RICCI TENSOR OF REAL HYPERSURFACES

MAYUKO KON

Let M be a real hypersurface of a complex space form $M^n(c)$, $c \neq 0$, and suppose that the structure vector field ξ is an eigen vector field of the Ricci tensor S, which satisfies $S\xi = \beta \xi$ where β is a function. We show that if $(\nabla_X S)Y$ is proportional to ξ for any vector fields X and Y orthogonal to ξ, then M is a Hopf hypersurface, and if it is perpendicular to ξ, then M is a ruled real hypersurface.

1. Introduction

Takagi [1973] gave a classification of the homogeneous real hypersurface (see also [Takagi 1975a; 1975b]). As a consequence of this result, the structure vector ξ of any homogeneous real hypersurface in $\mathbb{C}P^n$ is principal. If ξ satisfies this property, then M is said to be a Hopf hypersurface. When the ambient manifold is a complex hyperbolic space, Lohnherr [1998] (see also [Lohnherr and Reckziegel 1999]) discovered a homogeneous ruled real hypersurface in $\mathbb{C}H^n$ that is not a Hopf hypersurface, and further examples were given (see [Berndt and Brück 2001]). The classification theorem for homogeneous real hypersurfaces in $\mathbb{C}H^n$, $n \geq 2$, was given by Berndt and Tamaru [2007].

When a real hypersurface is Hopf, fundamental formulas are simple. So many classification theorems are given under that assumption (see, for example, [Niebergall and Ryan 1997]). Kimura [1986] has given a classification of Hopf hypersurfaces of $\mathbb{C}P^n$, $n \geq 2$, with constant principal curvatures. He showed that a real hypersurface in $\mathbb{C}P^n$ with constant principal curvatures is a Hopf hypersurface if and only if it is an open part of a homogeneous real hypersurface. A classification theorem for Hopf hypersurfaces with constant principal curvatures in $\mathbb{C}H^n$, $n \geq 2$, was given by Berndt [1989].

On the other hand, the Ricci tensor of the real hypersurfaces is an interesting subject. It is well known that any real hypersurface of $M^n(c)$, $c \neq 0$, is not Einstein. If the Ricci tensor S is of the form $S(X, Y) = ag(X, Y) + b\eta(X)\eta(Y)$, then the real hypersurface is said to be pseudo-Einstein. The classification theorems for pseudo-Einstein real hypersurfaces in a complex space form $M^n(c)$ have been

MSC2010: primary 53C40; secondary 53C55, 53C25.
Keywords: real hypersurface, Ricci tensor.
completed [Cecil and Ryan 1982; Kim and Ryan 2008; Kon 1979; Montiel 1985].
Ki [1989] showed that there are no real hypersurfaces with parallel Ricci tensor,
$\nabla S = 0$, in $M^n(c), n \geq 3$. Several conditions that weaken the condition $\nabla S = 0$
have been studied (see [Ki et al. 1990; Suh 1990]).

We focus on the Ricci tensor S and consider a condition $S\xi = \beta\xi$, where β
is a function. We note that this condition contains not only Hopf hypersurfaces,
$A\xi = \alpha\xi$, but also some non-Hopf hypersurfaces. For example, ruled hypersurfaces, which
are an important example of non-Hopf hypersurfaces, also satisfy $S\xi = \beta\xi$. Under
this assumption, we study some Hopf hypersurfaces and ruled real hypersurfaces
according to the direction of a covariant differentiation of S.

Our main result is the following theorem:

Theorem 1.1. Let M be a connected real hypersurface of $M^n(c), c \neq 0$, and
suppose that the Ricci tensor S of M satisfies $S\xi = \beta\xi$ for some function β.

1. If $(\nabla_X S)Y$ is proportional to the structure vector field ξ for any vector fields
 X and Y orthogonal to ξ, then M is a Hopf hypersurface.
2. If $(\nabla_X S)Y$ is perpendicular to the structure vector field ξ for any vector fields
 X and Y orthogonal to the structure vector field ξ, then M is a ruled real
 hypersurface.

When $n = 2$, the author gave a corresponding result in [Kon 2014].

2. Preliminaries

Let $M^n(c)$ denote the complex space form of complex dimension n (real dimen-
sion $2n$) with constant holomorphic sectional curvature $4c$. We denote by J
the almost complex structure of $M^n(c)$. The Hermitian metric of $M^n(c)$ is denoted by G.

Let M be a real $(2n - 1)$-dimensional hypersurface immersed in $M^n(c)$. Through-
out this paper, we suppose that M is connected. We denote by g the Riemannian
metric induced on M from G. We take the unit normal vector field N of M in $M^n(c)$.
For any vector field X tangent to M, we define ϕ, η and ξ by

$$JX = \phi X + \eta(X)N, \quad JN = -\xi,$$

where ϕX is the tangential part of JX, ϕ is a tensor field of type (1,1), η is a
1-form, and ξ is the unit vector field on M. We call ξ the structure vector field. Then

$$\phi^2 X = -X + \eta(X)\xi, \quad \phi\xi = 0, \quad \eta(\phi X) = 0$$

for any vector field X tangent to M. Moreover, we have

$$g(\phi X, Y) + g(X, \phi Y) = 0, \quad \eta(X) = g(X, \xi), \quad g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y).$$

Thus (ϕ, ξ, η, g) defines an almost contact metric structure on M.
We denote by $\tilde{\nabla}$ the operator of covariant differentiation in $M^n(c)$, and by ∇ the operator of covariant differentiation in M determined by the induced metric. Then the Gauss and Weingarten formulas are given respectively by

$$\tilde{\nabla}_X Y = \nabla_X Y + g(AX, Y)N, \quad \tilde{\nabla}_X N = -AX,$$

for any vector fields X and Y tangent to M.

For the contact metric structure on M, we have

$$\nabla_X \xi = \phi AX, \quad (\nabla_X \phi)Y = \eta(Y)AX - g(AX, Y)\xi.$$

We call A the shape operator of M. If the shape operator A of M satisfies $A\xi = \alpha\xi$ for some function α, then M is called a Hopf hypersurface. By the Codazzi equation, we have the following result (see [Maeda 1976]).

Proposition A. Let M be a Hopf hypersurface in $M^n(c)$, $n \geq 2$. If $X \perp \xi$ and $AX = \lambda X$, then $\alpha = g(A\xi, \xi)$ is constant and

$$(2\lambda - \alpha)A\phi X = (\lambda\alpha + 2c)\phi X.$$

We offer an important example of a non-Hopf hypersurface. Take a regular curve γ in $M^n(c)$ with tangent vector field X. At each point of γ there is a unique complex projective or hyperbolic hyperplane cutting γ so as to be orthogonal to X and JX. The union of these hyperplanes is called a ruled real hypersurface (see [Kimura and Maeda 1989; Lohnherr and Reckziegel 1999; Niebergall and Ryan 1997]).

We remark that the shape operator A is η-parallel if it satisfies $g((\nabla_X A)Y, Z) = 0$ for any X, Y and Z orthogonal to ξ.

