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We prove several new results of Ax–Lindemann type for semiabelian vari-
eties over the algebraic closure K of C(t), making heavy use of the Galois
theory of logarithmic differential equations. Using related techniques, we
also give a generalization of the theorem of the kernel for abelian varieties
over K . This paper is a continuation of earlier work by Bertrand and Pillay
(2010), as well as an elaboration on the methods of Galois descent intro-
duced by Bertrand (2009, 2011) in the case of abelian varieties.
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1. Introduction

This paper has three related themes, the common feature being differential Galois
theory and its applications.

Firstly, given a semiabelian variety B over the algebraic closure K of C(t), a
K-rational point a of the Lie algebra LG of its universal vectorial extension G = B̃,
and a solution y ∈ G(K diff) of the logarithmic differential equation

∂`nG(y)= a, a ∈ LG(K ),

we want to describe tr.deg
(
K ]

G(y)/K ]
G

)
in terms of gauge transformations over K

itself. Here K ]
G is the differential field generated over K by solutions of ∂`nG(−)=0

in K diff. Introducing this field as base presents both advantages and difficulties.
On the one hand, it allows us to use the differential Galois theory developed by
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Pillay [1998; 1997; 2004], thereby replacing the study of transcendence degrees
by the computation of a Galois group. On the other hand, we have only a partial
knowledge of the extension K ]

G/K . However, it was observed by Bertrand [2009;
2011] that in the case of an abelian variety, what we do know essentially suffices
to perform a Galois descent from K ]

G to the field K of the desired gauge trans-
formation. In Sections 2B and 3 of the present paper, we extend this principle to
semiabelian varieties B whose toric part is Gm , and give a definitive description of
tr.deg

(
K ]

G(y)/K ]
G

)
when B is an abelian variety.

The main application we have in mind of these Galois-theoretic results forms
the second theme of our paper, and concerns Lindemann–Weierstrass statements
for the semiabelian variety B over K , by which we mean the description of the
transcendence degree of expB(x) where x is a K-rational point of the Lie algebra
LB of B. The problem is covered in the above setting by choosing as data

a := ∂LG(x̃) ∈ ∂LG(LG(K )),

where x̃ is an arbitrary K-rational lift of x to G = B̃. This study was initiated
in our joint paper [2010], where the Galois approach was mentioned, but only
under the hypothesis that K ]

G = K , described as K-largeness of G. There are
natural conjectures in analogy with the well-known “constant” case (where B is
over C), although as pointed out in [Bertrand and Pillay 2010], there are also
counterexamples provided by nonconstant extensions of a constant elliptic curve by
the multiplicative group. In Sections 2C and 4 of this paper, we extend the main
result of [Bertrand and Pillay 2010] to the base K ]

G , but assuming the toric part
of B is at most 1-dimensional. Furthermore, we give in this case a full solution
of the Lindemann–Weierstrass statement when the abelian quotient of B is also
1-dimensional. This uses results from [Bertrand et al. 2013] which deal with the
“logarithmic” case. In this direction, we will also formulate an “Ax–Schanuel” type
conjecture for abelian varieties over K .

The third theme of the paper concerns the “theorem of the kernel”, which we
generalize in Sections 2D and 5 by proving that linear independence with respect
to End(A) of points y1, . . . , yn in A(K ) implies linear independence of

µA(y1), . . . , µA(yn)

with respect to C (this answers a question posed to us by Hrushovski). Here A is an
abelian variety over K = C(t)alg with C-trace 0 and µA is the differential-algebraic
Manin map. However, we will give an example showing that its C-linear extension
µA ⊗ 1 on A(K )⊗Z C is not always injective. In contrast, we observe that the
C-linear extension MK ,A⊗ 1 of the classical (differential-arithmetic) Manin map
MK ,A is always injective. Differential Galois theory and the logarithmic case of
nonconstant Ax–Schanuel are involved in the proofs.
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2. Statements of results

2A. Preliminaries on logarithmic equations. We give here a quick background
to the basic notions and objects so as to be able to state our main results in the next
subsections. The remaining Sections 3, 4, and 5 of the paper are devoted to the
proofs. We refer the reader to [Bertrand and Pillay 2010] for more details including
differential algebraic preliminaries.

We fix a differential field (K , ∂) of characteristic 0 whose field of constants CK is
algebraically closed (the reader will lose nothing by taking CK =C). We usually as-
sume that K is algebraically closed, and denote by K diff the differential closure of K .
We let U denote a universal differential field containing K , with constant field C. If
X is an algebraic variety over K we will identify X with its set X (U) of U points.

We start with algebraic ∂-groups, which provide the habitat of the (generalized)
differential Galois theory of [Pillay 1998; 1997; 2004] discussed later on. A
(connected) algebraic ∂-group over K is a (connected) algebraic group G over K
together with a lifting D of the derivation ∂ of K to a derivation of the structure sheaf
OG which respects the group structure. The derivation D may be identified with a
section s, in the category of algebraic groups, of the projection map T∂(G)→ G,
where T∂(G) denotes the twisted tangent bundle of G. This T∂(G) is a (connected)
algebraic group over K , which is a torsor under the tangent bundle TG, and is
locally defined by equations

n∑
i=1

∂P
∂xi

(x̄)ui + P∂(x̄)= 0,

for polynomials P in the ideal of G, where P∂ is obtained by applying the derivation
∂ of K to the coefficients of P . Notice for later use that for any differential
extension L/K , there is a group homomorphism G(L)→T∂G(L), which is given in
coordinates by (x1, . . . , xn) 7→ (x1, . . . , xn, ∂x1, . . . , ∂xn) and will be denoted by ∂ .

We write the algebraic ∂-group as (G, D) or (G, s). Not every algebraic group
over K has a ∂-structure. But when G is defined over the constants CK of K , there is
a privileged ∂-structure s0 on G which is precisely the 0-section of TG=T∂G. Given
an algebraic ∂-group (G, s) over K we obtain an associated “logarithmic derivative”
∂`nG,s(−) from G to the Lie algebra LG of G defined by ∂`nG,s(y)= ∂(y)s(y)−1,
where the product is computed in the algebraic group T∂(G). This is a differential
rational crossed homomorphism from G onto LG (at the level of U-points or points
in a differentially closed field) defined over K . Its kernel ker(∂`nG,s) is a differential
algebraic subgroup of G which we denote (G, s)∂ , or simply G∂ when the context
is clear. Now s equips the Lie algebra LG of G with its own structure of a ∂-group
(in this case a ∂-module) which we call ∂LG (depending on (G, s)) and again the
kernel is denoted (LG)∂ .
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In the case where G is defined over CK and s = s0, the map ∂`nG,s is precisely
Kolchin’s logarithmic derivative, taking y ∈ G to ∂(y)y−1. In general, as soon as s
is understood, we will abbreviate ∂`nG,s by ∂`nG .

By a logarithmic differential equation over K on the algebraic ∂-group (G, s), we
mean a differential equation ∂`nG,s(y)= a for some a ∈ LG(K ). When G = GLn

and s = s0 this is the equation for a fundamental system of solutions of a linear
differential equation Y ′=aY in vector form. And more generally, for G an algebraic
group over CK and s = s0, this is a logarithmic differential equation on G over
K in the sense of Kolchin. There is a well-known Galois theory here. In the
given differential closure K diff of K , any two solutions y1, y2 of ∂`nG(−) = a
in G(K diff) differ by an element in the kernel G∂ of ∂`nG(−). But G∂(K diff) is
precisely G(CK ). Hence K (y1) = K (y2). In particular, tr.deg(K (y)/K ) is the
same for all solutions y in K diff. Moreover, Aut(K (y)/K ) has the structure of
an algebraic subgroup of G(CK ): for any σ ∈ Aut(K (y)/K ), let ρσ ∈ G(CK ) be
such that σ(y) = yρσ . Then the map taking σ to ρσ is an isomorphism between
Aut(K (y)/K ) and an algebraic subgroup H(CK ) of G(CK ), which we call the
differential Galois group of K (y)/K . This depends on the choice of solution y,
but another choice yields a conjugate of H . Of course when G is commutative,
H is independent of the choice of y. In any case tr.deg(K (y)/K ) = dim(H), so
computing the differential Galois group gives us a transcendence estimate.

Continuing with this Kolchin situation, we have the following well-known fact,
whose proof we present in the setting of the more general situation considered in
Fact 2.2(i).

Fact 2.1 (for G/CK ). Suppose K algebraically closed. Then, tr.deg(K (y)/K ) is
the dimension of a minimal connected algebraic subgroup H of G, defined over CK ,
such that for some g ∈ G(K ), gag−1

+ ∂`nG(g) ∈ LH(K ). Moreover, H(CK ) is
the differential Galois group of K (y)/K .

Proof. Let H be a connected algebraic subgroup of G, defined over CK such that
H ∂(K diff) = H(CK ) is the differential Galois group of K (y) over K . Now the
H ∂(K diff)-orbit of y is defined over K in the differential algebraic sense, so the
H -orbit of y is defined over K in the differential algebraic sense. A result of Kolchin
on constrained cohomology (see Proposition 3.2 of [Pillay 1998], or Theorem 2.2
of [Bertrand 2011]) implies that this orbit has a K-rational point g−1. So, there
exists z−1

∈ H such that g−1
= yz−1, and z = gy, which satisfies K (y)= K (z), is

a solution of ∂`nG(−)= a′ where a′ = gag−1
+ ∂`nG(g). �

(Such a map LG(K )→ LG(K ) taking a ∈ LG(K ) to gag−1
+ ∂`nG(g) for

some g ∈ G(K ) is called a gauge transformation.)
Now in the case of an arbitrary algebraic ∂-group (G, s) over K , and logarithmic

differential equation ∂`nG,s(−)= a over K , two solutions y1, y2 in G(K diff) differ
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by an element of (G, s)∂(K diff) which in general may not be contained in G(K ).
(For instance, if (G =Ga, s) is the ∂-module attached to ∂y− y = 0, and a = 1− t ,
then y1 = t is rational over K = C(t), while y2 = t + et is transcendental over K .)
So to obtain both a transcendence statement independent of the choice of solution,
as well as a Galois theory, we should work over K ]

G,s which is the (automatically
differential) field generated by K and (G, s)∂(K diff). This field may be viewed as
a field of “new constants”, and its algebraic closure in K diff will be denoted by
K ] alg

G,s . As with ∂`nG and G∂ , we will abbreviate K ]
G,s as K ]

G , or even K ], when
the context is clear, and similarly for its algebraic closure.

Fixing a solution y ∈G(K diff) of ∂`nG(−)= a, for σ ∈Aut(K ](y)/K ]) we have
σ(y) = yρσ for unique ρσ ∈ G∂(K diff) = G∂(K ]) ⊆ G(K ]), and again the map
σ 7→ ρσ defines an isomorphism between Aut(K ](y)/K ]) and (H, s)∂(K diff) for
an algebraic ∂-subgroup H of (G, s), ostensibly defined over K ]. The ∂-group H
(or more properly H ∂ , or H ∂(K ])) is called the (differential) Galois group of K ](y)
over K ], and when G is commutative does not depend on the choice of y, just on
the data a ∈ LG(K ) of the logarithmic equation, and in fact only on the image of a
in the cokernel LG(K )/∂`nG G(K ) of ∂`nG . Again tr.deg(K ](y)/K ])= dim(H).
In any case, Fact 2.1 extends to this context with essentially the same proof. This
can also be extracted from Proposition 3.4 of [Pillay 1998] and the setup of [Pillay
2004]. For the commutative case (part (ii) below) see [Bertrand 2011, Theorem 3.2].
Note that in the present paper, it is this Fact 2.2(ii) we will use. Going to the
algebraic closure of K ] as in Fact 2.2(i) would force us to consider profinite groups,
for which our descent arguments may not work.

