 16
√
← little

√
← little

√

Ã1 [0, 0, 0, 1] 22
√
← little

√
← little

√

A1+ Ã1 [0, 1, 0, 0] 28 × ?
√

A2 [2, 0, 0, 0] 30 × ? ×

Ã2 [0, 0, 0, 2] 30 × ? ×

A2+ Ã1 [0, 0, 1, 0] 34 × ?
√

B2 [2, 0, 0, 1] 36 ×
√
←O{2,3,4}min ×

Ã2+ A1 [0, 1, 0, 1] 36 × ?
√

C3(a1) [1, 0, 1, 0] 38 ×
√
←O{1,2,3}min ×

F4(a3) [0, 2, 0, 0] 40 ×
√
←O{2,3,4}

[0,1,0] ×

B3 [2, 2, 0, 0] 42 × ? ×

C3 [1, 0, 1, 2] 42 × ? ×

F4(a2) [0, 2, 0, 2] 44 ×
√
←O{1,2,4}

(2,1),(12)
×

F4(a1) [2, 2, 0, 2] 46 ×
√
←O{1,2,4}(2,1),(2) ×
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Type E6. The notation ResE7
E6
O means that the orbit is obtained by restriction from

the little nilpotent orbit O in E7 as explained in Table 1.

e2
e

1

e
3

e
4

e
5

e
6

O dimO RC1 RC2 rigid

A1 [0,1,0,0,0,0] 22
√
← little

√
← little

√

2A1 [1,0,0,0,0,1] 32
√
← little

√
← little ×

3A1 [0,0,0,1,0,0] 40
√
← ResE7

E6
O(3A1)′ ?

√

A2 [0,2,0,0,0,0] 42
√
← ResE7

E6
OA2 ? ×

A2+A1 [1,1,0,0,0,1] 46 ×
√
←O{1,2,3,4,5}min ×

2A2 [2,0,0,0,0,2] 48 ×
√
←O{1,2,3,4,5}

(3,17)
×

A2+2A1 [0,0,1,0,1,0] 50 × ? ×

A3 [1,2,0,0,0,1] 52 ×
√
←O{1,3,4,5,6}

(2,14)
×

2A2+A1 [1,0,0,1,0,1] 54 × ?
√

A3+A1 [0,1,1,0,1,0] 56 × ? ×

D4(a1) [0,0,0,2,0,0] 58 ×
√
←O{1,3,4,5,6}

(22,12)
×

A4 [2,2,0,0,0,2] 60 ×
√
←O{1,3,4,5,6}

(3,13)
×

D4 [0,2,0,2,0,0] 60 × ? ×

A4+A1 [1,1,1,0,1,1] 62 ×
√
←O{1,2,3,4,6}

((2,12);(12))
×

A5 [2,1,1,0,1,2] 64 × ? ×

D5(a1) [1,2,1,0,1,1] 64 ×
√
←O{1,3,4,5,6}(3,2,1) ×

E6(a3) [2,0,0,2,0,2] 66 ×
√
←O{1,3,4,5,6}

(4,12)
×

D5 [2,2,0,2,0,2] 68 ×
√
←O{1,3,4,5,6}(4,2) ×

E6(a1) [2,2,2,0,2,2] 70 ×
√
←O{1,3,4,5,6}(5,1) ×
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Type E7. Note that the characteristics [0, 0, 0, 0, 2, 0] and [0, 0, 0, 0, 0, 2] of nil-
potent orbits in D6 correspond to the very even partition (26).

e2
e

1

e
3

e
4

e
5

e
6

e
7

O dimO RC1 RC2 rigid

A1 [1,0,0,0,0,0,0] 34
√
← little

√
← little

√

2A1 [0,0,0,0,0,1,0] 52
√
← little

√
← little

√

(3A1)
′′

[0,0,0,0,0,0,2] 54
√
← little

√
← little ×

(3A1)
′

[0,0,1,0,0,0,0] 64
√
← little

√
← little

√

A2 [2,0,0,0,0,0,0] 66
√
← little

√
← little ×

4A1 [0,1,0,0,0,0,1] 70 × ?
√

A2+A1 [1,0,0,0,0,1,0] 76 ×
√
←O{1,2,3,4,5,6}

[0,1,0,0,0,0] ×

A2+2A1 [0,0,0,1,0,0,0] 82 × ?
√

A3 [2,0,0,0,0,1,0] 84 ×
√
←O{2,3,4,5,6,7}

(22,18)
×

2A2 [0,0,0,0,0,2,0] 84 × ? ×

A2+3A1 [0,2,0,0,0,0,0] 84 × ? ×

(A3+A1)
′′
[2,0,0,0,0,0,2] 86 ×

√
←O{2,3,4,5,6,7}

(3,19)
×

2A2+A1 [0,0,1,0,0,1,0] 90 × ?
√

(A3+A1)
′
[1,0,0,1,0,0,0] 92 × ?

√

D4(a1) [0,0,2,0,0,0,0] 94 ×
√
←O{2,3,4,5,6,7}

(24,14)
×

A3+2A1 [1,0,0,0,1,0,1] 94 × ? ×

D4 [2,0,2,0,0,0,0] 96 ×
√
←O{2,3,4,5,6,7}

[0,0,0,0,2,0] ×

D4(a1)+A1 [0,1,1,0,0,0,1] 96 ×
√
←O{2,3,4,5,6,7}

[0,0,0,0,0,2] ×

A3+A2 [0,0,0,1,0,1,0] 98 ×
√
←O{2,3,4,5,6,7}

(3,22,15)
×

A4 [2,0,0,0,0,2,0] 100 ×
√
←O{2,3,4,5,6,7}

(32,16)
×

A3+A2+A1 [0,0,0,0,2,0,0] 100 × ? ×

(A5)
′′

[2,0,0,0,0,2,2] 102 ×
√
←O{2,3,4,5,6,7}

(5,17)
×
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Type E7 (continued). The characteristics [0, 2, 0, 0, 2, 0] and [0, 2, 0, 0, 0, 2] of
nilpotent orbits in D6 correspond to the very even partition (42, 22), while the
characteristics [0, 2, 0, 2, 2, 0] and [0, 2, 0, 2, 0, 2] correspond to (62).

e2
e

1

e
3

e
4

e
5

e
6

e
7

O dimO RC1 RC2 rigid

D4+A1 [2,1,1,0,0,0,1] 102 × ? ×

A4+A1 [1,0,0,1,0,1,0] 104 ×
√
←O{1,3,4,5,6,7}

(22,13)
×

D5(a1) [2,0,0,1,0,1,0] 106 ×
√
←O{2,3,4,5,6,7}

(32,22,12)
×

A4+A2 [0,0,0,2,0,0,0] 106 × ? ×

(A5)
′

[1,0,0,1,0,2,0] 108 × ? ×

A5+A1 [1,0,0,1,0,1,2] 108 × ? ×

D5(a1)+A1 [2,0,0,0,2,0,0] 108 ×
√
←O{1,2,3,4,6,7}

(2,13),(13)
×

D5(a2) [0,1,1,0,1,0,2] 110 × ? ×

E6(a3) [0,0,2,0,0,2,0] 110 ×
√
←O{1,2,3,5,6,7}

(2,1),(12),(14)
×

D5 [2,0,2,0,0,2,0] 112 ×
√
←O{2,3,4,5,6,7}

[0,2,0,0,2,0] ×

E7(a5) [0,0,0,2,0,0,2] 112 ×
√
←O{2,3,4,5,6,7}

[0,2,0,0,0,2] ×

A6 [0,0,0,2,0,2,0] 114 × ? ×

D5+A1 [2,1,1,0,1,1,0] 114 ×
√
←O{1,2,3,4,6,7}

(3,12),(13)
×

D6(a1) [2,1,1,0,1,0,2] 114 ×
√
←O{1,2,4,5,6,7}

(2),(3,13)
×

E7(a4) [2,0,0,2,0,0,2] 116 ×
√
←O{1,3,4,5,6,7}

(32,1) ×

D6 [2,1,1,0,1,2,2] 118 × ? ×

E6(a1) [2,0,0,2,0,2,0] 118 ×
√
←O{2,3,4,5,6,7}

(52,12)
×

E6 [2,0,2,2,0,2,0] 120 ×
√
←O{2,3,4,5,6,7}

[0,2,0,2,2,0] ×

E7(a3) [2,0,0,2,0,2,2] 120 ×
√
←O{2,3,4,5,6,7}

[0,2,0,2,0,2] ×

E7(a2) [2,2,2,0,2,0,2] 122 ×
√
←O{1,3,4,5,6,7}(5,2) ×

E7(a1) [2,2,2,0,2,2,2] 124 ×
√
←O{1,3,4,5,6,7}(6,1) ×



178 ANNE MOREAU AND RUPERT W.T. YU

Type E8. e2
e

1

e
3

e
4

e
5

e
6

e
7

e
8

O dimO RC1 RC2 rigid

A1 [0,0,0,0,0,0,0,1] 58
√
← little

√
← little

√

2A1 [1,0,0,0,0,0,0,0] 92
√
← little

√
← little

√

3A1 [0,0,0,0,0,0,1,0] 112
√
← little

√
← little

√

A2 [0,0,0,0,0,0,0,2] 114
√
← little

√
← little ×

4A1 [0,1,0,0,0,0,0,0] 128 × ?
√

A2+A1 [1,0,0,0,0,0,0,1] 136 × ?
√

A2+2A1 [0,0,0,0,0,1,0,0] 146 × ?
√

A3 [1,0,0,0,0,0,0,2] 148 ×
√
←O{1,2,3,4,5,6,7}

[1,0,0,0,0,0,0] ×

A2+3A1 [0,0,1,0,0,0,0,0] 154 × ?
√

2A2 [2,0,0,0,0,0,0,0] 156 × ? ×

2A2+A1 [1,0,0,0,0,0,1,0] 162 × ?
√

A3+A1 [0,0,0,0,0,1,0,1] 164 × ?
√

D4(a1) [0,0,0,0,0,0,2,0] 166 ×
√
←O{1,2,3,4,5,6,7}

[0,0,0,0,0,1,0] ×

D4 [0,0,0,0,0,0,2,2] 168 ×
√
←O{1,2,3,4,5,6,7}

[0,0,0,0,0,0,2] ×

2A2+2A1 [0,0,0,0,1,0,0,0] 168 × ?
√

A3+2A1 [0,0,1,0,0,0,0,1] 172 × ?
√

D4(a1)+A1 [0,1,0,0,0,0,1,0] 176 × ?
√

A3+A2 [1,0,0,0,0,1,0,0] 178 ×
√
←O{2,3,4,5,6,7,8}

(22,110)
×

A4 [2,0,0,0,0,0,0,2] 180 ×
√
←O{2,3,4,5,6,7,8}

(3,111)
×

A3+A2+A1 [0,0,0,1,0,0,0,0] 182 × ?
√

D4+A1 [0,1,0,0,0,0,1,2] 184 × ? ×

D4(a1)+A2 [0,2,0,0,0,0,0,0] 184 × ? ×

A4+A1 [1,0,0,0,0,1,0,1] 188 ×
√
←O{1,2,3,4,5,6,8}

[0,1,0,0,0,0],(12)
×
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Type E8 (continued). e2
e

1

e
3

e
4

e
5

e
6

e
7

e
8

O dimO RC1 RC2 rigid

2A3 [1,0,0,0,1,0,0,0] 188 × ?
√

D5(a1) [1,0,0,0,0,1,0,2] 190 ×
√
←O{2,3,4,5,6,7,8}

(24,16)
×

A4+ 2A1 [0,0,0,1,0,0,0,1] 192 × ? ×

A4+ A2 [0,0,0,0,0,2,0,0] 194 × ? ×

A5 [2,0,0,0,0,1,0,1] 196 ×
√
←O{2,3,4,5,6,7,8}

(3,22,17)
×

D5(a1)+ A1 [0,0,0,1,0,0,0,2] 196 × ? ×

A4+ A2+ A1 [0,0,1,0,0,1,0,0] 196 × ? ×

D4+ A2 [0,2,0,0,0,0,0,2] 198 ×
√
←O{2,3,4,5,6,7,8}

(26,12)
×

E6(a3) [2,0,0,0,0,0,2,0] 198 ×
√
←O{2,3,4,5,6,7,8}

(32,18)
×

D5 [2,0,0,0,0,0,2,2] 200 ×
√
←O{2,3,4,5,6,7,8}

(5,19)
×

A4+ A3 [0,0,0,1,0,0,1,0] 200 × ?
√

A5+ A1 [1,0,0,1,0,0,0,1] 202 × ?
√

D5(a1)+ A2 [0,0,1,0,0,1,0,1] 202 × ?
√

D6(a2) [0,1,1,0,0,0,1,0] 204 × ? ×

E6(a3)+ A1 [1,0,0,0,1,0,1,0] 204 × ? ×

E7(a5) [0,0,0,1,0,1,0,0] 206 × ? ×

D5+ A1 [1,0,0,0,1,0,1,2] 208 × ? ×

E8(a7) [0,0,0,0,2,0,0,0] 208 ×
√
←O{2,3,4,5,6,7,8}

(32,22,14)
×

A6 [2,0,0,0,0,2,0,0] 210 ×
√
←O{1,2,3,4,5,7,8}

(3,17),(13)
×

D6(a1) [0,1,1,0,0,0,1,2] 210 ×
√
←O{2,3,4,5,6,7,8}

(32,24)
×

A6+ A1 [1,0,0,1,0,1,0,0] 212 × ? ×

E7(a4) [0,0,0,1,0,1,0,2] 212 ×
√
←O{1,2,3,4,5,6,7}

[0,0,0,1,0,1,0] ×

E6(a1) [2,0,0,0,0,2,0,2] 214 ×
√
←O{2,3,4,5,6,7,8}

(5,3,16)
×
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Type E8 (continued). e2
e

1

e
3

e
4

e
5

e
6

e
7

e
8

O dimO RC1 RC2 rigid

D5+ A2 [0, 0, 0, 0, 2, 0, 0, 2] 214 ×
√
←O{1,3,4,5,6,7,8}

(23,12)
×

D6 [2, 1, 1, 0, 0, 0, 1, 2] 216 × ? ×

E6 [2, 0, 0, 0, 0, 2, 2, 2] 216 ×
√
←O{2,3,4,5,6,7,8}

(7,17)
×

D7(a2) [1, 0, 0, 1, 0, 1, 0, 1] 216 ×
√
←O{1,2,4,5,6,7,8}

(12),(22,13)
×

A7 [1, 0, 0, 1, 0, 1, 1, 0] 218 × ? ×

E6(a1)+ A1 [1, 0, 0, 1, 0, 1, 0, 2] 218 ×
√
←O{2,3,4,5,6,7,8}

(42,22,12)
×

E7(a3) [2, 0, 0, 1, 0, 1, 0, 2] 220 ×
√
←O{2,3,4,5,6,7,8}

(5,3,22,1) ×

E8(b6) [0, 0, 0, 2, 0, 0, 0, 2] 220 ×
√
←O{2,3,4,5,6,7,8}

(43,3,13)
×

D7(a1) [2, 0, 0, 0, 2, 0, 0, 2] 222 ×
√
←O{2,3,4,5,6,7,8}

(42,32)
×

E6+ A1 [1, 0, 0, 1, 0, 1, 2, 2] 222 × ? ×

E7(a2) [0, 1, 1, 0, 1, 0, 2, 2] 224 × ? ×

E8(a6) [0, 0, 0, 2, 0, 0, 2, 0] 224 ×
√
←O{2,3,4,5,6,7,8}

(5,33)
×

D7 [2, 1, 1, 0, 1, 1, 0, 1] 226 × ? ×

E8(b5) [0, 0, 0, 2, 0, 0, 2, 2] 226 ×
√
←O{2,3,4,5,6,7,8}

(52,22)
×

E7(a1) [2, 1, 1, 0, 1, 0, 2, 2] 228 ×
√
←O{2,3,4,5,6,7,8}

(7,3,22)
×

E8(a5) [2, 0, 0, 2, 0, 0, 2, 0] 228 ×
√
←O{2,3,4,5,6,7,8}

(52,3,1) ×

E8(b4) [2, 0, 0, 2, 0, 0, 2, 2] 230 ×
√
←O{2,3,4,5,6,7,8}

(62,12)
×

E7 [2, 1, 1, 0, 1, 2, 2, 2] 232 × ? ×

E8(a4) [2, 0, 0, 2, 0, 2, 0, 2] 232 ×
√
←O{2,3,4,5,6,7,8}

(7,5,12)
×

E8(a3) [2, 0, 0, 2, 0, 2, 2, 2] 234 ×
√
←O{2,3,4,5,6,7,8}

(72)
×

E8(a2) [2, 2, 2, 0, 2, 0, 2, 2] 236 ×
√
←O{2,3,4,5,6,7,8}(9,5) ×

E8(a1) [2, 2, 2, 0, 2, 2, 2, 2] 238 ×
√
←O{2,3,4,5,6,7,8}(11,3) ×



JET SCHEMES OF THE CLOSURE OF NILPOTENT ORBITS 181

checked using Propositions 3.6, 4.2, 4.6, and Remark 3.9. When condition RC1 is
obtained via Proposition 4.6, we give an example of the bigger simple Lie algebra
and the little nilpotent orbit satisfying condition (iii) of Proposition 4.6 from which
it is obtained.

As for determining whether condition RC2(m) is verified, our main method is
to list the orbits induced by nilpotent orbits that have a little factor (Theorem 6.1).
Thus they are RC2(m) for all m ∈N∗. Since induction is transitive, we can proceed
by induction on the rank of the Lie algebra, where at each step, we only need to
consider induction from orbits in maximal Levi subalgebras which are themselves
induced from nilpotent orbits with a little factor. For an orbit verifying condition
RC2(m), we give an example of a maximal Levi subalgebra l and an orbit in l

induced from a nilpotent orbit with a little factor.
In both cases, if the orbit is little, then we just label it little. The subscript of an

orbit indicates: its characteristics, the associated partition, or its Bala-Carter label.
If a superscript of an orbit is present, it indicates the corresponding maximal Levi
subalgebra.

We have omitted the zero orbit and the regular orbit because they are neither
RC1 nor RC2(m).

All the computations are done using the package sla of GAP4.
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COMPONENTS OF SPACES OF CURVES
WITH CONSTRAINED CURVATURE ON FLAT SURFACES

NICOLAU C. SALDANHA AND PEDRO ZÜHLKE

Let S be a complete flat surface, such as the Euclidean plane. We obtain
direct characterizations of the connected components of the space of all
curves on S which start and end at given points in given directions, and
whose curvatures are constrained to lie in a given interval, in terms of all
parameters involved. Many topological properties of these spaces are inves-
tigated. Some conjectures of L. E. Dubins are proved.
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0. Introduction

To abbreviate the notation, we shall identify R2 with C throughout. A curve
γ : [0, 1] → C is called regular if its derivative is continuous and never vanishes.
Its unit tangent is then defined as

tγ : [0, 1] → S1, tγ (t)=
γ̇ (t)
|γ̇ (t)|

.

Lifting γ to the unit tangent bundle UT C≡ C×S1, we obtain its frame

(1) 8γ : [0, 1] → C×S1, 8γ (t)= (γ (t), tγ (t)).

MSC2010: primary 53A04; secondary 53C42, 57N20.
Keywords: curve, curvature, Dubins path, flat surface, topology of infinite-dimensional manifolds.
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Let P = (p, w), Q = (q, z) ∈ C×S1 and consider the spaces of curves

(2)
S(P,Q)={γ : [0,1] Cr

−→C : γ is regular, 8γ (0)= P and 8γ (1)= Q},

�UT C(P,Q)={ω : [0,1] Cr−1
−−→UT C : ω(0)= P and ω(1)= Q}

endowed with the Cr and Cr−1 topologies, respectively (1 ≤ r ∈ N). In 1956,
S. Smale proved that the map

8 : S(P, Q)→�UT C(P, Q), γ 7→8γ ,

is a weak homotopy equivalence (that is, it induces isomorphisms on homotopy
groups). Actually, Smale’s theorem [1958, Theorem C] is much more general in that
it holds for any manifold, not just C. Using standard results on Banach manifolds
which were discovered later, one can conclude that the spaces in (2) are in fact
homeomorphic, and that the value of r is unimportant.

Given a regular plane curve γ , an argument of tγ is a continuous function
θγ : [0, 1] → R such that tγ = eiθγ . The total turning of γ is defined to be
θγ (1)−θγ (0); note that this is independent of the choice of θγ (0). It is easy to see that
�UT C(P, Q) is homotopy equivalent to �S1(w, z). The latter possesses infinitely
many connected components, one for each θ1 satisfying eiθ1 = zw̄ = zw−1, all of
which are contractible. Therefore, the components of S(P, Q) are all contractible as
well, and two curves in S(P, Q) lie in the same component if and only if they have
the same total turning. This generalizes the Whitney–Graustein theorem [Whitney
1937, Theorem 1] to nonclosed curves.

The main purpose of this work is to investigate the topology of subspaces of
S(P, Q) obtained by imposing constraints on the curvature of the curves.

(0.1) Definition. Suppose −∞ ≤ κ1 < κ2 ≤ +∞ and r ∈ {2, 3, . . . ,∞}. For
P = (p, w), Q = (q, z) ∈ C×S1, define Cκ2

κ1
(P, Q) to be the set of all Cr regular

curves γ : [0, 1] → C such that

(i) 8γ (0)= P and 8γ (1)= Q;

(ii) the curvature κγ of γ satisfies κ1 < κγ (t) < κ2 for each t ∈ [0, 1].

Let this set be furnished with the Cr topology.

Condition (i) means that γ starts at p in the direction of w and ends at q in
the direction of z. In this notation, S(P, Q) becomes C+∞−∞(P, Q). The connected
components of C+κ0

−κ0
(P, Q) (κ0 > 0) were first studied by L. E. Dubins [1961]. His

main result (Theorem 5.3, slightly rephrased) implies that there may exist curves
with the same total turning which are not homotopic within this space.

Theorem (Dubins). Suppose x > 0 and Qx = (x, 1), O = (0, 1) ∈ C×S1. Let
η ∈ C+1

−1(O, Qx) be the line segment parametrized by η(t) = xt. Then the con-
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catenation of η with a figure eight curve lies in the same connected component of
C+1
−1(O, Qx) as η if and only if x > 4.

Here a “figure eight” curve means any closed curve of total turning 0 whose
curvature takes values in (−1, 1), such as the one depicted in Figure 7(d).

Naturally, we always have the following decomposition of Cκ2
κ1
(P, Q) into closed-

open subspaces:
Cκ2
κ1
(P, Q)=

⊔
θ1

Cκ2
κ1
(P, Q; θ1),

where Cκ2
κ1
(P, Q; θ1) consists of those curves in Cκ2

κ1
(P, Q) which have total turning

equal to θ1 and the union is over all θ1 ∈ R satisfying eiθ1 = zw̄.
If κ1κ2 ≥ 0, it will be shown that each Cκ2

κ1
(P, Q; θ1) is either empty or a con-

tractible connected component of Cκ2
κ1
(P, Q).1 If κ1κ2 < 0, then Cκ2

κ1
(P, Q; θ1) is

never empty, and it is a contractible connected component provided that |θ1| ≥ π .
However, the remaining subspace Cκ2

κ1
(P, Q; θ1) with |θ1| < π may not be con-

tractible, nor even connected, as implied by Dubins’ theorem. It turns out that one
can obtain simple and explicit characterizations of its components in terms of κ1, κ2,
P and Q by using a homeomorphism with a space of the form C+1

−1(P0, Q0; θ1)

and an elementary geometric construction (see Figure 1).
This paper is close in spirit to Dubins’ [1961], and some of his conjectures

will be settled; it is not assumed, however, that the reader is familiar with his
work. In the sequel to this article [Saldanha and Zühlke 2015], we determine
the homotopy type of Cκ2

κ1
(P, Q). Granted the results described above, the only

remaining task is the determination of the homotopy type of the exceptional subspace
Cκ2
κ1
(P, Q; θ1)⊂ Cκ2

κ1
(P, Q) with |θ1|< π (κ1κ2 < 0) containing the curves in the

latter of least total turning. It is proved in [Saldanha and Zühlke 2015] that this
subspace may be homotopy equivalent to an n-sphere for any n ∈ {0, 1, . . . ,∞}
(recall that S∞ is contractible). The value of n can be determined in terms of
all parameters by first reducing to the case where κ1 =−1, κ2 =+1 through the
homeomorphism mentioned above, and then using a construction extending the one
depicted in Figure 1 (which only tells whether n = 0 or not).