We denote by R the Riemannian curvature tensor field of M. Then the equation of Gauss is given by

$$R(X, Y)Z = c\{g(Y, Z)X - g(X, Z)Y + g(\phi Y, Z)\phi X - g(\phi X, Z)\phi Y - 2g(\phi X, Y)\phi Z\} + g(AY, Z)AX - g(AX, Z)AY,$$

and the equation of Codazzi by

$$(\nabla_X A)Y - (\nabla_Y A)X = c\{\eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi\}.$$

From the equation of Gauss, the Ricci tensor S of M is given by

1. $g(SX, Y) = (2n + 1)cg(X, Y) - 3c\eta(X)\eta(Y) + \text{tr} Ag(AX, Y) - g(AX, AY),$

where $\text{tr} A$ is the trace of A. Taking a covariant differentiation, we have

2. $g((\nabla_X S)Y, Z) = -3cg(Y, \phi AX)\eta(Z) - 3c\phi AX, Z)\eta(Y) + (X\text{tr} A)g(AY, Z) + \text{tr} Ag((\nabla_X A)Y, Z) - g((\nabla_X A)AY, Z) - g((\nabla_X A)Y, AZ).$
Now we develop some lemmas needed to prove our main theorem. Suppose \(n \geq 3 \).

Lemma 2.1. Let \(M \) be a real hypersurface in a complex space form \(M^n(c) \), \(n \geq 3 \), \(c \neq 0 \). If there exists an orthonormal frame \(\{ \xi, e_1, \ldots, e_{2n-2} \} \) on a sufficiently small neighborhood \(N \) of \(x \in M \) such that the shape operator \(A \) can be represented as

\[
A = \begin{pmatrix}
\alpha & h_1 & 0 & \cdots & 0 \\
h_1 & a_1 & & & \\
0 & a_2 & & & \\
& & \ddots & & \\
0 & & & \cdots & 0
\end{pmatrix},
\]

then we have

\[
\begin{align*}
(3) & \quad (a_j - a_k) g(\nabla_{e_i} e_j, e_k) - (a_i - a_k) g(\nabla_{e_j} e_i, e_k) = 0, \\
(4) & \quad (a_j - a_1) g(\nabla_{e_i} e_j, e_1) - (a_i - a_1) g(\nabla_{e_j} e_i, e_1) = h_1 (a_i + a_j) g(e_i, \phi e_j), \\
(5) & \quad h_1 g(\nabla_{e_i} e_j, e_1) - h_1 g(\nabla_{e_j} e_i, e_1) = \{2c - 2a_i a_j + \alpha (a_i + a_j)\} g(\phi e_i, e_j), \\
(6) & \quad (e_j a_i) = (a_j - a_i) g(\nabla_{e_i} e_j, e_i), \\
(7) & \quad (e_1 a_i) = (a_1 - a_i) g(\nabla_{e_i} e_1, e_i), \\
(8) & \quad (a_1 - a_j) g(\nabla_{e_i} e_1, e_j) + (a_j - a_i) g(\nabla_{e_i} e_j, e_j) = a_i h_1 g(e_i, \phi e_j), \\
(9) & \quad (e_i h_1) = \{2c - 2a_1 a_i + \alpha (a_i + a_1)\} g(e_i, \phi e_1) - h_1 g(\nabla_{e_i} e_1, e_1), \\
(10) & \quad (e_i a_1) = h_1 (2a_i + a_1) g(e_i, \phi e_1) + (a_i - a_1) g(\nabla_{e_i} e_1, e_1), \\
(11) & \quad (\xi a_i) = h_1 g(\nabla_{e_i} e_1, e_i), \\
(12) & \quad h_1 g(\nabla_{e_i} e_1, e_j) + (a_j - a_i) g(\nabla_{\xi} e_j, e_j) = (c + a_i \alpha - a_i a_j) g(e_i, \phi e_j), \\
(13) & \quad (e_i h_1) = (c + a_i \alpha - a_1 a_i + h_1^2) g(e_i, \phi e_1) + (a_i - a_1) g(\nabla_{\xi} e_i, e_1), \\
(14) & \quad (e_i \alpha) = h_1 (\alpha - 3 a_i) g(e_i, \phi e_1) - h_1 g(\nabla_{\xi} e_i, e_1), \\
(15) & \quad (e_1 h_1) = (\xi a_1), \\
(16) & \quad (e_1 \alpha) = (\xi h_1), \\
(17) & \quad (a_1 - a_i) g(\nabla_{\xi} e_1, e_i) - h_1 g(\nabla_{e_i} e_1, e_i) = (c + a_i \alpha - a_1 a_i - h_1^2) g(e_i, \phi e_1),
\end{align*}
\]

for any \(i, j \geq 2, i \neq j \).

Proof. By the equation of Codazzi, we have

\[g((\nabla_{e_i} A) e_1 - (\nabla_{e_1} A) e_i, e_j) = 0, \]

where \(i, j = 2, \ldots, 2n - 2 \). On the other hand, we have

\[
g((\nabla_{e_i} A) e_1 - (\nabla_{e_1} A) e_i, e_j) \\
= g(\nabla_{e_i} (A e_1) - A \nabla_{e_i} e_1 - \nabla_{e_1} (A e_i) + A \nabla_{e_1} e_i, e_j) \\
= (a_1 - a_j) g(\nabla_{e_i} e_1, e_j) + (a_j - a_i) g(\nabla_{e_1} e_i, e_j) + a_i h_1 g(\phi e_i, e_j).
\]
Thus we obtain (8). We obtain the other results through similar computations. □

We remark that these equations hold in the case that M is a Hopf hypersurface, i.e., $h_1 = 0$. When $n = 2$, we showed the corresponding result in [Kon 2014].

We define the subspace $L_x \subset T_x(M)$ as the smallest subspace that contains ξ and is invariant under the shape operator A. Then M is Hopf if and only if L_x is one-dimensional at each point x.

Lemma 2.2. Let M be a real hypersurface of $M^n(c)$. If the Ricci tensor S of M satisfies $S\xi = \beta\xi$ for some function β, then $\dim L_x \leq 2$ at each point x of $M^n(c)$.

Proof. By (1), we have

$$0 = g(S\xi, Y) = -g(A^2\xi, Y)$$

for any Y orthogonal to ξ and $A\xi$. So $A^2\xi$ is spanned by ξ and $A\xi$. Thus we see that $\dim L_x \leq 2$. □

Suppose that M is not a Hopf hypersurface and that $S\xi = \beta\xi$. By Lemma 2.2, we can take an orthonormal frame $\{\xi, e_1, \ldots, e_2n-2\}$, locally, such that A is of the form

$$A = \begin{pmatrix} \alpha & h_1 & 0 \\ h_1 & a_2 & \\ 0 & & a_{2n-2} \end{pmatrix},$$

where $h_1 = g(Ae_1, \xi)$, $a_i = g(Ae_i, e_i)$ for $i = 1, \ldots, 2n-2$, $g(Ae_i, e_j) = 0$ for $i \neq j$ and $\alpha = g(A\xi, \xi)$. By (1), we obtain

$$S\xi = (2n-2)c\xi + (\text{tr} \ A)(h_1 e_1 + \alpha\xi) - A(h_1 e_1 + \alpha\xi)$$

$$= (\text{tr} \ A - \alpha - a_1)h_1 e_1 + ((2n-2)c + (\text{tr} \ A)\alpha - h_1^2 - \alpha^2)\xi = \beta\xi.$$

So we see that

$$\text{tr} \ A = \alpha + a_1, \quad a_2 + \cdots + a_{2n-2} = 0.$$

Moreover, (1) implies that the Ricci tensor S can be represented as

$$S = \begin{pmatrix} \beta & 0 \\ \lambda_1 & \\ 0 & \lambda_{2n-2} \end{pmatrix},$$

where β and λ_i satisfy

$$\beta = (2n-2)c + (\alpha a_1 - h_1^2), \quad \lambda_1 = (2n + 1)c + (\alpha a_1 - h_1^2),$$

$$\lambda_j = (2n + 1)c + \text{tr} \ A \cdot a_j - a_j^2, \quad j = 2, \ldots, 2n - 2.$$
3. Real hypersurfaces with η-parallel Ricci tensor

In this section, we consider the additional condition that the Ricci operator S is $η$-parallel, that is,

$$g((\nabla_X S) Y, Z) = 0$$

for any vector fields X, Y and Z orthogonal to $ξ$. This is equivalent to the condition that $(\nabla_X S) Y$ is proportional to $ξ$ [Suh 1990].