Fact 2.2 (for G/K ). Let y be a solution of ∂`nG,s(−) = a in G(K diff), and let
K ]
= K (G∂), with algebraic closure K ] alg. Then the following hold:

(i) The transcendence degree tr.deg(K ](y)/K ]) is the dimension of a minimal
connected algebraic ∂-subgroup H of G, which is defined over K ] alg such that
gag−1

+ ∂`nG,s(g) ∈ LH(K ] alg) for some g ∈ G(K ] alg). And H ∂(K ] alg) is
the differential Galois group of K ] alg(y)/K ] alg.

(ii) Suppose that G is commutative. Then the identity component of the differential
Galois group of K ](y)/K ] is H ∂(K ]), where H is the smallest algebraic
∂-subgroup of G defined over K ] such that a ∈ LH +Q · ∂`nG,s G(K ]).

Remark. We point out that when G is commutative, then in Facts 2.1 and 2.2,
the Galois group, say H̃ , of K ](y)/K ] is a unique subgroup of G, so its identity
component H must indeed be the smallest algebraic subgroup of G with the required
properties (see also [Bertrand 2011, Section 3.1]). Of course, H̃ is automatically
connected in Fact 2.2(i), where the base K ] alg is algebraically closed, but as
just announced, our proofs in Section 3 will be based on 2.2(ii). Now, in this
commutative case, the map σ 7→ ρσ described above depends Z-linearly on a. So, if
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N =[H̃ :H ] denotes the number of connected components of H̃ , then replacing a by
Na turns the Galois group into a connected algebraic group, without modifying K ]

nor tr.deg(K ](y)/K ]) = tr.deg(K ](N y)/K ]). Therefore, in the computations of
Galois groups later on, we will tacitly replace y by N y and determine the connected
component H of H̃ . But it turns out that in our main Conjecture 2.3 and in all
its cases under study here, we can then assume that y itself lies in H . Indeed,
y appears only via its class modulo G(K ), and in particular, modulo its torsion
subgroup (recall that K is algebraically closed). So, once we have proven that N y
lies in H , then a translate y′ of y by an N -torsion point will lie in H . Replacing
y by y′ does not modify the Galois group H̃ of K ](y) over K ], so we may assume
that y lies in H , in which case H̃ coincides with H , and will in the end always be
connected.1

2B. Galois-theoretic results. The question which we deal with in this paper is
when and whether in Fact 2.2, it suffices to consider H defined over K and g∈G(K ).
In fact it is not hard to see that the Galois group is defined over K , but the second
point is problematic. The case where (G, s) is a ∂-module, namely G is a vector
space V , and the logarithmic derivative ∂`nG,s(y) has the form ∇V (y)= ∂y− By
for some n× n matrix B over K , was considered in [Bertrand 2001], and shown
to provide counterexamples, unless the ∂-module (V,∇V ) is semisimple. The
rough idea is that the Galois group Gal(K ]

V /K ) of ∇V is then reductive, allowing
an argument of Galois descent from K ]

V to K to construct a K-rational gauge
transformation g. The argument was extended in [Bertrand 2009; 2011] to ∂-groups
(G, s) attached to abelian varieties, which by Poincaré reducibility are in a sense
again semisimple.

We will here focus on the almost semiabelian case namely certain ∂-groups
attached to semiabelian varieties, which provide the main source of nonsemisimple
situations. If B is a semiabelian variety over K , then B̃, the universal vectorial
extension of B, is a (commutative) algebraic group over K which has a unique
algebraic ∂-group structure. Let U be any unipotent algebraic ∂-subgroup of B̃.
Then B̃/U , which by [Bertrand and Pillay 2010, Lemma 3.4] also has a unique ∂-
group structure, is what we mean by an almost semiabelian ∂-group over K . When
B is an abelian variety A we call Ã/U an almost abelian algebraic ∂-group over K .
If G is an almost semiabelian algebraic ∂-group over K , then because the ∂-group
structure s on G is unique, the abbreviation K ]

G for K ]
G,s is now unambiguous.

Under these conditions, we make the following conjecture.

1We take the opportunity of this remark to mention two errata in [Bertrand 2011]: in the proof
of its Theorem 3.2, replace “of finite index” by “with quotient of finite exponent”; in the proof of
Theorem 4.4, use the reduction process described above to justify that the Galois group is indeed
connected.
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Conjecture 2.3. Let G be an almost semiabelian ∂-group over K = C(t)alg. Let
a ∈ LG(K ) and y ∈ G(K diff) be such that ∂`nG(y)= a. Then tr.deg

(
K ]

G(y)/K ]
G

)
is the dimension of the smallest algebraic ∂-subgroup H of G defined over K such
that a ∈ LH+∂`nG(G(K )), i.e., a+∂`nG(g) ∈ LH(K ) for some g ∈G(K ); H is,
equivalently, the smallest algebraic ∂-subgroup of G, defined over K , such that
y ∈ H + G(K )+ G∂(K diff). Moreover H ∂(K diff) is the Galois group of K ]

G(y)
over K ]

G .

The conjecture can be restated to say that there is a smallest algebraic ∂-subgroup
H of (G, s) defined over K such that a ∈ LH +∂`nG(G(K )) and it coincides with
the Galois group of K ]

G(y) over K ]
G . In comparison with Fact 2.2(ii), notice that

since K is algebraically closed, ∂`nG(G(K )) is already a Q-vector space, so we
do not need to tensor with Q in the condition on a.

A corollary of Conjecture 2.3 is the following special generic case, where an
additional assumption on nondegeneracy is made on a.

Conjecture 2.4. Let G be an almost semiabelian ∂-group over K = C(t)alg, and
let a ∈ LG(K ) and y ∈ G(K diff) satisfy the equation ∂`nG(y) = a. Assume that
a /∈ LH + ∂`nG G(K ) for any proper algebraic ∂-subgroup H of G, defined over
K (equivalently, y /∈ H +G(K )+G∂(K diff) for any proper algebraic ∂-subgroup
of G defined over K ). Then tr.deg

(
K ]

G(y)/K ]
G

)
= dim(G).

We will prove the following results in the direction of Conjectures 2.3 and (the
weaker) 2.4.

Proposition 2.5. Conjecture 2.3 holds when G is “almost abelian”.

The truth of the weaker Conjecture 2.4 in the almost abelian case is already
established in [Bertrand 2009, Section 8.1(i)]. This reference does not address
Conjecture 2.3 itself, even if in this case, the ingredients for its proof are there (see
also [Bertrand 2011]). So we take the liberty to give a reasonably self-contained
proof of Proposition 2.5 in Section 3.

As announced above, one of the main points of the Galois-theoretic part of this
paper is to try to extend Proposition 2.5 to the almost semiabelian case. Due to
technical complications, which will be discussed later, we restrict our attention
to the simplest possible extension of the almost abelian case, namely where the
toric part of the semiabelian variety is 1-dimensional, and also we sometimes just
consider the generic case. For simplicity we will state and prove our results for an
almost semiabelian G of the form B̃ for B semiabelian. So, the next theorem gives
Conjecture 2.4 for an extension by Gm of the universal vectorial extension of an
abelian variety.

Theorem 2.6. Suppose that B is a semiabelian variety over K = C(t)alg with toric
part of dimension ≤ 1. Let G = B̃, a ∈ LG(K ) and y ∈ G(K diff) be a solution of
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∂`nG(−) = a. Suppose that for no proper algebraic ∂-subgroup H of G defined
over K is y ∈ H +G(K ). Then tr.deg(K ]

G(y)/K ]
G)= dim(G) and G∂(K diff) is the

differential Galois group.

Note that the above hypothesis “y /∈ H + G(K ) for any proper algebraic
∂-subgroup of G over K ” is formally weaker than “y /∈ H + G(K )+ G∂(K diff)

for any proper algebraic ∂-subgroup of G over K ”, but nevertheless suffices, as
shown by the proof of Theorem 2.6 in Section 3B. More specifically, assume that
G = Ã for a simple abelian variety A/K , that A is traceless (i.e., that there is no
nonzero morphism from an abelian variety defined over C to A), that the maximal
unipotent ∂-subgroup UA of Ã vanishes, and that a = 0 ∈ LÃ(K ). Theorem 2.6
then implies that any y ∈ Ã∂(K diff) is actually defined over K , so K ]

Ã
= K . As in

[Bertrand 2009; 2011], this property of K-largeness of Ã (when UA = 0) is in fact
one of the main ingredients in the proof of Theorem 2.6. As explained in [Marker
and Pillay 1997] it is based on the strong minimality of Ã∂ (see [Hrushovski and
Sokolović 1994]) in the context above. But it has recently been noted in [Benoist
et al. 2014] that this K-largeness property can be seen rather more directly, using
only the simplicity of A.

Our last Galois-theoretic result requires the semiconstant notions introduced
in [Bertrand and Pillay 2010], although our notation will be a slight modification
of the notation there. First, a connected algebraic group G over K is said to be
constant if G is isomorphic (as an algebraic group) to an algebraic group defined
over C (equivalently, G arises via base change from an algebraic group GC over C).
For G an algebraic group over K , G0 will denote the largest (connected) constant
algebraic subgroup of G. We will concentrate on the case G = B̃ for a semiabelian
variety B over K , with 0→ T → B → A → 0 the canonical exact sequence,
where T is the maximal linear algebraic subgroup of B (which is an algebraic
torus) and A is an abelian variety. So now A0, B0 denote the constant parts of A, B,
respectively. The inverse image of A0 in B will be called the semiconstant part
of B and will now be denoted by Bsc. We call B semiconstant if B = Bsc, which
is equivalent to requiring that A = A0, and moreover allows the possibility that
B = B0 is constant. (Of course, when B is constant, B̃, which is also constant,
obviously satisfies Conjecture 2.3, in view of Fact 2.1.)

Theorem 2.7. Suppose that K = C(t)alg and that B = Bsc is a semiconstant semi-
abelian variety over K with toric part of dimension ≤ 1. Then Conjecture 2.3 holds
for G = B̃.

2C. Lindemann–Weierstrass via Galois theory. We are now ready to describe the
impact of the previous Galois-theoretic results on Ax–Lindemann problems, where
a = ∂LG(x̃) ∈ ∂LG(LG(K )).
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Firstly, from Theorem 2.6 we will deduce directly the main result of [Bertrand
and Pillay 2010, Theorem 1.4], when B is semiabelian with toric part at most Gm ,
but now with transcendence degree computed over K ]

B̃
.

Corollary 2.8. Let B be a semiabelian variety over K = C(t)alg such that the toric
part of B is of dimension ≤ 1 and Bsc = B0 (i.e., the semiconstant part Bsc of B is
constant). Let x ∈ LB(K ), and lift x to x̃ ∈ LB̃(K ). Assume that

(∗) for no proper algebraic subgroup H of B̃ defined over K is
x̃ ∈ LH(K )+ (LB̃)∂(K ),

which under the current assumptions is equivalent to demanding that for no proper
semiabelian subvariety H of B is x ∈ LH(K )+ LB0(C). Then

(i) any solution ỹ ∈ B(U) of ∂`n B̃(−)= ∂LB̃(x̃) satisfies

tr.deg
(
K ]

B̃
(ỹ)/K ]

B̃

)
= dim(B̃);

(ii) in particular, y := expB(x) satisfies tr.deg
(
K ]

B̃
(y)/K ]

B̃

)
= dim(B), i.e., is a

generic point over K ]

B̃
of B.