Outline of the sections. Many useful constructions, such as the concatenation of
elements of Cκ2

κ1
(P, Q) and Cκ2

κ1
(Q, R), yield curves which need not be of class C2.

To avoid having to smoothen curves all the time, we work with curves which have
a continuously varying unit tangent at all points, but whose curvatures are defined
only almost everywhere. The resulting spaces, denoted by Lκ2

κ1
(P, Q), are defined in

Section 1, where it will also be seen that the set inclusion Cκ2
κ1
(P, Q)→Lκ2

κ1
(P, Q) is

a homotopy equivalence with dense image and that these spaces are homeomorphic.

1In determining the sign of κ1κ2, we adopt the convention that 0(±∞)= 0.
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Figure 1. Let θ1 ∈ R be fixed, z = eiθ1 and Q = (q, z). Then
C+1
−1(Q; θ1) is disconnected if and only if |θ1|< π and q lies in the

gray region. The region contains the arc of circle of radius 4, but not
the arcs of circle of radius 2. Figure (a) depicts the case θ1 ∈ [0, π),
and (b) the case θ1 ∈ (−π, 0] (here θ1 ≈ ±26◦). The theorem of
Dubins stated above corresponds to the case where θ1 = 0 and q ∈ R.

Let O = (0, 1) ∈ C × S1 denote the canonical element of UT C, and let us
denote Cκ2

κ1
(O, Q) simply by Cκ2

κ1
(Q). Using Euclidean motions, dilatations and

a construction called normal translation (see Figure 2 on p. 200), we obtain in
(2.4) an explicit homeomorphism between any space Cκ2

κ1
(P0, Q0) and a space of

one of the following types: C+∞0 (Q), C+∞1 (Q) or C+1
−1(Q), according to whether

κ1κ2 = 0, κ1κ2 > 0 or κ1κ2 < 0, respectively. Moreover, this homeomorphism
preserves the total turning of curves up to sign. Among these three, C+1

−1(Q) has
the most interesting topological properties.

We call a regular curve γ : [0, 1] → C condensed, critical or diffuse, according
to whether its amplitude

ω = sup
t∈[0,1]

θγ (t)− inf
t∈[0,1]

θγ (t)

satisfies ω < π , ω = π or ω > π , respectively. Let Q = (q, z) ∈ C×S1 and θ1

be such that eiθ1 = z. Let Uc ⊂ C+1
−1(Q; θ1) (resp. Ud ⊂ C+1

−1(Q; θ1)) denote the
subspace consisting of all condensed (resp. diffuse) curves. Both are open and
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Ud 6= ∅, since we may always concatenate a curve in C+1
−1(Q; θ1) with a curve

of total turning 0 (an eight curve, as in Figure 7(e) on p. 218). Clearly, Uc must
be empty if |θ1| ≥ π , but it may also be empty otherwise, depending on Q. We
determine exactly when this occurs in Section 3.

A condensed curve may be viewed as the graph of a function with respect to
some axis. This leads to a direct, albeit involved, proof that Uc is contractible
when nonempty. In fact, if the curvatures are allowed to be discontinuous and to
take values in the closed interval [−1, 1], then one can exhibit a contraction of the
subspace of condensed curves to the unique curve of minimal length (Dubins path)
in the corresponding space. This is also done in Section 3.

In Section 4, an indirect proof that Ud is contractible is obtained. If γ is diffuse,
then we can “graft” straight line segments onto γ , as illustrated in Figure 8, p. 223.
Such a segment can be deformed so that in the end an eight curve of large radius
traversed n times has been attached to it. These eights are then spread along the
curve, as in Figure 7(f). If n ∈ N is large enough, then the whole process can be
carried out within C+1

−1(Q). The result is a curve whose curvature is uniformly
small, and hence easily deformable.

In Section 5 we determine when the set T of all critical curves in C+1
−1(Q; θ1)

is empty. The main result in this section is that T = ∂Uc = ∂Ud . When T 6= ∅,
a finer analysis of how ∂Uc and ∂Ud fit together is required to determine the
homeomorphism class of C+1

−1(Q; θ1). This problem will be treated in [Saldanha
and Zühlke 2015].

In (6.1) we obtain various characterizations of the connected components of
C+1
−1(Q; θ1). Perhaps the simplest one is the following: this space is disconnected if

and only if |θ1|< π and q lies in the region illustrated in Figure 1, or, equivalently,
its subset T is empty, but Uc is not. In this case, it has exactly two components,
Uc and Ud , which are contractible. As mentioned previously, this is sufficient to
determine explicitly the components of any space Cκ2

κ1
(P0, Q0) with κ1κ2 < 0.

In Section 7, it is established that when κ1κ2 ≥ 0, the space Cκ2
κ1
(P, Q) has one

connected component for each realizable total turning, and they are all contractible.
The set of possible total turnings can be described in terms of all parameters using
normal translation and elementary geometry. The detailed solution to this problem
is not carried out to shorten the paper, but it can be found in the earlier unpublished
version [Saldanha and Zühlke 2014].

In Section 8 these results are extended to spaces of curves with constrained
curvature on any complete flat surface S (orientable or not) using the fact that if S
is connected then it must be the quotient of C by a group of isometries.

Even though we have imposed that the curvatures should lie in an open interval,
the main results obtained here have analogues for spaces (defined in Section 1)
where the curvature is constrained to lie in [κ1, κ2]. For κ1 =−κ2, this is the class



190 NICOLAU C. SALDANHA AND PEDRO ZÜHLKE

with which Dubins actually worked [1957; 1961]. The necessary modifications in
the statements and proofs are sketched in Section 9, where we also prove some
conjectures appearing in [Dubins 1961] and discuss a few additional conjectures on
curves of minimal length.

Related work. The problem treated here and in [Saldanha and Zühlke 2015] for
flat surfaces can be generalized to any smooth (or even C2) surface S equipped with
a Riemannian metric: if u, v are elements of its unit tangent bundle UTS, then one
can study the space CSκ2

κ1
(u, v) of curves on S whose lift to UTS joins u to v and

whose geodesic curvature takes values in (κ1, κ2). When S is nonorientable, only
the unsigned curvature makes sense, so in this case we require that κ2 =−κ1 > 0
(cf. Section 8 below). This topic is largely unexplored, and even the problem of
determining when CSκ2

κ1
(u, v) 6=∅ is open (and probably difficult). The topology

of these spaces is very closely related to the geometry of S.
A special case which has been more intensively studied is that of the space

of nondegenerate curves on S, i.e., curves of nonvanishing curvature. In our
notation, this corresponds to CS+∞0 (u, v)tCS0

−∞
(u, v). There is also an obvious

generalization to higher-dimensional manifolds, obtained by replacing the (geodesic)
curvature by the generalized curvature of a curve γ : [0, 1] → Mn . To say that the
latter does not vanish is equivalent to requiring that the first n (covariant) derivatives
of γ at γ (t) span the tangent space to M at this point for each t ∈ [0, 1]. Some
papers treating this problem, especially for spaces of closed curves on the simplest
manifolds, such as Rn , Sn or RPn , include [Anisov 1998; Feldman 1968; 1971,
Khesin and Shapiro 1992; 1999, Little 1970; Mostovoy and Sadykov 2012; Saldanha
2015; Saldanha and Shapiro 2012; Shapiro and Shapiro 1991, Shapiro 1993]. Most
of these are concerned with obtaining characterizations of the connected components
of the corresponding spaces.

In [Saldanha 2015], the homotopy type of spaces of (not necessarily closed)
nondegenerate curves on S2 is determined, and in [Saldanha and Zühlke 2013],
the connected components of spaces of closed curves on S2 with curvature in an
arbitrary interval (κ1, κ2) are characterized. In the sequel [Saldanha and Zühlke
2015], we determine the homotopy type of CSκ2

κ1
(u, v) for any flat surface S in terms

of κ1, κ2 and u, v ∈UTS. Many of the ideas appearing in the present paper (normal
translation, diffuse vs. condensed, grafting, curvature spreading, etc.) appear in
[Saldanha 2015] or [Saldanha and Zühlke 2013] in some form as well, although
sometimes the connection is only heuristical.

1. Spaces of plane curves

Basic terminology. Let γ : [a, b] → C be a regular curve. The unit normal n =
nγ : [a, b] → S1 is given by n = i t , where i ∈ C denotes the imaginary unit and
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t = tγ is the unit tangent to γ . The arc-length parameter s of γ is defined by

s(t)=
∫ t

a
|γ̇ (τ )| dτ (t ∈ [a, b]),

and L =
∫ b

a |γ̇ (τ )| dτ is the length of γ . Assuming γ is twice differentiable, its
curvature κ = κγ is given by

(3) κ(s)= 〈t ′(s), n(s)〉 (s ∈ [0, L]).

In terms of a general parameter,

(4) κ =
1
|γ̇ |
〈 ṫ, n〉 =

1
|γ̇ |2
〈γ̈ , n〉 =

det(γ̇ , γ̈ )
|γ̇ |3

.

(We denote derivatives with respect to arc-length by a ′ (prime) and derivatives with
respect to other parameters by a ˙ (dot).) Notice that the curvature at each point is
not altered by an orientation-preserving reparametrization of the curve, while its
sign changes if the reparametrization is orientation-reversing. It follows from (3)
that if θγ : [0, L] → R is an argument of t , then

(5) κ(s)= θ ′γ (s).

The following example illustrates one reason why it is more convenient to require
that curvatures lie in an open interval, as in (0.1).

(1.1) Example. Consider the space of all C2 regular curves γ : [0, 1] → C

whose curvatures are restricted to lie in [−1, 1] and which satisfy 8γ (0)= (1, i),
8γ (1)= (i,−1), where we have identified UT C with C×S1. The arc α of the
unit circle given by t 7→ exp(π i t/2) (t ∈ [0, 1]) is a curve in this space. In fact, it
is not hard to see that α is an isolated point; i.e., its connected component does not
contain any other curve.

In contrast, the spaces Cκ2
κ1
(P, Q)r are Banach manifolds (for r 6=∞). Still, some

useful constructions, such as the concatenation of curves, lead out of this class of
spaces. To avoid having to smoothen curves all the time, we shall work with another
class of spaces, which possess the additional advantage of being Hilbert manifolds.

The group structure of UTC. The group of all orientation-preserving isometries
of C (i.e., proper Euclidean motions) acts simply transitively on UT C. An element
of this group is thus uniquely determined by where it maps (0, 1) ∈UT C, and may
be identified with this image. Therefore, UT C carries a natural Lie group structure
as a semidirect product CoS1, wherein the operation is

(p, w) · (q, z)= (p+wq, wz) (p, q ∈ C, w, z ∈ S1).
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Accordingly, viewed as a one-parameter family of Euclidean motions, the frame
8γ of a regular curve γ : [0, 1] → C operates on C through

(6) 8γ (t)a = γ (t)+ t(t)a (a ∈ C, t ∈ [0, 1]).

If we identify the Lie algebra of UT C with C×R, then the bracket operation is
given by

(7) [(a, θ), (b, ϕ)] = (i(θb−ϕa), 0) (a, b ∈ C, θ, ϕ ∈ R).

We can also realize UT C as a matrix group if we identify

P = (p, w) with

cos θ − sin θ x
sin θ cos θ y

0 0 1

 , where p = x + iy, w = eiθ .

Then 8γ corresponds to the map

(8) 8γ : [0, 1] → GL3, 8γ (t)=

cos θγ (t) − sin θγ (t) γ1(t)
sin θγ (t) cos θγ (t) γ2(t)

0 0 1

 ,
where θγ : [0, 1] → R is an argument of tγ and γ (t)= γ1(t)+ iγ2(t).2 Moreover,
under this identification the Lie algebra a of UT C becomes a subalgebra of gl3
generated by

(9) A =

0 −1 0
1 0 0
0 0 0

 , B =

0 0 1
0 0 0
0 0 0

 and C =

0 0 0
0 0 1
0 0 0

 .
The expression for the bracket in (7) can be easily derived from this.

Spaces of admissible curves. Suppose now that γ : [0, 1] → C is not only regular,
but also smooth. Let κ denote its curvature and σ = |γ̇ | its speed. Using (5), we
deduce that

8̇γ =|γ̇ |

−κ sinθγ −κ cosθγ cosθγ
κ cosθγ −κ sinθγ sinθγ

0 0 0

=8γ3γ , where 3γ =σ

0 −κ 1
κ 0 0
0 0 0

 .
Let h⊂ a denote the half-plane

(10) h= {a A+ bB : a ∈ R, b > 0}.

The map 3γ : [0, 1] → h is called the logarithmic derivative of γ . The crucial
observation for us is that 8γ (and hence γ ) is uniquely determined as the solution

2Notice that the first column of 8γ gives the coordinates of tγ , the second the coordinates of nγ
and the third the coordinates of γ . This justifies our terminology “frame” for 8γ .



COMPONENTS OF SPACES OF CURVES ON FLAT SURFACES 193

of an initial value problem

(11) 8(0)= P ∈UT C, 8̇=83, where 3 : [0, 1]→h, 3=σ

0 −κ 1
κ 0 0
0 0 0

 .
Equivalently, γ is uniquely determined by P = 8γ (0) and the pair of functions
κ : [0, 1] → R and σ : [0, 1] → R+. Our preferred class of spaces is obtained by
relaxing the requirements that σ and κ be smooth.

Let h = h0,+∞ : (0,+∞)→ R be the smooth diffeomorphism

h(t)= t − t−1.

More generally, for each pair κ1 < κ2 ∈ R, let hκ1,κ2 : (κ1, κ2)→ R be the smooth
diffeomorphism

hκ1,κ2(t)= (κ1− t)−1
+ (κ2− t)−1,

and, similarly, set

h−∞,+∞ : R→ R, h−∞,+∞(t)= t,

h−∞,κ2 : (−∞, κ2)→ R, h−∞,κ2(t)= t + (κ2− t)−1,

hκ1,+∞ : (κ1,+∞)→ R, hκ1,+∞(t)= t + (κ1− t)−1.

(1.2) Remark. All of these functions are monotone increasing; hence so are their
inverse functions. Also, if κ̂ ∈ L2

[0, 1], then κ = h−1
κ1,κ2
◦ κ̂ ∈ L2

[0, 1] as well.
This is obvious if (κ1, κ2) is bounded, and if one of κ1, κ2 is infinite then it is a
consequence of the fact that h−1

κ1,κ2
(t) diverges linearly to ±∞ with respect to t .

In all that follows, E denotes the separable Hilbert space L2
[0, 1] × L2

[0, 1].
The (i, j)-entry of a matrix A will be denoted by A(i, j).

(1.3) Definition. Let −∞≤ κ1 <κ2 ≤+∞ and P ∈UT C. A curve γ : [0, 1]→C,
γ = γ1 + iγ2, will be called (κ1, κ2)-admissible if γ1 = 8

(1,3), γ2 = 8
(2,3) for

8 : [0, 1] →UT C satisfying (11), with

(12) σ = h−1
◦ σ̂ , κ = h−1

κ1,κ2
◦ κ̂, (σ̂ , κ̂) ∈ E.

When it is not important to keep track of the bounds κ1, κ2, we will simply say that
γ is admissible.

The differential equation (11) has a unique solution 8 for any (σ̂ , κ̂) ∈ E and
P ∈ UT C. This follows from [Younes 2010, Theorem C.3] using the fact that
σ, κ ∈ L2

[0, 1] ⊂ L1
[0, 1]. Moreover, 8 is absolutely continuous [Younes 2010,

p. 385] and defined over all of [0, 1] (since C is complete). The resulting maps
t : [0, 1] → S1, n : [0, 1] → S1 and γ : [0, 1] → C, obtained from the first, second
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and third columns of 8, respectively, are thus absolutely continuous. It follows
from (11) that

(13) γ̇ = σ t, ṫ = σκn and ṅ=−σκ t.

Furthermore, if 9 denotes the 2× 2 matrix obtained from 8 by discarding its third
column and line, then 9 : [0, 1]→ SO2, as one sees by differentiating 99T , using
(11) and noting that 9(0) ∈ SO2. Hence, n= i t . Differentiation of |t|2 yields that

|n(t)| = |t(t)| = |t(0)| = 1 for all t ∈ [0, 1].

Comparing with (13), it is thus natural to define tγ = t , nγ =n,8γ =8, and to call σ
and κ the speed and curvature of γ , respectively, even though σ, κ ∈ L2

[0, 1]. With
this definition, tγ , nγ , 8γ and any argument θγ = arg ◦ tγ are absolutely continuous
functions, as remarked above. Although γ̇ = σ tγ is defined only almost everywhere
on [0, 1], if we reparametrize γ by arc-length then it becomes a regular curve, since
γ ′ = tγ . Instead of thinking of γ as corresponding to a pair of L2 functions, it is
more helpful to regard γ as a regular curve whose curvature is defined only a.e.
In fact, all of the concrete examples of admissible curves considered below are
piecewise C2 curves.

(1.4) Definition. Let −∞≤ κ1 < κ2 ≤+∞. For P ∈UT C, define Lκ2
κ1
(P, · ) to be

the set of all (κ1, κ2)-admissible curves γ : [0, 1] → C with 8γ (0)= P . This set
is identified with E via the correspondence γ ↔ (σ̂ , κ̂), thus furnishing Lκ2

κ1
(P, · )

with a trivial Hilbert manifold structure.

The “L” is intended to remind one of L2 functions.

(1.5) Lemma. Let −∞≤ κ1 < κ2 ≤+∞ and P ∈UT C. Then

F : Lκ2
κ1
(P, · )→UT C, γ 7→8γ (1),

is a submersion. Consequently, it is an open map.

Proof. Let δ > 0, r ∈ (−δ, δ) and σ̂ (r), κ̂(r) ∈ L2
[0, 1] be one-parameter families

of functions; set σ(r) = h−1
◦ σ̂ (r), κ(r) = h−1

κ1,κ2
◦ κ̂(r). Define a corresponding

family of curves 3(r) : [0, 1] → h by

3(r)= σ(r)

 0 −κ(r) 1
κ(r) 0 0

0 0 0

 .
Denoting derivatives with respect to t (resp. r) by a ˙ (resp. ′ ), let the map
8(r) : [0, 1] →UT C, t 7→ 8(r)(t), be the solution of 8̇(r) = 8(r)3(r). A
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straightforward computation shows that

8′(r)(t)
(
8(r)(t)

)−1

=

∫ t

0
8(r)(τ )3′(r)(τ )

(
8(r)(τ )

)−1 dτ (r ∈ (−δ, δ), t ∈ [0, 1]).

Let 3′(0) consist of three smooth narrow bumps at times t = t0, t = t1 and t = t2,
with each ti ∈ (0, 1) close to 1. Let 9 = 8(0); setting r = 0 in the previous
expression, we deduce that

9(1)−18′(0)(1)≈
3∑

i=1

(
9(ti )−19(1)

)−1
3′(0)(ti )

(
9(ti )−19(1)

)
.

Since each 3(r) is a curve in the open convex cone

{a A+ bB : a ∈ R, b > 0 and κ1b < a < κ2b},

we can make 3′(0)(ti ) assume any value in the vector subspace v generated by
A and B (with A, B as in (9)). Another computation using the fact that σ(0) > 0
a.e. shows that the planes v and

(
9(ti )−19(1)

)−1
v
(
9(ti )−19(1)

)
are transversal

for small 1− ti , with the angle between them proportional to (1− ti )+ o(1− ti ).
Hence, any vector in a can be written in the form 9(1)−18′(0)(1) for a suitable
choice of 3′(0), which shows that F is a submersion. �

(1.6) Definition. Let−∞≤ κ1<κ2≤+∞ and P, Q ∈UT C. Define Lκ2
κ1
(P, Q) to

be the subspace of Lκ2
κ1
(P, · ) consisting of all γ ∈ Lκ2

κ1
(P, · ) such that 8γ (1)= Q.

It follows from (1.5) that Lκ2
κ1
(P, Q) is a closed submanifold of codimension 3

in Lκ2
κ1
(P, · )≡ E; the proof that Lκ2

κ1
(P, Q) is always nonempty is postponed until

Section 4.
The following lemmas contain all the results on infinite-dimensional manifolds

that we shall use.

(1.7) Lemma. Let M,N be (infinite-dimensional) separable Banach manifolds.
Then:

(a) M is locally path-connected. In particular, its connected and path components
coincide.

(b) If F : M→ N is a weak homotopy equivalence, then F is homotopic to a
homeomorphism.

(c) Let E and F be separable Banach spaces. Suppose i : F→ E is a bounded,
injective linear map with dense image and M⊂ E is a smooth closed subman-
ifold of finite codimension. Then N = i−1(M) is a smooth closed submanifold
of F and i :N→M is a homotopy equivalence.
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Proof. Part (a) is obvious. Part (b) follows from [Palais 1966, Theorem 15],
[Burghelea and Kuiper 1969, Theorem 9] and [Henderson 1969, Corollary 3].
Part (c) is [Burghelea et al. 2003, Theorem 2]. �

(1.8) Lemma. Let E be a separable Hilbert space, D⊂ E a dense vector subspace,
L ⊂ E a submanifold of finite codimension and U an open subset of L. If K is a
finite simplicial complex and f : |K | →U a continuous map, then f is homotopic
within U to a map |K | → D ∩U.

Proof. See [Saldanha and Zühlke 2013, Lemma 1.10]. �

(1.9) Corollary. Let κ1 < κ2 and P, Q ∈ UT C. Then the subset of all smooth
curves in Lκ2

κ1
(P, Q) is dense in the latter.

Proof. Take E = L2
[0, 1] × L2

[0, 1], D = C∞[0, 1] ×C∞[0, 1] and U an open
subset of L = Lκ2

κ1
(P, Q). Then it is a trivial consequence of (1.8) that D ∩U 6=∅

if U 6=∅. �

(1.10) Lemma. Let (κ1, κ2)⊂ (κ̄1, κ̄2) and P, Q ∈UT C. Then

(14) j : Cκ2
κ1
(P, Q)r → L

κ̄2
κ̄1
(P, Q), γ 7→ (σ̂ , κ̂),

where σ̂ = h ◦ |γ̇ | and κ̂ = hκ̄1,κ̄2 ◦ κγ , is a continuous injection for all r ≥ 2.
Furthermore, the actual curve in C corresponding to j (γ ) ∈ Lκ̄2

κ̄1
(P, Q) is γ itself.

Proof. The curve corresponding to the right side of (14) in L
κ̄2
κ̄1
(P, · ) is the solution

of (11) with
σ = h−1

◦ σ̂ = |γ̇ | and κ = h−1
κ̄1,κ̄2
◦ κ̂ = κγ .

By uniqueness, this solution must equal γ . In particular, j is injective and its image
is indeed contained in L

κ̄2
κ̄1
(P, Q). Continuity of j is clear: if η is Cr -close to γ ,

then ση (resp. κη) is C1-close (resp. C0-close) to σγ (resp. κγ ); hence j (η) is close
to j (γ ) in the L2-norm. �

(1.11) Corollary. Let κ1 < κ2, P, Q ∈ UT C and U ⊂ Lκ2
κ1
(P, Q) be open. Let K

be a finite simplicial complex and f : |K | → U be a continuous map. Then there
exists a continuous g : |K | → U such that

(i) f ' g within U;

(ii) g(a) is a smooth curve for all a ∈ K ;

(iii) all derivatives of g(a) with respect to t depend continuously on a ∈ K .

In particular, the set inclusion j : Cκ2
κ1
(P, Q) ↪→ Lκ2

κ1
(P, Q) in (14) induces surjec-

tions πk( j−1(U))→ πk(U) for all k ∈ N.

Proof. Parts (i), (ii) follow immediately from (1.8) by setting E=L2
[0,1]×L2

[0,1],
D = C∞[0, 1]×C∞[0, 1], L = Lκ2

κ1
(P, Q) and U = U. The image of the function

g = H2 : |K | → U constructed in the proof of (1.8) [Saldanha and Zühlke 2013,
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Lemma 1.10] is contained in a finite-dimensional vector subspace of D, namely,
the one generated by all ṽi j , so (iii) also holds. �

(1.12) Lemma. Let κ1 < κ2 and P, Q ∈UT C. Then the inclusion

j : Cκ2
κ1
(P, Q)r → Lκ2

κ1
(P, Q)

of (14) is a homotopy equivalence for any r ∈ N, r ≥ 2. Consequently, Cκ2
κ1
(P, Q)r

is homeomorphic to Lκ2
κ1
(P, Q) for any r ∈ N, r ≥ 2.