Theorem 3.1. Let M be a real hypersurface of $M^n(c)$, $c \neq 0$, with $η$-parallel Ricci tensor. If the Ricci tensor S of M satisfies $Sξ = βξ$ for some function $β$, then M is a Hopf hypersurface.

Before proving Theorem 3.1, we need the following lemma.

Lemma 3.2. Let M be a real hypersurface of $M^n(c)$, $c \neq 0$, with $η$-parallel Ricci tensor. If the Ricci tensor S of M satisfies $Sξ = βξ$ for some function $β$, then we have

$$g((R(W, X) S) Y, Z) = -g(Sφ AX, Z)g(φ AW, Y) - g(Sφ AX, Y)g(φ AW, Z)$$

$$+ g(Sφ AW, Z)g(φ AX, Y) + g(Sφ AW, Y)g(φ AX, Z)$$

$$- g((\nabla_ξ S) Y, Z)g((φ A + Aφ) X, W)$$

for any X, Y, Z and W orthogonal to $ξ$.

Proof. Since S is $η$-parallel, we have

$$g((R(W, X) S) Y, Z)$$

$$= g(R(W, X) SY, Z) - g(R(W, X) Y, SZ)$$

$$= g(∇W ∇X SY - ∇X ∇W SY - [W, X] SY, Z)$$

$$- g(∇W ∇X Y - ∇X ∇W Y - [W, X] Y, SZ)$$

$$= -g((∇X S) Y, ∇W Z) + g(∇W (S∇X Y), Z) + g((∇W S) Y, ∇X Z)$$

$$- g((∇X (S∇W Y), Z) - g((∇[W, X] S) Y, Z) - g(∇W ∇Y, SZ)$$

$$+ g(∇X ∇W Y, SZ)$$

$$= -g((∇X S) Y, ξ)g(ξ, ∇W Z) + g((∇W S) ∇X Y, Z)$$

$$+ g((∇W S) Y, ξ)g(ξ, ∇X Z) - g((∇X S) ∇W Y, Z)$$

$$- g((∇ξ S) Y, Z)g(ξ, [W, X])$$

$$= -g(Sφ AX, Y)g(φ AW, Z) + g(Sφ AW, Z)g(φ AX, Y)$$

$$+ g(Sφ AW, Y)g(φ AX, Z) - g(Sφ AX, Z)g(φ AW, Y)$$

$$- g((∇ξ S) Y, Z)g((φ A + Aφ) X, W).$$

From Lemma 3.2 we obtain the following:
Lemma 3.3. Let M be a real hypersurface of $M^n(c)$, $c \neq 0$, with η-parallel Ricci tensor. Suppose that the Ricci tensor S of M satisfies $S\xi = \beta \xi$ for some function β. If $SY = \lambda Y$ and if Y is orthogonal to ξ, then we have

$$g((\nabla_\xi S)Y, Y)g((\phi A + A\phi)X, W) = 0$$

for any X, Y and W orthogonal to ξ.

Proof of Theorem 3.1.

In the following, we suppose that M is not a Hopf hypersurface. We work in an open set where $h_1 \neq 0$.

Case (I): First we consider the case $g((\nabla_\xi S)Y, Y) = 0$.

Lemma 3.4. $\beta, \lambda_1, \ldots, \lambda_{2n-2}$ are constant.

Proof. Since the Ricci tensor S is η-parallel and since $g((\nabla_\xi S)Y, Y) = 0$, we have

$$0 = g((\nabla_Z S)Y, Y) = g(\nabla_Z SY, Y) - g(S\nabla_Z Y, Y) = Z\lambda$$

for any tangent vector field Z. So we see that $\lambda_1, \ldots, \lambda_{2n-2}$ are constant. On the other hand, since $\beta = \lambda_1 - 3c$, we see that β is also constant.

Lemma 3.5. If $\lambda_i \neq \lambda_j$, $i, j = 1, \ldots, 2n - 2$, then we have $g(\nabla_X e_i, e_j) = 0$ for any X orthogonal to ξ.

Proof. Since we have $Se_i = \lambda_i e_i$ and $Se_j = \lambda_j e_j$ and since S is η-parallel, we obtain

$$0 = g((\nabla_X S)e_i, e_j) = (\lambda_i - \lambda_j)g(\nabla_X e_i, e_j).$$

If $\lambda_1 = \cdots = \lambda_{2n-2} = \lambda$, then M is pseudo-Einstein, i.e., $SX = \lambda X + (\beta - \lambda)\eta(X)\xi$, and so it is a Hopf hypersurface (see [Kon 1979]).

Suppose that M is non-Hopf and that there exist λ_t and λ_j, $t, j \geq 2$, satisfying $\lambda_1 \neq \lambda_t$ and $\lambda_t \neq \lambda_j$. By Lemma 3.5,

$$g(\nabla_j \nabla_t e_t, e_j) = -g(\nabla_j e_t, \nabla_t e_j)$$

$$= -g(\nabla_j e_t, \xi) \delta_j e_j - \sum_k g(\nabla_t e_t, e_k)g(e_k, \nabla_t e_j)$$

$$= -g(e_t, \phi A e_t)g(\phi A e_j, e_j) = 0,$$

$$g(\nabla_t \nabla_j e_t, e_j) = -g(\nabla_j e_t, e_t) = -g(\nabla_j e_t, \xi)g(\delta_j e_j, e_t)$$

$$= -g(\delta_t e_t, \phi A e_j)g(\phi A e_t, e_j) = -a_j a_t g(\phi e_j, e_t) g(\phi e_t, e_j).$$

On the other hand, from (8),

$$(a_1 - a_t)g(\nabla_j e_1, e_t) + (a_t - a_j)g(\nabla_j e_1, e_t) + a_j h_1 g(\phi e_j, e_t) = 0.$$

From Lemma 3.5, we have $g(\nabla_j e_1, e_t) = 0$, $g(\nabla_j e_1, e_t) = 0$. Since $h_1 \neq 0$,

$$a_j g(\phi e_j, e_t) = 0,$$
from which we obtain
\[g(\nabla_{e_i} \nabla_{e_j} e_t, e_j) = 0. \]

Moreover, we have
\[
g(\nabla_{[e_j,e_i]} e_t, e_j) = g(\nabla_\xi e_t, e_j) [e_j, e_i] = 0.\]

Using (12), we see that
\[
(c + a_j \alpha - a_j a_t) g(\phi e_j, e_t) + h_1 g(\nabla_{e_j} e_1, e_t) + (a_t - a_j) g(\nabla_{e_j} e_t, e_t) = 0.
\]

From these equations, we obtain
\[
 c g(\phi e_j, e_t)^2 + a_t g(\phi e_j, e_t) g(\nabla_\xi e_j, e_t) = 0.
\]