See [Bertrand and Pillay 2010] for the analytic description of expB(x) in (ii)
above. In particular expB(x) can be viewed as a point of B(U). We recall briefly the
argument. Consider B as the generic fiber of a family B→ S of complex semiabelian
varieties over a complex curve S, and x as a rational section x : S→ LB of the
corresponding family of Lie algebras. Fix a small disc U in S such that x :U→ LB
is holomorphic, and let exp(x)= y :U→B be the holomorphic section obtained by
composing with the exponential map in the fibers. So y lives in the differential field
of meromorphic functions on U , which contains K , and can thus be embedded over
K in the universal differentially closed field U. So talking about tr.deg

(
K ]

B̃
(y)/K ]

B̃

)
makes sense.

Let us comment on the methods. In [Bertrand and Pillay 2010] an essential
use was made of the so-called “socle theorem” (see Section 4.1 of [Bertrand and
Pillay 2010] for a discussion of this expression) in order to prove Theorem 1.4
there. As recalled in the introduction, a differential Galois-theoretic approach was
also mentioned [Bertrand and Pillay 2010, Section 6], but could be worked out only
when B̃ is K-large. In the current paper, we dispose of this hypothesis, and obtain a
stronger result, namely over K ]

B̃
, but for the time being at the expense of restricting

the toric part of B.
When B = A is an abelian variety, one obtains a stronger statement than

Corollary 2.8. This is Theorem 4.4 of [Bertrand 2011], which for the sake of
completeness we restate, and will deduce from Proposition 2.5 in Section 4A.

Corollary 2.9. Let A be an abelian variety over K = C(t)alg. Let x ∈ LA(K ), and
let B be the smallest abelian subvariety of A such that x ∈ LB(K )+ LA0(C). Let
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x̃ ∈ LÃ(K ) be a lift of x and let ỹ ∈ Ã(U) be such that ∂`n Ã(ỹ) = ∂LÃ(x̃). Then
B̃∂ is the Galois group of K ]

Ã
(ỹ) over K ]

Ã
, so

(i) tr.deg
(
K ]

Ã
(ỹ)/K ]

Ã

)
= dim(B̃)= 2 dim(B), and in particular,

(ii) y := expA(x) satisfies tr.deg
(
K ]

Ã
(y)/K ]

Ã

)
= dim(B).

We now return to the semiabelian context. Corollary 2.8 is not true without the
assumption that the semiconstant part of B is constant. The simplest possible coun-
terexample is given in Section 5.3 of [Bertrand and Pillay 2010]: B is a nonconstant
extension of a constant elliptic curve E0 by Gm , with judicious choices of x and x̃ .
Moreover x̃ will satisfy assumption (∗) in Corollary 2.8, but tr.deg(K (ỹ)/K )≤ 1,
which is strictly smaller than dim(B̃) = 3. We will use Theorems 2.6 and 2.7 as
well as material from [Bertrand et al. 2013] to give a full account of this situation
(now over K ]

B̃
, of course), and more generally, for all semiabelian surfaces B/K ,

as follows:

Corollary 2.10. Let B be an extension over K = C(t)alg of an elliptic curve E/K
by Gm . Let x ∈ LB(K ) satisfy

(∗) for any proper algebraic subgroup H of B, x /∈ LH + LB0(C).

Let x̃ ∈ LB̃(K ) be a lift of x , let x̄ be its projection to LE(K ), and let ỹ ∈ B̃(U) be
such that ∂`n B̃(ỹ)= x̃ . Then tr.deg

(
K ]

B̃
(ỹ)/K ]

B̃

)
= 3, unless x̄ ∈ LE0(C), in which

case tr.deg
(
K ]

B̃
(ỹ)/K ]

B̃

)
is precisely 1.

Here, E0 is the constant part of E . Notice that in view of (∗), E must descend to
C and B must be nonconstant (hence not isotrivial) if x projects to LE0(C).

2D. Manin maps. We finally discuss the results on the Manin maps attached to
abelian varieties. The expression “Manin map” covers at least two maps. The
original one was introduced by Manin [1963] (see also [Coleman 1990]), and
is discussed at the end of this section. Here we are mainly concerned with the
model-theoretic or differential algebraic Manin map (see [Buium and Cassidy 1999,
Section 2.5; Pillay 1997]). We identify our algebraic, differential algebraic groups
with their sets of points in a universal differential field U (or alternatively, points in a
differential closure of whatever differential field of definition we work over). So for
now let K be a differential field, and A an abelian variety over K . A has a smallest
Zariski-dense differential algebraic (definable in U) subgroup A], which can also
be described as the smallest definable subgroup of A containing the torsion. The
definable group A/A] embeds definably in a commutative unipotent algebraic group
(i.e., a vector group) by results of Buium, and results of Cassidy on differential
algebraic vector groups yield a (noncanonical) differential algebraic isomorphism
between A/A] and Gn

a where n = dim(A). This differential algebraic isomorphism
is defined over K , and we call it the Manin homomorphism.
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There is a somewhat more intrinsic account of this isomorphism. Let Ã be the
universal vectorial extension of A as discussed above, equipped with its unique
algebraic ∂-group structure, and let WA be the unipotent part of Ã. We have the
surjective differential algebraic homomorphism ∂`n Ã : Ã → LÃ. Note that if
ỹ ∈ Ã lifts y ∈ A, then the image of ỹ under ∂`n Ã modulo the subgroup ∂`n Ã(WA)

depends only on y. This gives a surjective differential algebraic homomorphism
from A to LÃ/∂`n(WA), which is defined over K , and which we call µA.

Remark 2.11. Any abelian variety A/K satisfies ker(µA)= A].

Proof. Let UA be the maximal algebraic subgroup of WA which is a ∂-subgroup
of Ã. Then Ã/UA has the structure of an algebraic ∂-group, and as explained in
[Bertrand and Pillay 2010], the canonical map π : Ã→ A induces an isomorphism
between ( Ã/UA)

∂ and A]. As (by functoriality) ( Ã)∂ maps onto ( Ã/UA)
∂ , the map

π : Ã→ A also induces a surjective map ( Ã)∂ → A]. Now, as the image of µA

is torsion-free, ker(µA) contains A]. On the other hand, if y ∈ ker(µA) and ỹ ∈ Ã
lifts y, then there is z ∈WA such that ∂`n Ã(ỹ)= ∂`n Ã(z). So ∂`n Ã(ỹ− z)= 0 and
π(ỹ− z)= y, hence y ∈ A]. �

Hence we call µA the (differential algebraic) Manin map. The target space
embeds in an algebraic vector group and thus has the structure of a C-vector space
which is unique (any definable isomorphism between two commutative unipotent
differential algebraic groups is an isomorphism of C-vector spaces).

Now assume that K = C(t)alg and that A is an abelian variety over K with
C-trace A0 = 0. Then the “model-theoretic/differential algebraic theorem of the
kernel” is (see Corollary K.3 of [Bertrand and Pillay 2010]):

Fact 2.12 (K = C(t)alg, A/K traceless). The kernel ker(µA)∩ A(K ) is precisely
the subgroup Tor(A) of torsion points of A.

In Section 5 we generalize Fact 2.12 by proving:

Theorem 2.13 (K = C(t)alg, A/K traceless). Let y1, . . . , yn ∈ A(K ). Suppose
that a1, . . . , an ∈ C are not all 0, and that a1µA(y1) + · · · + anµA(yn) = 0 in
L Ã(K )/∂`n Ã(WA). Then y1, . . . , yn are linearly dependent over End(A).

Note that on reducing to a simple abelian variety, Fact 2.12 is the special case
of Theorem 2.13 when n = 1. Hrushovski asked whether the conclusion of the
theorem can be strengthened to the linear dependence of y1, . . . , yn over Z. Namely,
is the extension µA⊗ 1 of µA to A(K )⊗Z C injective? An example of André (see
[Bertrand and Pillay 2010, p. 504; Lange and Birkenhake 1992, Chapter 9 §6]) of a
traceless abelian variety A with UA 6=WA yields a counterexample:
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Proposition 2.14. There exist

• a simple traceless 4-dimensional abelian variety A over K =C(t)alg, such that
End(A) is an order in a CM number field F of degree 4 over Q;

• four points y1, . . . , y4 in A(K ) which are linearly dependent over End(A), but
linearly independent over Z; and

• four complex numbers a1, . . . , a4, not all zero;

such that a1µA(y1)+ · · ·+ a4µA(y4)= 0.

In fact, for i = 1, . . . , 4, we will construct lifts ỹi ∈ Ã(K ) of the points yi , and
solutions x̃i ∈ LÃ(K diff) to the equations ∇(x̃i ) = ∂`n Ã ỹi (where we have set
∇ := ∇LÃ = ∂LÃ, with ∇|LWA = ∂`n Ã|WA in the identification WA = LWA), and will
find a nontrivial relation

(R) a1 x̃1+ · · ·+ a4 x̃4 := u ∈UA(K diff).

Since UA is a ∇-submodule of LÃ, this implies that a1∂`n Ã ỹ1+ · · · + a4∂`n Ã ỹ4

lies in UA. And since UA ⊆WA, this in turn shows that

a1µA(y1)+ · · ·+ a4µA(y4)= 0 in LÃ/∂`n Ã(WA),

contradicting the injectivity of µA⊗ 1.
We conclude with a remark on the more classical differential arithmetic Manin

map MK ,A, where the stronger version is true. Again A is an abelian variety over
K = C(t)alg with C-trace 0. As above, we let ∇ denote ∂LÃ : LÃ→ LÃ. The
map MK ,A is then the homomorphism from A(K ) to LÃ(K )/∇(LÃ(K )), which
attaches to a point y ∈ A(K ) the class MK ,A(y) of ∂`n Ã(ỹ) in LÃ(K )/∇(LÃ(K )),
for any lift ỹ of y to Ã(K ). This class is independent of the lift, since ∂`n Ã and ∂LÃ
coincide on WA = LWA. Again LÃ(K )/∇(LÃ(K )) is a C-vector space. The initial
theorem of Manin (see [Coleman 1990]) says that ker(MK ,A)= Tor(A)+ A0(C),
so in the traceless case the kernel is precisely Tor(A).

Proposition 2.15 (K = C(t)alg, A/K traceless). The C-linear extension

MK ,A⊗ 1 : A(K )⊗Z C→ LÃ(K )/∇(LÃ(K ))

is injective.

3. Computation of Galois groups

Here we prove the Galois-theoretic statements Proposition 2.5 and Theorems 2.6
and 2.7 stated in Section 2B. We assume throughout that K = C(t)alg.
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3A. The abelian case. Let us first set up the notation. Let A be an abelian variety
over K , and let A0 be its C-trace, which we view as a subgroup of A defined over C.
Let Ã be the universal vectorial extension of A. We have the short exact sequence
0→ WA→ Ã→ A→ 0. Let UA denote the (unique) maximal ∂-subgroup of Ã
contained in WA. By Remarque 7.2 of [Bertrand 2009], we have:

Fact 3.1. Ã∂(K diff)= Ã0(C)+Tor( Ã)+U ∂
A(K

diff).