Proof. Let E = L2
[0, 1] × L2

[0, 1], let F = Cr−1
[0, 1] × Cr−2

[0, 1] (where
Ck
[0, 1] denotes the set of all Ck functions [0, 1] → R with the Ck norm) and

let i : F → E be set inclusion. Setting M = Lκ2
κ1
(P, Q), we conclude from

(1.7)(c) that i : N = i−1(M) ↪→ M is a homotopy equivalence. We claim that
N is homeomorphic to Cκ2

κ1
(P, Q)r , where the homeomorphism G is obtained by

associating a pair (σ̂ , κ̂) ∈N to the curve γ obtained by solving (11), with σ and κ
as in (12). The lemma will follow from this and the easily verified commutativity of

N

i ##

G
// Cκ2

κ1
(P, Q)r

j
��

Lκ2
κ1
(P, Q)

Suppose first that γ ∈ Cκ2
κ1
(P, Q)r . Then |γ̇ | (resp. κ) is a function [0, 1] → R

of class Cr−1 (resp. Cr−2). Hence, so are σ̂ = h ◦ |γ̇ | and κ̂ = hκ2
κ1
◦ κ , since h and

hκ2
κ1

are smooth. Moreover, if γ, η ∈ Cκ2
κ1
(P, Q)r are close in the Cr topology, then

κ̂γ is Cr−2-close to κ̂η and σ̂γ is Cr−1-close to σ̂η.
Conversely, if (σ̂ , κ̂)∈N, then σ = h−1

◦σ̂ is of class Cr−1 and κ = (hκ2
κ1
)−1
◦κ̂ is

of class Cr−2. Since all functions on the right side of (11) are of class (at least) Cr−2,
the solution t = tγ to this initial value problem is of class Cr−1. Moreover, γ̇ = σ t;
hence the velocity vector of γ is seen to be of class Cr−1. We conclude that γ
is a curve of class Cr . Further, continuous dependence on the parameters of a
differential equation shows that the correspondence (σ̂ , κ̂) 7→ tγ is continuous.
Since γ is obtained by integrating σ tγ , we deduce that the map (σ̂ , κ̂) 7→ γ is
likewise continuous.

The last assertion of the lemma follows from (1.7)(b). �

(1.13) Definition. Let P = (p, w), Q = (q, z) ∈ C×S1. Given θ1 ∈ R satisfying
eiθ1 = zw̄, we denote by Lκ2

κ1
(P, Q; θ1) the subspace of Lκ2

κ1
(P, Q) consisting of all

curves which have total turning equal to θ1. When P = (0, 1), the space Lκ2
κ1
(P, Q)

(resp. Lκ2
κ1
(P, Q; θ1)) will be denoted simply by Lκ2

κ1
(Q) (resp. Lκ2

κ1
(Q; θ1)).



198 NICOLAU C. SALDANHA AND PEDRO ZÜHLKE

Notice that (0, 1) ∈ C× S1 corresponds to the identity element in the group
structure of UT C. It will be proved in Section 4 that Lκ2

κ1
(P, Q; θ1) is never empty

if κ1κ2 < 0, but may be empty if κ1κ2 ≥ 0, depending on the value of θ1.
The next two results let us reparametrize a family of curves to better suit our needs.

(1.14) Lemma. Let M = Lκ2
κ1
(P, Q) or M = Cκ2

κ1
(P, Q). Let A be a topological

space and A→M, a 7→ γa , be a continuous map. Then there exists a homotopy
γ r

a : [0, 1] →M, r ∈ [0, 1], such that for any a ∈ A,

(i) γ 0
a = γa and γ 1

a is parametrized so that |γ̇ 1
a (t)| is independent of t ;

(ii) γ r
a is an orientation-preserving reparametrization of γa for all r ∈ [0, 1].

Proof. Let sa(t) =
∫ t

0 |γ̇a(τ )| dτ be the arc-length parameter of γa , La its length
and τa : [0, La] → [0, 1] the inverse function of sa . Define γ r

a : [0, 1] → M by

γ r
a (t)= γa

(
(1− r)t + rτa(Lat)

)
(r, t ∈ [0, 1], a ∈ A).

Then γ r
a is the desired homotopy. �

(1.15) Corollary. Let M= Lκ2
κ1
(P, Q) or Cκ2

κ1
(P, Q). Let A be a topological space

and f : S0
× A → M a continuous map such that for all a ∈ A, f (1, a) is an

orientation-preserving reparametrization of f (−1, a). Then f admits a continuous
extension F : A× [−1, 1] →M with the property that f (r, a) is an orientation-
preserving reparametrization of f (−1, a) for all r ∈ [−1, 1], a ∈ A. �

It is assumed in (1.14) and (1.15) that the parametrizations of all curves have
domain [0, 1], but it is clearly possible to have these intervals depend (continuously)
on a. A typical application is to reparametrize all curves in a family by arc-length,
not just proportionally to arc-length as in (1.14).

Spaces of curves with curvature in a closed interval.
(1.16) Definition. Let P, Q ∈UT C and −∞<κ1 <κ2 <+∞. Define L̂κ2

κ1
(P, Q)

to be the set of all C1 regular plane curves γ : [0, 1] → C satisfying

(i) 8γ (0)= P and 8γ (1)= Q;

(ii) κ1 ≤
θ(s1)− θ(s2)

s1− s2
≤ κ2

for any s1 6= s2 ∈ [0, L]. (Here the parameter is the arc-length of γ , L is its
length and θ : [0, L] → R is an argument of tγ .)

Condition (ii) implies that θ is a Lipschitz function. In particular, it is absolutely
continuous, and its derivative κγ lies in L2, since it is bounded. We give this set the
topology induced by the following distance function d: given γ, η ∈ L̂κ2

κ1
(P, Q), set

d(γ, η)= ‖γ − η‖2+‖γ̇ − η̇‖2+‖κγ − κη‖2.

For P = (0, 1) ∈ C×S1, we will denote L̂κ2
κ1
(P, Q) simply by L̂κ2

κ1
(Q).
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Remark. This definition is essentially due to L. E. Dubins, who studied paths of
minimal length, now called Dubins paths, in L̂

+κ0
−κ0
(P, Q) (κ0 > 0). Such shortest

paths always exist, but may not be unique in some special cases (see Proposition 1
and the corollary to Theorem I of [Dubins 1957]). His main result states that any
Dubins path is the concatenation of at most three pieces, each of which is either a
line segment or an arc of circle of radius 1/κ0 (see [loc. cit., Theorem I] for the
precise statement). Dubins paths and variations thereof have many applications in
engineering and are the subject of a vast literature. The space L̂κ2

κ1
(P, Q) will play

a minor role in our investigations. Its topology has been chosen to ensure that the
following result holds.

(1.17) Lemma. Let (κ1, κ2) ⊂ [κ̄1, κ̄2] ⊂ ( ¯̄κ1, ¯̄κ2) and P, Q ∈ UT C. Then the set
inclusions

Cκ2
κ1
(P, Q)→ L̂

κ̄2
κ̄1
(P, Q) and L̂

κ̄2
κ̄1
(P, Q)→ L

¯̄κ2
¯̄κ1
(P, Q)

are continuous injections.

Proof. The proof is a straightforward verification, which will be left to the reader. �

2. Normal translation

The radius of curvature ρ of an admissible curve γ is given by ρ = 1/κ; when
κ(t)= 0, it is to be understood that ρ(t)=∞ (unsigned infinity). An analogue of
the following construction has already appeared in [Saldanha and Zühlke 2013]. It
can be used to uniformly shift the radii of curvature of a family of curves.

(2.1) Definition. Let γ : [0, 1]→C be admissible and u∈R. The normal translation
γu of γ by u is the curve given by

γu(t)= γ (t)+ un(t) (t ∈ [0, 1]).

Observe that the normal translation αu of a circle α of radius of curvature
ρ ∈ R r {0} is a circle of radius of curvature ρ − u for any u in the component
of Rr {ρ} containing 0 (see Figure 2). The following lemma generalizes this to
arbitrary curves.

(2.2) Lemma. Let γ ∈Lκ2
κ1
(P, Q) be parametrized proportionally to arc-length and

let t, κ, ρ denote its unit tangent, curvature and radius of curvature, respectively.
Suppose u ∈ R satisfies 1− uk > 0 for all k ∈ (κ1, κ2) and set

(15) κ̄i =
κi

1− uκi
(i = 1, 2).

Then the normal translation γu of γ by u has the following properties:
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Figure 2. The normal translation of a general curve γ and of a
circle α.

(a) γu ∈ L
κ̄2
κ̄1
(P, Q) for P = (p+ iuw,w), Q = (q + iuz, z) and its unit tangent

t̄ satisfies t̄(t)= t(t) for each t ∈ [0, 1]. In particular, γ and γu have the same
total turning.

(b) (γu)−u = γ .

(c) If η is a reparametrization of γ , then ηu is a reparametrization of γu .

(d) For almost every t ∈ [0, 1], the curvature κ̄ of γu is given by

κ̄(t)=
κ(t)

1− uκ(t)
and its radius of curvature ρ̄ by

ρ̄(t)= ρ(t)− u.

In (15) above, it should be understood that κ̄i =−1/u if κi is infinite and that
κ̄i =±∞ has the same sign as κi if 1− uκi = 0.

Proof. Let θγ : [0, 1]→R be an argument of t = tγ and define 9 : [0, 1]→ GL3 by

(16) 9 =

cos θγ − sin θγ γ1− u sin θγ
sin θγ cos θγ γ2+ u cos θγ

0 0 1

 .
Let L be the length of γ . Since γ is parametrized proportionally to arc-length, a
straightforward calculation shows that 9 satisfies 9̇ =93 for

(17) 3 : [0, 1] → a⊂ gl3, 3= L

0 −κ 1− uκ
κ 0 0
0 0 0

 .
By hypothesis, the image of 3 is contained in the half-plane h of (10). Comparing
the third column of (16) with the definition of γu , we deduce that 9 is the frame
of γu . Further, looking at the first and second columns, we deduce that t̄ = t and
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n̄ = n. That 8γu (0) = P and 8γu (1) = Q then follows immediately from the
definition. This establishes (a) except for the fact that γu is (κ̄1, κ̄2)-admissible,
which will be proved below.

Part (b) is an easy verification:

(γu)−u = γu − un̄= (γ + un)− un= γ.

Part (c) is obvious.
We know that the curvature κ̄ of γu is given by the quotient of 3(2,1) by 3(1,3),

that is,

κ̄ =
κ

1− uκ
=

1
ρ− u

=
1
ρ̄
.

This proves (d).
It is straightforward to check that u ∈R satisfies 1−uk > 0 for all k ∈ (κ1, κ2) if

and only if u lies in the maximal closed interval J containing 0 and not containing
any number of the form 1/k for k ∈ (κ1, κ2). More explicitly:

(i) If 0≤ κ1 < κ2 then J = (−∞, ρ2];

(ii) If κ1 < 0< κ2 then J = [ρ1, ρ2];

(iii) If κ1 < κ2 ≤ 0 then J = [ρ1,+∞).

By (17), |γ̇u| = L(1− uκ). To establish that γu is (κ̄1, κ̄2)-admissible, it suffices to
prove that

h0,+∞ ◦ (1− uκ)= (1− uκ)− (1− uκ)−1
∈ L2
[0, 1],(18)

hκ̄1,κ̄2 ◦ κ̄ ∈ L2
[0, 1].(19)

By (1.2), κ ∈ L2
[0, 1]; hence so is (1− uκ). Moreover, (1− uκ)−1 is bounded

unless u is one of the endpoints of J , but we claim that even in this case (1−uκ)−1
∈

L2
[0, 1]. Suppose for concreteness that u = ρ2 ∈ ∂ J . If κ2 = +∞ (ρ2 = 0) then

there is nothing to prove, and otherwise

(20) (1− uκ)−1
= (1− ρ2κ)

−1
= κ2(κ2− κ)

−1.

Now by hypothesis, γ ∈ Lκ2
κ1
(P, Q); therefore

hκ1,κ2 ◦ κ = (κ1− κ)
−1
+ (κ2− κ)

−1
∈ L2
[0, 1].

This implies that both

(21) (κ1− κ)
−1
∈ L2
[0, 1] and (κ2− κ)

−1
∈ L2
[0, 1],

since as one of them increases in absolute value, the other one decreases. Conse-
quently, (20) lies in L2

[0, 1] and (18) follows from Minkowski’s inequality.
The proof of (19) involves the tedious consideration of several cases, because it

depends on which of the four h functions defined on p. 193 is used, both for (κ1, κ2)
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and (κ̄1, κ̄2). Assume first that κ1 < κ2 are both finite. If u /∈ ∂ J , then κ̄1, κ̄2 are
also finite, so

hκ̄1,κ̄2 ◦ κ̄ = (1− uκ)(1− uκ1)(κ1− κ)
−1
+ (1− uκ)(1− uκ2)(κ2− κ)

−1.

Since κ ∈ (κ1, κ2) is bounded, this is a sum of two functions in L2
[0, 1] by (21);

hence it lies in L2
[0, 1]. If u is an endpoint ρi of J then κ̄i is infinite. For instance,

if u = ρ2 then

hκ̄1,κ̄2 ◦ κ̄ = hκ̄1,+∞ ◦ κ̄ = (1− ρ2κ)(1− ρ2κ1)(κ1− κ)
−1
+ κ2κ(κ2− κ)

−1.

Because κ is bounded, we conclude from (21) that (19) holds in this case also.
If one of the κi , say κ2, is infinite, then the hypothesis that γ is admissible implies

that
hκ1,+∞ ◦ κ = (κ1− κ)

−1
+ κ ∈ L2

[0, 1].

As above, it follows that each of the summands lies in L2
[0, 1]. If u 6= ρ1 then

κ̄1 = κ1/(1− uκ1), κ̄2 =−1/u are both finite, and

hκ̄1,κ̄2 ◦ κ̄ = (1− uκ1)(1− uκ)(κ1− κ)
−1
− u(1− uκ).

Observe that (1−uκ)(κ1−κ)
−1
∈ L2
[0, 1] because as κ increases to+∞, (κ1−κ)

−1

remains bounded, while as κ→ κ1, obviously (1− uκ) remains bounded. Thus,
(19) holds. We leave the similar verification in the remaining cases to the reader. �

(2.3) Remark. The necessity of reparametrizing an admissible curve by arc-length
before applying normal translation stems from the fact that the product of two
L2 functions need not be of class L2: for a general parametrization, the speed of
γu is given by σ(1− uκ), where σ , κ are the speed and curvature of γ ; hence, γu

need not be admissible. This has no serious consequences because of (1.14).

The next result greatly simplifies the study of the spaces Lκ2
κ1
(P, Q). In all that

follows, the notation X ≈ Y means that X is homeomorphic to Y .

(2.4) Theorem. Let P = (p, w), Q = (q, z) ∈ C×S1, −∞≤ κ1 < κ2 ≤+∞ and
ρi = 1/κi .

(a) Suppose κ1 < 0 < κ2. If at least one of κ1, κ2 is finite, then Lκ2
κ1
(P, Q) ≈

L+1
−1(Q1) for

Q1 =

( 2
ρ2−ρ1

w̄
(
(q − p)+ i

2
(ρ1+ ρ2)(z−w)

)
, zw̄

)
.

(b) Suppose 0< κ1 < κ2. Then Lκ2
κ1
(P, Q)≈ L+∞1 (Q2) for

Q2 =

(
w̄

ρ1−ρ2

(
(q − p)+ iρ2(z−w)

)
, zw̄

)
.
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(c) Suppose 0= κ1 < κ2. Then Lκ2
κ1
(P, Q)≈ L+∞0 (Q3) for

Q3 =
(
w̄
(
(q − p)+ iρ2(z−w)

)
, zw̄

)
.

(d) Suppose κ1 < κ2 < 0. Then Lκ2
κ1
(P, Q)≈ L+∞1 (Q4) for

Q4 =

( z̄
ρ1−ρ2

(
(q − p)+ iρ1(z−w)

)
, wz̄

)
.

(e) Suppose κ1 < κ2 = 0. Then Lκ2
κ1
(P, Q)≈ L+∞0 (Q5) for

Q5 =
(
z̄
(
(q − p)+ iρ1(z−w)

)
, wz̄

)
.

In cases (a)–(c) (resp. (d)–(e)), the total turning of the image of a curve under the
homeomorphism is equal (resp. opposite) to that of the original curve.

Proof. Suppose first that κ1 < 0<κ2 and let k ∈ (κ1, κ2) be arbitrary. If ρ1+ρ2 ≤ 0,
then

1−
(
ρ1+ ρ2

2

)
k > 1−

(
ρ1+ ρ2

2

)
κ1 =

1
2(1− ρ2κ1)≥

1
2 > 0,

and if ρ1+ ρ2 ≥ 0, then

1−
(
ρ1+ ρ2

2

)
k > 1−

(
ρ1+ ρ2

2

)
κ2 =

1
2(1− ρ1κ2)≥

1
2 > 0.

Consequently, u = (ρ1+ ρ2)/2 satisfies the hypothesis of (2.2). Let

κ0 =
2

ρ2− ρ1
.

Note that 0 < κ0 < +∞; in the notation of (2.2), −κ0 = κ̄1 and κ0 = κ̄2. Define
a map F : Lκ2

κ1
(P, Q)→ L

+κ0
−κ0
(P, Q) by letting F(γ ) be the translation by u of

its reparametrization (still with domain [0, 1]) by a multiple of arc-length. This
is continuous by (1.14). In fact, it is a homotopy equivalence: there is a similarly
defined map G :L+κ0

−κ0
(P, Q)→Lκ2

κ1
(P, Q) using translation by −u, and GF(γ ) is

just a reparametrization of γ by (2.2)(b) and (c).
Let T : C→ C be the dilatation x 7→ κ0x . If γ ∈L+κ0

−κ0
(P, Q), then T ◦ γ lies in

L+1
−1(P̃, Q̃), where

P̃ =
(
κ0

(
p+

ρ1+ ρ2

2
iw
)
, w

)
, Q̃ =

(
κ0

(
q +

ρ1+ ρ2

2
i z
)
, z
)
,

and the correspondence γ 7→ T ◦ γ yields a homeomorphism between these two
spaces. Write P̃ = ( p̃, w) ∈ C×S1 and let E : C→ C be the Euclidean motion
given by E(x)= w̄(x − p̃). Then the map γ 7→ E ◦ γ is a homeomorphism from
L+1
−1(P̃, Q̃) onto L+1

−1(Q1), with Q1 as in the statement. The composition of all
of these maps yields a homotopy equivalence Lκ2

κ1
(P, Q)→ L+1

−1(Q1), which is
homotopic to a homeomorphism by (1.7)(b).
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The proofs of parts (b) and (c) are analogous, so only a brief outline will be
provided. In part (b), we first use normal translation by ρ2, and then compose with
the dilatation x 7→ x/(ρ1− ρ2) and an Euclidean motion; in part (c) the dilatation
is not necessary. Parts (d) and (e) follow from (b) and (c), respectively, by reversing
the orientation of all curves in the corresponding space.

By (2.2)(a), the normal translations used in establishing (a)–(c) preserve the
total turning of a curve. Clearly, so do dilatations and Euclidean motions, while a
reversal of orientation changes the sign of the total turning. This proves the last
assertion of the theorem. �

(2.5) Remark. Normal translations, and hence also the homotopy equivalences
constructed in (2.4), do not generally respect inequalities between lengths. This is
clear from Figure 2: two circles of the same radius r > 0 but different orientations
are mapped to circles of radii equal to r ± u under normal translation by u ∈ (0, r).
See also the remarks at the end of Section 9.

A more concise version of (2.4) is the following; recall that 0(±∞) = 0 by
convention.

(2.6) Corollary. Let P, Q ∈UT C. Then Lκ2
κ1
(P, Q) is homeomorphic to a space of

type L+1
−1(Q0), L+∞0 (Q0) or L+∞1 (Q0), according to whether κ1κ2 < 0, κ1κ2 = 0

or κ1κ2 > 0, respectively. �

Out of the three possibilities, the spaces of type Lκ2
κ1
(P, Q) with κ1κ2 < 0 are

the ones with the most interesting topological properties. We deal with the two
remaining cases in Section 7.

(2.7) Remark. We may replace L with C throughout in the statement of (2.4). In
fact, the difficulty indicated in (2.3) disappears in this case, so the proof is simpler
because it is not necessary to reparametrize the curves by arc-length before applying
normal translation. This yields explicit homeomorphisms of the corresponding
spaces, without relying on (1.7)(b). Because the curves in a space of type L̂κ2

κ1
are

C1 regular by definition, this simpler proof also works for this class (except that
here κ1 < κ2 must be finite); see (9.1) for the precise statement.

3. Topology of Uc

(3.1) Definition. Let γ : [0, 1] → C be a regular curve and θ : [0, 1] → R be an
argument of tγ . The amplitude of γ is given by

ω = sup
t∈[0,1]

θ(t)− inf
t∈[0,1]

θ(t).

We call γ condensed, critical or diffuse according to whether ω < π , ω = π
or ω > π .
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Our main objective now is to understand the topology of Lκ2
κ1
(P, Q) when

κ1κ2 < 0. By (2.6), no generality is lost in assuming that κ1 = −1, κ2 = +1
and P = (0, 1) ∈ C×S1

(3.2) Definition. Let Q = (q, z) ∈ C×S1 and θ1 ∈ R satisfy eiθ1 = z. We denote
by Uc, Ud and T the subspaces of L+1

−1(Q; θ1) consisting of all condensed, diffuse
and critical curves, respectively.

(3.3) Theorem. The subspace Uc ⊂L+1
−1(Q; θ1) consisting of all condensed curves

is either empty or homeomorphic to E, and hence contractible.

Recall that E denotes the separable Hilbert space. In what follows, a function φ
of a real variable will be called increasing (resp. decreasing) if x < y (resp. x > y)
implies that φ(x)≤ φ(y). The previous theorem will be derived as a corollary of
the following result.

(3.4) Proposition. Let κ0 > 0 and Ûc ⊂ L̂
+κ0
−κ0
(Q; θ1) be the subspace consisting of

all condensed curves. If Ûc 6=∅, then there exists a continuous H : [0, 1]×Ûc→ Ûc

such that for all γ ∈ Ûc,

(i) H(1, γ )= γ and H(0, γ )= γ0 (where γ0 is independent of γ );

(ii) the amplitude of γs = H(s, γ ) is an increasing function of s ∈ [0, 1];

(iii) the length of γs = H(s, γ ) is an increasing function of s ∈ [0, 1].

In particular, Ûc is contractible. Moreover, γ0 is the unique curve of minimal length
in L̂

+κ0
−κ0
(Q).

We believe that this proposition and its proof may be useful for other purposes
which are not pursued here, e.g., for calculating the minimal length of curves in
L̂
+κ0
−κ0
(Q). We shall first describe the effect of H on a single curve γ ∈ Ûc and then

derive its main properties separately as lemmas. First we record two results which
will be used to show that H(0, γ ) is independent of γ .

(3.5) Lemma. Let Q = (q, z) ∈ C×S1, γ ∈ L̂+κ0
−κ0
(Q) and L be the length of γ .

Suppose that q lies on the line through i/κ0 having direction −ieiα for some
α ∈ [0, π). Then L ≥ α/κ0 and equality holds if and only if γ is a reparametrization
of the arc of the circle centered at i/κ0 joining 0 to 1/κ0(i − ieiα).

Proof. We lose no generality in assuming that κ0 = 1. If α = 0, there is nothing to
prove, so suppose α ∈ (0, π). Let γ : [0, L] → C be parametrized by arc-length,
and let η : [0, α] → C be given by

η(s)=
∫ s

0
eiσ dσ = i − ieis (s ∈ [0, α]),
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Figure 3. An illustration of (3.5) and (3.6).

so that η is the parametrization by arc-length of the arc of circle described in (3.5);
see Figure 3(a). Set

f : [0, L] → R, f (s)= 〈γ (s)− i, eiα
〉,

g : [0, α] → R, g(s)= 〈η(s)− i, eiα
〉.

Let A denote the line in the statement. Note that f (s)= 0 if and only if γ (s) ∈ A.
We need to prove that f (s) < 0 for all s ∈ [0, α)∩ [0, L]. Let θγ be the argument
of tγ satisfying θγ (0)= 0. Then

(22) f ′(s)=〈eiθγ (s), eiα
〉= cos(α−θγ (s)) and g′(s)=〈eis, eiα

〉= cos(α−s).