Hence we have
\[
g(\nabla_{[e_j,e_t]} e_t, e_j) = -c g(\phi e_j, e_t)^2.
\]

Therefore,
\[
g(R(e_j, e_t)e_t, e_j) = c g(\phi e_j, e_t)^2.
\]

On the other hand, the equation of Gauss implies
\[
g(R(e_j, e_t)e_t, e_j) = c + 3 c g(\phi e_j, e_t)^2 + a_t a_j.
\]

From these equations, we have
\[
c(1 + 2 g(\phi e_j, e_t)^2) + a_t a_j = 0.
\]

Sine \(c \neq 0 \), we see that \(a_t \neq 0 \) and \(a_j \neq 0 \). Thus \(g(\phi e_j, e_t) = 0 \) and \(c + a_t a_j = 0 \). So we can represent \(A \) as
\[
A = \begin{pmatrix}
\alpha & h_1 \\

h_1 & a_t \\
\vdots & \ddots \\
\end{pmatrix}
\]
by setting \(a = a_j, \ b = a_t \) and taking a suitable permutation of \(\{e_2, \ldots, e_{2n-2}\} \).
Suppose there exist \(j \) and \(t \) such that \(g(\phi e_j, e_1) \neq 0 \) and \(g(\phi e_t, e_1) \neq 0 \). Then \(\phi e_j \) and \(\phi e_t \) satisfy

\[
\phi e_j = \sum_k g(\phi e_j, e_k)e_k + g(\phi e_j, e_1)e_1, \quad A e_k = a e_k, \\
\phi e_t = \sum_l g(\phi e_t, e_l)e_l + g(\phi e_t, e_1)e_1, \quad A e_l = b e_l.
\]

So we have

\[
0 = g(\phi e_j, \phi e_t) = g(\phi e_j, e_1)g(\phi e_t, e_1),
\]

from which we see that \(g(\phi e_j, e_1) = 0 \) or \(g(\phi e_t, e_1) = 0 \), and hence \(A \phi e_1 = a \phi e_1 \) or \(A \phi e_1 = b \phi e_1 \).

When \(A \phi e_1 = a \phi e_1 \), we have \(A \phi e_t = b \phi e_t \). By (4),

\[
(b - a_1)g(\nabla_{e_i} \phi e_t, e_1) - (b - a_1)g(\nabla_{\phi e_t} e_i, e_1) + 2h_1 b g(\phi e_t, \phi e_t) = 0.
\]

Thus we obtain \(b = 0 \), which contradicts \(c + ab = 0 \) and \(c \neq 0 \). By a similar computation, the case \(A \phi e_1 = b \phi e_1 \) does not occur.

Next we consider the case \(\lambda_2 = \cdots = \lambda_{2n-2} \neq \lambda_1 \). We set \(\lambda = \lambda_j, j = 2, \ldots, 2n-2 \). From Lemma 3.5, we have \(g(\nabla_X e_1, e_i) = 0, i \geq 2 \), for any \(X \) orthogonal to \(\xi \).

By (4) and (5),

\[
h_1(a_i + a_j)g(\phi e_i, e_j) = 0, \quad (2c - 2a_ia_j + \alpha(a_i + a_j))g(\phi e_i, e_j) = 0.
\]

Since \(a_j \) satisfies

\[
\lambda = (2n + 1)c + \text{tr } A \cdot a_j - a_j^2,
\]

we can represent \(A \) as

\[
A = \begin{pmatrix}
a & \alpha & h_1 & h_1 & a_1 \\
h_1 & h_1 & a & \alpha & h_1 \\
a & \alpha & h_1 & h_1 & a_1 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
2a & b & a & \alpha & h_1 \\
b & a & \alpha & h_1 & h_1 \\
\end{pmatrix}
\]

by taking a suitable permutation of \(\{e_2, \ldots, e_{2n-2}\} \).

There exist \(i \) and \(j \) satisfying \(g(\phi e_i, e_j) \neq 0 \). Therefore, using \(h_1 \neq 0 \),

\[
a_i + a_j = 0, \quad 2c - 2a_ia_j + \alpha(a_i + a_j) = 0.
\]

We notice that \(\text{tr } A = a_1 + \alpha \) and \(\sum_{j=2}^{2n-2} a_j = ka + lb = 0 \), where \(k \) and \(l \) are the multiplicities of \(a \) and \(b \), respectively.
When \(a_i = a_j = a \), then we have \(a_i + a_j = 2a = 0 \). Combining this with the above equations, we obtain \(b = 0 \) and \(c = 0 \). This is a contradiction. Similarly, the case \(a_i = a_j = b \) does not occur.

Next, when \(a_i = a , a_j = b \) and \(a = b = 0 \) and \(c = 0 \). This is a contradiction.

Finally we consider the case \(a_i = a , a_j = b \) and \(a = b \neq b \). Then we have \(a = −b \neq 0 \). Since \(ka + lb = 0 \), we obtain \(k = l \). This contradicts the fact that \(M \) is an odd-dimensional real hypersurface.

Case (II): Next we consider the case

\[
(18) \quad g((\phi A + A\phi)X, W) = 0
\]

for any \(X \) and \(W \) orthogonal to \(\xi \).

Since \(\{\xi, \phi e_1, \ldots, \phi e_{2n-2}\} \) is an orthonormal basis of the tangent space, we have

\[
\begin{align*}
\text{tr} A &= g(A\xi, \xi) + \sum_{i=1}^{2n-2} g(A\phi e_i, \phi e_i) \\
&= \alpha - \sum_{i=1}^{2n-2} g(A\phi e_i, \phi e_i) = \alpha - \sum_{i=1}^{2n-2} g(A e_i, e_i).
\end{align*}
\]

Since \(\text{tr} A = \alpha + \sum_{i=1}^{2n-2} g(A e_i, e_i) \), we obtain \(\sum_{i=1}^{2n-2} g(A e_i, e_i) = 0 \) and \(\text{tr} A = \alpha \). On the other hand, from \(\text{tr} A = a_1 + \alpha \), we have \(a_1 = 0 \). Substituting \(X = e_1 \) in (18), we see that \(g(A\phi e_1, W) = 0 \) for any \(W \) orthogonal to \(\xi \). Since

\[
g(A\phi e_1, \xi) = g(\phi e_1, A\xi) = 0,
\]

we have \(A\phi e_1 = 0 \). Without loss of generality, we can set \(\phi e_1 = e_2 \). From (13) and (17), we obtain

\[
(19) \quad (e_2 h_1) = c + h_1^2,
\]

\[
(20) \quad (c - h_1^2) + h_1 g(\nabla e_1 e_2, e_1) = 0.
\]

On the other hand, since \(S \) is \(\eta \)-parallel, putting \(X = Y = e_1 \) and \(Z = e_2 \) into (2), we have

\[
0 = \text{tr} g((\nabla e_1 A)e_1, e_2) - g((\nabla e_1 A)e_1, e_2) = h_1^2 g(e_1, \nabla e_1 e_2).
\]

Since \(h_1 \neq 0 \), we have \(g(\nabla e_1 e_2, e_1) = 0 \). Combining this with (20), we see that \(h_1^2 = c \). This contradicts (19), finishing the proof.

We remark that Suh [1990] and Maeda [2013] classified Hopf hypersurfaces of nonflat complex space forms with \(\eta \)-parallel Ricci tensor.
4. Ruled real hypersurfaces

In the previous sections, under the condition that the Ricci tensor S of M satisfies $S\xi = \beta \xi$, we gave sufficient conditions for M to be a Hopf hypersurface with respect to the covariant derivative of the Ricci tensor of S. The purpose of this section is to give a condition on the Ricci tensor for M to be a ruled real hypersurface.