Let us briefly remark that the ingredients behind Fact 3.1 include Chai’s theorem
(see [Chai 1991] and Appendix K of [Bertrand and Pillay 2010]), as well as the strong
minimality of A] when A is simple and traceless from [Hrushovski and Sokolović
1994]. As already pointed out in connection with K-largeness, the reference to
[Hrushovski and Sokolović 1994] can be replaced by the easier arguments from
[Benoist et al. 2014]. Let K ]

Ã
be the (automatically differential) field generated over

K by Ã∂(K diff), and likewise with K ]
UA

for (UA)
∂(K diff). So by Fact 3.1, K ]

Ã
= K ]

UA
.

Also, as recalled at the beginning of Section 8 of [Bertrand 2009], we have:

Remark 3.2. K ]
UA

is a Picard–Vessiot extension of K whose Galois group (a linear
algebraic group over C) is semisimple.

Proof of Proposition 2.5. Here, G is an almost abelian ∂-group over K . We first
treat the case where G = Ã.

Let y ∈ G(K diff) be such that a = ∂`nG(y) lies in LG(K ). Note that in the
setup of Conjecture 2.3, y could very well be an element of UA, for instance
when a ∈ LUA 'UA, so in a sense we are moving outside the almost abelian
context. In any case, let H be a minimal ∂-subgroup of G defined over K such
that y ∈ H +G(K )+G∂(K diff). Since G(K ) contains all the torsion points, H is
automatically connected. We will prove that H ∂(K diff) is the differential Galois
group of K ](y) over K ] where K ]

= K ]
G . We recall from the remark after Fact 2.2

on the commutative case that we can and do assume that this Galois group is
connected. Also, these statements imply that H is actually the smallest ∂-subgroup
of G over K such that y ∈ H +G(K )+G∂(K diff), as required.

Let H ∂
1 be the Galois group of K ](y) over K ] with H1 a ∂-subgroup of G which

on the face of it is defined over K ]. So, H1 is a connected ∂-subgroup of H, and
we aim to show that H = H1.

Claim. H1 is defined over K as an algebraic group.

Proof. It is enough to show that H ∂
1 is defined over K as a differential algebraic

group. This is a very basic model-theoretic argument, but may be a bit surprising at
the algebraic-geometric level, as K ](y) need not be a “differential Galois extension”
of K in any of the usual meanings. We use the fact that any definable (with param-
eters) set in the differentially closed field K diff which is Aut(K diff/K )-invariant,
is definable over K . This follows from model-theoretic homogeneity of K diff
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over K as well as elimination of imaginaries in DCF0. Now H ∂
1 (K

diff) is the set
of g ∈ G∂(K diff) such that y1g and y1 have the same type over K ] for some (any)
y1 ∈ G(K diff) such that ∂`nG(y1)= a. As a ∈ LG(K ) and K ] is setwise invariant
under Aut(K diff/K ), it follows that H ∂

1 (K
diff) is also Aut(K diff/K )-invariant, and

so defined over K . This proves the claim.

Note that since one of its translates by G(K ) lies in H , we may assume that
y ∈ H , whereby ∂`nG(y)= a ∈ LH(K ).

Let B be the image of H in A, and B1 the image of H1 in A. So B1 ≤ B are
abelian subvarieties of A. Let V be the maximal unipotent ∂-subgroup of H , and V1

the maximal unipotent subgroup of H1. So V1 ≤ V , and using the assumptions and
the claim, everything is defined over K . Note also that the surjective homomorphism
H → B induces an isomorphism between H/V and B̃/UB (where as above UB

denotes the maximal unipotent ∂-subgroup of B̃), and likewise for H1/V1 and the
quotient of B̃1 by its maximal unipotent ∂-subgroup.

Case I. B = B1.

Then by the previous paragraph, we have a canonical isomorphism ι (of ∂-groups)
between H/H1 and V/V1, defined over K , so there is no harm in identifying them,
although we need to remember where they came from. Let us denote V/V1 by V ,
a unipotent ∂-group. This isomorphism respects the logarithmic derivatives in the
obvious sense. Let ȳ denote the image of y in H/H1. So ∂`nH/H1(ȳ)= ā where ā
is the image of a in L(H/H1)(K ). Via ι we identify ȳ with a point in V (K ]) and
ā with ∂`nV (ȳ) ∈ L(V )(K ).

By Remark 3.2 we identify Aut(K ]/K ) with a group J (C) where J is a semi-
simple algebraic group. We have a natural action of J (C) on V ∂(K diff)= V ∂(K ]).
Now the latter is a C-vector space, and this action can be checked to be a (rational)
representation of J (C). On the other hand, for σ ∈ J (C), σ(ȳ) (which is well-defined
since ȳ is K ]-rational) is also a solution of ∂`nV (−)= ā, hence σ(ȳ)− ȳ∈V ∂(K diff).
The map taking σ to σ(ȳ)− ȳ is then a cocycle c from J (C) to V ∂(K diff) which is
a morphism of algebraic varieties. Now the corresponding H 1(J (C), V ∂(K diff))

is trivial as it equals ExtJ (C)(1, V ∂(K diff)), the group of isomorphism classes of
extensions of the trivial representation of J (C) by V ∂(K diff). But J (C) is semi-
simple, so reductive, whereby every rational representation is completely reducible
(see pp. 26 and 27 of [Mumford and Fogarty 1982], and [Bertrand 2001] for Picard–
Vessiot applications, which actually cover the case when a lies in LUA). Putting
everything together, the original cocycle is trivial. Therefore there is z̄ ∈ V ∂(K ])

such that σ(ȳ)− ȳ= σ(z)−z for all σ ∈ J (C). So σ(ȳ− z̄)= ȳ− z̄ for all σ . Hence
ȳ − z̄ ∈ (H/H1)(K ). Lift z̄ to a point z ∈ H ∂(K diff). So y− z ∈ V (K ). As K is
algebraically closed, there is d ∈ H(K ) such that y− z+ d ∈ H1. This contradicts
the minimal choice of H , unless H = H1. So the proof is complete in Case I.
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Case II. B1 is a proper subgroup of B.

Consider the group H1 ·V a ∂-subgroup of H , defined over K , which also projects
onto B1. It is now easy to extend H1 · V to a ∂-subgroup H2 of H over K such
that H/H2 is canonically isomorphic to B2, where B2 is a simple abelian variety,
and B2 denotes the quotient of B̃2 by its maximal unipotent subgroup. Now let ȳ
denote y/H2 ∈ H/H2. Hence ∂`nB2

(ȳ)= ā ∈ L(B2)(K ). As H1⊆ H2, ȳ ∈ B2(K ]).
Now we have two cases. If B2 descends to C, then ȳ generates a strongly normal
extension of K whose Galois group is a connected algebraic subgroup of B2(C). As
this Galois group will be a homomorphic image of the linear (in fact semisimple)
complex algebraic group Aut(K ]/K ), we have a contradiction unless ȳ is K-rational.
On the other hand, if B2 does not descend to C, then by Fact 2.2(ii) ȳ generates over
K a (generalized) differential Galois extension of K with Galois group contained
in B2

∂(K diff), which again will be a homomorphic image of a complex semisimple
linear algebraic group (cf. [Bertrand 2009, 8.2(i)]). We get a contradiction by
various possible means (for example as in Remarque 8.2 of [Bertrand 2009]) unless
ȳ is K-rational. So either way we are forced into ȳ ∈ (H/H2)(K ). But then, as K
is algebraically closed, y− d ∈ H2 for some d ∈ H(K ), again a contradiction. So
Case II is impossible. This concludes the proof of Proposition 2.5 when G = Ã.

Finally, consider a general almost abelian ∂-group G, given as a quotient of Ã by
a unipotent ∂-subgroup U ⊂UA defined over K . Taking the quotient by U ∂(K diff) of
the decomposition of Ã∂(K diff) given by Fact 3.1, we obtain a similar decomposition
for G∂(K diff). Therefore K ]

G = K ((UA/U )∂) is also a Picard–Vessiot extension
of K , and we deduce from Remark 3.2 that its Galois group is again semisimple. The
various cases of the previous proof therefore also apply to the quotient G = Ã/U ,
and Proposition 2.5 holds for any almost abelian ∂-group. �

3B. The semiabelian case. We now aim towards proofs of Theorems 2.6 and 2.7.
Here, G= B̃ for B a semiabelian variety over K , equipped with its unique algebraic
∂-group structure.

We have:

• 0→ T → B→ A→ 0, where T is an algebraic torus and A an abelian variety,
all over K ,

• G = B̃ = B×A Ã, where Ã is the universal vectorial extension of A, and

• 0→ T → G→ Ã→ 0.

We use the same notation for A as at the beginning of this section, namely

0−→WA −→ Ã −→ A −→ 0.

We denote by A0 the C-trace of A (so up to isogeny we can write A as a product
A0 × A1, all defined over K , where A1 has C-trace 0), and by UA the maximal
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∂-subgroup of Ã contained in WA. So UA is a unipotent subgroup of G, though not
necessarily one of its ∂-subgroups. Finally, we have the exact sequence

0−→ T ∂
−→G∂ π

−→ Ã∂ −→ 0.

Note that T ∂
= T (C). Let K ]

G be the (differential) field generated over K by
G∂(K diff). We have already noted above that K ]

Ã
equals K ]

UA
. So K ]

UA
< K ]

G , and
we deduce from the last exact sequence above the following:

Remark 3.3. G∂(K diff) is the union of the π−1(b) for b ∈ Ã∂ , each π−1(b) being
a coset of T (C) defined over K ]

UA
. Hence K ]

G is (generated by) a union of Picard–
Vessiot extensions over K ]

UA
, each with Galois group contained in T (C).

Proof of Theorem 2.6. Bearing in mind Proposition 2.5 we may assume that T =Gm .
We have a ∈ LG(K ) and y ∈ G(K diff) such that ∂`nG(y)= a and y /∈ H +G(K )
for any proper ∂-subgroup H of G. The latter is a little weaker than the condition
that a /∈ LH(K )+ ∂`nG(G(K )) for any proper H , but (thanks to Fact 3.1) will
suffice for the special case we are dealing with.

Fix a solution y of ∂`nG(−)= a in G(K diff) and let H ∂(K diff) be the differential
Galois group of K ]

G(y) over K ]
G . As said after Fact 2.2, there is no harm in assuming

that H is connected. So H is a connected ∂-subgroup of G, defined over K ]
G .

As in the proof of the claim in the proof of Proposition 2.5, we have:

Claim 1. H (equivalently H ∂ ) is defined over K .

We assume for a contradiction that H 6= G.

Case I. H maps onto a proper (∂-)subgroup of Ã.

This is similar to Case II in the proof of Proposition 2.5 above. Some additional
complications come from the structure of K ]

G . We will make use of Remark 3.3 all
the time.

As Ã is an essential extension of A by WA, it follows that we can find a connected
∂-subgroup H1 of G containing H and defined over K such that the surjection
G → Ã induces an isomorphism between G/H1 and A2, where A2 is a simple
abelian subvariety of A (over K of course) and A2 is the quotient of Ã2 by its
maximal unipotent ∂-subgroup. Let η and α be such that the quotient map taking G
to A2 takes y to η and also induces a surjection LG→ L(A2) which takes a to α.