We have f (0)= g(0). Since g(s) < 0 for all s ∈ [0, α), it suffices to establish
that f ′(s) ≤ g′(s) for all s ∈ [0, α] ∩ [0, L]. By the definition of L̂+1

−1(Q), θγ is
1-Lipschitz. Hence, |θγ (s)| ≤ s for all s ∈ [0, L]. Consequently,

α− s ≤ α− θγ (s)≤ α+ s for all s ∈ [0, L].

In particular, α − θγ (s) ∈ [0, 2π ] for all s ∈ [0, α] ∩ [0, L]. Since the cosine is
decreasing over [0, π], it follows immediately from (22) that if α−θγ (s)≤ π , then
f ′(s)≤ g′(s). On the other hand, if α−θγ (s)∈ [π, 2π ], then from α−θγ (s)≤α+s,

we obtain that
cos(α− θγ (s))≤ cos(α+ s)≤ cos(α− s),

the latter inequality coming from α ∈ (0, π) and s ∈ [0, α]. Thus, f ′(s) ≤ g′(s)
in this case also. We conclude that f (s) ≤ g(s) < 0 for all s ∈ [0, α)∩ [0, L]. In
particular, L ≥ α, as γ (L) ∈ A.

If f (α)= g(α)= 0, then we must have f ′= g′, that is, θγ (s)= s for all s ∈ [0, α].
Thus, in this case, γ |[0,α] is a reparametrization of η|[0,α]. �

(3.6) Corollary. Suppose that η ∈ L̂+κ0
−κ0
(Q) is a concatenation of an arc of circle

of curvature ±κ0, a line segment, and another arc of circle of curvature ±κ0, where
some of these may be degenerate and both arcs have length less than π/κ0. Then η
is the unique curve in L̂

+κ0
−κ0
(Q) of minimal length.
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This result should be compared to [Dubins 1957, Proposition 9]. Their proofs
are essentially the same.

Proof. Let η : [0, L]→ C be parametrized by arc-length, with η|[0,L1], η|[L1,L2] and
η|[L2,L] corresponding to the first arc, line segment and second arc, respectively
(see Figure 3(b)). Let Ai be the line perpendicular to η′(L i ) passing through η(L i ),
i = 1, 2. Notice that A1 and A2 are parallel (or equal). Suppose that γ : [0,M]→C

is another curve in L̂
+κ0
−κ0
(Q), parametrized by arc-length. Let

M1 = inf{s ∈ [0,M] : γ (s) ∈ A1}, M2 = sup{s ∈ [0,M] : γ (s) ∈ A2}.

By (3.5), we have M1≥ L1 and M−M2≥ L−L2. It is clear that M2−M1≥ L2−L1

since any path joining a point of A1 to a point of A2 must have length greater than or
equal to the distance between these lines. Hence, M ≥ L . Furthermore, if equality
holds, then M1 = L1, M −M2 = L − L2 and M2−M1 = L2− L1. By (3.5), the
two former equalities imply that γ |[0,M1] = η|[0,L1] and γ |[M2,M] = η|[L2,L]. The
condition M2−M1 = L2− L1 then implies that γ |[M1,M2] must coincide with the
line segment η|[L1,L2]. �

(3.7) Remark. Notice that a condensed curve must be an embedding of [0, 1]. In
fact, its image is the graph of a function of x , after a suitable choice of the x-axis.

(3.8) Construction. Let γ ∈ Ûc, θ : [0, 1] → R be the argument of tγ satisfying
θ(0)= 0. A number ϕ ∈ (−π/2, π/2) will be called an axis of γ if 〈tγ (t), eiϕ

〉> 0
for all t ∈ [0, 1]. Since γ is condensed, the set of all axes of γ is an open interval.
The most natural axis, and the center of this interval, is

(23) ϕ̄γ =
1
2

(
sup

t∈[0,1]
θ(t)+ inf

t∈[0,1]
θ(t)

)
.

Let ϕ be any axis of γ . Rotating around the origin through ϕ and writing γ (t)=
(x(t), y(t)) in terms of the new x- and y-axes, the hypothesis that 〈tγ , eiϕ

〉 > 0
becomes equivalent to the fact that ẋ is bounded and positive over [0, 1]. Let

γ (x)= (x, y(x)) (x ∈ [0, b])

be the reparametrization of γ by x and define

f : [0, b] → R by f (x)= ẏ(x).

Let fs : [0, b] → R (s ∈ [0, 1]) be a family of absolutely continuous functions
and set

γs(x)=
(

x,
∫ x

0
fs(u) du

)
(x ∈ [0, b]).

A straightforward computation shows that the curvature of γs is given by

κγs (x)=
ḟs(x)

(1+ fs(x)2)3/2
(x ∈ [0, b]).
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Figure 4. An illustration of (3.8).

Therefore, γs lies in L̂
+κ0
−κ0
(Q; θ1) if and only if fs satisfies

(i) | ḟs(x)|≤κ0(1+ fs(x)2)3/2 for almost every x ∈[0, b] (i.e., κγs∈[−κ0,+κ0] a.e.);

(ii) fs(0)=r0 := ẏ(0) and fs(b)=rb := ẏ(b) (i.e., tγs (0)= tγ (0) and tγs (b)= tγ (b));

(iii)
∫ b

0 fs(x) dx = A1 := y(b)− y(0) (i.e., γs(b)= γ (b)).

We will now produce a homotopy of f = f1 through absolutely continuous functions
satisfying (i)–(iii).

Define

(24) α±=∓
r0√
1+r2

0

, g±(x)=±
κ0x−α±√

1−(κ0x−α±)2
for x ∈

(
α±−1
κ0

,
α±+1
κ0

)

(see Figure 4) and, similarly,
(25)

β±= κ0b±
rb√
1+r2

b

, h±(x)=∓
κ0x−β±√

1−(κ0x−β±)2
for x ∈

(
β±−1
κ0

,
β±+1
κ0

)
.

The functions g± are the solutions of the differential equations ġ =±κ0(1+ g2)3/2

with g(0) = r0. Similarly, h± are the solutions of the differential equations
ḣ =∓κ0(1+ h2)3/2 with h(b)= rb. Extend their domains to all of R by setting

g±(x)=±∞ if x ≥
α±+ 1
κ0

and g±(x)=∓∞ if x ≤
α±− 1
κ0

,
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and do similarly for h±. Since the curvature of γ = γ1 takes values in [−κ0,+κ0],
condition (i) applied to f = f1 gives

(26) g−(x), h−(x)≤ f (x)≤ g+(x), h+(x) for all x ∈ [0, b].

Let

(27)
m− = inf

x∈[0,b]
f (x), m+ = sup

x∈[0,b]
f (x),

1= {(µ−, µ+) ∈ [m−,m+] : µ− ≤ µ+}.

For (µ−, µ+) ∈1, let f (µ−,µ+) : [0, b] → R be given by

(28) f (µ−,µ+)(x)=median
(
h−(x), g−(x), µ−, f (x), µ+, g+(x), h+(x)

)
(see Figure 4). The functions f (µ−,µ+) automatically satisfy conditions (i) and (ii).
Define A :1→ R to be the area under the graph of f (µ−,µ+):

A(µ−, µ+)=
∫ b

0
f (µ−,µ+)(x) dx .

It is immediate from (28) that

(A) A is increasing as a function of either µ− or µ+;

(B) A is a Lipschitz function of (µ−, µ+). In fact,∣∣A(µ−+ u, µ++ v)− A(µ−, µ+)
∣∣≤ b(|u| + |v|).

By (A), for each s ∈ [0, 1], the set{
(µ−, µ+) ∈1 : A(µ−, µ+)= A1 and µ+−µ− = (m+−m−)s

}
is an interval of the latter line in the (µ−, µ+)-plane. Let (µ−(s), µ+(s)) be the
coordinates of the center of this interval. By (B), µ−(s) and µ+(s) are continuous
(even Lipschitz), and (A) implies that µ− is a decreasing, while µ+ is an increasing
function of s ∈ [0, 1]. The functions

fs : [0, b] → R, fs = f (µ−(s),µ+(s)),

satisfy all of conditions (i)–(iii) by construction. We repeat their definition for
convenience:

(29)
fs(x)=median

(
h−(x), g−(x), µ−(s), f (x), µ+(s), g+(x), h+(x)

)
,

γs(x)=
(

x,
∫ x

0
fs(u) du

)
(x ∈ [0, b]).

We will denote µ+(0)= µ−(0) by µ0. The monotonicity of µ−, µ+ implies that

(30) µ−(s)≤ µ0 ≤ µ+(s) for all s ∈ [0, 1]. �
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(3.9) Remark. We deduce from (26) and (29) that

f0 =median(h−, g−, µ0, g+, h+).

The graph of f0 is composed of at most three parts: a piece of the graph of g−
or g+, a piece of the graph of the constant function y =µ0, and a piece of the graph
of h− or h+. The corresponding curve γ0 is thus the concatenation of an arc of
circle of curvature ±κ0, a line segment and another arc of circle of curvature ±κ0,
though some of these may degenerate to a point. It is an immediate consequence of
(3.6) that γ0 (and hence f0) is independent of γ and of the chosen axis ϕ.

(3.10) Lemma. Let ϕ be an axis of γ ∈ Ûc and s 7→ γs (s ∈ [0, 1]) be the defor-
mation described in (3.8). Then γ0 ∈ Ûc is the unique curve of minimal length
in L̂

+κ0
−κ0
(Q). �

Remark. Notice that this proves Dubins’ Theorem I [1957] in the case where
L̂
+κ0
−κ0
(Q) contains condensed curves. Furthermore, given Q and κ0, we can use

(3.8) to describe γ0 explicitly.

(3.11) Lemma. Let S+={x ∈[0, b] : f (x)≥µ0} and S−={x ∈[0, b] : f (x)≤µ0}.
Then fs(x) is an increasing (resp. decreasing) function of s ∈ [0, 1] if x ∈ S+
(resp. S−). Moreover, for all s ∈ [0, 1], fs(x) ≥ µ0 if x ∈ S+ and fs(x) ≤ µ0

if x ∈ S−.

Proof. Suppose that x ∈ S+. From (26) and (30), we deduce that

g−(x), h−(x), µ−(s)≤ f (x)≤ g+(x), h+(x).

Hence, fs(x) = min{µ+(s), f (x)} ≥ µ0 and fs(x) increases with s since µ+(s)
does. The proof for x ∈ S− is analogous. �

(3.12) Corollary. Let m−(s)= infx∈[0,b] fs(x) and m+(s)= supx∈[0,b] fs(x). Then
m+(s) is an increasing and m−(s) a decreasing function of s ∈ [0, 1]. �

(3.13) Lemma. Let γ ∈ Ûc and s 7→ γs ∈ L̂
+κ0
−κ0
(Q; θ1) be the homotopy described

in (3.8). Let ωs denote the amplitude of γs . Then ωs is an increasing function of s;
in particular, γs is condensed (i.e., γs ∈ Ûc) for all s ∈ [0, 1].

Proof. Let ϕ be the axis of γ chosen for the construction. Recall that, by definition,

(31) ωs = sup
x∈[0,b]

θs(x)− inf
x∈[0,b]

θs(x) (s ∈ [0, 1]),

where θs is the argument of tγs such that θs(0)= 0. By (29),

(32) fs(x)= tan(θs(x)−ϕ).

Because the tangent is an increasing function, (3.12) immediately implies that ωs is
increasing. �
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Remark. Although γ0 has minimal amplitude in Ûc by the previous lemma, there
may be other curves in Ûc with the same amplitude. This is the case, for instance,
for the curves γ0 and γ corresponding to the functions f and f0 of Figure 4.

(3.14) Lemma. Let γ ∈ Ûc and s 7→ γs be the deformation described in (3.8). Then
the length of γs is an increasing function of s ∈ [0, 1].

Proof. Let λ :R→R be given by λ(u)= (1+u2)1/2. A straightforward computation
shows that

(33) λ′′(u)= (1+ u2)−3/2 > 0 for all u ∈ R.

Moreover, by the definition (29), the length Ls of γs is given by

Ls =

∫ b

0
(λ ◦ fs)(x) dx .

Let s1 ≤ s2 ∈ [0, 1], S+, S− be as in (3.11) and

T+ ={(x, y) ∈ [0, b]×R : fs1(x)≤ y ≤ fs2(x)},

T− ={(x, y) ∈ [0, b]×R : fs2(x)≤ y ≤ fs1(x)}.

Using (3.11), we deduce that

Ls2 − Ls1 =

∫ b

0
(λ ◦ fs2)(x)− (λ ◦ fs1)(x) dx

=

(∫
S+
+

∫
S−

)
(λ ◦ fs2)(x)− (λ ◦ fs1)(x) dx

=

(∫
T+
−

∫
T−

)
λ′(y) dy dx

≥

(∫
T+
−

∫
T−

)
λ′(µ0) dy dx (by (33))

= λ′(µ0)

(∫ b

0
fs2 −

∫ b

0
fs1

)
= 0 (by the definition of fs).

Therefore, Ls is an increasing function of s ∈ [0, 1]. �

We are finally ready to prove (3.4) and (3.3).

Proof of (3.4). For each γ ∈ Ûc, let

(34) ϕ̄γ =
1
2

(
sup

t∈[0,1]
θγ (t)+ inf

t∈[0,1]
θγ (t)

)
,

where θγ : [0, 1] → R is the argument of tγ satisfying θγ (0)= 0. It is clear that ϕ̄γ
depends continuously on γ ∈ Ûc. Define H : [0, 1] × Ûc→ Ûc by H(s, γ ) = γs ,
where γs is the curve (29) constructed in (3.8) with chosen axis ϕ̄γ . Then part (ii)
of (3.4) follows from (3.13), and part (iii) from (3.14). The last assertion of (3.4)
and part (i) were established in (3.9). �
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Proof of (3.3). Assume that Uc is nonempty. It is certainly open in L+1
−1(Q; θ1).

Hence, by (1.7), it suffices to prove that Uc is weakly contractible. Let K be a
compact manifold and g : K → Uc, a 7→ γ a , be a continuous map. Using (1.11),
we may assume that the image of g is contained in (the image under set inclusion
of) C+κ0

−κ0
(Q; θ1) for some κ0 ∈ (0, 1). By (1.17), we have continuous injections

C
+κ0
−κ0
(Q; θ1)→ L̂

+κ0
−κ0
(Q; θ1)→ L+1

−1(Q; θ1).

Let G : [0, 1]× K → L+1
−1(Q; θ1) map (s, a) to (the image under set inclusion of)

H(s, γ a), with H as in (3.4). Then G is a null-homotopy of g in Uc. �

The next couple of lemmas will only be needed in later sections.

(3.15) Lemma. Suppose that there exists ω̂∈(0,π) such that if γ∈Ûc⊂L̂
+κ0
−κ0
(Q;θ1)

then its amplitude ωγ satisfies ωγ ≤ ω̂. Let L(η) denote the length of η. Then
sup

γ∈Ûc
L(γ ) is finite. In particular, the images of γ ∈ Ûc are all contained in some

bounded subset of C.

Proof. Let γ ∈ Ûc and ϕ̄γ be as in (34). By hypothesis, the image of θγ : [0, 1]→R is
contained in

[
ϕ̄γ−ω̂/2, ϕ̄γ+ω̂/2

]
. Let f : [0, b]→R be the function corresponding

to γ and the axis ϕ̄γ , in the notation of (3.8). Note that b= 〈ei ϕ̄γ , q〉 ≤ |q|, where q
is the C-coordinate of Q. By (32),

| f (x)| ≤ tan
(
ω̂

2

)
for all x ∈ [0, b].

Therefore, the length L(γ ) of γ satisfies

L(γ )=
∫ b

0

√
1+ f (x)2 dx ≤ b sec

(
ω̂

2

)
≤ |q| sec

(
ω̂

2

)
. �

(3.16) Lemma. Let Ûc⊂ L̂
+κ0
−κ0
(Q; θ1) and H : [0, 1]×Ûc→ Ûc be the deformation

described in (3.4) and (3.8). Suppose that θ1 = 0. Then ω0 < ω1 unless γ1 = γ0.

Proof. It is obvious that ω1 = ω0 if γ1 = γ0. The condition θ1 = 0 is equivalent to
r0 = rb, in the notation of (3.8). Suppose without loss of generality that µ0 ≥ r0, so
that m+(0)= µ0.

If m+(1)≤µ0, then S−=[0, b]. Hence, by (3.11), f1(x)≤ f0(x) for all x ∈[0, b].
Since f1 and f0 have the same area, we conclude that f1 = f0, that is, γ1 = γ0.

By (3.12), m−(1) ≤ m−(0). Hence, if m+(1) > µ0 = m+(0), then ω0 < ω1 by
(31) and (32). �

Existence of condensed curves. The question of whether Uc 6= ∅ is settled by
means of an elementary geometric construction. In all that follows, Cr (a) denotes
the circle of radius r > 0 centered at a ∈ C.
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Figure 5. Let θ1 ∈ [0, π) be fixed and Q = (q, z), where z = eiθ1 .
There exist condensed curves in L+1

−1(Q; θ1) if and only if q belongs
to the open gray region.

(3.17) Proposition. Let θ1 ∈ [0, π) be fixed, z = eiθ1 and Q = (q, z) ∈ C× S1.
Let RUc be the open region of the plane which does not contain −i + i z and
which is bounded by the shortest arcs of the circles C2(±(i + i z)) joining i − i z
to i − i z± 2(i + i z) and their tangent lines at the latter points. Then L+1

−1(Q; θ1)

contains condensed curves if and only if q ∈ RUc . (See Figure 5.)

It is clear from the definition of condensed curve that Uc ⊂L+1
−1(Q; θ1) is empty

if |θ1| ≥ π . In other words, all condensed curves in L+1
−1(Q) must be contained in

the subspace L+1
−1(Q; θ1) with θ1 the unique number in (−π, π) satisfying eiθ1 = z

(for z 6= −1). We have assumed that θ1 ∈ [0, π) just to simplify the statement.
If θ1 ∈ (−π, 0], the only difference is that i − i z should be interchanged with
−i + i z. The proof is analogous to the one given below. Alternatively, it can be
deduced from the proposition by applying a reflection across the x-axis. When
θ1 = 0, the statement becomes ambiguous; in this case the arcs of circles which
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bound RUc are centered at ±2i , bounded by 0 and ±4i , and pass through the
points 2± 2i , respectively.

Proof of (3.17). Let η : [0, 1] → C be condensed and let θη : [0, 1] → R be the
argument of tη satisfying θη(0)= 0. Observe that

inf{θη(t) : t ∈ [0, 1]} ∈ [θ1−π, 0] and sup{θη(t) : t ∈ [0, 1]} ∈ [θ1, π].

The proof relies on the study of the following curves. For each ϕ ∈ [θ1, π], define
γ+ϕ : [0, 2ϕ− θ1]→ C to be the unique curve parametrized by arc-length satisfying

γ+ϕ (0)= 0 and tγ+ϕ (s)=
{

eis if s ∈ [0, ϕ],
ei(2ϕ−s) if s ∈ [ϕ, 2ϕ− θ1].

Then γ+ϕ is the concatenation of two arcs of circles of radius 1,

inf
t∈[0,1]

θγ+ϕ (t)= 0, sup
t∈[0,1]

θγ+ϕ (t)= ϕ, tγ+ϕ (2ϕ− θ1)= z,

γ+ϕ (2ϕ− θ1)=

∫ ϕ

0
eis ds+

∫ 2ϕ−θ1

ϕ

ei(2ϕ−s) ds = (i + i z)− 2ieiϕ.

Thus, as ϕ increases from θ1 to π , the endpoints of the γ+ϕ trace out the arc of
C2(i + i z) bounded by i − i z and 3i + i z. Further, the tangent line to C2(i + i z) at
γ+ϕ (2ϕ− θ1) is parallel to eiϕ , for it must be orthogonal to −2ieiϕ .

Similarly, for each ψ ∈ [θ1 − π, 0], let γ−ψ : [0, θ1 − 2ψ] → C be the curve,
parametrized by arc-length, which satisfies

γ−ψ (0)= 0 and tγ−ψ (s)=
{

e−is for s ∈ [0,−ψ],
ei(2ψ+s) for s ∈ [−ψ, θ1− 2ψ].

Then γ−ψ is the concatenation of two arcs of circles of radius 1, tγ−ψ (θ1− 2ψ)= z
for all ψ ∈ [θ1−π, 0], and as ψ decreases from 0 to θ1−π , the endpoints of the
γ−ψ traverse the arc of C2(−i − i z) bounded by i − i z and −i − 3i z. Moreover, the
tangent line to this circle at γ−ψ (θ1− 2ψ) is parallel to eiψ .

Any q ∈ RUc is the endpoint of a curve of one of the following three types:

(i) The concatenation of a γ+ϕ or a γ−ψ with a line segment of direction z.

(ii) The concatenation of γ+π |[0,π ], a line segment of length ` ≥ 0 having direc-
tion −1, the arc −`+ γ+π |[π,2π−θ1], and a line segment of direction z.

(iii) The concatenation of γ−θ1−π
|[0,π−θ1], a line segment of length `1 ≥ 0 of direc-

tion−z, the arc−`1z+γ−θ1−π
|[π−θ1,3π/2−θ1], a line segment of length `2≥0 and

direction −i z, the arc −`1z− `2i z+ γ−θ1−π
|[3π/2−θ1,2π−θ1], and a line segment

of direction z.

The curves which we have described have curvature equal to ±1 over intervals
of positive measure and, additionally, may be critical curves. Nevertheless, for
any q ∈ RUc , we can find a condensed γ ∈ L+1

−1(Q; θ1) by composing one of these



COMPONENTS OF SPACES OF CURVES ON FLAT SURFACES 215

curves with a dilatation through a factor c > 1, with c close to 1 if q lies close
to ∂RUc , and by avoiding the argument π (for a curve of type (i)) or θ1−π (for a
curve of type (iii)).

Conversely, suppose that L+1
−1(Q) contains condensed curves. Let η : [0, L]→C

be such a curve, parametrized by arc-length, and let ϕ= sup θ , where θ : [0, L]→R

is an argument of tη satisfying θ(0)= 0. Define

g : [0, L] → R by g(s)=
〈
η(s)− γ+ϕ (2ϕ− θ1), ieiϕ 〉.

Note that g(s)>0 if and only if η(s) lies to the left of the line through γ+ϕ (2ϕ−θ1)∈

C2(i + i z) having direction eiϕ; we have already seen that this line is tangent to
this circle at this point. We claim that g(L) < 0. Since η is admissible, θ = arg ◦ tη
is an absolutely continuous function, and |θ ′| = |κη|< 1 almost everywhere by (5).
Moreover, θ(s) ∈ [ϕ−π, ϕ] for all s because η is condensed. Hence,

(35) g′(s)= 〈eiθ(s), ieiϕ
〉 = cos

(
θ(s)−ϕ− π

2

)
≤ 0 for all s ∈ [0, L].

Let Ji = (ai , bi )⊂ (0, L) (i = 1, 2, 3) be disjoint intervals such that

(I) θ(a1)= 0 and θ(b1)= θ1;

(II) θ(a2)= θ1 and θ(b2)= ϕ;

(III) θ(a3)= ϕ and θ(b3)= θ1.

Such intervals exist because θ is a continuous function satisfying θ(0)= 0, θ1≤ϕ=

sup θ and θ(L)= θ1. Let λ denote the Lebesgue measure on R. Fix i and let [α, β]
be any nondegenerate subinterval of θ((ai , bi )). Since θ is strictly 1-Lipschitz, if
S = {s ∈ (ai , bi ) : α ≤ θ(s) ≤ β}, then λ(S) > β − α. Combining this with (35),
we deduce that

g(L)− g(0)≤
(∫ b1

a1

+

∫ b2

a2

+

∫ b3

a3

)
g′(s) ds

<

∫ θ1

0
〈ei t , eiϕ

〉 dt + 2
∫ ϕ

θ1

〈ei t , eiϕ
〉 dt = 〈γ+ϕ (2ϕ− θ1), ieiϕ

〉.