Theorem 4.1. Let M be a real hypersurface of $M^n(c)$, $c \neq 0$. If the Ricci tensor S of M satisfies $S\xi = \beta \xi$ for some function β and if $g((\nabla_X S)Y, \xi) = 0$ for any vector fields X and Y orthogonal to ξ, then M is a ruled real hypersurface.

Proof. To prove Theorem 4.1, we need the following proposition:

Proposition 4.2. Let M be a real hypersurface of $M^n(c)$, $c \neq 0$. If the Ricci tensor S of M satisfies $S\xi = \beta \xi$ for some function β and if $g((\nabla_X S)Y, \xi) = 0$ for any vector fields X and Y orthogonal to ξ, then M is not Hopf.

Proof. Suppose that M is a Hopf hypersurface. Then we have $A\xi = \alpha \xi$, and hence $S\xi = \beta \xi$. We note that α is constant. Therefore, we have

$$g((\nabla_X S)Y, \xi) = g((\nabla_X S)\xi, Y) - g(S\phi AX, Y) = \beta g(\phi AX, Y) - g(\phi AX, SY)$$

for any X and Y orthogonal to ξ. We take an orthonormal basis $\{\xi, e_1, \ldots, e_{2n-2}\}$ that satisfies $e_{2i} = \phi e_{2i-1}$, $i = 1, \ldots, n-1$, and set $Ae_t = a_t e_t$, $t = 1, \ldots, 2n-2$. Then we have $A\phi e_t = \bar{a}_t \phi e_t$ since M is Hopf. Then the Ricci operator S satisfies $S\xi = \beta \xi$ and $Se_t = \lambda_t e_t$, $t = 1, \ldots, 2n-2$, where

$$\beta = (2n-1)c + \text{tr } A \cdot \alpha - \alpha^2, \quad \lambda_t = (2n+1)c + \text{tr } A \cdot a_t - a_t^2.$$

Thus we obtain

$$0 = (\beta - \lambda_t)g(\phi AX, e_t) = -(\beta - \lambda_t)g(X, A\phi e_t)$$

for any X orthogonal to ξ. Since $A\xi = \alpha \xi$, we have $g(A\phi e_t, \xi) = 0$. From these equations, we have:

Lemma 4.3. If $\beta \neq \lambda_t$, then $A\phi e_t = 0$, that is, $\bar{a}_t = 0$.

We suppose $\beta \neq \lambda_t$. Then, from (1), we have

$$\bar{\lambda}_t = g(S\phi e_t, \phi e_t) = (2n+1)c.$$

Using Proposition A and $c \neq 0$, we have $\alpha \neq 0$ and

$$a_t = -\frac{2c}{\alpha}.$$
If $\beta \neq \lambda_t$ and $\beta \neq \bar{\lambda}_t = g(\phi e_t, \phi e_t)$, then we have $a_t = \tilde{a}_t = 0$. This is a contradiction. Thus we obtain:

Lemma 4.4. If $\beta \neq \lambda_t$, then $\beta = \bar{\lambda}_t = (2n + 1)c$.

Since M is not Einstein, there exists a t such that $\beta \neq \lambda_t$. So we see that λ_t satisfies $\beta = \lambda_t = \bar{\lambda}_t$ or $\beta = \bar{\lambda}_t = \lambda_t$.

When $\beta = \lambda_t = \bar{\lambda}_t$, since $\beta = (2n + 1)c$, we have

$$0 = a_t(\text{tr } A - a_t).$$

So we obtain $a_t = 0$ or $a_t = \text{tr } A$. If $a_t = 0$, then $\tilde{a}_t = -2c/\alpha$. There exists an s that satisfies $\lambda_s \neq \beta$, and hence $a_s = -2c/\alpha$. Thus we have

$$\beta \neq \lambda_s = (2n + 1)c + \text{tr } A \left(-\frac{2c}{\alpha} \right) - \left(-\frac{2c}{\alpha} \right)^2.$$

Thus $\bar{\lambda}_t = \lambda_s \neq \beta$. This is a contradiction. So we see that $a_t = \text{tr } A \neq 0$. In the following, we set $a = a_t = \text{tr } A$. Since $a_t = \tilde{a}_t = \text{tr } A$, we have

$$(2a - \alpha)a = (\alpha a + 2c).$$

Thus a satisfies $a^2 - \alpha a - c = 0$, and hence a turns to be constant. In the following, we set $a_1 = -2c/\alpha$ and $\tilde{a}_1 = a_2 = 0$.

Next we compute $g(R(e_1, e_2)e_2, e_1)$. By the equation of Gauss,

$$g(R(e_1, e_2)e_2, e_1) = g(R(e_1, \phi e_1)\phi e_1, e_1) = 4c.$$

Using (7), $a_1 g(\nabla e_2 e_1, e_2) = 0$. Since $a_1 \neq 0$, we have $g(\nabla e_2 e_2, e_1) = 0$. Moreover,

$$g(\nabla e_2 e_2, e_2) = 0, \quad g(\nabla e_2 e_2, \xi) = -g(e_2, \phi Ae_2) = 0.$$

When $k \geq 3$, by (6),

$$a_k g(\nabla e_2 e_2, e_k) = 0.$$

When $a_k \neq 0$, we have $g(\nabla e_2 e_2, e_k) = 0$. By (10), $g(\nabla e_1 e_1, e_2) = 0$. Moreover,

$$g(\nabla e_1 e_1, e_1) = 0, \quad g(\nabla e_1 e_1, \xi) = 0.$$

Since $k \geq 3$, by (10) and the fact that a_1 is constant,

$$(a_1 - a_k) g(\nabla e_1 e_k, e_1) = 0.$$

By $a_1 \neq 0$, if $a_k = 0$, then $g(\nabla e_1 e_1, e_k) = 0$. Thus we have

$$\sum_{k=1}^{2n-2} g(\nabla e_1 e_1) g(e_k, \nabla e_2 e_2) = 0.$$
Thus we have
\[g(\nabla_{e_1} \nabla_{e_2} e_2, e_1) = e_1 g(\nabla_{e_2} e_2, e_1) - g(\nabla_{e_2} e_2, \nabla_{e_1} e_1) \]
\[= - \sum_k g(\nabla_{e_2} e_2, e_k)g(e_k, \nabla_{e_1} e_1) = 0, \]
and

\[g(\nabla_{e_1} \nabla_{e_2} e_2, e_1) = e_2 g(\nabla_{e_1} e_2, e_1) - g(\nabla_{e_1} e_2, \nabla_{e_2} e_1) = -g(\nabla_{e_1} \phi e_1, \nabla_{e_2} e_1) \]
\[= g(\nabla_{e_1} e_1, \phi \nabla_{e_2} e_1) = g(\nabla_{e_1} e_1, \nabla_{e_2} e_2) = 0, \]

so we have
\[g(\nabla_{e_1} e_1, \nabla_{e_2} e_2) = c. \]

Using (4), we have
\[g(\nabla_{e_1} e_2, e_1) = \frac{a_k - a_1}{a_1} g(\nabla_{e_2} e_1, e_k). \]

On the other hand, by (8),
\[g(\nabla_{e_1} e_2, e_1) = \frac{a_k}{a_1} g(\nabla_{e_1} e_2, e_k). \]