As η= y/H1 and H⊆H1, we see that η is fixed by Aut
(
K ]

G(y)/K ]
G

)
, establishing

the following:

Claim 2. We have η ∈ A2(K
]
G).

On the other hand, η is a solution of the logarithmic differential equation
∂`n A2

(−)= α over K . By K-largeness of A2, we have K ]

A2
= K , hence K (η) is a

differential Galois extension of K whose Galois group is either trivial (in which
case η ∈ A2(K )), or equal to A2

∂(K diff), in view of the strong minimality of A2
∂ .
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Claim 3. We have η ∈ A2(K ).

Proof. Suppose not. We first claim that η is independent from K ]
UA

over K (in the
sense of differential fields). Indeed, the Galois theory would otherwise give us
some proper definable subgroup in the product of A2

∂(K diff) by the Galois group
of K ]

UA
over K (or equivalently, these two groups would share a nontrivial definable

quotient). As the latter is a complex semisimple algebraic group (Remark 3.2),
we get a contradiction. Alternatively, we could proceed as in Remarque 8.2 of
[Bertrand 2009].

So the Galois group of K ]
UA
(η) over K ]

UA
is A2

∂(K diff). As there are no nontrivial
definable subgroups of A2(K diff)×Gm(C)

n , we see that η is independent of K ]
G

over K ]
UA

, contradicting Claim 2.

By Claim 3, the coset of y modulo H1 is defined over K (differential alge-
braically), so as in the proof of Fact 2.1, as K is algebraically closed there is
y1 ∈ G(K ) in the same coset of H1 as y. So y ∈ H1 + G(K ), contradicting the
assumptions. Thus Case I is complete.

Case II. H projects onto Ã.

Our assumption that H is a proper subgroup of G and that the toric part is Gm

implies that (up to isogeny) G splits as T × H = T × Ã. This case is essentially
dealt with in [Bertrand 2009], but nevertheless we continue with the proof. We
identify G/H with T . So y/H = d ∈ T and the image a0 of a under the projection
G→ T is in LT (K ). As H ∂(K diff) is the Galois group of K ]

G(y) over K ]
G , we see

that y ∈ T (K ]
G). Now K (d) is a Picard–Vessiot extension of K with Galois group

a subgroup of Gm(C). Moreover, since G splits as T × Ã, we have G∂
= T ∂

× Ã∂ .
Hence by Fact 3.1, K ]

G = K ]

Ã
, and by Remark 3.2, it is a Picard–Vessiot extension

of K whose Galois group is a semisimple algebraic group in the constants. We
deduce from the Galois theory that d is independent from K ]

G over K , and hence
d ∈ T (K ). So the coset of y modulo H has a representative y1 ∈ G(K ) and
y ∈ H+G(K ), contradicting our assumption. This concludes Case II and the proof
of Theorem 2.6. �

Proof of Theorem 2.7. G = B̃ for B = Bsc a semiconstant semiabelian variety
over K and we may assume it has toric part Gm . So although the toric part is
still Gm , both the hypothesis and conclusion of Theorem 2.7 are stronger than in
Theorem 2.6.

We have 0→ Gm→ B→ A where A = A0 is over C. Hence Ã is also over C

and we have 0→Gm→ B̃→ Ã→ 0, and G = B̃. As Ã∂ = Ã(C)⊆ Ã(K ), we see:

Fact 3.4. G∂(K diff) is a union of cosets of Gm(C), each defined over K .

We are given a logarithmic differential equation ∂`nG(−) = a ∈ LG(K ) and
solution y ∈ G(K diff). We let H be a minimal connected ∂-subgroup of G, defined
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over K , such that a∈ LH+∂`nG(G(K )), or equivalently, y∈H+G(K )+G∂(K diff).
We want to prove that H ∂(K diff) is the Galois group of K ]

G(y) over K ]
G .

By Theorem 2.6, we may assume that H 6= G. Note that after translating y by
an element of G(K ) plus an element of G∂(K diff), we can assume that y ∈ H . If
H is trivial then everything is clear.

We go through the cases.

Case I. H = Gm .

Then by Fact 2.1, K (y) is a Picard–Vessiot extension of K , with Galois group
Gm(C), and all that remains to be proved is that y is algebraically independent from
K ] over K . Let z1, . . . , zn ∈ G∂(K diff), and we want to show that y is independent
from z1, . . . , zn over K (in the sense of DCF0). By Fact 3.4, K (z1, . . . , zn) is a
Picard–Vessiot extension of K and we can assume the Galois group is Gn

m(C).
Suppose towards a contradiction that tr.deg(K (y, z1, . . . , zn)/K ) < n+ 1, and so
must equal n. Hence the differential Galois group of K (y, z1, . . . , zn)/K is of the
form L(C) where L is the algebraic subgroup of Gn+1

m defined by xk xk1
1 · · · x

kn
n = 1

for k, ki integers such that k 6= 0 and not all ki = 0. It easily follows that in additive
notation, ky+k1z1+· · ·+knzn ∈G(K ). So ky is of the form z+g for z ∈G∂(K diff)

and g ∈ G(K ). Let z′ ∈ G∂ and g′ ∈ G(K ) be such that kz′ = z and kg′ = g. Then
k(y− (z′+ g′))= 0, so y− (z′+ g) is a torsion point of G and hence also in G∂ .
We conclude that y ∈ G∂(K diff)+G(K ), contradicting our assumptions on y. This
concludes the proof in Case I.

Case II. H projects onto Ã.

So our assumption that G 6= H implies that up to isogeny G is T × Ã, and so
defined over C. Now everything follows from Fact 2.1.

Case III. Otherwise.

This is more or less a combination of the previous cases. To begin, suppose H is
disjoint from T (up to a finite set). So H ≤ Ã is a constant group, and by Fact 2.1,
H ∂(K diff) = H(C) is the Galois group of K (y) over K . By Fact 3.4 the Galois
theory tells us that y is independent from K ]

G over K , so H(C) is the Galois group
of K ](y) over K ] as required.

So we may assume that T ≤ H . Let H1 ≤ H be the differential Galois group
of K ]

G(y) over K ]
G , and we suppose for a contradiction that H1 6= H . As in the

proof of Proposition 2.5, H1 is defined over K . By the remark after Fact 2.2, we
can assume that H1 is connected.

Case III(a). H1 is a complement of T in H (in the usual sense that H1× T → H
is an isogeny).

So y/H1 ∈ T (K ]
G). Let y1= y/H1. If y1 /∈ T (K ), then K (y1) is a Picard–Vessiot

extension of K with Galois group Gm(C). The proof in Case I above shows that
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y1 ∈ G∂(K diff)+G(K ), whereby y ∈ H1+G∂(K diff)+G(K ), contradicting the
minimality assumptions on H .

Case III(b). H1+ T is a proper subgroup of H .

Note that since we are assuming H1 6= H , the negation of Case III(a) forces Case
III(b) to hold. Let H2 = H1+ T , so H/H2 is a constant group, say H3, which is a
vectorial extension of an abelian variety. Then y2 = y/H2 ∈ H3(K

]
G), and K (y2) is

a Picard–Vessiot extension of K with Galois group a subgroup of H3(C). Fact 3.4
and the Galois theory imply that y2 ∈ H3(K ). Hence y ∈ H2+G(K ), contradicting
the minimality of H again.

This completes the proof of Theorem 2.7. �

3C. Discussion on nongeneric cases. We complete this section with a discussion
of some complications arising when one would like to drop either the genericity
assumption in Theorem 2.6, or the restriction on the toric part in both Theorems
2.6 and 2.7.

Let us first give an example which will have to be considered if we drop the
genericity assumption in Theorem 2.6, and give some positive information as well
as identify some technical complications. Let A be a simple abelian variety over
K which has C-trace 0 and such that UA 6= 0. (Note that such an example appears
below in Section 5B connected with Manin map issues.) Let B be a nonsplit
extension of A by Gm , and let G = B̃. We have π : G→ Ã with kernel Gm , and
let H be π−1(UA), a ∂-subgroup of G. Let a ∈ LH(K ) and y ∈ H(K diff) with
d`nH (y) = a. We have to compute tr.deg

(
K ]

G(y)/K ]
G

)
. Conjecture 2.3 predicts

that it is the dimension of the smallest algebraic ∂-subgroup H1 of H such that
y ∈ H1+G(K )+G∂(K diff).

Lemma 3.5. With the above notation, suppose y /∈ H1+G(K )+G∂(K diff) for any
proper algebraic ∂-subgroup H1 of H over K . Then tr.deg

(
K ]

G(y)/K ]
G

)
= dim(H)

(and H is the Galois group).

Proof. Let z and α be the images of y and a, respectively, under the maps H→UA

and LH→ L(UA)=UA induced by π :G→ Ã. So ∂`n Ã(z)= α with α ∈ L Ã(K ).

Claim. We have z /∈U + Ã(K )+ Ã∂(K diff) for any proper algebraic ∂-subgroup U
of UA over K .

Proof of claim. Suppose otherwise. Then lifting suitable z2∈ Ã(K ) and z3∈ Ã(K diff)

to y2 ∈G(K ) and y3 ∈G∂(K diff), respectively, we see that y− (y2+ y3) ∈ π
−1(U ),

a proper algebraic ∂-subgroup of H , a contradiction.

As in Case I in the proof of Proposition 2.5 above, we may now conclude
that tr.deg

(
K ]

Ã
(z)/K ]

Ã

)
= dim(UA), and UA is the Galois group. Now K ]

G is a
union of Picard–Vessiot extensions of K ]

Ã
= K ]

UA
, each with Galois group Gm (by
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Remark 3.3), so the Galois theory tells us that z is independent from K ]
G over K ]

Ã
.

Hence the differential Galois group of K ]
G(z) over K ]

G is U ∂
A . But then the Galois

group of K ]
G(y) over K ]

G will be the group of ∂-points of a ∂-subgroup of H which
projects onto UA. The only possibility is H itself, because otherwise H splits as
Gm ×UA as a ∂-group, which contradicts (v) of Section 2 of [Bertrand 2009]. This
completes the proof. �

Essentially the same argument applies if we replace H by the preimage under π
of some nontrivial ∂-subgroup of UA. So this shows that the scenario described right
before Lemma 3.5 reduces to the case where a ∈ LT where T is the toric part Gm

(of both G and H ), and we may assume y ∈ T (K diff). We would like to show (in
analogy with Lemma 3.5) that if y /∈G(K )+G∂(K diff) then tr.deg

(
K ]

G(y)/K ]
G

)
=1.

Of course already K (y) is a Picard–Vessiot extension of K with Galois group T (C),
and we have to prove that y is independent from K ]

G over K . One deduces from
the Galois theory that y is independent from K ]

UA
over K . It remains to show that

for any z1, . . . , zn ∈ G∂(K diff), y is independent from z1, . . . , zn over K ]
UA

. If not,
the discussion in Case I of the proof of Theorem 2.7 gives that y = z+ g for some
z ∈G∂(K diff) and g ∈G(K ]

UA
), but an additional argument seems necessary to yield

a contradiction.
Similar and other issues arise when we want to drop the restriction on the toric

part. For example in Case II in the proof of Theorem 2.6, we can no longer deduce
the splitting of G as T × Ã. And in the proof of Theorem 2.7, both the analogues
of Case I (H = T ) and Case II (H projects on to Ã) present technical difficulties.