Therefore, g(L) < 0 as claimed. Similarly, if ψ = inf θ , then η(L) lies on the side
of the tangent to C2(−i − i z) at γ−ψ (θ1− 2ψ) which does not contain −i + i z. It
follows that q = η(L) ∈ RUc . �

4. Topology of Ud

Throughout this section, let K denote a compact manifold, possibly with boundary.
Also, let Q = (q, z) ∈ C × S1 be fixed (but otherwise arbitrary) and let Ud ⊂

L+1
−1(Q; θ1) denote the subset consisting of all diffuse curves in L+1

−1(Q) having total
turning θ1, for some fixed θ1 ∈R satisfying eiθ1 = z. Finally, let O = (0, 1)∈C×S1,
the identity element of the group UT C.



216 NICOLAU C. SALDANHA AND PEDRO ZÜHLKE

Our next objective is to prove that Ud is contractible. The idea behind the proof
is quite simple. If γ is diffuse, then we can “graft” a straight line segment of length
greater than 4 onto γ , as illustrated in Figure 8. By the theorem of Dubins stated in
the introduction, this segment can be deformed so that in the end an eight curve
of large radius traversed n times has been attached to it, as in Figure 7(e). These
eights are then spread along the curve, as in Figure 7(f). If n ∈ N is large enough,
the spreading can be carried out within L+1

−1(Q). The result is a curve which is so
loose that the constraints on the curvature may be safely forgotten, allowing us to
use the following fact.

(4.1) Theorem (Smale). Let Q = (q, z) ∈ C×S1. Then C+∞−∞(Q) and L+∞−∞(Q)
have ℵ0 connected components, one for each θ1 ∈ R satisfying eiθ1 = z, all of which
are contractible.

Proof. For the space C+∞−∞(Q), the proof was discussed in the introduction. We may
replace C+∞−∞(Q) by L+∞−∞(Q) using (1.12). �

(4.2) Lemma. Let P ∈UT C. Then C+1
−1(P, P) and L+1

−1(P, P) have ℵ0 connected
components, one for each turning number n ∈ Z, all of which are contractible.

Proof. By (1.12), it suffices to prove the result for C+1
−1(P, P). Let Cn ⊂ C+1

−1(P, P)
denote the subset of all curves which have turning number n. Then each Cn is
closed and open. Hence, to establish that Cn is a contractible component, it suffices,
by (1.7)(b), to prove that it is weakly contractible.

Recall that C+1
−1(P, P)≈ C+1

−1(O), the homeomorphism coming from composing
all curves with a suitable Euclidean motion. We may thus assume that P = O .
Let K be a compact manifold and f : K → Cn a continuous map. By (4.1), there
exists a continuous F : [0, 1]×K→C+∞−∞(O) such that F0= f and F1 is a constant
map. Let

M = 2 sup
{
|κF(s,a)(t)| : s, t ∈ [0, 1], a ∈ K

}
.

Given a curve γ , let Mγ denote the dilated curve t 7→ Mγ (t). It is easy to see
that κMγ = κγ /M . Hence, MF is a homotopy between M f and a constant map
within C+1

−1(O). But f and M f are homotopic within C+1
−1(O) through u 7→ u f

(u ∈ [1,M]). Therefore, f is null-homotopic. �

Loops and eights. We shall now explain how to attach loops and eights to a curve,
and how to spread eights along it (Figure 7).

(4.3) Definition. We denote by α : R→ C the loop of radius 2 and by β : R→ C

the eight curve of the same radius (see Figure 7(b) and (d)) given by

α(t)= 2i
(
1− exp(2π i t)

)
,

β(t)=

{
α(2t) for t ∈

[m
2 ,

m+1
2

]
,m ≡ 0 (mod 2),

−α(−2t) for t ∈
[m

2 ,
m+1

2

]
,m ≡ 1 (mod 2)

(m ∈ Z).
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Figure 6. The graphs of φ and ψ given in (4.4).

We shall also denote by αn : [0, 1] → C (resp. βn : [0, 1] → C) a loop (resp. eight)
traversed n ≥ 1 times: αn(t)= α(nt) and βn(t)= β(nt) (t ∈ [0, 1]).

Note that αn, βn ∈ L
+1
−1(O). The curvature of αn is everywhere equal to 1

2 , and
that of βn equals ± 1

2 except at the 2n− 1 points where it is undefined. The turning
number of αn is n, and that of βn is 0.

(4.4) Definition. Let t0 ∈ (0, 1), 0< 2ε <min{1− t0, t0}, 1 ≤ n ∈ N and γ be an
admissible plane curve. Define piecewise linear functions φ,ψ : [0, 1] → [0, 1]
(whose graphs are depicted in Figure 6) by

(36)

φ(t)=


t if t /∈ [t0− 2ε, t0+ 2ε],
2t − t0+ 2ε if t ∈ [t0− 2ε, t0− ε],
t0 if t ∈ [t0− ε, t0+ ε],
2t − t0− 2ε if t ∈ [t0+ ε, t0+ 2ε],

ψ(t)=


0 if t ∈ [0, t0− ε],
(t − t0+ ε)/2ε if t ∈ [t0− ε, t0+ ε],
1 if t ∈ [t0+ ε, 1].

Define curves Aγ,n,t0 , Bγ,n,t0 (attaching loops, eights) and Sγ,n : [0, 1]→C (spread-
ing eights) by (see Figure 7)

Aγ,n,t0(t)=8γ (φ(t))αn(ψ(t)),

Bγ,n,t0(t)=8γ (φ(t))βn(ψ(t)), (t ∈ [0, 1]).

Sγ,n(t)=8γ (t)βn(t)

Here 8γ : [0, 1]→C×S1 is the frame of γ (as in (1)), but viewed as a curve in the
group UT C: each 8γ (t) is an Euclidean motion, with 8γ (t)a = γ (t)+ tγ (t)a for
a ∈ C. Different values of ε and t0 yield curves which are homotopic in whichever
space one is working with.
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Figure 7. A depiction of how to attach loops and eights to a curve
and how to spread eights along it.

(4.5) Lemma. Let t0 ∈ (0, 1), 1≤ n ∈N and γ be an admissible plane curve. Then:

(a) Aγ,n,t0 , Bγ,n,t0 and Sγ,n have the same initial and final frames as γ .

(b) Bγ,n,t0 and Sγ,n lie in the same connected component of L+∞−∞(P,Q) (P=8γ(0),
Q =8γ (1)).

(c) If γ ∈ L+1
−1(P, Q), then Aγ,n,t0, Bγ,n,t0 ∈ L

+1
−1(P, Q) also.

(d) Let O = (0, 1) ∈ C × S1. Then α1 and Bα1,n,t0 lie in the same connected
component of L+1

−1(O) for all n ≥ 1.

(e) If f, g : K → Ud are continuous and homotopic within Ud , then so are B f,n,t0
and Bg,n,t0 .

(f) If γ is a reparametrization of α1, then Aγ,n,t0 is a reparametrization of αn+1.

Proof. It is clear that Aγ,n,t0 , Bγ,n,t0 have the same initial and final frames as γ ,
since they agree with γ in neighborhoods of the endpoints of [0, 1]. From the
definition of Sγ,n , we find that

Ṡγ,n = γ̇ + ṫγβn + tγ β̇n.

Using that 8βn (0)=8βn (1)= (0, 1) ∈ C×S1, we deduce that

Sγ,n(0)= γ (0) and Ṡγ,n(0)=
(
|γ̇ (0)| + |β̇n(0)|

)
tγ (0).

Similarly, Sγ,n(1) = γ (1) and Ṡγ,n(1) is a positive multiple of tγ (1). This estab-
lishes (a).
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Let φ,ψ : [0, 1] → [0, 1] be as in (36), and set

(37) φs(t)= (1− s)φ(t)+ st and ψs(t)= (1− s)ψ(t)+ st (s, t ∈ [0, 1]).

Then
(s, t) 7→8γ (φs(t))βn(ψs(t)) (s, t ∈ [0, 1])

defines a homotopy between Bγ,n,t0 and Sγ,n in L+∞−∞(P, Q). This proves (b).
Part (c) follows from (a) and the fact that the curvatures of αn, βn equal ± 1

2 a.e.
Part (d) is a corollary of (4.2).
For part (e), let H : [0, 1] × K → Ud be a continuous map with H0 = f and

H1 = g. Set

Ĥ(s, a)(t)=8H(s,a)(φ(t))βn(ψ(t)) (s, t ∈ [0, 1], a ∈ K ).

Then Ĥ is a homotopy between B f,n,t0 = Ĥ0 and Bg,n,t0 = Ĥ1 in Ud .
Part (f) is obvious. �

(4.6) Lemma. Let f : K → C+∞−∞(Q) be continuous. Then there exists n0 ∈N such
that S f (a),n ∈ L

+1
−1(Q) for all a ∈ K whenever n ≥ n0 (n ∈ N).

Proof. For a ∈ K , let γa = f (a) and ta = tγa . Let

T =
{ 1

2n
,

2
2n
, . . . ,

2n−1
2n

}
.

Then,

Sγa,n(t)=8γa (t)βn(t)= γa(t)+ta(t)β(nt) (t ∈ [0,1], a ∈ K ),

Ṡγa,n(t)= γ̇a(t)+ ṫa(t)β(nt)+n ta(t)β̇(nt) (t ∈ [0,1], a ∈ K ),

S̈γa,n(t)= γ̈a(t)+ ẗa(t)β(nt)+2n ṫa(t)β̇(nt)+n2 ta(t)β̈(nt) (t ∈ [0,1]rT, a ∈ K ).

Since f : K → C+∞−∞(Q) is continuous and K is compact, |γ (k)a (t)| and |t(k)a (t)|
(k = 0, 1, 2) are all bounded by some constant as (t, a) ranges over [0, 1] × K .
Using the third expression for the curvature in (4) and the multilinearity of the
determinant, we conclude that

κSγa ,n
(t)= 1

2
+ O

(1
n

)
(t ∈ [0, 1]r T, a ∈ K ),

where O(1/n) is a function of (t, a) such that n|O(1/n)| is uniformly bounded
over ([0, 1]r T )× K as n ranges over N. It follows that Sγa,n ∈ L

+1
−1(Q) for all

sufficiently large n. �

(4.7) Lemma. Let f : K → C+1
−1(Q) be continuous, t0 ∈ (0, 1). Then for all

sufficiently large n ∈ N, there exists a continuous H : [0, 1] × K → L+1
−1(Q) with

H0 = B f,n,t0 and H1 = S f,n .
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Proof. Let H be given by

H(s, a)(t)=8 f (a)(φs(t))βn(ψs(t)) (s, t ∈ [0, 1], a ∈ K ),

where φs , ψs are as in (37). Then H(0, a) = B f (a),n,t0 and H(1, a) = S f (a),n .
A computation entirely similar to the one in the proof of (4.6) establishes that
H(s, a) ∈ L+1

−1(Q) for all s ∈ [0, 1], a ∈ K if n is sufficiently large. The details
will be left to the reader, but to make things easier, notice that φs, ψs are piecewise
linear for all s ∈ [0, 1], so that ψ̈s = φ̈s = 0 except at a finite set of points (which
depends on s). �

The next result provides a sufficient condition, which does not involve g, for one
to be able to write a compact family of curves f as f = Ag,n,t0 .

(4.8) Lemma. Let X be a compact Hausdorff topological space and

f : X→ Ud ⊂ L+1
−1(Q; θ1), t0 : X→ (0, 1)

be continuous maps. Then it is possible to reparametrize each f (a) (continuously
with a) and find a continuous g : X→ L+1

−1(Q; θ1) so that f (a)= Ag(a),n,t0(a) for
all a ∈ X if and only if there exists a continuous function ε : X→ (0, 1) such that
for all a ∈ X ,

(i) 0< t0(a)− ε(a) < t0(a)+ ε(a) < 1;

(ii) f (a)|[t0(a)−ε(a),t0(a)+ε(a)] is some parametrization of 8 f (a)(t0(a)− ε(a))αn .

Proof. Suppose that such a function ε : X → (0, 1) exists. Since X is compact,
we may reparametrize all f (a) so that ε becomes a constant function and, for all
a ∈ X , satisfies

(I) 0< t0(a)− 2ε < t0(a)+ 2ε < 1;

(II) f (a)|[t0(a)−ε,t0(a)+ε] is a parametrization of 8 f (a)(t0(a)− ε)αn by a multiple
of arc-length.

Define g : X→ L+1
−1(Q) by

g(a)(t)=


f (a)(t) if t /∈[t0(a)−2ε,t0(a)+2ε],

f (a)
( 1

2(t+t0(a)−2ε)
)

if t∈[t0(a)−2ε,t0(a)],

f (a)
( 1

2(t+t0(a)+2ε)
)

if t∈[t0(a),t0(a)+2ε]

(a∈X,t∈[0,1]).

Then g is continuous because f and t0 are continuous, and f (a)= Ag(a),n,t0(a) for
all a ∈ X . This proves the “if” part of the lemma. The converse is obvious. �

As a simple application of (4.6), we prove that this article is not a study of the
empty set.
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(4.9) Lemma. Let κ1 < κ2, P = (p, w), Q = (q, z) ∈C×S1 and let θ1 ∈R satisfy
eiθ1 = zw̄. Then:

(a) Lκ2
κ1
(P, Q) 6=∅.

(b) Lκ2
κ1
(P, Q; θ1) 6=∅ if κ1κ2 < 0.

(c) If κ1<κ2≤0, then Lκ2
κ1
(P, Q; θ1)=∅ for all sufficiently large θ1. If 0≤κ1<κ2,

then Lκ2
κ1
(P, Q; θ1)=∅ for all sufficiently small θ1.

Proof. By (2.6), we need only consider spaces of the form L+1
−1(Q), L

+∞

0 (Q)
and L+∞1 (Q). It is clear that C+∞−∞(Q) 6= ∅ for all Q ∈ UT C. Let γ ∈ C+∞−∞(Q)
be arbitrary.

By (4.6), if n is sufficiently large, then Sγ,n ∈ L+1
−1(Q). Furthermore, attach-

ing loops (possibly with reversed orientation) to Sγ,n , we can obtain a curve in
L+1
−1(Q; θ1) for any θ1 ∈ R satisfying eiθ1 = z. This proves (b), and also part (a)

when κ1κ2 < 0.
Similarly, define a curve Sγ,n by Sγ,n(t)=8γ (t)

( 1
4αn(t)

)
(t ∈ [0, 1]). In words,

Sγ,n is obtained from γ by spreading n loops of radius 1
2 , instead of n eights of

radius 2. Using an argument analogous to the one which established (4.6), one sees
that Sγ,n ∈ L+∞1 (Q) for all sufficiently large n. This completes the proof of (a).

To see that Lκ2
κ1
(P, Q; θ1) may be empty if κ1κ2 ≥ 0, we use (5): if κ1, κ2 are

both nonnegative, for example, then Lκ2
κ1
(P, Q) can only contain curves having

positive total turning. �

Remark. Invoking (1.11), we obtain a version of (4.9) with C in place of L.

(4.10) Corollary. Let Ud denote the subset of L+1
−1(Q; θ1) consisting of all diffuse

curves, where Q = (q, z) and eiθ1 = z. Then Ud 6=∅.

Proof. Lemma (4.5)(c) implies that Bγ,1,1/2 ∈ Ud for any γ ∈ L+1
−1(Q; θ1). Since

the latter is nonempty by (4.9)(b), so is Ud . �

(4.11) Theorem (Dubins). Let x > 0, Q = (x, 1) and η ∈ L+1
−1(Q) be the line

segment η : t 7→ xt. Then η and Bη,1,1/2 lie in the same component of L+1
−1(Q) if

and only if x > 4.

Proof. See [Dubins 1961, Theorem 5.3]. �

The next construction provides a homotopy of the straight line segment [0, x] to
the same segment with an eight attached which is continuous with respect to x .

(4.12) Construction. For x > 0, let ηx : [0, x]→C be the line segment t 7→ t . Take
t0= 1

2 in (36) and let h : [0, 1]×[0, 6]→C be a fixed homotopy between h0=η6 and

h1 =8η6

(
6φ
( t

6

))
β1

(
ψ
( t

6

))
(η6 with an eight attached)
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such that t 7→ hs(6t) (t ∈ [0, 1]) is a curve in L+1
−1(Q) for all s ∈ [0, 1]. The

existence of h is guaranteed by (4.11). Let µ : [0,+∞)→ [0, 1] be a smooth
function such that µ(x) = 0 if x ∈ [0, 6] and µ(x) = 1 if x ≥ 8. Define a family
of curves ηu

x : [0, 1] → C by

(38) ηu
x (t)=

{
ηx(t) if t ≥ 6 or x ≤ 6,
h(uµ(x), t) if t ≤ 6 and x ≥ 6

(u ∈[0, 1], t ∈[0, x], x>0).

Of course, η0
x = ηx for all x > 0. If x ≥ 8, then η1

x equals ηx with an eight attached;
in particular, η1

x |[3−6ε,3] is a loop.

Grafting. We now explain how to graft straight line segments onto a diffuse curve
(see Figure 8).

(4.13) Definition. Let γ ∈ L+1
−1(Q) be a curve of length L parametrized by arc-

length, σi ≥ 0 and si ∈ [0, 1], i = 1, . . . , 2n, where the si form a nondecreasing
sequence. Suppose that there exists a bijection p of {1, . . . , 2n} onto itself such
that for each i ,

(∗) σp(i) = σi and tγ (sp(i))=−tγ (si ).

Then we define the graft Gγ = Gγ,(si ),(σi ) :
[
0, L +

∑2n
i=1 σi

]
→ C by

(39)

Gγ (s)=



γ (s) if s ∈ [0,s1],

γ (s1)+(s−s1)tγ (s1) if s ∈ [s1,s1+σ1],

γ (s−σ1)+σ1 tγ (s1) if s ∈ [s1+σ1,s2+σ1],

γ (s2)+σ1 tγ (s1)+(s−s2−σ1)tγ (s2) if s ∈ [s2+σ1,s2+σ1+σ2],
...

...

γ (s−
∑2n

i=1σi )+
∑2n

i=1σi tγ (si ) if s ∈
[
s2n+

∑2n
i=1σi , L+

∑2n
i=1σi

]
.

Although it simplifies the previous formula, the assumption that (si ) is a nondecreas-
ing sequence is not necessary for the construction to work, since we may always
relabel the si .

(4.14) Lemma. Let γ ∈L+1
−1(Q) be diffuse and Gγ be as in (4.13). Then Gγ is para-

metrized by arc-length and lies in the same connected component of L+1
−1(Q) as γ .

Proof. It is obvious from (39) that 8Gγ
(0) = 8γ (0). Looking at the last line of

(39) and using (∗), we deduce that

Gγ (s)= γ
(

s−
2n∑

i=1

σi

)
for s ∈

[
s2n +

2n∑
i=1

σi , L +
2n∑

i=1

σi

]
.

Hence,8Gγ
(L+

∑2n
i=1 σi )=8γ (L). Since Gγ is made up of line segments and arcs

of γ (composed with translations), Gγ ∈L
+1
−1(Q). It is clear that Gγ is parametrized
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Figure 8. A diffuse curve γ and its graft Gγ = Gγ,(s1,s2,s3,s4),(σ1,σ2,σ3,σ4).

by arc-length. Finally,

u 7→ Gγ,(si ),(uσi ) (u ∈ [0, 1])

defines a path in L+1
−1(Q) joining γ to Gγ . �

Contractibility of Ud . Recall that K denotes a compact manifold, possibly with
boundary.

(4.15) Lemma. Let f : K → Ud be continuous. Then there exist an open cover
(V j )

m
j=1 of K and continuous maps τ±j : K → (0, 1), f1 : K → Ud such that

(i) f ' f1 within Ud and f1 satisfies conditions (ii) and (iii) of (1.11).

(ii) t f1(a)(τ
+

j (a))=−t f1(a)(τ
−

j (a)) whenever a ∈ V j .

Proof. Apply (1.11) to f and Ud to obtain f1. The idea is to use the implicit
function theorem to find τ±j . However, some care must be taken since f1 need not
be differentiable with respect to a.

For each a ∈ K , let θa : [0, 1]→R be the argument of t f1(a) satisfying θa(0)= 0,
and set

ϕa =
1
2

(
sup

t∈[0,1]
θa(t)+ inf

t∈[0,1]
θa(t)

)
.

Because each γa is diffuse and K is compact, we can find δ > 0 such that

θa([0, 1])⊃
(
ϕa −

π

2
− δ, ϕa +

π

2
+ δ

)
for all a ∈ K .

Fix a0 ∈ K . By Sard’s theorem, we can find ψ ∈ (ϕa0 + π/2, ϕa0 + π/2 + δ)
such that both ψ and ψ −π are regular values of θa0 . Let τ±(a0) ∈ (0, 1) satisfy
θa0(τ

+(a0))= ψ and θa0(τ
−(a0))= ψ −π . No generality is lost in assuming that
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θ̇a0(τ
+(a0)) > 0. From (5), θ̇a = |γ̇ f1(a)|κ f1(a). Thus, θ̇a depends continuously on a,

so we can find µ, ε > 0 and a compact neighborhood V ⊂ K of a0 such that

ψ ∈ θa
(
(τ+(a0)− ε, τ

+(a0)+ ε)
)

and θ̇a(t) > µ

whenever a ∈ V , |t − τ+(a0)| < ε. Hence, for each a ∈ V , there exists a unique
τ+(a) ∈ (τ+(a0)− ε, τ

+(a0)+ ε) with θa(τ
+(a))=ψ . We claim that the function

τ+ : V → (0, 1) so defined is continuous. Consider the equation

θa(τ
+(b))− θa(τ

+(a))

=
(
θb(τ

+(b))− θa(τ
+(a))

)
+
(
θa(τ

+(b))− θb(τ
+(b))

)
(a, b ∈ V ).

The first term on the right side equals 0 by the definition of τ+, and the sec-
ond converges to 0 as b→ a since θb(t) is a uniformly continuous function of
(b, t) ∈ K ×[0, 1]. Hence, by the mean value theorem,

|τ+(b)− τ+(a)|< 1
µ

∣∣θa(τ
+(b))− θa(τ

+(a))
∣∣→ 0 as b→ a (a, b ∈ V ).

It follows that τ+ is continuous. Similarly, reducing V if necessary, we can find
a continuous function τ− : V → (0, 1) with θa(τ

−(a))= ψ −π for all a ∈ V . To
finish the proof, cover K by finitely many such compact neighborhoods V j , let
τ±j : V j → (0, 1) be the corresponding functions and extend each τ±j to K using
the Tietze extension theorem. �

(4.16) Lemma. Let f : K → Ud be continuous. Then there exist an open cover
(W j )

m
j=1 of K and continuous maps t j : K → (0, 1), g j : W j → L+1

−1(Q) and
f2 : K → Ud such that

(i) f ' f2 within Ud ;

(ii) f2(a)= Ag j (a),1,t j (a) for all a ∈W j .

Proof. Take f1 as in (4.15). By (1.15), we may assume that each map γa =

f1(a) : [0, La] → C is parametrized by arc-length, so that now τ±j (a) ∈ (0, La) for
each a. Let (λ j )

m
j=1 be a partition of unity subordinate to (V j )

m
j=1, with V j as in

(4.15). Set σ j = 10mλ j and W j = {a ∈ K : σ j (a) > 8}. Then W j ⊂ V j and the W j

form an open cover of K . Define

γ u
a =Gγa,(τ

−

1 (a),...,τ
−
m (a),τ+1 (a),...,τ

+
m (a)),(uσ1(a),...,uσm(a),uσ1(a),...,uσm(a)) (u∈[0,1],a∈K )

as in (4.13). Let us suppose that τ−1 ≤ · · · ≤ τ
−
m (a) ≤ τ

+

1 (a) ≤ · · · ≤ τ
+
m (a) for

each a to abbreviate the notation, and set

ξ−j (a)=
∑
i< j

σi (a) and ξ+j (a)= 10m+
∑
i< j

σi (a) (a ∈ K , j = 1, . . . ,m).

Then
γ 1

a
(
[τ−j (a)+ ξ

−

j (a), τ
−

j (a)+ ξ
−

j (a)+ σ j (a)]
)
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is a line segment, corresponding to the graft at γa(τ
−

j (a)). Its length σ j (a) is at
least 8 if a ∈ W j . Of course, the same statements hold with + instead of −. We
obtain f2 by deforming all of these segments to eights. More precisely, for u ∈ [1, 2]
and a ∈ K , let

γ u
a (s)=

{
8γ 1

a
(τ±j (a)+ ξ

±

j (a))η
u−1
σ j (a)(s− τ

±

j (a)− ξ
±

j (a)),

γ 1
a (s)

(s∈[0, La+20m])

according to whether s ∈ [τ±j (a)+ ξ
±

j (a), τ
±

j (a)+ ξ
±

j (a)+ σ j (a)] for some j or
not, respectively. Here ηu

x is as in (4.12). Let f2 : K →Ud be given by f2(a)= γ 2
a .