So we obtain
\[\sum_{k \geq 3} g(\nabla_{e_k} e_2, e_1)(e_k, \nabla_{e_1} e_2) - \sum_{k \geq 3} g(\nabla_{e_k} e_2, e_1)g(e_k, \nabla_{e_2} e_1) \]
\[= \sum_{k \geq 3} (a_k - a_1) g(\nabla_{e_2} e_1, e_k)g(e_k, \nabla_{e_1} e_2) - \sum_{k \geq 3} \frac{a_k}{a_1} g(\nabla_{e_1} e_2, e_k)(e_k, \nabla_{e_2} e_1) \]
\[= - \sum g(\nabla_{e_2} e_1, e_k)g(e_k, \nabla_{e_1} e_2) \]
\[= - \sum g(\nabla_{e_2} e_1, \phi e_k)g(\phi e_k, \nabla_{e_1} e_2) \]
\[= \sum g(\nabla_{e_2} e_2, e_k)g(e_k, \nabla_{e_1} e_1) = 0. \]

Thus we have
\[g(R(e_1, e_2) e_2, e_1) = c, \]
from which we obtain \(c = 0 \). This is a contradiction. Hence we see that \(M \) is not Hopf. Thus we have proven Proposition 4.2. \(\square \)
From Proposition 4.2, if \(g((\nabla_X S)Y, \xi) = 0 \) for \(X, Y \in H \), then \(M \) is not Hopf. In the following, we suppose that \(M \) is not Hopf, that is, \(h_1 \neq 0 \). Then, by Lemma 2.2, we can take an orthonormal basis \(\{ \xi, e_1, \ldots, e_{2n-2} \} \) such that

\[
(21) \quad A\xi = \alpha \xi + h_1 e_1, \quad Ae_1 = a_1 e_1 + h_1 \xi, \quad Ae_j = a_j e_j, \quad j = 2, \ldots, 2n - 2, \quad \text{tr} A = \alpha + a_1, \quad a_2 + \cdots + a_{2n-2} = 0.
\]

Then we have

\[
\beta = g(S\xi, \xi) = (2n - 2)c + (a_1 \alpha - h_1^2),
\]

\[
\lambda_1 = g(Se_1, e_1) = (2n + 1)c + (a_1 \alpha - h_1^2),
\]

\[
\lambda_j = g(Se_j, e_j) = (2n + 1)c + \text{tr} A \cdot a_j - a_j^2, \quad j \geq 2.
\]

By the assumption, for any \(X \) and \(Y \) orthogonal to \(\xi \),

\[
0 = g((\nabla_X S)\xi, Y) = g(\nabla_X S\xi, Y) - g(S\phi AX, Y).
\]

We set \(SY = \lambda Y \). Then we have

\[
0 = (\beta - \lambda)g(\phi AX, Y).
\]

Since \(\beta \neq \lambda_1 \), we see that

\[
g(\phi AX, e_1) = -g(AX, \phi e_1) = -g(X, A\phi e_1) = 0
\]

for any \(X \in H \). We also have \(g(\xi, A\phi e_1) = 0 \). Thus we have \(A\phi e_1 = 0 \). In the following, we set \(\phi e_1 = e_2 \). Then we have

\[
0 = (\beta - \lambda_2)g(\phi Ae_1, e_2) = (-3c + a_1 \alpha - h_1^2)a_1.
\]

Lemma 4.5. If \(h_1 \neq 0 \), then \(a_2 = 0 \). Moreover, \(a_1 = 0 \) or \(a_1 \alpha - h_1^2 = 3c \).

Case (I): Suppose \(a_1 = 0 \).

Since \(a_1 = a_2 = 0 \), (13) implies

\[
(e_2 h_1) = c + h_1^2.
\]

If \(\beta = (2n + 1)c = \lambda_2 \), then \(h_1^2 = -3c \) and \(e_2 h_1 = 0 \). Then we have \(h_1^2 = -c \) and \(c = 0 \). This is a contradiction. So we have:

Lemma 4.6. If \(a_1 = 0 \), then \(\beta \neq (2n + 1)c = \lambda_2 \).

For any \(X \in H \), we see that

\[
(\beta - \lambda_k)g(\phi AX, e_k) = 0, \quad k \geq 3.
\]

If \(\beta \neq \lambda_k \), then \(g(A\phi e_k, X) = 0 \), and moreover \(g(A\phi e_k, \xi) = 0 \). This shows that \(A\phi e_k = 0 \) and that \(\phi e_k \) is a principal vector of \(A \). We set

\[
\tilde{\lambda}_k = g(S\phi e_k, \phi e_k).
\]
Since \(a_1 \alpha - h_1^2 \neq 3c \), we have \(\bar{\lambda}_k = (2n + 1)c \neq \beta \). Then, from

\[
(\beta - \bar{\lambda}_k)g(\phi AX, \phi e_k) = 0,
\]

we have \(g(AX, e) = 0 \). We also have \(g(Ae_k, \xi) = 0 \) since \(k \geq 3 \). Hence we obtain \(Ae_k = 0 \) for \(e_k \) satisfying \(\beta \neq \lambda_k \).

We next consider the case \(\beta = \lambda_j \) for some \(j \geq 3 \). If \(\beta = \lambda_j = \lambda_i \), then

\[
\beta = (2n + 1)c + \text{tr} A \cdot a_j - a_j^2 = (2n + 1)c + \text{tr} A \cdot a_i - a_i^2.
\]

Therefore, at most two \(a_j \) are different. By this equation, we have

\[
0 = (a_j - a_i)(\text{tr} A - (a_j + a_i)).
\]

If \(a_j = a_i = a \) for all \(j \) and \(i \), then (21) implies \(\sum a_j = 0 \). Thus we have all \(a_j = 0, j = 2, \ldots, 2n - 2 \). Since \(a_1 = 0, M \) is a ruled real hypersurface.

Let us suppose that two \(a_j \) are different. We set

\[
T_a = \{ X \mid AX = aX, X \in H_x \}, \quad T_b = \{ X \mid AX = bX, X \in H_x \},
\]

where \(\beta = \lambda_a = \lambda_b, a \neq b \). We notice \(\text{tr} A = a + b \). If \(a = 0 \) or \(b = 0 \), then, by (21), \(a = b = 0 \). This contradicts the assumption that \(a \neq b \). So we obtain \(a \neq 0 \) and \(b \neq 0 \). We notice that \(\text{dim} T_a + \text{dim} T_b \) is even number.