4. Lindemann–Weierstrass

We here prove Corollaries 2.8, 2.9, and 2.10.

4A. General results.

Proof of Corollary 2.8. We first prove (i). Write G for B̃. Let x̃ ∈ LG(K ) be a
lift of x and ỹ ∈ G(U) a solution of ∂`nG(−) = x̃ . We refer to Section 1.2 and
Lemma 4.2 of [Bertrand and Pillay 2010] for a discussion of the equivalence of the
hypotheses

x /∈ LH(K )+ LB0(C) for any proper semiabelian subvariety H of B,

and

(∗) x̃ /∈ LH(K )+ (LG)∂(K ) for any proper algebraic subgroup H of G over K .

Let a=∂LG(x̃). So ỹ is a solution of the logarithmic differential equation (over K )
∂`nG(−)= a. We want to show that tr.deg

(
K ]

G(ỹ)/K ]
G

)
= dim(G). If not, we may

assume that ỹ ∈ G(K diff), and so by Theorem 2.6, ỹ ∈ H +G(K ) for some proper
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connected algebraic ∂-subgroup H of G defined over K . Extend H to a maximal
proper connected ∂-subgroup H1 of G defined over K . Then G/H1 is either

(a) Gm , or

(b) a simple abelian variety A0 over C, or

(c) the quotient of Ã1 by a maximal unipotent ∂-subgroup, where A1 is a simple
abelian variety over K with C-trace 0.

Let x ′, y′ be the images of x̃, ỹ under the map G → G/H1 and induced map
LG→ L(G/H1). So both x ′ and y′ are K-rational. Moreover the hypothesis (∗) is
preserved in G/H1 (by our assumptions on G and Lemma 4.2(ii) of [Bertrand and
Pillay 2010]). As ∂`nG/H1(y

′)= ∂L(G/H1)(x
′), we have a contradiction in each of

the cases (a), (b), and (c) listed above, by virtue of the truth of Ax–Lindemann in the
constant case, as well as Manin–Chai (Proposition 4.4 in [Bertrand and Pillay 2010]).

(ii) Immediate as in [Bertrand and Pillay 2010]: choosing ỹ = expG(x̃), then
expB(y) is the projection of ỹ on B. �

Proof of Corollary 2.9. This is like the proof of Corollary 2.8. So x ∈ LA(K ). Let
x̃ ∈ LÃ(K ) lift x and let ỹ ∈ Ã(K diff) be such that ∂`n Ã(ỹ)= ∂LÃ(x̃)= a, say. Let
B be a minimal abelian subvariety of A such that x ∈ LB(K )+ LA0(C), and we
want to prove that tr.deg

(
K ]

Ã
(ỹ)/K ]

Ã

)
= dim(B̃).

Claim. We may assume that x ∈ LB(K ), x̃ ∈ LB̃(K ), and ỹ ∈ B̃(K diff).

Proof of claim. Let x = x1+ c for x1 ∈ LB and c ∈ LA0(C). Let x̃1 ∈ LB̃(K ) be
a lift of x1 and c̃ ∈ LÃ0(C) be a lift of c. Finally let ỹ1 ∈ B̃(K diff) be such that
∂`n Ã(ỹ1) = ∂LÃ(x̃1) = a1, say. As x̃1+ c̃ projects onto x , it differs from x̃ by an
element z ∈ LW (K ). Now ∂LÃ(z)= ∂`n Ã(z). So

a = ∂LÃ(x̃)= ∂LÃ(x̃1+ c̃+ z)= ∂LÃ(x̃1)+ ∂`n Ã(z)= a1+ ∂`n Ã(z).

Hence ∂`n(ỹ1+ z)= a, and so ỹ1+ z differs from ỹ by an element of Ã∂ . Hence
tr.deg

(
K ]

Ã
(ỹ1)/K ]

Ã

)
= tr.deg

(
K ]

Ã
(ỹ1)/K ]

Ã

)
. Moreover the same hypothesis remains

true of x1 (namely B is minimal such that x1 ∈ LB+ LA0(C)). So we can replace
x, x̃, ỹ by x1, x̃1, ỹ1.

As recalled in the proof of Corollary 2.8 (see Corollary H.5 of [Bertrand and
Pillay 2010]), the condition that x /∈ B1(K ) + LA0(C) for any proper abelian
subvariety B1 of B is equivalent to

(∗) x̃ /∈ LH(K )+ (LÃ)∂(K ) for any proper algebraic subgroup H
of B̃ defined over K .

Now we can use the Galois-theoretic result Proposition 2.5, namely the truth of
Conjecture 2.3 for Ã, as above. That is, if to obtain a contradiction we suppose
tr.deg

(
K ]

Ã
(ỹ)/K ]

Ã

)
< dim(B̃), then ỹ ∈ H + Ã(K )+ ( Ã)∂(K diff) for some proper
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connected algebraic ∂-subgroup of B̃, defined over K , and moreover H ∂ is the
differential Galois group of K ]

Ã
(ỹ)/K ]

Ã
. As at the end of the proof of Corollary 2.8

above, we get a contradiction by choosing H1 to be a maximal proper connected
algebraic ∂-subgroup of Ã containing H and defined over K . This concludes the
proof of Corollary 2.9. �

4B. Semiabelian surfaces. We first recall the counterexample from Section 5.3
of [Bertrand and Pillay 2010]. This example shows that in Corollary 2.8, we
cannot drop the assumption that the semiconstant part is constant. We go through
it again briefly. Let B over K be a nonconstant extension of a constant elliptic
curve E = E0 by Gm , and let G = B̃. Let x̃ ∈ LG(K ) map onto a point x̌ in
LẼ(C) which itself maps onto a nonzero point x̄ of LE(C). As pointed out in
[Bertrand and Pillay 2010], we have (LG)∂(K )= (LGm)(C), whereby x̃ satisfies
the hypothesis (∗) from Corollary 2.8: x̃ /∈ LH(K )+ (LG)∂(K ) for any proper
algebraic subgroup H of G. Let a = ∂LG(x̃) ∈ LG(K ), and ỹ ∈ G(K diff) such that
∂`nG(ỹ)= a. Then as the image of a in LẼ is 0, ỹ projects onto a point of Ẽ(C),
and hence ỹ is in a coset of Gm defined over K , whereby tr.deg(K (ỹ)/K )≤ 1, so
a fortiori the same is true with K ]

G in place of K . A consequence of Corollary 2.10,
in fact the main part of its proof, is that with the above choice of x̃ , we have
tr.deg

(
K ]

G(ỹ)/K ]
G

)
= 1 (as announced in [Bertrand et al. 2013, Footnote 5]).

Proof of Corollary 2.10. Let us fix notation: B is a semiabelian variety over K
with toric part Gm and abelian quotient a not necessarily constant elliptic curve
E/K , with constant part E0; G denotes the universal vectorial extension B̃ of B
and Ẽ the universal vectorial extension of E . For x ∈ LB(K ), x̃ denotes a lift of x
to a point of LG(K ), x̄ denotes the projection of x to LE(K ), and x̌ denotes the
projection of x̃ to LẼ(K ).

Recall the hypothesis (∗) in Corollary 2.10: x /∈ LH + LB0(C) for any proper
algebraic subgroup H of B. As pointed out after the statement of Corollary 2.10,
under this hypothesis, the condition x̄ ∈ LE0(C) can occur only if B is semiconstant
and not constant. Indeed, if B were not semiconstant then E0 = 0, so x ∈ LGm ,
contradicting the hypothesis on x . And if B were constant then B= B0 and x̄ would
have a lift in LB0(C), whereby x ∈ LGm + LB0(C), contradicting the hypothesis.

Now if the semiconstant part of B is constant, then we can simply quote
Corollary 2.8, bearing in mind the paragraph above which rules out the possibility
that x̄ ∈ LE0(C). So we will assume that Bsc 6= B0, namely E = E0 and B0 = Gm .

Case I. We have x̄ ∈ LE(C) (= LE0(C) as E = E0).

This is where the bulk of the work goes. We first check that we are essentially in
the situation of the “counterexample” mentioned above. The argument is a bit like in
the proof of the claim in Corollary 2.9. Note that x̄ 6=0 by hypothesis (∗). Let x̌ ′ be a
lift of x̄ to a point in LẼ(C) (noting that Ẽ is also over C). Then x̌ ′= x̌−β for some
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β ∈ LGa(K ). Let x̃ ′= x̃−β. Let a′= ∂LG(x̃ ′). Then (as ∂LG(β)= ∂`nG(β), under
the usual identifications) a′= a+∂`nG(β), and if ỹ′ ∈G is such that ∂`nG(ỹ′)= a′

then ∂`nG(ỹ′−β)= a. As β ∈ G(K ), tr.deg
(
K ]

G(ỹ
′)/K ]

G

)
= tr.deg

(
K ]

G(ỹ)/K ]
G

)
.

The end result is that we can assume that x̃ ∈ LG(K ) maps onto x̌ ′ ∈ LẼ(C)
which in turn maps on to our nonzero x̄ ∈ LE(C), precisely the situation in the
example above from Section 5.1 of [Bertrand and Pillay 2010]. So to deal with
Case I, we need to prove:

Claim 1. We have tr.deg
(
K ]

G(ỹ)/K ]
G

)
= 1.

Proof of Claim 1. Remember that a denotes ∂LG(x̃). Now by Theorem 2.7, it
suffices to prove that a /∈ ∂`nG(G(K )).

We assume for a contradiction that there is s̃ ∈ G(K ) such that

(†) a = ∂LG(x̃)= ∂`nG(s̃).

This is the semiabelian analogue of a Manin kernel statement, which can probably
be studied directly, but we will deduce the contradiction from [Bertrand et al.
2013]. Let x̃1 = logG(s̃) be a solution given by complex analysis to the linear
inhomogeneous equation ∂LG(−) = ∂`nG(s̃). Namely, with notations as in the
appendix to [Bertrand and Pillay 2010] (generalizing those given after Corollary 2.8
above), a local analytic section of LGan/San such that expG(x̃1)= s̃. Let ξ ∈ (LG)∂

be x̃ − x̃1. Then ξ lives in a differential field (of meromorphic functions on some
disc in S) which extends K and has the same constants as K , namely C. As ξ is
the solution of a linear homogeneous differential equation over K , it follows that
ξ lives in (LG)∂(K diff). Hence, as x̃ ∈ LG(K ), this implies that x̃1 ∈ LG(K ]

LG)

where K ]
LG is the differential field generated over K by (LG)∂(K diff).

Now from Section 5.1 of [Bertrand et al. 2013], K ]
LG coincides with the “field

of periods” Fq attached to the point q ∈ Ê(K ) which parametrizes the extension B
of E by Gm . Hence from (†) we conclude that Fq(logG(s̃))= Fq .

Let s ∈ B(K ) be the projection of s̃, and p ∈ E(K ) the projection of s. By the
discussion in Section 5.1 of [Bertrand et al. 2013], Fpq(logB(s)) = Fq(logG(s̃)).
Therefore, Fq = Fpq = Fpq(logB(s)).

Now as x̃ ∈ LG(K ) maps onto the constant point x̌ ∈ LẼ(C), so also s̃ maps
onto a constant point p̌ ∈ Ẽ(C) and hence p ∈ E(C). So we are in Case (SC2) of the
proof of the Main Lemma of [Bertrand et al. 2013, Section 6], namely p constant
while q nonconstant. The conclusion of (SC2) is that logB(s) is transcendental over
Fpq if p is nontorsion. So the previous equality forces p ∈ E(C) to be torsion.