Note that

γ 2
a
(
[τ±j (a)+ ξ

±

j (a)+ 3− 6ε, τ±j (a)+ ξ
±

j (a)+ 3]
)
( j = 1, . . . ,m)

is a loop whenever a ∈W j . Thus (after reparametrizing the γ 2
a so that their domains

become [0, 1]), we may apply (4.8) to each family f2|W j
to find g j :W j→L+1

−1(Q)
and t j :W j → (0, 1) such that

f2(a)= Ag j (a),1,t j (a) for all a ∈W j .

The functions t j may be extended to all of K by the Tietze extension theorem. �

(4.17) Lemma. Let f : K→Ud be continuous. Suppose that there exist a covering
of K by open sets W j and continuous maps t j : K→ (0, 1), g j :W j→L+1

−1(Q) with
f (a)= Ag j (a),1,t j (a) whenever a ∈W j , j = 1, . . . ,m. Then there exist continuous
g : K → L+1

−1(Q) and H : [0, 1]× K → Ud with H0 = f and H1 = Ag,1,1/2.

Proof. The proof will be by induction on m. If m = 1 then W1 = K , and H just
slides the loop from t1 to 1

2 :

H(s, a)= Ag1(a),1,(1−s)t1(a)+s/2 (s ∈ [0, 1], a ∈ K ).

Suppose now that m > 1. Let W be an open set such that W ⊂Wm and

W1 ∪ · · ·Wm−1 ∪W = K .

Let λ : K → [0, 1] be a continuous function such that λ(a) = 1 if a ∈ W and
λ(a)= 0 if a /∈Wm . Define Ĥ : [0, 1]× K → Ud by

Ĥ(s, a)=
{

Agm(a),1,(1−λ(a)s)tm(a)+λ(a)stm−1(a) if a ∈Wm,

f (a) if a /∈Wm
(s ∈ [0, 1], a ∈ K ).

Then the induction hypothesis applies to Ĥ1 : K → Ud , the open sets Ŵi = Wi

(i = 1, . . . ,m − 2) and Ŵm−1 = Wm−1 ∪W , and the same functions t j as before,
j = 1, . . . ,m−1. The existence of ĝm−1 as in the statement is guaranteed by (4.8):
using (4.5)(f), we deduce that there is at least one loop at tm−1(a) for a ∈ Ŵm−1. �

(4.18) Proposition. Let f : K → Ud be continuous. Then f ' B f,n,1/2 within Ud

for all n ≥ 1.
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Proof. Applying (4.16) and (4.17) to f , we obtain continuous maps g :K→L+1
−1(Q)

and h : K → Ud such that f ' h in Ud and

h(a)= Ag(a),1,1/2 for all a ∈ K .

Using (4.5)(d), we may deform the loop at t = 1
2 to attach n eights to h at t = 1

2
(for arbitrary n ≥ 1). Thus h ' Bh,n,1/2. Together with (4.5)(e), this implies that
f ' B f,n,1/2 within Ud . �

(4.19) Theorem. Let Q = (q, z) ∈ C×S1 and θ1 ∈ R satisfy eiθ1 = z. Then the
subspace Ud ⊂ L+1

−1(Q; θ1) consisting of all diffuse curves is homeomorphic to E,
and hence contractible.

Proof. Because Ud is open, it suffices to prove that it is weakly contractible, by
(1.7)(b). Let k ∈N, f :Sk

→Ud be continuous and g :Sk
→Ud be a map satisfying

(i)–(iii) of (1.11) (with U= Ud ). By (4.1), there exists G : [0, 1]×Sk
→ C+∞−∞(Q)

such that G0 = g and G1 is a constant map. By (4.6), there exists n0 ∈ N such that
if n ≥ n0, then SG(s,a),n ∈ Ud for all s ∈ [0, 1], a ∈ Sk . Applying (4.18) and (4.7)
to g, we obtain n1 ≥ n0 and a continuous F : [−1, 0]×Sk

→Ud with F−1 = g and
F0 = Sg,n1 . Concatenating F and SG,n1 we obtain a null-homotopy of g in Ud . �

5. Critical curves

Fix Q = (q, z) ∈ C×S1 and θ1 ∈ R satisfying eiθ1 = z. Let γ ∈ L+1
−1(Q; θ1) and

θ : [0, 1] → R be the argument of tγ satisfying θ(0)= 0. Finally, let

(40) θ+ = sup
t∈[0,1]

θ(t) and θ− = inf
t∈[0,1]

θ(t).

Recall that γ is called critical if θ+− θ− = π . A curve η ∈ L+1
−1(Q; θ1) must be

either condensed, diffuse or critical. It has already been shown that the subspace Uc

(resp. Ud ) of L+1
−1(Q; θ1) consisting of all condensed (resp. diffuse) curves is con-

tractible. Let T⊂L+1
−1(Q; θ1) denote the subspace of all critical curves. Clearly, T is

closed as the complement of Uc∪Ud . Since the difference θ+−θ− depends continu-
ously on γ , we deduce that ∂Uc⊂T and ∂Ud⊂T, where ∂Uc denotes the topological
boundary of Uc considered as a subspace of L+1

−1(Q; θ1) and similarly for Ud .

(5.1) Proposition. Let |θ1| < π and Uc,Ud ,T ⊂ L+1
−1(Q; θ1) be as above. Then

∂Uc = ∂Ud = T. Therefore, Uc ∪Ud = L+1
−1(Q; θ1) and Uc ∩Ud = T.

Observe that T = ∅ if |θ1| > π and Uc = ∅ if |θ1| ≥ π . However, in any case
∂Ud = T.

Proof. Let γ ∈ L+1
−1(Q; θ1) be a critical curve and V⊂ L+1

−1(Q; θ1) be an open set
containing γ . Let θ be the argument of tγ satisfying θ(0)= 0, and let θ+, θ− be as
in (40).
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We first prove that V∩Uc 6=∅. Our immediate objective is to replace γ with
another curve in V∩T having smaller curvature. Choose t1 ∈ (0, 1) and δ > 0 such
that θ(t) ∈ (θ−, θ+) for all t ∈ [t1− δ, t1]. Let Q0 =8γ (t1− δ), Q1 =8γ (t1) and
consider the map

F : L+1
−1(Q0, · )→UT C, F(η)=8η(1).

(Recall that L+1
−1(Q0, · ) consists of all (−1, 1)-admissible curves having initial

frame equal to Q0 and arbitrary final frame.) By (1.5), F is an open map. It follows
that for any Q̃1 close enough to Q1, we can find η ∈ L+1

−1(Q0, Q̃1) such that

(41) θη([0, 1])⊂ (θ−, θ+).

Let Q1 = (q1, z1) and Q = (q, z). Since γ is critical, the image of tγ is contained
in a semicircle. Consequently, q 6= 0. Choose κ0 ∈ (0, 1) close to 1. Replace the arc
γ |[t1−δ,t1] by a curve η as above with Q̃1 = (q1+ (κ0− 1)q, z1), and the arc γ |[t1,1]
by its translate γ |[t1,1]+ (κ0− 1)q . Let γ1 be the resulting curve; observe that γ1 is
critical, 8γ1(0)= (0, 1) and 8γ1(1)= (κ0q, z). Set γ2 = (1/κ0)γ1 (that is, γ2(t) is
obtained from γ1(t) by a dilatation through a factor of 1/κ0 for all t ∈ [0, 1]). Then

8γ2(0)= (0, 1), 8γ2(1)= (q, z),

tγ2(t)= tγ1(t), κγ2(t)= κ0κγ1(t) for all t ∈ [0, 1].

Thus, γ2 is a critical curve inL+1
−1(Q; θ1)whose curvature is constrained to (−κ0, κ0).

Moreover, if κ0 is close enough to 1 and η is chosen appropriately, we can guarantee
that γ2 ∈ V.

Having established the existence of γ2 with these properties, let us return to the
beginning, setting γ = γ2 ∈ V. Since |θ1|< π , either

θ−1({θ−})∩ {0, 1} =∅ or θ−1({θ+})∩ {0, 1} =∅,

and we lose no generality in assuming the latter. Choose ε > 0 small enough to
guarantee that

W = θ−1((θ+− ε, θ+])⊂ (0, 1).

Cover θ−1({θ+}) by the finite union of disjoint intervals (ai , bi )⊂W with θ(ai )=

θ(bi ) = θ
+
− ε, i = 1, . . . ,m. Let Pi = 8γ (ai ), Qi = 8γ (bi ). We can obtain a

curve in Uc∩V by modifying γ in each of these intervals to avoid the argument θ+

using (3.4): note that P−1
i γ |[ai ,bi ] satisfies the hypotheses of (3.16) because it has

curvature in the open interval (−κ0,+κ0) and is not a line segment. Moreover, the
inclusion L̂

+κ0
−κ0
(P−1

i Qi )→ L+1
−1(P

−1
i Qi ) is continuous by (1.17).

The proof that V∩Ud 6= ∅ is easier. Let the critical curve γ : [0, L] → C be
parametrized by arc-length. Then we can find s0, s1 ∈ [0, 1] with tγ (s0)=−tγ (s1).
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Choose ε > 0 and let
Gγ = Gγ,(s0,s1),(ε,ε).

(See (4.13) and Figure 8.) Choose κ0 ∈ (0, 1) and construct a curve ζ ∈L+1
−1(Q; θ1)

by replacing the line segment Gγ |[s0,s0+ε] by three small arcs of circles of radius 1/κ0

as indicated below:

If the bump is chosen to lie on the correct side, the curve ζ will be diffuse, and if
ε > 0 is small enough, then ζ ∈ V. (Notice that this part of the proof works even if
|θ1| = π .)

We have established that T ⊂ ∂Ud ∩ ∂Uc. As explained at the beginning of the
section, ∂Uc ⊂ T and ∂Ud ⊂ T. Thus, ∂Uc = ∂Ud = T. �

Existence of critical curves. It is immediate from the definition of “critical curve”
that if |θ1|>π , then the subspace T⊂L+1

−1(Q; θ1)must be empty. In this subsection
we shall determine exactly when T =∅ for |θ1| ≤ π .

(5.2) Definition. A sign string σ is an alternating finite sequence of signs, such
as +−+ or −+−+ . As part of the definition we require that its length |σ |, the
number of terms in the string, satisfy |σ | ≥ 2. Let σ(k) denote its k-th term
(1≤ k ≤ |σ |). The opposite −σ of σ is the unique sign string satisfying |−σ | = |σ |
and (−σ)(k)=−σ(k).

A critical curve γ : [0,1]→C is of type σ if there exist 0≤ t1< t2< · · ·< t|σ |≤ 1
with θ(tk) = θσ(k) (recall that θ+ = supt∈[0,1] θ(t) and θ− = inft∈[0,1] θ(t), where
eiθ
= tγ ), but it is impossible to find 0≤ s1 < · · ·< s|σ |+1 ≤ 1 such that tγ (sk)=

−tγ (sk+1) for each k = 1, . . . , |σ |.

Given a sign string σ , one can determine whether there exist critical curves of
type σ in L+1

−1(Q; θ1) using an elementary geometric construction; see Figure 9.

(5.3) Proposition. Let θ1 ∈ [0, π], z = eiθ1 and Q = (q, z) ∈ C×S1. Let σ be a
sign string,

a = iσ(1)(1+ (−1)|σ |+1z) ∈ C and r = 2|σ | ∈ N.

Let Rσ be the open region of the plane which does not contain −i + i z and which is
bounded by the shortest arc of Cr (a) joining a+ ri to a− ri z and the tangent lines
to Cr (a) at these points. Then L+1

−1(Q; θ1) contains critical curves of type σ if and
only if q ∈ Rσ .
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Figure 9. The regions Rσ of (5.3).

We have assumed that θ1 ∈ [0, π] just to simplify the statement. If θ1 ∈ [−π, 0],
then the only differences are that the points bounding the arc of Cr (a) are now a−ri
and a+ ri z and the region Rσ is the one not containing i − i z. Indeed, reflection
across the x-axis yields a homeomorphism between L+1

−1(Q; θ1) and L+1
−1(Q;−θ1),

where Q= (q̄, z̄), which maps critical curves of type σ to critical curves of type−σ .
When θ1 = 0, the points a+ ri and a− ri determine two shortest arcs of Cr (a),

not just one; the region Rσ is bounded by the one which goes through a+ r . When
θ1 = ±π , the arc of circle degenerates to a single point. In this case, Rσ is the
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component of the complement of the horizontal line through a+ sign(θ1)ri which
does not contain the real axis.

Proof of (5.3). There are four essentially distinct types of sign strings to consider:

+− · · ·+−︸ ︷︷ ︸
2n

, −+ · · ·−+︸ ︷︷ ︸
2n

, + −+ · · ·−+︸ ︷︷ ︸
2n

and − +− · · ·+−︸ ︷︷ ︸
2n

(n ∈ N, n ≥ 1).

(Note that these are distinguished by the values of σ(1) and |σ | appearing in the
expression for a.) We shall prove the theorem for a string of the first type; the proof
in the remaining three cases is analogous. The argument given here is the same as
the one which was used to prove (3.17), so some details will be omitted.

For each µ ∈ [θ1 − π, 0], let γµ : [0, 2nπ + θ1] → C be the unique curve
parametrized by arc-length satisfying

γµ(0)= 0,

tγµ(s)=
{

eis if s ∈ [0,µ+π ]∪[µ+2nπ,θ1+2nπ ]
⋃

k[µ+kπ,µ+(k+1)π ],
ei(2µ−s) if s ∈

⋃
k[µ+kπ,µ+(k+1)π ],

where the first (resp. second) union is over all k ≡ 0 (resp. k ≡ 1) (mod 2),
1≤ k ≤ 2n− 1. Notice that γµ is the concatenation of arcs of circles of radius 1;
see Figure 9. (Vaguely speaking, γµ is the “most efficient” critical curve γ of type σ
with inf θγ = µ and |κγ | ≤ 1.) We have

8γµ(0)= (0, 1), tγµ(2nπ + θ1)= z, inf θγµ = µ, sup θγµ = µ+π,

γµ(2nπ + θ1)=

(∫ µ+π

0
+(2n− 1)

∫ µ+π

µ

+

∫ θ1

µ

)
eis ds = (i − i z)+ 4nieiµ.

From the previous equation it follows that as µ increases from θ1 − π to 0, the
endpoint of γµ traces out the arc of Cr (a) joining a−ri z to a+ri , where a= i− i z
and r = 4n = 2|σ |. Further, the tangent line to Cr (a) at γµ(2nπ + θ1) is parallel
to eiµ, for it must be orthogonal to 4nieiµ.

It is easy to see that any q ∈ Rσ is the endpoint of a curve of one of the following
three types:

(i) The concatenation of γµwith a line segment of direction z for someµ∈[θ1−π,0].

(ii) The concatenation of γ0|[0,π ], a line segment of length `≥0 having direction−1,
the arc −`+ γ0|[π,2nπ+θ1], and a line segment of direction z.

(iii) The concatenation of γθ1−π |[0,θ1+π ], a line segment of length `1 ≥ 0 of direc-
tion −z, the arc −`1z+ γ0|[θ1+π,θ1+3π/2], a line segment of length `2 ≥ 0 and
direction −i z, the arc −`1z− `2i z+γ0|[θ1+3π/2,2nπ+θ1], and a line segment of
direction z.
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If q ∈ Rσ , then we can find a critical curve γ of type σ in L+1
−1(Q; θ1) by a slight

modification of one of these curves.
Conversely, suppose that L+1

−1(Q; θ1) contains critical curves of type σ . Let
η : [0, L]→C be such a curve, parametrized by arc-length, and let µ= inf θ , where
θ : [0, L] → R is the argument of tη satisfying θ(0)= 0. Define

g : [0, L] → R by g(s)=
〈
η(s)− γµ(2nπ + θ1), ieiµ〉.

Note that g(s)>0 if and only if η(s) lies to the left of the line through γµ(2nπ+θ1)∈

Cr (a) having direction eiµ; we have already seen that this line is tangent to Cr (a)
at this point. We claim that g(L) > 0. Since η is critical, θ(s) ∈ [µ,µ+π ] for all s.
Hence,

(42) g′(s)= 〈eiθ(s), ieiµ
〉 = cos

(
θ(s)−

(
µ+ π

2

))
≥ 0 for all s ∈ [0, L].

Let Ji = (ai , bi )⊂ (0, L), i = 0, . . . , 2n = |σ |, be disjoint intervals such that

(I) θ(a0)= 0 and θ(b1)= µ+π ;

(II) θ(ai )= µ+π and θ(bi )= µ for i = 1, 3, . . . , 2n− 1;

(III) θ(ai )= µ and θ(bi )= µ+π for i = 2, 4, . . . , 2n− 2;

(IV) θ(a2n)= µ+π and θ(b2n)= θ1.

Such intervals exist because θ([0, L])⊂ [µ,µ+π ], θ(0)= 0, θ(L)= θ1 and η is
critical of type σ . It follows from (42) and the fact θ is strictly 1-Lipschitz (by (5)
and the fact that θ = arg ◦ tη is absolutely continuous) that

g(L)−g(0)≥
( 2n∑

i=0

∫ bi

ai

)
g′(s)ds

>

(∫ µ+π

0
+(2n−1)

∫ µ+π

µ

+

∫ θ1

µ

)
〈ei t , ieiµ

〉dt =
〈
γµ(2nπ+θ1), ieiµ〉.

Therefore, g(L) > 0 as claimed. We conclude that q = η(L) lies on the side of a
tangent to Cr (a) which only contains points of Rσ . �

(5.4) Corollary. Let Q = (q, z) ∈ C×S1,

a = sign(Im(z))i(z− 1) ∈ C,

and let RT be the open region of the plane which does not contain a and which is
bounded by the shortest arc of C4(a) joining a+sign(Im(z))4i to a−sign(Im(z))4i z
and the tangent lines to C4(a) at these points. Then L+1

−1(Q) contains critical curves
if and only if q ∈ RT .

Proof. Let z = eiθ1 , |θ1| ≤ π . For θ1 ∈ [0, π] (resp. θ1 ∈ [−π, 0]), RT is the same
as the region R−+ (resp. R+− ) appearing in (5.3). �
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If z = ±1, then sign(Im z) is not defined. When z = 1, RT is bounded by the
semicircle centered at 0 through 4 and ±4i and the tangents to C4(0) at the latter
two points. When z =−1, RT is bounded by the horizontal lines through ±2i .

(5.5) Corollary. Let Q = (q, z) ∈ C×S1 and eiθ1 = z. Then there exist condensed
curves but not critical curves in L+1

−1(Q; θ1) if and only if |θ1|< π and q lies in the
region illustrated in Figure 1.

Proof. This is an immediate consequence of (3.17) and (5.4). �

(5.6) Lemma. Let Q = (q, z) ∈ C×S1 and eiθ1 = z, |θ1| ≤ π . Let ω ∈ [|θ1|, π]

and r(ω)= 4 sin
(
ω/2

)
. Suppose that q lies inside of Cr(ω)

(
sign(θ1)i(z−1)

)
. Then

there does not exist a curve in L̂+1
−1(Q; θ1) or L+1

−1(Q; θ1) having amplitude ω.

Proof. Assume that θ1 ∈ [0, π]; the proof for θ1 ∈ [−π, 0] is analogous. Let
ω ∈ [θ1, π], µ ∈ [θ1 − ω, 0] and let γµ : [0, 2ω − θ1] → C be the unique curve
parametrized by arc-length satisfying

γµ(0)= 0 and tγµ(s)=


e−is if s ∈ [0,−µ],
ei(s+2µ) if s ∈ [−µ,−µ+ω],
e−i(s−2ω) if s ∈ [−µ+ω, 2ω− θ1].

Notice that tγµ(0)= 1, tγµ(2ω− θ1)= z and γµ is a concatenation of three arcs of
circles of radius 1. Moreover, inf θγµ = µ and sup θγµ = µ+ω, where θγµ is the
argument of tγµ satisfying θγµ(0)= 0. Consequently, γµ has amplitude ω. Further,

γµ(2ω− θ1)=

(∫ 0

µ

+

∫ µ+ω

µ

+

∫ µ+ω

θ1

)
eis ds = (−i + i z)+ 4 sin

(
ω

2

)
ei(µ+ω/2).

Thus, as µ increases from θ1 − ω to 0, the endpoint of γµ traverses an arc of
Cr(ω)(−i + i z). Suppose that there exists η ∈ L̂+1

−1(Q; θ1) of amplitude ω, and let
η : [0, L]→C be parametrized by arc-length. Let θη be the argument of η satisfying
θη(0)= 0, take µ= inf θη and define

g : [0, L] → R by g(s)=
〈
η(s)− γµ(2ω− θ1), ei(µ+ω/2)〉.

Then the same reasoning used to establish (3.17) and (5.3) shows that g(L) ≥ 0.
This implies that η(L) = q lies on or to the left of the line through γµ(2ω− θ1)

having direction exp
(
i(µ+ (ω−π)/2)

)
. This line is tangent to Cr(ω)(−i + i z) at

this point; therefore q cannot lie inside of this circle. This proves the assertion
about L̂+1

−1(Q; θ1). Since the latter contains L+1
−1(Q; θ1) as a subset, the proof is

complete. �

The next result will only be needed in [Saldanha and Zühlke 2015]. Recall the
definition of ϕ̄γ in (34).



COMPONENTS OF SPACES OF CURVES ON FLAT SURFACES 233

(5.7) Corollary. Let |θ1| ≤ π , eiθ1 = z, Q = (q, z) ∈C×S1 and σ be a sign string.
Then the set of all ϕ ∈ R such that there exists a critical curve γ ∈ L+1

−1(Q; θ1) of
type σ for which ϕ̄γ = ϕ is an open interval.

Proof. No generality is lost in assuming that θ1 ∈ [0, π). Let ϕ ∈ R. It was
established in the proof of (5.3) that a curve γ as in the statement exists if and only
if ϕ ∈ [θ1−π/2, π/2] and q lies in the open external region Eϕ determined by the
tangent orthogonal to eiϕ to a certain circle C (which depends only on θ1 and σ ).
It is straightforward to check that Eϕ1 ∩ Eϕ2 ⊂ Eϕ whenever ϕ ∈ [ϕ1, ϕ2] with
ϕ2−ϕ1 ≤ π . Moreover, if q ∈ Eϕ , then q ∈ Eϕ̃ for all ϕ̃ sufficiently close to ϕ. �

6. Components of Lκ2
κ1(P, Q) for κ1κ2 < 0

Recall that E denotes the separable Hilbert space and Bγ,1,1/2 is obtained from γ

by attaching a figure eight curve (at t = 1/2); see (4.4) and Figure 7(d).

(6.1) Theorem. Let Q = (q, z) ∈ C× S1 and θ1 ∈ R satisfy eiθ1 = z. Then the
following assertions are equivalent:

(i) L+1
−1(Q; θ1) is disconnected.

(ii) |θ1|< π and q lies in the region depicted in Figure 1.

(iii) |θ1|< π and there exist condensed curves, but not critical curves, in L+1
−1(Q).

(iv) |θ1|< π and there exist condensed curves in L+1
−1(Q), but no condensed curve

is homotopic to a diffuse curve within L+1
−1(Q).

(v) |θ1|< π and there exists an embedding γ ∈ L+1
−1(Q) which cannot be homo-

toped within this space to create self-intersections.

(vi) |θ1|<π and there exists γ ∈L+1
−1(Q) which does not lie in the same component

as Bγ,1,1/2.

Furthermore, if L+1
−1(Q; θ1) is disconnected, then it has exactly two components;

one of them is Uc and the other is Ud ⊂ L+1
−1(Q; θ1), and both are homeomorphic

to E, and hence contractible.

Proof. We know from (3.3) and (4.19) that each of Uc,Ud ⊂ L+1
−1(Q; θ1) is home-

omorphic to E, and hence connected. By (4.10), Ud 6= ∅. By (5.1), Uc ∪Ud =

L+1
−1(Q; θ1), and Uc ∩Ud consists of all the critical curves in L+1

−1(Q; θ1). Thus,
the latter has at most two connected components. It has exactly two if and only
if Uc 6= ∅ but Uc ∩Ud = ∅, that is, if and only if there exist condensed curves,
but not critical curves. This proves the last assertion of the theorem and also the
equivalence (i)⇔(iii). The equivalence (ii)⇔(iii) was proved in (5.5).