Let \(e_i, e_j \in T_a \). By (8) and (12),

\[
-ag(\nabla_{e_i} e_1, e_j) + ah_1 g(\phi e_i, e_j) = 0, \\
(c + a\alpha - a^2)g(\phi e_i, e_j) + h_1 g(\nabla_{e_i} e_1, e_j) = 0.
\]

From these, we obtain

\[
(c + a\alpha - a^2 + h_1^2)g(\phi e_i, e_j) = 0.
\]

If there exist \(e_i \) and \(e_j \) such that \(g(\phi e_i, e_j) \neq 0 \), then

\[
c + a\alpha - a^2 + h_1^2 = 0.
\]

On the other hand, we have

\[
\beta = (2n - 2)c - h_1^2 = (2n + 1)c + \text{tr} A \cdot a - a^2.
\]

Since \(\text{tr} A = \alpha + a_1 = \alpha \), we have

\[
3c + a\alpha - a^2 + h_1^2 = 0.
\]

Therefore, we have \(2c = 0 \). This contradicts \(c \neq 0 \). Hence \(g(\phi e_i, e_j) = 0 \) for all \(e_i \) and \(e_j \) of \(T_a \). So we have \(\phi T_a \subset T_b \). Similarly, we also have \(\phi T_b \subset T_a \). Consequently, we see that

\[
\phi T_a = T_b, \quad \phi T_b = T_a.
\]
If \(\dim T_a = \dim T_b = 1 \), then \(\phi T_a = T_b \). We see that if \(Ae_j = ae_j \), then \(A\phi e_j = b\phi e_j \) and \(a + b = \text{tr} A \). From (21), we have \(a + b = 0 \) and \(\text{tr} A = 0 \). Therefore, we obtain

\[\text{tr} A = \alpha = 0. \]

We will prove that there is no real hypersurface that satisfies

\[a + b = 0, \quad \alpha = 0, \quad a_1 = 0, \quad a_2 = 0, \quad \text{tr} A = 0, \]

and also

\[a^2 - h_1^2 = 3c. \]

By (5),

\[(2c + 2a^2)g(\phi e_i, \phi e_i) - h_1 g(\nabla e_i, e_i, e_1) = 0. \]

On the other hand, we have

\[g(\nabla e_i, \phi e_i) = -g(\nabla e_i, e_i, e_2). \]

By (6),

\[(a_2 - a_i)g(\nabla e_i, e_i) - (e_2 a_i) = 0. \]

Using \(a_2 = 0 \) and \(a_i = a \), we obtain

\[ag(\nabla e_i, e_2) = (e_2 a). \]

From this equation and \(a \neq 0 \), we have

\[g(\nabla e_i, e_2) = \frac{(e_2 a)}{a}. \]

On the other hand,

\[g(\nabla \phi e_i, e_1) = g(\phi \nabla e_i, e_i) = g(\nabla \phi e_i, \phi e_1). \]

By (6), we obtain

\[(a_2 + a)g(\nabla \phi e_i, e_i) + (e_2 a) = 0, \]

and hence

\[g(\nabla \phi e_i, e_i, e_2) = \frac{(e_2 a)}{a}. \]

Substituting these equations into (22), we get

\[2(c + a^2) + h_1 \frac{(e_2 a)}{a} + h_1 \frac{(e_2 a)}{a} = 0. \]

Thus we have

\[(c + a^2) a = -h_1(e_2 a). \]

On the other hand, since \(a^2 - h_1^2 = 3c \),

\[a(e_2 a) = h_1(e_2 h_1). \]
Since \(a_1 = a_2 = 0 \), by (13), we have
\[
e_2 h_1 = c + h_1^2,
\]
from which we obtain
\[
e_2 a = \frac{h_1}{a} (c + h_1^2).
\]
Substituting this into (23), we get
\[
(c + a^2) a = -\frac{h_1^2}{a} (c + h_1^2) = -\frac{1}{a} (a^2 - 3c)(a^2 - 2c).
\]
Thus we obtain
\[
(a^2 - c)^2 + 2c^2 = 0.
\]
So we have \(c = 0 \). This is a contradiction. Consequently, if \(a_1 = 0 \), then \(M \) is a ruled real hypersurface.

Case (II): Suppose \(a_1 \neq 0 \).

We notice that \(a_2 = 0 \) and \(\alpha a_1 h_1^2 = 3c \) by Lemma 4.5. So we have
\[
(24) \quad (Xa_1)\alpha + a_1 (X\alpha) - 2h_1 (Xh_1) = 0
\]
for any tangent vector field \(X \).

Lemma 4.7. \(\nabla_{e_1} e_1 \) and \(\nabla_{e_2} e_2 \) are perpendicular to \(\xi, e_1 \) and \(e_2 \).

Proof. By (14),
\[
(e_2 \alpha) = \alpha h_1 + h_1 g(\nabla_{\xi} e_1, e_2).
\]
By (10),
\[
(e_2 a_1) = a_1 h_1 + a_1 g(\nabla_{e_1} e_1, e_2).
\]
Substituting these into (24), we get
\[
2a_1 \alpha h_1 + \alpha a_1 g(\nabla_{e_1} e_1, e_2) + a_1 h_1 g(\nabla_{\xi} e_1, e_2) - 2h_1 (e_2 h_1) = 0.
\]
By (9) and (13),
\[
(e_2 h_1) = (2c + \alpha a_1) + h_1 g(\nabla_{e_1} e_1, e_2) = (5c + h_1^2) + h_1 g(\nabla_{e_1} e_1, e_2),
\]
\[
(e_2 h_1) = (c + h_1^2) + a_1 g(\nabla_{\xi} e_1, e_2).
\]
From these equations and (24), we have
\[
2h_1 (a_1 \alpha - h_1^2 - 3c) + (a_1 \alpha - h_1^2) g(\nabla_{e_1} e_1, e_2) = 0.
\]
Since \(a_1 \alpha - h_1^2 = 3c \), we have

\[g(\nabla e_1 e_1, e_2) = 0. \]

By (7), \(a_1 \neq 0 \) and \(a_2 = 0 \),

\[g(\nabla e_2 e_2, e_1) = 0. \]

Moreover, we have

\[g(\nabla e_2 e_2, \xi) = -g(e_2, \phi A e_2) = 0, \quad g(\nabla e_1 e_1, \xi) = -g(e_1, \phi A e_1) = 0. \]

These equations prove our lemma.

\[\square \]

Lemma 4.8. Suppose \(j \geq 3 \). If \(a_j = 0 \), then \(g(\nabla e_1 e_1, e_j) = 0 \). If \(a_j \neq 0 \), then \(g(\nabla e_2 e_2, e_j) = 0 \).

Proof. By (6), we have

\[a_j g(\nabla e_2 e_2, e_j) = 0, \quad j \geq 3. \]

If \(a_j \neq 0 \), then \(g(\nabla e_2 e_2, e_j) = 0 \) for \(j \geq 3 \). Suppose \(a_j = 0, \quad j \geq 3 \). Then, by (10), (14), (9) and (13),

\[
\begin{align*}
(e_j a_1) &= a_1 g(\nabla e_1 e_1, e_j), \\
(e_j \alpha) &= h_1 g(\nabla \xi e_1, e_j), \\
(e_j h_1) &= h_1 g(\nabla e_1 e_1, e_j), \\
(e_j h_1) &= a_1 g(\nabla \xi e_1, e_j).
\end{align*}
\]

Substituting these into (24), we get

\[
0 = (e_j a_1) \alpha + a_1 (e_j \alpha) - 2h_1 (e_j h_1) \\
= a a_1 g(\nabla e_1 e_1, e_j) + a_1 h_1 g(\nabla \xi e_1, e_j) - h_1^2 g(\nabla e_1 e_1, e_j) - h_1 a_1 g(\nabla \xi e_1, e_j) \\
= (aa_1 - h_1^2) g(\nabla e_1 e_1, e_j).
\]

Since \(a_1 \alpha - h_1^2 = 3c \), we have our lemma.

\[\square \]