Let s̃tor∈G(K ) be a torsion point lifting p, hence s̃−s̃tor is a K-point of the kernel
of the surjection G→ E . Thus s̃ = s̃tor+ δ+β where β ∈ Ga(K ) and δ ∈ Gm(K ).
Taking logs, putting again ξ = x̃ − x̃1, and using that logG(−) restricted to Ga(K )
is the identity, we see that x̃ = ξ + logG(s̃tor)+ logG(δ)+ β = ξ

′
+ logGm

(δ)+ β
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where ξ ′ ∈ (LG)∂ . It follows that ` = logGm
(δ) ∈ K ]

G = Fq . But by Lemma 1 of
[Bertrand et al. 2013] (proof of Main Lemma in isotrivial case, but reversing roles
of p and q), such ` is transcendental over Fq unless δ is constant.

Hence δ ∈ Gm(C), whereby logGm
(δ) ∈ LGm(C) so is in (LG)∂(K diff), and we

conclude that x̃ − β ∈ (LG)∂(K diff). As also x̃ − β ∈ LG(K ), from Claim III in
Section 5.3 of [Bertrand and Pillay 2010] (alternatively, using the fact that K ]

LG = Fq

has transcendence degree 2 over K ), we conclude that x̃ −β ∈ LGm(C) whereby
x̃ ∈ LGa(K ) + LGm(C), contradicting that x projects onto a nonzero element
of LE . This contradiction completes the proof of Claim 1 and hence of Case I of
Corollary 2.10.

Case II. The point x̄ ∈ LE(K )\LE(C) is a nonconstant point of LE(K )= LE0(K ).

Let ỹ ∈ G(K diff) be such that ∂`nG(ỹ) = a = ∂LG(x̃). Let y̌ be the projection
of ỹ to Ẽ . Hence ∂`n Ẽ(y̌) = ∂LÃ(x̌) (remembering that x̌ is the projection of x̃
to LẼ). Noting that x̌ lifts x̄ ∈ LE(K ), and using our case hypothesis, we can
apply Corollary 2.9 to E to conclude that tr.deg(K (y̌)/K )= 2 with Galois group
Ẽ∂(K diff)= Ẽ(C). (In fact as E is constant this is already part of the Ax–Kolchin
framework and appears in [Bertrand 2008].)

Claim 2. We have tr.deg
(
K ]

G(y̌)/K ]
G

)
= 2.

Proof of Claim 2. Fact 3.4 applies to the current situation, showing that K ]
G is a

directed union of Picard–Vessiot extensions of K each with Galois group some
product of Gn

m(C)’s. As there are no proper algebraic subgroups of Ẽ(C)×Gn
m(C)

projecting onto each factor, it follows from the Galois theory that y̌ is independent
from K ]

G over K , yielding Claim 2.

Now K ]
G(ỹ)/K ]

G is a differential Galois extension with Galois group of the form
H ∂(K diff) where H is a connected algebraic ∂-subgroup of G. So H ∂ projects onto
the (differential) Galois group of K ]

G(y̌) over K ]
G , which by Claim 2 is Ẽ∂(K diff).

In particular, H projects onto Ẽ . If H is a proper subgroup of G, then projecting
H and Ẽ to B and E , respectively, shows that B splits (up to isogeny), so B = B0

is constant, contradicting the current assumptions. Hence the (differential) Galois
group of K ]

G(ỹ) over K ]
G is G∂(K diff), whereby tr.deg

(
K ]

G(ỹ)/K ]
G

)
is 3. This

concludes the proof of Corollary 2.10. �

4C. An Ax–Schanuel conjecture. As a conclusion to the first two themes of the
paper, we may say that both at the Galois-theoretic level and for Lindemann–
Weierstrass, we have obtained rather definitive results for families of abelian
varieties, and working over a suitable base K ]. There remain open questions
for families of semiabelian varieties, such as Conjecture 2.3, as well as dropping the
restriction on the toric part in Theorems 2.6 and 2.7 and Corollaries 2.8 and 2.10.
It also remains to formulate a qualitative description of tr.deg

(
K ](expB(x))/K ]

)
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where B is a semiabelian variety over K of dimension > 2, and x ∈ LB(K ), under
the nondegeneracy hypothesis that x /∈ LH + LB0(C) for any proper semiabelian
subvariety H of B.

Before turning to our third theme, it seems fitting to propose a more general
Ax–Schanuel conjecture for families of abelian varieties:

Conjecture 4.1. Let A be an abelian variety over K =C(S) for a curve S/C, and let
F be the field of meromorphic functions on some disc in S. Let K ] now denote K ]

LÃ
(which contains K ]

Ã
). Let x̃, ỹ be F-rational points of L Ã, Ã, respectively, such that

exp Ã(x̃) = ỹ, and let y be the projection of ỹ on A. Assume that y /∈ H + A0(C)

for any proper algebraic subgroup H of A. Then tr.deg(K ](x̃, ỹ)/K ])≥ dim( Ã).

We point out that the assumption concerns y, and not the projection x of x̃
to LA. Indeed, the conclusion would in general not hold true under the weaker
hypothesis that x /∈ LH + LA0(C) for any proper abelian subvariety H of A. As a
counterexample, take for A a simple nonconstant abelian variety over K , and for x̃
a nonzero period of LÃ. Then x 6= 0 satisfies the hypothesis above and x̃ is defined
over K ]

= K ]

LÃ
, but ỹ = exp Ã(x̃)= 0, so tr.deg(K ](x̃, ỹ)/K ])= 0.

Finally, here is a concrete corollary of the conjecture. Let E : y2
= x(x−1)(x−t)

be the universal Legendre elliptic curve over S=C\{0, 1}, and let ω1(t), ω2(t) be a
basis of the group of periods of E over some disk, so K ]

=K ]

LẼ
is the field generated

over K =C(t) by ω1, ω2 and their first derivatives. Let ℘ =℘t(z), ζ = ζt(z) be the
standard Weierstrass functions attached to {ω1(t), ω2(t)}. For g ≥ 1, consider 2g
algebraic functions α(i)1 (t), α

(i)
2 (t) ∈ K alg, i = 1, . . . , g, and assume that the vectors(

1
0

)
,

(
0
1

)
,

(
α1
(1)

α2
(1)

)
, . . . ,

(
α1
(g)

α2
(g)

)
are linearly independent over Z. Then the 2g functions

℘
(
α
(i)
1 ω1+α

(i)
2 ω2

)
, ζ
(
α
(i)
1 ω1+α

(i)
2 ω2

)
, i = 1, . . . , g,

of the variable t are algebraically independent over K ]. In the language of [Bertrand
et al. 2013, Section 3.3], this says in particular that a g-tuple of Z-linearly indepen-
dent local analytic sections of E/S with algebraic Betti coordinates forms a generic
point of Eg/S. Such a statement is not covered by our Lindemann–Weierstrass
results, which concern analytic sections with algebraic logarithms.

5. Manin maps

5A. Injectivity. We here prove Theorem 2.13 and Proposition 2.15. Both state-
ments will follow fairly quickly from Fact 5.1 below, which is Theorem 4.3 of
[Bertrand 2011] and relies on the strongest version of “Manin–Chai”, namely
formula (2∗) from Section 4.1 of [Bertrand 2011]. We should mention that a more
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direct proof of Proposition 2.15 can be extracted from the proof of Proposition
J.2 (Manin–Coleman) in [Bertrand and Pillay 2010]. But we will stick with the
current proof below, as it provides a good introduction to the counterexample in
Section 5B.

We set up some notation: K is C(t)alg as usual, A is an abelian variety over K ,
and A0 is the C-trace of A. For y ∈ Ã(K ), we let ȳ be its image in A(K ). Let
b = ∂`n Ã(y). We consider the differential system in unknown x :

∇LÃ(x)= b,

where we write ∇LÃ for ∂LÃ. Let K ]

LÃ
be the differential field generated, over K ,

by (LÃ)∂(K diff). So for x a solution in LÃ(K diff), the differential Galois group
of K ]

LÃ
(x) over K ]

LÃ
pertains to Picard–Vessiot theory, and is well-defined as a

C-subspace of the C-vector space (LÃ)∂(K diff).

Fact 5.1 (A = any abelian variety over K = C(t)alg). Let y ∈ Ã(K ). Let B
be the smallest abelian subvariety of A such that a multiple of ȳ by a nonzero
integer is in B + A0(C). Let x be a solution of ∇LÃ(−) = b in L Ã(K diff). Then
the differential Galois group of K ]

LÃ
(x) over K ]

LÃ
is (LB̃)∂(K diff). In particular,

tr.deg
(
K ]

LÃ
(x)/K ]

LÃ

)
= dim B̃ = 2 dim B.

Proof of Theorem 2.13. Here, the abelian variety A has C-trace 0. By assumption
we have y1, . . . , yn ∈ A(K ) and a1, . . . , an ∈ C not all 0 such that

a1µA(y1)+ · · ·+ anµA(yn)= 0

in LÃ(K )/∂`n Ã(WA). Lifting yi to ỹi ∈ Ã(K ), we derive that

a1∂`n Ã(ỹ1)+ · · ·+ an∂`n Ã(ỹn)= ∂`n Ã(z)

for some z ∈WA. Via our identification of WA with LWA we write the right hand
side as ∇LÃz with z ∈ LWA ⊂ LÃ. Let x̃i ∈ LÃ be such that ∇LÃ(x̃i ) = ∂`n Ã(ỹi ).
Hence a1 x̃1+ · · ·+ an x̃n − z ∈ (LÃ)∂ , and there exists d ∈ (LÃ)∂ such that

a1 x̃1+ · · ·+ an x̃n − d = z ∈ LWA.

Suppose for a contradiction that y1, . . . , yn are linearly independent with respect
to End(A). Then no multiple of y = (y1, . . . , yn) by a nonzero integer lies in any
proper abelian subvariety B of the traceless abelian variety An

= A × · · · × A.
By Fact 5.1, we have tr.deg(K ](x̃1, . . . , x̃n)/K ]) = dim( Ãn), where we have set
K ]
:= K ]

LÃn = K ]

LÃ
. So, the points x̃1, . . . , x̃n of LÃ are generic and independent

over K ]. Hence, because a1, . . . , an are in C and therefore K ], it follows that
a1 x̃1 + · · · + an x̃n is a generic point of LÃ over K ]. And as d is a K ]-rational
point of (LÃ)∂ , also a1 x̃1+ · · · + an x̃n − d = z is a generic point of LÃ over K ],
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so cannot lie in its strict subspace LWA. This contradiction concludes the proof of
Theorem 2.13. �

Proof of Proposition 2.15. We use the same notation as at the end of Section 2D,
and recall that A is traceless. Furthermore, the functoriality of MK ,A in A allows
us to assume that A is a simple abelian variety.

Step I. We show, as in the proof of Theorem 2.13, that if MK ,A(y1), . . . ,MK ,A(yn)

are C-linearly dependent, then y1, . . . , yn are End(A)-linearly dependent. Indeed,
assume that ai ∈ C are not all 0 and that a1 MK ,A(y1)+ · · · + an MK ,A(yn)= 0 in
the target space LÃ(K )/∇(LÃ(K )). Lifting yi to ỹi ∈ Ã(K ), we derive that

a1∂`n Ã(ỹ1)+ · · ·+ an∂`n Ã(ỹn) ∈ ∇(LÃ(K )).