Suppose that s 7→ γs ∈ L+1
−1(Q; θ1) is a path joining a condensed curve to a

diffuse curve. Let θs be the argument of tγs satisfying θs(0) = 0. By continuity,
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there must exist s0 ∈ (0, 1) such that

sup
t∈[0,1]

θs0(t)− inf
t∈[0,1]

θs0(t)= π;

that is, there must exist s0 such that γs0 is critical. Hence, (iii)⇒(iv).
Suppose that (iv) holds, and let γ ∈ L+1

−1(Q) be smooth and condensed. Then γ
is an embedding, but it cannot be deformed to have a self-intersection since any
curve with double points must be diffuse. Thus, (iv)⇒(v).

Finally, it is obvious that (v)⇒(vi) and (vi)⇒(i). �

(6.2) Corollary. Let Q = (q, z) ∈ C×S1 and θ1 ∈ R satisfy eiθ1 = z. If |θ1| ≥ π ,
then L+1

−1(Q; θ1) is connected. If |θ1|> π , then L+1
−1(Q; θ1) is homeomorphic to E,

and hence contractible.

Proof. The first assertion is an immediate consequence of (6.1). If |θ1|> π then
L+1
−1(Q; θ1) can only contain diffuse curves, and we know from (4.19) that Ud is

homeomorphic to E. �

Remark. The results of Section 4 go through to show that L+1
−1(Q; θ1)= T ∪Ud

is also contractible when θ1 = ±π . Of course, if |θ1| < π then L+1
−1(Q; θ1) need

not even be connected. We shall prove in the sequel [Saldanha and Zühlke 2015]
that it may also be contractible, or connected but not contractible, depending on Q.

(6.3) Corollary. Let Q = (q, z) ∈ C× S1 and θ1 ∈ R satisfy eiθ1 = z. Then the
subset L+1

−1(Q; θ1) is either a connected component or the union of two contractible
components of L+1

−1(Q). The latter can occur only if |θ1| < π , that is, for at most
one value of θ1. �

(6.4) Theorem. Let P = (p, w), Q= (q, z)∈C×S1, κ1< 0<κ2 and let θ1 satisfy
eiθ1 = zw̄.

(a) If |θ1| ≥ π , then the subspace Lκ2
κ1
(P, Q; θ1) consisting of all curves having

total turning θ1 is a contractible connected component of Lκ2
κ1
(P, Q), homeo-

morphic to E.

(b) If |θ1|<π , then Lκ2
κ1
(P, Q; θ1) has at most two components. It is disconnected

if and only if any of the conditions in (6.1) are satisfied for Q̂ = (q̂, zw̄), where

q̂ = 2
ρ2−ρ1

w̄
(
(q − p)+ i

2
(ρ1+ ρ2)(z−w)

) (
ρi =

1
κi
, i = 1, 2

)
.

In this case, one component consists of all condensed and the other of all
diffuse curves in Lκ2

κ1
(P, Q; θ1), and both are homeomorphic to E.

Proof. This is just a corollary of (2.4)(a), (6.1) and (6.2). �

We emphasize that the subspace of Lκ2
κ1
(P, Q) which contains curves having

least total turning, described in (b), does not have to be contractible even if it is
connected. Observe also that we may replace L by C invoking (1.12).
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7. Homeomorphism class of Lκ2
κ1(P, Q) for κ1κ2 ≥ 0

An admissible plane curve γ is called locally convex if either κγ >0 a.e. or κγ <0 a.e.
Notice that Lκ2

κ1
(P, Q) consists of locally convex curves if and only if κ1κ2≥ 0. This

corresponds to parts (b)–(e) of (2.4). The topology of these spaces is very simple.
Suppose that γ : [0, 1] → C is an admissible curve such that κγ > 0 a.e. and

8γ (0)= (0, 1). By (5), any argument θ : [0, 1]→R of tγ must be strictly increasing;
in particular, the total turning θ1 of γ is positive. Thus, γ may be parametrized by
its argument θ ∈ [0, θ1]. By the chain rule,

(43) γ̇ (θ)= ρ(θ)eiθ (θ ∈ [0, θ1]),

where ρ : [0, θ1] → (0,+∞) is the radius of curvature of γ .3

(7.1) Theorem. Let P, Q ∈UT C and suppose that either κ1 ≥ 0 or κ2 ≤ 0. Then
Lκ2
κ1
(P, Q) has infinitely many connected components, one for each realizable total

turning. All of these components are homeomorphic to E, and hence contractible.

Proof. Using an Euclidean motion if necessary, we may assume that P = (0, 1).
Further, by reversing the orientation of all curves, we pass from the case where
κ2 ≤ 0 to the case where κ1 ≥ 0.

Let Q = (q, z) and eiθ1 = z. The subspace Lκ2
κ1
(Q; θ1) is both open and closed

in Lκ2
κ1
(Q) (but it may be empty; see (4.9). In particular, two curves which have

different total turnings cannot lie in the same component of Lκ2
κ1
(Q). For any

k ∈N, we may concatenate a curve in Lκ2
κ1
(Q) with a circle of curvature in (κ1, κ2)

traversed k times. This shows that the number of components is infinite.
Suppose that Lκ2

κ1
(Q; θ1) 6=∅. Since κ1≥ 0 by hypothesis, we may reparametrize

all curves in Lκ2
κ1
(Q; θ1) by the argument θ ∈[0, θ1] of their unit tangent vectors using

(1.15). Choose any γ0 ∈ L
κ2
κ1
(Q; θ1) and define a map H on [0, 1]×Lκ2

κ1
(Q; θ1) by

H(s, γ )= γs, γs(θ)= (1− s)γ0(θ)+ sγ (θ) (s ∈ [0, 1], θ ∈ [0, θ1]).

Then γs(0)= 0, γs(θ1)= q and the unit tangent vector tγs to γs satisfies

tγs (θ)= eiθ for all γ ∈ Lκ2
κ1
(Q; θ1), s ∈ [0, 1] and θ ∈ [0, θ1].

Consequently, each γs has total turning θ1, 8γs (0)= (0, 1) and 8γs (θ1)= Q. Let
ρ0, ρ : [0, 1] → (0,+∞) denote the radii of curvature of γ0, γ , respectively. It
follows from (43) that the radius of curvature ρs of γs is given by

ρs = (1− s)ρ0+ sρ.

3The idea of parametrizing a locally convex curve by the argument of its unit tangent vector is not
new. It appears in [Little 1970], where it is attributed to W. Pohl. We do not know whether it is older
than that.
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Therefore, the curvature κs = 1/ρs of γs takes values in (κ1, κ2) and H is a con-
traction of Lκ2

κ1
(Q; θ1). We conclude that the latter is a connected component of

Lκ2
κ1
(Q) and, using (1.7)(b), that it is homeomorphic to E. �

Possible total turnings of a curve in L
κ2
κ1(P, Q) when κ1κ2 > 0. Let T denote

the set of all total turnings which are realized by some curve in Lκ2
κ1
(P, Q). If

P = (p, w), Q = (q, z), then obviously

T ⊂ {θ1+ 2kπ : k ∈ Z}, where eiθ1 = zw̄.

If κ1κ2 < 0, this inclusion is an equality by (4.9)(b). However, it must be proper
when κ1κ2 ≥ 0. If κ1, κ2 are both positive, for instance, then, by (5) and the second
paragraph of the above proof, T must have the form {µ+2kπ : k ∈N}, where µ∈R

(eiµ
= zw̄) is the minimal attainable total turning in this space. It is possible to find

the value of µ in terms of all parameters involved. Because this determination is
of lesser interest and relatively technical, we shall not go into it here. However,
interested readers can find the details, including the analogue for spaces of the
form L̂, in [Saldanha and Zühlke 2014]. We mention only that (2.4) allows one to
restrict attention to the two classes L+∞1 (Q) and L+∞0 (Q).

8. Components of spaces of curves on complete flat surfaces

By a flat surface we mean a connected Riemannian 2-manifold whose Gaussian cur-
vature is identically zero; it will not be necessary to assume that S is a submanifold
of some Euclidean space. The unit tangent t = tγ : [0, 1]→UTS to a regular curve
γ : [0, 1] → S is defined as before, t = γ̇ /|γ̇ |. If S is orientable, the unit normal
n = nγ : [0, 1] → UTS to γ is defined by the condition that (t(t), n(t)) should
be a positively oriented orthonormal basis of TSγ (t) for each t ∈ [0, 1]. For γ of
class C2, we can then define its curvature κγ : [0, 1] → R by

κγ =
1
|γ̇ |

〈
D t
dt
, n
〉
,

where D denotes covariant differentiation (along γ ).
If S is nonorientable, we can still speak of the unsigned curvature κγ : [0, 1] →
[0,+∞) of a curve γ : [0, 1] → S, given by

κγ =
1
|γ̇ |

∣∣∣∣〈D t
dt
, n
〉∣∣∣∣,

where now n(t) denotes any of the two unit vectors in TSγ (t) orthogonal to t(t).

(8.1) Definition. Let S be an orientable flat surface, u,v∈UTS,−∞≤κ1<κ2≤+∞,
and 2≤ r ∈N. Define CSκ2

κ1
(u, v) to be the set of all Cr regular curves γ : [0, 1]→ S

satisfying
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(i) tγ (0)= u and tγ (1)= v;

(ii) κ1 < κγ (t) < κ2 for each t ∈ [0, 1].

In case S is nonorientable, define CS+κ0
−κ0
(u, v) (κ0 > 0) as above, but replacing

condition (ii) by

(ii′) κγ (t) < κ0 for each t ∈ [0, 1].

In both cases, let Cκ2
κ1
(u, v) be furnished with the Cr topology.

Remark. A complete flat surface must be homeomorphic to one of the following
five: C itself, a cylinder S1

×R, an open Möbius band, a torus or a Klein bottle.
This is essentially a corollary of the following result; cf. [Hopf 1926, p. 319].

(8.2) Theorem (Killing–Hopf). Any complete flat surface is isometric to the quo-
tient of the Euclidean plane C by a group of isometries acting freely and properly
discontinuously on C. �

Hence, if S is a complete flat surface, there exists a covering map C→ S which
is a local isometry. Any curve on S may thus be lifted to a plane curve whose
curvature is the same as that of the original curve, with the proviso that we ignore
its sign if S is nonorientable. Let pr :UT C→UTS denote the natural projection
induced by the covering map. In what follows, when referring to CSκ2

κ1
(u, v), we

adopt the convention that κ1 =−κ2 < 0 if S is nonorientable.

(8.3) Proposition. Let S be a complete flat surface, u,v∈UTS,−∞≤κ1<κ2≤+∞

and P ∈UT C be a fixed element of pr−1(u). Then CSκ2
κ1
(u, v) is homeomorphic to∐

Q∈pr−1(v) C
κ2
κ1
(P, Q), where the homeomorphism maps a curve in the latter to its

image under the quotient map C→ S. �

Here
∐

denotes topological sum. Clearly, this decomposition is sufficient to
determine the connected components of CSκ2

κ1
(u, v) explicitly, using (1.12) and (6.4)

if κ1κ2 < 0 or (7.1) if κ1κ2 ≥ 0.

(8.4) Corollary. Let S be a complete flat surface, κ1 < κ2 and u, v ∈ UTS. Then
CSκ2

κ1
(u, v) is nonempty and has an infinite number of connected components.

Proof. By (4.9) and the remark which follows it, Cκ2
κ1
(P, Q) is always nonempty.

The assertion is thus an immediate consequence of (8.3). �

Notice that it is irrelevant here whether S is compact. This should be compared
to the case of S = S2, where, at least when u = v, the number of components of
CSκ2

κ1
(u, v) is finite for any choice of κ1 < κ2 (see [Saldanha and Zühlke 2013, §7]).

This is actually not surprising, since the fundamental group of UT C is isomorphic
to Z, but that of U T S2

≈ SO3 is isomorphic to Z2. We remark without proof that
CSκ2

κ1
(u, v) may be empty for more general surfaces (for instance, CS+1

−1(u, u)=∅
when S is the hyperbolic plane H2 for any u ∈UTH2).
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(8.5) Corollary. Let S be a complete flat surface and u, v ∈ UTS. Let η ∈
CS+∞−∞(u, v) and suppose that κ1κ2 < 0. Then there exists γ ∈ CSκ2

κ1
(u, v) lying in

the same component of CS+∞−∞(u, v) as η.

In other words, given a regular curve η on S with tη(0)= u, tη(1)= v, we may
deform η through regular curves, keeping t(0), t(1) fixed, to obtain a curve having
curvature in (κ1, κ2) everywhere.

Proof. Take P ∈UT C such that pr(P)= u. Let η̃ be the lift of η to C with initial
frame P ; let Q be its final frame and θ1 its total turning. By (4.9)(b), Cκ2

κ1
(P, Q; θ1)

is nonempty. Let γ̃ be one of its elements. Then the projection γ of γ̃ on S satisfies
the conclusion of the corollary because of (8.3) and the fact that η̃, γ̃ lie in the
same component of C+∞−∞(P, Q). �

Again, the analogue of this result does not hold for a general surface S, e.g., for
S =H2. It is also false for a flat surface if κ1κ2 ≥ 0. To see this, let P, Q ∈UT C

satisfy pr(P)= u, pr(Q)= v, choose η̃ ∈ C+∞−∞(P, Q) to have a total turning which
is unattainable for curves in Cκ2

κ1
(P, Q) and let η be the projection of η̃ on S.

9. Final remarks

Spaces of curves with curvature in a closed interval. Dubins [1957; 1961] worked
with the set L̂+κ0

−κ0
(Q) of (1.16) (but with the C1 topology), where the curvatures are

restricted to lie in a closed interval. This choice is motivated by the fact that these
spaces, unlike those of the form L

+κ0
−κ0
(Q), always contain curves of minimal length

(see [Dubins 1957, Proposition 1]). All of the main results in our paper concerning
the topology of Lκ2

κ1
(P, Q) have analogues for L̂κ2

κ1
(P, Q). We shall now briefly

indicate the modifications which are necessary.
Notice that L̂κ2

κ1
(P, Q) is not a Banach manifold, and that the analogue of (1.5)

is false for these spaces, as shown by (1.1). In contrast, (1.14) and (1.15) still hold
when M= L̂κ2

κ1
(P, Q). The important corollary (2.6) has the following analogue,

whose proof is essentially the same as that of (2.4); see (2.7).

(9.1) Proposition. Let P, Q ∈UT C and κ1<κ2 be finite. Then there exists a home-
omorphism between L̂κ2

κ1
(P, Q) and a space of type L̂+1

−1(Q0), L̂1
0(Q0) or L̂2

1(Q0),
according to whether κ1κ2 < 0, κ1κ2 = 0 or κ1κ2 > 0, respectively. Moreover, this
homeomorphism preserves the total turning of curves unless κ1 < κ2 ≤ 0, in which
case it reverses the sign. �

In case κ1κ2 < 0, we actually have L̂κ2
κ1
(P, Q) ≈ L̂+1

−1(Q1) with Q1 as in the
statement of (2.4). We leave the task of determining Q0 in the other two cases to
the interested reader.

Let us denote by Ûc, Ûd and T̂ ⊂ L̂+1
−1(Q; θ1) the subspaces consisting of all

condensed, diffuse and critical curves, where Q = (q, z), eiθ1 = z and L̂+1
−1(Q; θ1)
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consists of those curves in L̂+1
−1(Q) which have total turning θ1. The analogue of

(3.3), stating that Ûc is either empty or contractible, is, naturally, (3.4), which was
used to prove (3.3). The results and proofs in Section 4 all need minimal or no
modifications. In particular, Ûd is always nonempty and weakly contractible.

The proof that ∂Ûd = T̂ is the same as the one given in (5.1). The proof that
∂Ûc = T̂, however, needs to be modified, since we have relied on (1.5). The idea is
again to apply construction (3.8), but to all of γ , not just to some of its arcs as in
the proof of (5.1). If γ is a critical curve, then the corresponding function f (see
Figure 4) will attain the values ±∞, and at these points we need to assign weights,
corresponding to the lengths of the line segments where θγ attains its maximum and
minimum. Then we redefine A(µ−, µ+) as the sum of the area under the graph of
f (µ−,µ+) plus the weight at +∞ minus the weight at −∞. The process described
in (3.8) will transform f into a bounded function of the same area; that is, it will
decrease the amplitude of γ , making it a condensed curve.

The proofs of (3.17), (5.3) and (5.4), which deal with the existence of condensed
and critical curves, go through unchanged; the only difference in the conclusions is
that the corresponding regions R

Ûc
, Rσ and R

T̂
of the plane are now closed, instead

of open. Thus, in the analogue of (6.1), the region of Figure 1 should contain the
two circles of radius 2, but not the circle of radius 4, and we cannot assert that Ûc

and Ûd are homeomorphic to E, only that they are weakly contractible. The rest of
the statement and the proof hold without modifications.

Similarly, the version of (7.1) for L̂κ2
κ1
(P, Q) states that this space has one

contractible connected component for each realizable total turning when κ1κ2 ≥ 0.
The proof is the same as that of (7.1) if κ1κ2 > 0. If κ1 = 0, then we cannot really
parametrize γ ∈ L̂κ2

κ1
(P, Q) by argument. Nevertheless, the proof still works if we

replace ρ(θ)dθ by a measure µ(θ) on the Borel subsets of [0, θ1] which has an
atom at θ if the curvature of γ vanishes at γ (θ); note that the convex combination
of two measures is again a measure. The case where κ2 = 0 can be deduced from
this one by reversing orientations.

A few conjectures of Dubins. All of the results in the next proposition were con-
jectured by Dubins [1961, §6].

(9.2) Proposition. Let q ∈ C, θ1 ∈ R, z = eiθ1 and Q = (q, z). Then:

(a) The set of all (q, θ1)∈C×R such that L̂+1
−1(Q; θ1) is disconnected is a bounded

subset of C×R, neither open nor closed.4

(b) L̂+1
−1(Q; θ1) has at most two components.

4Actually, Dubins had guessed that this set would be bounded and open in C×R.
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(c) If L̂+1
−1(Q; θ1) is disconnected, then one component (Ûd) contains curves of

arbitrarily large length, while the supremum of the lengths of curves in the
other component (Ûc) is finite.

(d) Every point of C lies in the image of some γ ∈ Ûd , while the images of curves
in Ûc are contained in a bounded subset of C.

Proof. Parts (a) and (b) are immediate from the analogue of (6.1) for L̂. As discussed
above, L̂+1

−1(Q; θ1) is disconnected if and only if |θ1|< π and q lies in the region
in Figure 1 including the circles of radius 2 but not the circle of radius 4. Suppose
that q does lie in this region. Choose ω̂ ∈ (θ1, π) such that

|q − sign(θ1)i(z− 1)|< 4 sin
(
ω̂

2

)
.

Then (5.6) implies that there does not exist any curve in L̂+1
−1(Q; θ1) having am-

plitude in [ω̂, π]. The assertions about Ûc in (c) and (d) now follow from (3.15).
The assertions about Ûd are obvious, because, by (the version for L̂ of) (4.18), this
subspace always contains curves of amplitude ≥ 2π , and onto such a curve we may
graft line segments of any direction and arbitrary length. �

As expected, there is a version of the foregoing proposition for L+1
−1(Q; θ1). The

corresponding assertions in (a) and (b) are immediate from (6.1), and the assertions
about Ud are again obvious. A curve in Uc parametrized by arc-length can also be
considered as an element of Ûc, so the properties stated in (c) and (d) for Uc follow
from those for Ûc unless q lies on the circle of radius 4 in Figure 1. In this case,
L+1
−1(Q; θ1) is disconnected, but L̂+1

−1(Q; θ1) is not. One can prove directly that the
length of any γ ∈ Uc must be smaller than that of the “canonical” critical curves of
type +− or −+ that were constructed in the proof of (5.3).

Conjectures on minimal length. Let L(γ ) denote the length of γ and suppose that
L̂+1
−1(Q; θ1) is disconnected. We believe that the results developed here may be

used to prove that if m = sup
γ∈Ûc

L(γ ) and M = inf
γ∈Ûd

L(γ ), then m < M ; this
is another conjecture of Dubins. It would be interesting, and probably useful for
applications, to find the values corresponding to m and M for the more general
spaces L̂κ2

κ1
(Q).

We observed in (2.5) that normal translations, and hence the homeomorphisms
of (9.1) need not preserve inequalities between lengths. Since they do map circles
to circles and lines to lines, it could still be expected that the image of a curve
which minimizes length under these homeomorphisms is likewise of minimal
length. Unfortunately, this is false. Suppose, for instance, that we apply the
homeomorphism L̂+1

−1(Q)→ L̂100
−1 (Q0) to the Dubins path in Figure 3(b). It should

be clear that its image, which again consists of a line segment and two arcs of
circles of opposite orientation with the same amplitude as before, does not minimize
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length in L̂100
−1 (Q0), since in the latter space it is generally much more efficient to

curve to the left than to the right, even if this yields a path of greater total turning.
In spite of this difficulty, we conjecture that Dubins’ theorem that any shortest

path in L̂
+κ0
−κ0
(P, Q) must be a concatenation of three pieces, each of which is either

an arc of circle or a line segment, still holds for the spaces L̂κ2
κ1
(P, Q), κ1κ2 < 0.

For κ1κ2 > 0, we conjecture that a curve of minimal length is a concatenation of n
arcs of circles of curvature κ1 and κ2. However, for fixed P, Q ∈UT C, we must
have limκ1,κ2→+∞ n=∞. Indeed, a curve of this type has total turning at most 2nπ ,
and the minimal total turning of a curve in L̂κ2

κ1
(Q) increases to infinity as κ1 > 0

increases to infinity (for fixed Q = (q, z) with q 6= 0).
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A NOTE ON MINIMAL GRAPHS
OVER CERTAIN UNBOUNDED DOMAINS

OF HADAMARD MANIFOLDS

MIRIAM TELICHEVESKY

Given an unbounded domain � of a Hadamard manifold M, it makes sense
to consider the problem of finding minimal graphs with prescribed contin-
uous data on its cone topology boundary, i.e., on its ordinary boundary to-
gether with its asymptotic boundary. In this article it is proved that under
the hypothesis that the sectional curvature of M is ≤−1, this Dirichlet prob-
lem is solvable if � satisfies a certain convexity condition at infinity and if
∂� is mean convex. We also prove that mean convexity of ∂� is a necessary
condition, extending to unbounded domains some results that are valid on
bounded ones.

1. Introduction

The classical theorem of Jenkins and Serrin on minimal graphs theory, following
the works of Bernstein [1910], Haar [1927], Radó [1930] and Finn [1965], states
the following.

Theorem 1 [Jenkins and Serrin 1968, Theorem 1]. Let D ⊂ Rn be a bounded
domain whose boundary is of class C2. Then the Dirichlet problem for the minimal
surface equation in D is well posed for C2 boundary data if and only if the mean
curvature of ∂D is everywhere nonnegative.

In the last four decades, several works considered problems related to Theorem 1
in distinct directions. Some of them are listed below together with some references.

• Unbounded domains of R2: [Hwang 1988; Collin and Krust 1991; Sá Earp
and Rosenberg 1989; Ripoll and Tomi 2014; Krust 1989; Kuwert 1993; Kutev
and Tomi 1998].

• Bounded domains of a Hadamard manifold M : [Folha and Rosenberg 2012;
Mazet et al. 2011; Aiolfi et al. 2016].

MSC2010: primary 35-XX, 58-XX; secondary 58J05, 35J93.
Keywords: Dirichlet problem for minimal graphs, Hadamard manifolds.
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• Asymptotic Dirichlet problems on Hadamard manifolds: [do Espírito Santo
et al. 2010; Ripoll and Telichevesky 2015; Gálvez and Rosenberg 2010;
Castéras et al. 2013].

• Replace the ambient space Rn+1 by the hyperbolic spaces Hn+1 [Barbosa and
Sá Earp 1998; Guio and Sá Earp 2005; López 2001; Nitsche 2002] or other
ambient spaces with a Killing field satisfying certain hypotheses [Alías and
Dajczer 2007; Dajczer et al. 2008; 2013]. In this setting it is natural to consider
CMC Killing graphs and there is an extensive bibliography on it.