Using these lemmas, we compute \(g(R(e_1, e_2) e_2, e_1) \). We note that \(e_2 = \phi e_1 \) and \(a_2 = 0 \). First, we have

\[
g(\nabla e_1 \nabla e_2 e_2, e_1) = e_1 g(\nabla e_2 e_2, e_1) - g(\nabla e_2 e_2, \nabla e_1 e_1) \\
= -g(\nabla e_2 e_2, \xi) g(\xi, \nabla e_1 e_1) - g(\nabla e_2 e_2, e_1) g(\xi, \nabla e_1 e_1) \\
- g(\nabla e_2 e_2, e_2) g(e_1, \nabla e_1 e_1) - \sum_{k \geq 3} g(\nabla e_2 e_2, e_j) g(e_j, \nabla e_1 e_1) = 0.
\]
Next, we have
\[g(\nabla_{e_2} \nabla_{e_1} e_2, e_1) \]
\[= e_2 g(\nabla_{e_1} e_2, e_1) - g(\nabla_{e_1} e_2, \nabla_{e_2} e_1) \]
\[= -g(\nabla_{e_1} e_2, \xi) g(\xi, \nabla_{e_2} e_1) - g(\nabla_{e_1} e_2, e_1) g(e_1, \nabla_{e_2} e_1) \]
\[- g(\nabla_{e_1} e_2, \xi) g(\xi, \nabla_{e_2} e_1) - \sum_{k \geq 3} g(\nabla_{e_1} e_2, e_k) g(e_k, \nabla_{e_2} e_1) \]
\[= - \sum_{k \geq 3} g(\nabla_{e_1} e_2, e_k) g(e_k, \nabla_{e_2} e_1) = - \sum_{k \geq 3} g(\nabla_{e_1} \phi e_1, e_k) g(\phi e_k, \phi \nabla_{e_2} e_1) \]
\[= \sum_{k \geq 3} g(\nabla_{e_1} e_1, \phi e_k) g(\phi e_k, \nabla_{e_2} e_2) = \sum_{l \geq 3} g(\nabla_{e_1} e_1, e_l) g(e_l, \nabla_{e_2} e_2) = 0. \]

Moreover, we obtain
\[g(\nabla_{[e_1, e_2]} e_2, e_1) = g(\nabla_{\xi} e_2, e_1) g(\xi, [e_1, e_2]) + g(\nabla_{e_1} e_2, e_1) g(e_1, [e_1, e_2]) \]
\[+ g(\nabla_{e_2} e_2, e_1) g(e_2, [e_1, e_2]) + \sum_{k \geq 3} g(\nabla_{e_k} e_2, e_1) g(e_k, [e_1, e_2]) \]
\[= g(\nabla_{\xi} e_2, e_1) g(\xi, \nabla_{e_1} e_2) \]
\[+ \sum_{k \geq 3} (g(\nabla_{e_k} e_2, e_1) g(e_k, \nabla_{e_1} e_2) - g(\nabla_{e_k} e_2, e_1) g(e_k, \nabla_{e_2} e_1)). \]

On the other hand, by (8), when \(j \geq 3 \),
\[a_1 g(\nabla_{e_j} e_2, e_1) - a_j g(\nabla_{e_1} e_2, e_j) = 0, \]
\[(a_1 - a_j) g(\nabla_{e_2} e_1, e_j) + a_j g(\nabla_{e_1} e_2, e_j) = 0. \]

Thus, if \(a_1 = a_j \), then we see that \(a_j \neq 0 \) and hence \(g(\nabla_{e_1} e_2, e_j) = 0 \) since \(a_1 \neq 0 \).

Next, when \(a_1 \neq a_j \) we have
\[g(\nabla_{e_2} e_1, e_j) = -\frac{a_j}{a_1 - a_j} g(\nabla_{e_1} e_2, e_j). \]

On the other hand,
\[g(\nabla_{e_j} e_2, e_1) = \frac{a_j}{a_1} g(\nabla_{e_1} e_2, e_j) = -\frac{(a_1 - a_j)}{a_1} g(\nabla_{e_2} e_1, e_j). \]

So we have
\[\sum_{k \geq 3} (g(\nabla_{e_k} e_2, e_1) g(e_k, \nabla_{e_1} e_2) - g(\nabla_{e_k} e_2, e_1) g(e_k, \nabla_{e_2} e_1) \]
\[= - \sum_{k \geq 3} g(\nabla_{e_2} e_1, e_k) g(e_k, \nabla_{e_1} e_2) = - \sum_{k \geq 3} g(\phi \nabla_{e_2} e_1, e_k) g(\phi e_k, \nabla_{e_1} e_2) \]
\[= \sum_{l \geq 3} g(\nabla_{e_1} e_1, e_l) g(e_l, \nabla_{e_2} e_2) = 0. \]
Thus we obtain
\[
g(\nabla_{[e_1,e_2]}e_2, e_1) = g(\nabla_\xi e_2, e_1)g(\xi, \nabla_\xi e_2)
= -g(\nabla_\xi e_2, e_1)g(\phi Ae_1, e_2) = -a_1 g(\nabla_\xi e_2, e_1),
\]
and so
\[
g(R(e_1, e_2)e_2, e_1) = a_1 g(\nabla_\xi e_2, e_1).
\]
On the other hand, by (9),
\[
-(2c + \alpha a_1) + h_1 g(\nabla_\xi e_2, e_1) + (e_2 h_1) = 0.
\]
Using Lemma 4.7 and \(a_1 \alpha - h_1^2 = 3c \), we have
\[
(e_2 h_1) = 2c + \alpha a_1 = 5c + h_1^2.
\]
By (13),
\[
-(c + h_1^2) + a_1 g(\nabla_\xi e_2, e_1) + e_2 h_1 = 0,
\]
from which we obtain
\[
a_1 g(\nabla_\xi e_2, e_1) = -4c,
\]
and so
\[
g(R(e_1, e_2)e_2, e_1) = -4c.
\]
On the other hand, the equation of Gauss implies
\[
g(R(e_1, e_2)e_2, e_1) = 4c,
\]
and hence \(c = 0 \). This is a contradiction.

Consequently, \(M \) is a ruled real hypersurface.

From (2), any ruled real hypersurface satisfies \(g((\nabla_X S)Y, \xi) = 0 \) for any \(X \) and \(Y \) orthogonal to \(\xi \), and \(S\xi = \beta \xi \) for some function \(\beta \).

From Theorems 3.1 and 4.1, we have Theorem 1.1.

References

Received May 7, 2015. Revised July 21, 2015.

MAYUKO KON
FACULTY OF EDUCATION
SHINSHU UNIVERSITY
6-Ro, NISHINAGANO
NAGANO CITY 380-8544
JAPAN
mayuko_k@shinshu-u.ac.jp
Compatible systems of symplectic Galois representations and the inverse Galois problem II: Transvections and huge image

SARA ARIAS-DE-REYNA, LUIS DIEULEFAIT and GABOR WIESE

On the number of lines in the limit set for discrete subgroups of \(\text{PSL}(3, \mathbb{C}) \)

WALDEMAR BARRERA, ANGEL CANO and JUÁN NAVARRETE

Galois theory, functional Lindemann–Weierstrass, and Manin maps

DANIEL BERTRAND and ANAND PILLAY

Morse area and Scharlemann–Thompson width for hyperbolic 3-manifolds

DIANE HOFFOSS and JOSEPH MAHER

Ricci tensor of real hypersurfaces

MAYUKO KON

Monotonicity formulae and vanishing theorems

JINTANG LI

Jet schemes of the closure of nilpotent orbits

ANNE MOREAU and RUPERT WEI TZE YU

Components of spaces of curves with constrained curvature on flat surfaces

NICOLAU C. SALDANHA and PEDRO ZÜHLKE

A note on minimal graphs over certain unbounded domains of Hadamard manifolds

MIRIAM TELICHEVESKY