Letting x̃i ∈ LÃ(K diff) be such that ∇ x̃i = ∂`n Ã(ỹi ), we obtain a K-rational point
z ∈ LÃ(K ) such that

a1 x̃1+ · · ·+ an x̃n − z := d ∈ (LÃ)∂(K diff).

Taking K ]
:= K ]

LÃ
as in the proof of Theorem 2.13, we get

tr.deg(K ](x̃1, . . . , x̃n)/K ]) < dim( Ãn).

Hence by Fact 5.1, some integral multiple of (y1, . . . , yn) lies in a proper abelian
subvariety of An , whereby y1, . . . , yn are End(A)-linearly dependent.

Step II. Assuming that y1, . . . , yn are End(A)-linearly dependent, given by Step I,
as well as the relation on the point d above with not all ai = 0, we will show that
the points yi are Z-linearly dependent. Equivalently we will show that if a similar
relation holds with the ai linearly independent over Z, then y = (y1, . . . , yn) is
a torsion point of An . Let x̃ = (x̃1, . . . , x̃n). Let B be the connected component
of the Zariski closure of the group Z · y of multiples of y in An . By Fact 5.1,
the differential Galois group of K ](x̃) over K ]

:= K ]

LÃ
is (LB̃)∂ . More precisely,

the set of σ(x̃)− x̃ as σ varies in Aut∂(K ](x̃)/K ]) is precisely (LB̃)∂ ⊆ (LÃn)∂ .
Since z and d are defined over K ], the relation on d implies that

∀(c̃1, . . . , c̃n) ∈ (LB̃)∂ , a1c̃1+ · · ·+ an c̃n = 0.

Let now

B=
{
α = (α1, . . . , αn) ∈ (End(A))n = Hom(A, An) : α(A)⊆ B ⊂ An}.

Claim. Assume that a1, . . . , an are linearly independent over Z. Then any α ∈B is
identically 0.

It follows from the claim that B = 0 and hence some multiple of y by a nonzero
integer vanishes, namely y is a torsion point of An . This completes the proof of
Step II, hence of Proposition 2.15, and we are now reduced to proving the claim.
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Proof of claim. Since A is simple, End(A) is an order in a simple algebra D over
Q. For i = 1, . . . , n, denote by ρ(αi ) the C-linear map induced on (LÃ)∂ by the
endomorphism αi of A. So we view (LÃ)∂ as a complex representation, of degree
2 dim A, of the Z-algebra End(A), or more generally, of D. Let f 2 be the dimension
of D over its center F , let e be the degree of F over Q and let R be a reduced
representation of D, viewed as a complex representation of degree e f . As the
representation ρ is defined over Q (since it preserves the Betti homology), ρ is
equivalent to the direct sum R⊕r of r = 2 dim A/e f copies of R (cf. [Shimura and
Taniyama 1961, Section 5.1]). Furthermore,

R : D→Mat f (F ⊗C)' (Mat f (C))
e
⊂Mate f (C)

extends by C-linearity to an injection R⊗ 1 : D⊗C' (Mat f (C))
e
⊂Mate f (C).

Recall now that a1c̃1+ · · · + an c̃n = 0 for any (c̃1, . . . , c̃n) in (LB̃)∂ . Applied
to the image under α = (α1, . . . , αn) ∈ B of the generic element of (LÃ)∂ , this
relation implies that

a1ρ(α1)+ · · ·+ anρ(αn)= 0 ∈ EndC((LÃ)∂).

So a1 R(α1)+ · · ·+ an R(αn)= 0 in (Mat f (C))
e. From the injectivity of R⊗ 1 on

D⊗C and the Z-linear independence of the ai , we derive that each αi ∈ D vanishes,
hence α = 0, proving the claim. �

5B. A counterexample. We conclude with the promised counterexample to the
injectivity of µA⊗ 1, namely Proposition 2.14.

Construction of A. We will use Yves André’s example of a simple traceless abelian
variety A over C(t)alg with 0 6= UA ( WA (cf. [Bertrand and Pillay 2010], just
before Remark 3.10). Since UA 6=WA, this A is not constant, but we will derive this
property and the simplicity of A from another argument, borrowed from [Lange
and Birkenhake 1992, Chapter 9 §6].

We start with a CM field F of degree 2k over Q, over a totally real number field
F0 of degree k≥2, and denote by {σ1, σ̄1, . . . , σk, σ̄k} the complex embeddings of F .
We further fix the CM type S := {σ1, σ̄1, 2σ2, . . . , 2σk}. By [Lange and Birkenhake
1992, Chapter 9 §6], we can attach to S and to any τ ∈H (the Poincaré half-plane,
or equivalently, the open unit disk) an abelian variety A = Aτ of dimension g = 2k
and an embedding of F into End(A)⊗Q such that the representation r of F on WA

is given by the type S. The representation ρ of F on LÃ is then r⊕ r̄ , equivalent to
twice the regular representation. (The notation used by [Lange and Birkenhake 1992]
here read: e0 = k, d = 1,m = 2, r1 = s1 = 1, r2 = · · · = re0 = 2, s2 = · · · = se0 = 0,
so, the product of the Hri ,si of [loc. cit.] is just H. Also, [loc. cit.] considers the
more standard “analytic” representation of F on the Lie algebra LA = LÃ/WA,
which is r̄ in our notation.)
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From the bottom of [Lange and Birkenhake 1992, p. 271], one infers that the
moduli space of such abelian varieties Aτ is an analytic curve H/0. But Shimura
has shown that it can be compactified to an algebraic curve X (cf. [Lange and
Birkenhake 1992, p. 247]). So, we can view the universal abelian variety Aτ = A
of this moduli space as an abelian variety over C(X), hence as an abelian variety A
over K = C(t)alg. This will be our A; it is by construction not constant — and it is
a fourfold if we take k = 2, as we will in what follows.

Finally, since A is the general element over H/0, Theorem 9.1 of [Lange and
Birkenhake 1992] and the hypothesis k ≥ 2 imply that End(A)⊗Q is equal to F .
Therefore, A is a simple abelian variety, necessarily traceless since it is not constant.
We denote by O the order End(A) of F .

Action of F and of ∇ on LÃ. For simplicity, we will now restrict to the case k = 2,
but the general case (requiring 2k points) would work in exactly the same way.
So, F is a totally imaginary quadratic extension of a real quadratic field F0, and
LÃ is 8-dimensional. As said in [Bertrand and Pillay 2010], and by definition of
the CM-type S, the action ρ of F splits LÃ into eigenspaces for its irreducible
representations σ ’s, as follows:

• WA = Dσ1 ⊕ Dσ̄1 ⊕ Pσ2 , where the D’s are lines and Pσ2 is a plane;

• LA lifts to LÃ into D′σ1
⊕ D′σ̄1

⊕ Pσ̄2 , with the same notation.

Since ∇ := ∇LÃ = ∂LÃ commutes with the action ρ of F and since A is not
constant, we infer that the maximal ∂-submodule of WA is

UA = Pσ2,

while WA+∇(WA)=5σ1 ⊕UA⊕5σ̄1 , with the planes

5σ1 = Dσ1 ⊕ D′σ1
,

5σ̄1 = Dσ̄1 ⊕ D′σ̄1
,

each stable under ∇ (just as is Pσ̄2 , of course). In fact, for our proof, we only need
to know that Pσ2 ⊂UA.

Now let ỹ ∈ Ã(K ) be a lift of a point y ∈ A(K ). Going into a complex analytic
setting, we choose a logarithm x̃ ∈ L Ã(K diff) of ỹ, locally analytic on a small disk
in X(C). Let further α ∈ O, which canonically lifts to End( Ã). Then ρ(α)x̃ is a
logarithm of α · ỹ ∈ Ã(K ), and therefore satisfies

∇(ρ(α)x̃)= ∂`n Ã(α · ỹ).

In fact, this appeal to analysis is not necessary; the formula just says that ∂`n Ã
(and ∇) commutes with the actions of O. But once one ỹ and one x̃ are chosen, it
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will be crucial, for the desired relation (R) following Proposition 2.14, that we take
these ρ(α)x̃ as solutions to the equations on the O-orbit of ỹ.

Concretely, if
x̃ = xσ2 ⊕ xσ1 ⊕ xσ̄1 ⊕ xσ̄2

is the decomposition of x̃ in

LÃ = Pσ2 ⊕5σ1 ⊕5σ̄1 ⊕ Pσ̄2,

then for any α ∈ O, we have

ρ(α)(x̃)= σ2(α)xσ2 ⊕ σ1(α)xσ1 ⊕ σ̄1(α)xσ̄1 ⊕ σ̄2(α)xσ̄2 .

Conclusion. Let y ∈ A(K ) be a nontorsion point of the simple abelian variety A,
for which we choose at will a lift ỹ to Ã(K ) and a logarithm x̃ ∈ LÃ(K diff). Let
{α1, . . . , α4} be an integral basis of F over Q. We will consider the 4 points
yi = αi · y of A(K ), i = 1, . . . , 4. Since the action of O on A is faithful, they are
linearly independent over Z. For each i = 1, . . . , 4, we consider the lift ỹi = αi ỹ of
yi to LÃ(K ), and set as above x̃i = ρ(αi )x̃ , which satisfies ∇(x̃i )= ∂`n Ã ỹi .

We claim that there exist complex numbers a1, . . . , a4, not all zero, such that

u := a1 x̃1+ · · ·+ a4 x̃4 =
(
a1ρ(α1)+ · · ·+ a4ρ(α4)

)
(x̃) ∈UA(K diff),

i.e., such that in the decomposition above of LÃ = Pσ2 ⊕5σ1 ⊕5σ̄1 ⊕ Pσ̄2 , the
components of u = uσ2 ⊕ uσ1 ⊕ uσ̄1 ⊕ uσ̄2 on the last three planes vanish.

The whole point is that the complex representation σ̂⊕2 of F which ρ induces on
5σ1 ⊕5σ̄1 ⊕ Pσ̄2 is twice the representation σ̂ := σ1⊕ σ̄1⊕ σ̄2 of F on C3, and so,
does not contain the full regular representation of F . More concretely, the 4 vectors
σ̂ (α1), . . . , σ̂ (α4) of C3 are of necessity linearly dependent over C, so, there exists
a nontrivial linear relation

a1σ̂ (α1)+ · · ·+ a4σ̂ (α4)= 0 in C3

(where the complex numbers ai lie in the normal closure of F). Therefore, any
element x̃σ̂ = (xσ1, xσ̄1, xσ̄2) of 5σ1 ⊕5σ̄1 ⊕ Pσ̄2 satisfies(

a1σ̂
⊕2(α1)+ · · ·+ a4σ̂

⊕2(α4)
)
x̃σ̂ = 0 in 5σ1 ⊕5σ̄1 ⊕ Pσ̄2

(viewing each σ̂⊕2(αi ) as a (6× 6) diagonal matrix inside the (8× 8) diagonal
matrix ρ(αi )), i.e., the 3 plane-components uσ1, uσ̄1, uσ̄2 of u all vanish, and u
indeed lies in Pσ2 , and so in UA.

The existence of such a point u = a1 x̃1 + · · · + a4 x̃4 in UA(K diff) establishes
relation (R) of Section 2D, and concludes the proof of Proposition 2.14.
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