The purpose of this article is to prove that similar existence and nonexistence
results remain valid if in Theorem 1, Rn is replaced by a Hadamard manifold M
with sectional curvature KM ≤−1 and the domain D is unbounded and “strictly
convex at infinity” (see Definition 4).

Classically, Dirichlet problems on unbounded domains are considered in Rn

without prescribed values at infinity. In fact, sometimes the behavior at infinity of
bounded solutions is determined by their boundary values. For instance, in R2 it is a
consequence of Theorem 2 of [Collin and Krust 1991], which states that if u and v
are distinct solutions of the Dirichlet problem in an unbounded domain U ⊂ R2

which coincide on ∂U , then sup |u − v| must have at least logarithmic growth.
However, since the manifolds that we consider in this work have sectional curvature
KM ≤−1, it turns out that the asymptotic boundary of unbounded domains may be
“good enough” to prescribe continuous data on them. It therefore makes sense to
consider the generalized Dirichlet problem for the minimal hypersurface equation,
Problem 2, described in the sequel. In order to state it, let us introduce some useful
notations that are not standard.

Throughout this paper M denotes an m-dimensional Hadamard manifold, m ≥ 2,
with sectional curvature KM satisfying KM ≤−1. The asymptotic boundary ∂∞M
of M is defined by the set of equivalence classes of geodesic rays that stay at finite
distance for all time, and it is possible to compactify M by adding ∂∞M to it.
M := M ∪ ∂∞M carries the so-called cone topology (see [Eberlein and O’Neill
1973]), which makes it canonically homeomorphic to a closed ball. If U ⊂ M is
any set, we denote by U ct

⊂ M and ∂ctU ⊂ M its closure and boundary in terms of
the cone topology; we also use the notation ∂∞U := ∂ctU ∩ ∂∞M .

Problem 2. Let �⊂ M be a C2 domain of M . Given ϕ ∈C(∂ct�), find a minimal
graph over � that attains ϕ on its boundary, or, equivalently, find a solution of the
Dirichlet problem

u ∈ C2(�)∩C�ct,

M(u) := div
(

∇u√
1+|∇u|2

)
= 0 in �,

u|∂ct� = ϕ.
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Concerning the existence, perhaps the main difficulty dealing with unbounded
domains is the nonexistence of natural barriers. In general, barriers are constructed
using distance functions to a point or to the boundary of the domain, which cannot be
adapted directly to points at infinity. Here the geometry of M at infinity plays an im-
portant role. For instance, the hyperbolic spaces Hn have “good geometry” at infinity
by the existence of hyperspheres separating points at infinity and having their princi-
pal curvatures with the correct sign. The natural way to generalize this fact in order
to use the Hessian comparison theorem and adapt barriers of Hn to other Hadamard
manifolds is given by the strict convexity condition (SC condition) at infinity, intro-
duced in [Ripoll and Telichevesky 2015]. In that work it is proved that Problem 2
is solvable for �= M (in this case, it is called the asymptotic Dirichlet problem)
and any continuous boundary data if M satisfies the SC condition described below.

Definition 3. A Hadamard manifold M is said to satisfy the strict convexity con-
dition at infinity if for all x ∈ ∂∞M and all relatively open subsets 0 ⊂ ∂∞M
with x ∈ 0, there exists an open set V ⊂ M of class C2 such that x is an interior
point of ∂∞V (with respect to the induced topology), ∂∞V ⊂0 and M \V is convex.

At this point, it should be mentioned that under the hypothesis KM ≤−1, the
SC condition is always satisfied by 2-dimensional manifolds, by the rotationally
symmetric ones and by those manifolds with controlled decay on sectional curvature
(exponential decay) (see also [Ripoll and Telichevesky 2015]). We also should
mention that under the same assumption on KM , the SC condition is equivalent
to the convex conic neighborhood condition presented by H. Choi [1984] in the
study of the asymptotic Dirichlet problem with respect to Laplace’s operator on
Cartan–Hadamard manifolds; the equivalence is a consequence of a lemma of
A. Borbély [1998b, Lemma 1]. In fact, both Dirichlet problems are closely related
and may be studied together (see also [Ripoll and Telichevesky 2015]).

Contrasting with the existence results under the SC condition, we cite a counter-
example constructed by I. Holopainen and J. Ripoll [2015]. In this work the
authors present a Hadamard manifold with KM ≤−1 that does not admit a solution
to the asymptotic Dirichlet problem for the minimal hypersurface equation for
any continuous ϕ ∈ C(∂∞M), although there are bounded nonconstant minimal
graphs globally defined on M (see Theorem 1.1 of [Holopainen and Ripoll 2015]).
This counterexample proves that the condition KM ≤−1 is not sufficient to solve
Problem 2 with any continuous boundary data.

Taking into account all these facts, the following definition is natural.

Definition 4. A domain �⊂ M is strictly convex at infinity if for any x ∈ ∂∞� and
any relatively open neighborhood 0⊂ ∂ct� of x , there exists an open neighborhood
V = V (x, 0,�)⊂� of x such that V ∩ ∂ct�⊂ 0 and all the principal curvatures
of ∂V ∩�, oriented in the direction of � \ V , are nonnegative.
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Notice that when �= M , this definition coincides with the SC condition. With
Definition 4 it is now possible to state our main existence result.

Theorem 5. Let � ⊂ M be a mean convex domain (with respect to the inward
orientation) that is strictly convex at infinity. Then Problem 2 is solvable for any
continuous boundary data.

Returning our attention to Theorem 1, when �⊂ Rn is bounded, the mean con-
vexity is a necessary condition to the solvability of Problem 2 for any continuous ϕ.
The second part of this article is dedicated to proving that mean convexity is also
necessary in M if we deal with unbounded domains and require boundedness of
solutions. In Section 3 we present some necessary lemmata and the proof of the
following nonexistence result.

Theorem 6. Let � ⊂ M be a domain and suppose that there exists y ∈ ∂� such
that the mean curvature of ∂� at y (with respect to the inward orientation) satisfies
H(y)< 0. Then there exists a continuous function ϕ : ∂ct�→R such that Problem 2
is not solvable.

The construction of ϕ depends on two basic ingredients. First of all, on the
local aspect concerning the negativity of the mean curvature H(y), it is essential to
guarantee that ϕ(y) is bounded by values of the solution on a small sphere centered
at y, say, on Sr (y)∩�. The second essential ingredient is the existence of a bounded
barrier in � \ Br (y) with some special properties. Similar results outside Rn were
proved on bounded domains considering barriers dependent on the diameter of �,
as in [Nitsche 2002]. Our main improvement is dropping the dependence on the
size of the domain.

Combining the results of Theorems 5 and 6, we get:

Theorem 7. Let � ⊂ M be a domain that is strictly convex at infinity. Then the
Dirichlet problem (Problem 2) is solvable for any continuous boundary data if and
only if � is mean convex.

It remains an open question what happens if we assume that � is not strictly
convex at infinity. We conjecture that in this case it is also possible to construct a
continuous function on ∂ct� for which the Dirichlet problem is not solvable, and
therefore strict convexity at infinity is also a necessary condition. Since it deals
with nonexistence of solutions in arbitrarily large domains, Theorem 6 may have
an important role in the study of this conjecture.

To finish, we should mention that there is a large gap between the behavior of
KM at infinity in the cases where Theorem 5 is true and in the ones where it is false.
It also remains unknown if there exists some sharp condition on KM that assures
solvability of Problem 2 for any continuous boundary data.
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2. Existence result

This section is dedicated to proving Theorem 5. We start with a very important
tool, the comparison principle for unbounded domains. It plays an important role
in both existence and uniqueness. For now, we just need to work with functions
that extend continuously to the asymptotic boundary, however in Section 3 we treat
a larger class of functions, as stated above.

Proposition 8 (comparison principle for unbounded domains). Let U ⊂ M be an
unbounded domain of M. If u, v ∈ C2(U ) are such that M(v)≤M(u) on U with
lim supp→x u ≤ lim infp→x v for all x ∈ ∂ctU , then u ≤ v in U.

Proof. Choose o ∈ M . Let ε > 0 be an arbitrary constant. Using the basis of the
cone topology of M , we obtain that for all x ∈ ∂∞U , there is an open truncated
cone Nx := To(x, αx , Rx) (that is, the image of a truncated cone of opening angle
αx and radius Rx by the exponential map of a point o) such that u < v+ ε on Nx .
Since ∂∞U is compact, there exists uniform R such that u < v+ ε on U \ BR(o).
In addition, notice that the hypothesis implies that u ≤ v on ∂U . Therefore we
have u ≤ v+ ε on ∂(U ∩ BR(o)), which implies, by the comparison principle on
bounded domains, that u ≤ v+ ε on U ∩ BR(o), and hence the last inequality holds
on U . Since ε is arbitrary, the proof is complete. �

We now prove Theorem 5 using Perron’s method.
A function 6 ∈ C0(�ct) is called a supersolution for M if, given a bounded

subdomain U ⊂�, if u ∈C2(U )∩C0(U ) is a solution of M= 0 in U , the condition
u|∂U ≤6|∂U implies that u ≤6|U . A subsolution is defined by replacing ≤ by ≥.

Let Sϕ be defined by

Sϕ := {v ∈ C0(�ct) | v is a subsolution for M with v|∂ct� ≤ ϕ}.

By Proposition 8, v0 ≡minϕ ∈ Sϕ , which implies that Sϕ 6=∅, and w ≡maxϕ is
such that v ≤ w for all v ∈ Sϕ . These facts imply that u :�→ R given by

(1) u(x) := sup{v(x) | v ∈ Sϕ}

is well-defined, and we shall prove that under the hypotheses of Theorem 5, we
have u ∈ C∞(�)∩C(�ct), M(u)= 0 and u|∂ct� = ϕ.

We first prove that u ∈ C∞(�) and M(u)= 0. Given x ∈�, let r = rx > 0 be
sufficiently small such that the open geodesic ball of center x and radius r satisfies
Br (x)⊂� and furthermore r satisfies the inequality

(n−1)2

n
coth2 r ≥− inf

Br (x)
RicM .

Such r > 0 exists because coth r→+∞ as r→ 0+ and RicM is of course bounded
in bounded sets containing x .
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The cylinder ∂Br (x)×R⊂ M ×R has mean curvature ≥ n−1
n coth r (pointing

inward) as a consequence of the Hessian comparison theorem, and therefore this
choice of r implies, by Theorem 2 of [Dajczer et al. 2013], the existence of minimal
graphs in Br (x) extending continuously to any prescribed continuous boundary
data on ∂Br (x), and this is an essential fact when we use Perron’s method.

Consider a sequence (vm)m ⊂ Sϕ such that limm vm(x) = u(x). Theorem 2 of
[Dajczer et al. 2013] again implies that for each m ∈ N there exists a solution
wm,x ∈ C∞(Br (x))∩C(Br (x)) of M = 0 such that wm,x |∂Br (x) = vm |∂Br (x). The
interior gradient estimate given by Theorem 1 of [Dajczer et al. 2013] implies
that (wm,x)m contains a subsequence converging uniformly on compact subsets
of Br (x) to a solution wx ∈ C∞(Br (x)) of M= 0. As in [Gilbarg and Trudinger
1998, Section 2.8], one may prove that wx = u|Br (x), which implies that u ∈C∞(�)
and M= 0. This is done by taking the limit of minimal lifts um ∈ Sϕ of each vm

defined by

um(y) :=
{
vm(y) if y ∈� \ Br (x),
wm,x(y) if y ∈ Br (x).

We now need to prove that u extends continuously to the desired boundary data
on ∂ct�. Since ∂� is mean convex, standard arguments guarantee that the solution
assumes the desired data on ∂�. To conclude the proof it is necessary to guarantee
that it also extends continuously to ∂∞�, hence in the following we construct
barriers at infinity.

Given x ∈ ∂ct� and an open subset V such that x ∈ ∂ctV ∩∂ct�, we call an upper
barrier for M relative to x and V with height C a function 6 ∈ C(�) such that

(i) 6 is a supersolution for M;

(ii) 6 ≥ 0 and limp∈�, p→x 6(p)= 0, the limit with respect to the cone topology;

(iii) 6�\V ≥ C .

Lower barriers are defined analogously.
A point x ∈ ∂ct� is said to be regular (with respect to the mean curvature

operator M) if it satisfies the following property: given C > 0 and a relatively open
subset 0⊂ ∂ct� with x ∈0, there exist an open set V ⊂� such that x is an interior
point of V ∩ ∂ct� (with respect to the topology induced on the boundary), with
V ∩ ∂ct�⊂ 0, and an upper barrier 6 :�→ R relative to x and V with height C .

The following lemma is analogous to Theorem 2.7 of [Choi 1984], but we present
the proof for the sake of completeness.

Lemma 9. The function u given by (1) extends continuously to ϕ to each regular
point x ∈ ∂∞�.

Proof. Given x ∈ ∂∞� and ε > 0, let 0 ⊂ ∂ct� be such that |ϕ−ϕ(x)|< ε/2 in 0.
Let 6 : �→ R be an upper barrier relative to x and V with height C = max |ϕ|,
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where V is given by the definition of regularity. It follows that w :=6+ϕ(x)+ ε
is a supersolution for M. By the choice of 0, it holds that w > ϕ on 0 and since
w|∂ct�\0 ≥max |ϕ|, it of course satisfies w ≥ ϕ on ∂ct� \0. Therefore v ≤ w for
all v ∈ Sϕ , which implies that

lim
p∈�,p→x

u(p)≤ lim
p∈�,p→x

w(p)= ϕ(x)+ ε.

On the other hand, notice that v0 := ϕ(x)− ε−6 belongs to Sϕ and therefore
u ≥ v0 in �, which implies that

lim
p∈�,p→x

u(p)≥ lim
p∈�,p→x

v0(p)= ϕ(x)− ε.

Since ε is arbitrary, we have ϕ(x)≤ limp∈�,p→x u(p)≤ ϕ(x). �

To finish, we now prove regularity at the points of ∂∞�.

Proposition 10. Let �⊂ M be a domain that is strictly convex at infinity. Then M
is regular at each point of ∂∞�.

Proof. Let x ∈ ∂∞� and let 0 ⊂ ∂ct� be a relatively open neighborhood of x . By
hypothesis, there exists an open neighborhood V ⊂� of x such that V ∩ ∂ct�⊂ 0

and ∂V ∩� has nonnegative principal curvatures.
Let s : V → R be the distance function to ∂V ∩�. Since KM ≤ −1 and all

principal curvatures of ∂V ∩� are nonnegative, we have that the Laplacian of s
satisfies

(2) 1s ≥ (n− 1) tanh s

(see, for instance, Theorem 4.3 of [Choi 1984]).
Define g : (0,+∞)→ R by

g(s) :=
∫
+∞

s

dt√
cosh2(n−1) t−1

.

Notice that g is well-defined and lims→0+ g(s)=+∞, lims→+∞ g(s)= 0. Define
now w : V → R by w(p) := g(s(p)). A straightforward computation gives

M(w)= (n− 1) coshn−1 s sinh s+ (1− n) cosh1−n s1s

and hence the estimate 1s ≥ tanh s leads to M(w)≤ 0.
We remark thatw is a solution if M =Hn and V is a totally geodesic hypersphere.
To finish with the proof, define the supersolution 6 ∈ C0(�) by

6(p)=
{

min{w(p),C} if p ∈ V ,
C if p ∈� \ V ,

which is of course an upper barrier relative to x and V with height C , and hence
the proof is complete. �



250 MIRIAM TELICHEVESKY

3. Nonexistence result

We now prove that mean convexity of ∂� is a necessary condition, as stated in
Theorem 6. We start with the next classical lemma, proved by Jenkins and Serrin
[1968] in the case where the domain is bounded and contained on Rn .

Lemma 11. Let U ⊂ M be an open domain and 0 a relatively C1 open subset
of ∂U. If u ∈ C(U )∩C2(U ∪0) and w ∈ C(U )∩C2(U ) satisfy

M(w) <M(u) in U,(3)

u ≤ w on ∂U \0, and(4)

∂w

∂ν
=−∞ in 0,(5)

where ν is the inner normal vector to ∂U , then u ≤ w in U.

Proof. If u ≤ w on 0, the result is a consequence of the comparison principle.
Suppose, towards a contradiction, that there exists y ∈ Int0 such that

d :=max
0
(u−w)= u(y)−w(y) > 0.

Then u ≤w+d on ∂U , and hence by the comparison principle we have u ≤w+d
in U . Therefore

∂

∂ν
(u−w)(y)≤ 0⇒ ∂

∂ν
(u)(y)≤−∞,

contradicting the fact that u ∈ C2(U ∪0). �

Lemma 12. Let �⊂ M be an open C2 domain (possibly unbounded) with mean
curvature (with respect to the inner normal) H : ∂�→ R. Suppose that there
exist y ∈ ∂� such that H(y) < 0. Then there exists s > 0 depending only on
the local geometry of � near y and C > 0 depending only on H(y) such that if
u ∈ C2(�)∩C(�ct) satisfy M(u)= 0 in �, then

u(y)≤ C + sup
∂Bs(y)∩�

u.

Proof. Let d : �̃→ R be given by d(x)= dist (x, ∂�), where �̃⊂� is the open
subset where d is smooth. Since H(y) < 0, it holds that 1d(y) = −H(y) > 0.
Since ∂� is C2, there exists s > 0 such that Bs(y)∩�⊂ �̃ and

1d(x) >−H(y)
2
=: ε, ∀x ∈ Bs(y)∩�.

This is the required s.
We claim that if x ∈ Bs(y) ∩�, then u(x) ≤ C + sup∂Bs(y)∩� u. To prove it,

let 0x be the level set of d that contains x and �x be the set enclosed by 0x and
∂Bs(y), that is, �x := {p ∈ Bs(y) | d(p) > d(x)}.
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Consider ψ given by

(6) ψ(t)= π
2 − arcsec(t + 1).

Then ψ ≥ 0, ψ(0)= π/2 and limt→+∞ ψ(t)= 0. Its first and second derivatives
are given below:

ψ ′(t)=− 1
(t+1)

√
t2+2t

,

ψ ′′(t)= 1
(t+1)2

√
t2+2t

+
1

(t2+2t)3/2
.

Define w : Bs(y)∩�x → R by

w(p) := Aψ(d(p)) + sup
∂Bs(y)∩�

u,

where A > 0 is to be determined. After some computations we obtain

(1+ |∇w|2)3/2M(w)(p)= Aψ ′′(d(p))+
(

Aψ ′(d(p))+ A3ψ ′(d(p))3
)
1d(p).

Using then that 1d(p) > ε and ψ ′ < 0 in the domain we are considering, we obtain

(1+ |∇w|2)3/2M(w)≤ A
[
ψ ′′+ εψ ′+ εA2ψ ′3

]
= A(t + 1)−3(t2

+ 2t)−3/2[(t + 1)(t2
+ 2t)+ (t + 1)3

− ε(t + 1)2(t2
+ 2t)− εA2].

Notice that the term in the brackets is a polynomial of degree 4 with leading
coefficient −ε < 0 and constant term 1− εA2. Then it is clear that there exists
A > 0 large enough that this polynomial is negative for all t ≥ 0; with this choice
of A we obtain that M(w) < 0 on �x .

Furthermore, by definition ofw we havew≥u on ∂Bs(y)∩�x and ∂w/∂ν=−∞
on 0x , which is an open C1 portion of ∂�x . We also notice that u ∈ C2(0x). By
Lemma 11, we obtain w ≥ u in �x . Since x is arbitrary and u is continuous, it
holds the desired inequality with C = Aπ

2 , which concludes the proof. �

Proposition 13. Let M be a Hadamard manifold with sectional curvature KM ≤−1.
There exists universal C > 0 such that if � is a C1 domain of M and u satisfies
M(u)= 0 in �, then

sup
∂Bs(y)∩�

u ≤ C + sup
∂ct�\Bs(y)

u

for all y ∈ ∂� and s > 0 such that ∂Bs(y)∩� is a nonempty connected set.

Proof. Consider w :� \ Bs(y)→ R given by

w(x)= Bψ(r(x)) + sup
∂ct�\Bs(y)

u,
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where ψ is given by (6), r(x) := dist (x, ∂Bs(y)) and B is an appropriate constant
to be chosen latter. Since KM ≤−1, we have by the Hessian comparison theorem
that 1r ≥ n− 1. Hence, mimicking the computations of the previous lemma, we
obtain the same polynomial, except that we have n− 1 instead of ε and B instead
of A. It is again clear that there exists B large enough that M(w)≤ 0. We remark
that such a constant does not depend on anything (except in the fact that KM ≤−1)
since we may choose the constant that is appropriate to the case n = 2 and it works
on all dimensions.

We are again in the situation of the hypotheses of Lemma 11, with U =�\Bs(y).
Hence we obtain, for all x ∈ ∂Bs(y)∩�,

u(x) ≤ sup
∂ct�\Bs(y)

u+ B π
2

and the proof is complete. �

Proof of Theorem 6. By combining the estimates obtained in Lemma 12 and
Proposition 13, we obtain the existence of a continuous function ϕ : ∂�→ R for
which Problem 2 is not solvable: it suffices to put ϕ(y)= π(A+ B), where A and
B are given by the previous results, and ϕ = 0 on ∂� \ Bs(y), where s is given in
the proof of Lemma 12. �

4. Applications

Corollary 14. Let � be a domain that has only finitely many points on ∂∞�. Then
Problem 2 is solvable for any continuous ϕ if and only if � is mean convex.

Proof. Notice that since ∂∞M is compact, ∂∞� is also compact and therefore
“finitely many points on ∂∞�” is equivalent to “isolated points on ∂∞�”. In order
to apply Theorem 7, it suffices to prove that � is strictly convex at infinity.

Given x ∈ ∂∞�, let W ⊂ �ct be a relatively open neighborhood of x . We
may suppose without loss of generality that x is the only point at infinity of W ,
otherwise we just work with any open subset of W where this property holds.
Choosing o ∈ M \W , we have that W is contained on some truncated cone centered
at o with radius R > 0, and as a consequence we have ∂W ⊂ M \ BR(o). Set
V :=� \ BR(o), and it is clear that it satisfies the required conditions. �

Corollary 15. If M satisfies the SC condition and � is a mean convex domain
of M such that ∂∞� is composed only of open portions and isolated points, then
Problem 2 is solvable in �. In particular, this is the case if either dim M = 2 or M
is rotationally symmetric, or

(7) min{KM(5) |5 is a 2-plane in Tp M , p ∈ BR+1(o)} ≥ −
e2k R

R2+2ε , R ≥ R∗

for some constants ε, R∗ > 0.
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Particular cases of Corollary 15 may be found in [Ripoll and Telichevesky 2015].

4.1. Application of the technique: Dirichlet problems for p-Laplacians. Con-
sider now the following Dirichlet problem for the p-Laplacian operator, p > 1, for
continuous u in the Sobolev space W 1,p(�):

(8)
{
1p(u) := div (|∇u|p−2

∇u)= 0 in �,
u|∂� = ϕ.

Concerning the case � = M , the counterexamples constructed by A. Ancona
[1994] and by A. Borbély [1998a] show that some convexity at infinity is also
needed to obtain existence of solutions of asymptotic Dirichlet problems related to
the Laplacian operator 1. I. Holopainen [2015] constructed a counterexample for
the p-Laplacian operator 1p. The manifolds constructed by them contain a point
in ∂∞M with the property that any open neighborhood of it has the whole manifold
as the convex hull, and hence M is not strictly convex at infinity.

On the other hand, in [Ripoll and Telichevesky 2015] the authors proved that
the SC condition is sufficient for solvability of asymptotic Dirichlet problems with
respect to 1p. We may extend this result to our case, proving that if � is strictly
convex at infinity, then every x ∈ ∂∞� is regular with respect to the operator 1p.

The proof is mutatis mutandis the same as we have done above; it is sufficient to
replace M by 1p and the function g constructed in Proposition 10 by

g(s) := c
∫
+∞

s
cosh(1−n)/(p−1)(t) dt,

where c is a sufficiently large constant (c = 2C(cosh 1)(n−1)/(p−1) works).
Together with the classical theory of existence of solutions over bounded domains

that satisfy the exterior sphere condition, we obtain the following result.

Theorem 16. Let M be a Hadamard manifold with sectional KM ≤−1. Let�⊂M
be an unbounded domain that is strictly convex at infinity and that satisfies the
exterior sphere condition on its finite part, namely, given x ∈ ∂�, there exist a
sphere contained in M \� that is tangent to ∂� at x. Then (8) is solvable for
any ϕ ∈ C(∂ct�).
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