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MONOTONICITY FORMULAE AND VANISHING THEOREMS

JINTANG LI

We study Cartan–Hadamard manifolds with pinching conditions. Using
the stress-energy tensor, we establish some monotonicity formulae for vec-
tor bundle-valued p-forms and pluriharmonic maps between Kähler mani-
folds. Some vanishing theorems follow immediately from the monotonicity
formulae under suitable growth conditions on the energy of p-forms and
pluriharmonic maps.

1. Introduction

Harmonic maps between Riemannian manifolds are defined as the critical points of
energy functionals. They are important in both classical and modern differential
geometry. As is well-known, any harmonic map φ : Rn

→ Sm with finite energy
must be constant [Garber et al. 1979]. This result has been generalized by Sealey
[1982] to harmonic maps from a space form of nonpositive sectional curvature
to any Riemannian manifold with finite energy. In 1980, Baird and Eells [1981]
introduced and studied the stress-energy tensor for maps between Riemannian
manifolds. Sealey [≥ 2016] introduced the stress-energy tensor for vector bundle-
valued p-forms and established some vanishing theorems for L2 harmonic p-forms.
The stress-energy tensors have become a useful tool for investigating the energy
behavior of vector bundle-valued p-forms in various problems. Dong and Lin
[2014] introduced the notion of J-invariant p-forms on Kähler manifolds. They
established a monotonicity formula by means of the stress-energy tensor. Using
this monotonicity formula they proved the following vanishing theorem for vector
bundle-valued J-invariant p-forms satisyfing the conservation law:

Theorem A. Let M be a complex n-dimensional (n ≥ 3) complete Kähler manifold
with radial curvature Kr satisfying −a2

≤ Kr ≤ −b2 < 0 with a ≥ b > 0 and
(2n − 1)b − 2pa ≥ 0. Let ξ : E → M be a smooth Riemannian vector bundle
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over (M, g). If ω ∈ Ap(ξ) is J-invariant and satisfies the conservation law, that is,
div Sω = 0, then

1
rC

1

∫
Br1 (x0)

|ω|2 dv ≤ 1
rC

2

∫
Br2 (x0)

|ω|2 dv

for any 0< r1 < r2, where C = 2n− 2pa/b and Br (x0)⊆ M is a geodesic ball of
radius r centered at x0 in M. In particular, if

1
rC

∫
Br (x0)

|ω|2 dv→ 0 as r→+∞,

then ω = 0.

We shall establish a monotonicity formula for vector bundle-valued J-invariant
p-forms satisfying the conservation law by means of the stress-energy tensor too.
Using this monotonicity formula we can improve Theorem A as follows:

Theorem 1. Let M be a complex n-dimensional (n ≥ 3) complete Kähler manifold
with radial curvature Kr satisfying −a2

≤ Kr ≤ −b2 < 0 with a ≥ b > 0 and
(n− 1)b− (p− 1)a ≥ 0. Let ξ : E→ M be a smooth Riemannian vector bundle
over (M, g). If ω ∈ Ap(ξ) is J-invariant and satisfies the conservation law, that is,
div Sω = 0, then

1
sinhC(ar1)

∫
Br1 (x0)

cosh(ar)
[ 1

2 |ω|
2
−

1
p |i∂/∂rω|

2] dv

≤
1

sinhC(ar2)

∫
Br2 (x0)

cosh(ar)
[1

2 |ω|
2
−

1
p |i∂/∂rω|

2] dv

for any 0< r1 < r2, where C = [2(n− 2)b− 2(p− 2)a]/a. In particular, if∫
Br (x0)
|ω|2 dv

ea(C−1)r → 0 as r→+∞,

then ω = 0. (See Section 2 for the definition of i∂/∂rω.)

For the case of Cartan–Hadamard manifolds with some pinching conditions,
Xin [1986] established a monotonicity formula for vector bundle-valued p-forms
satisfying the conservation law by means of the stress-energy tensor. Using this
monotonicity formula, Xin proved the following vanishing theorem:

Theorem B. Let M be an n-dimensional (n ≥ 3) complete Riemannian manifold
with radial curvature Kr satisfying −a2

≤ Kr ≤ −b2 < 0 with a ≥ b > 0 and
(n− 1)b− 2pa ≥ 0. Let ξ : E→ M be a smooth Riemannian vector bundle over
(M, g). If ω ∈ Ap(ξ) satisfies the conservation law, that is, div Sω = 0, and

1
rC

∫
Br (x0)

|ω|2 dv→ 0 as r→+∞,

where C = n− 2pa/b, then ω = 0.
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We shall establish a monotonicity formula for vector bundle-valued p-forms
satisfying the conservation law by means of the stress-energy tensor. Using this
monotonicity formula we can improve Theorem B as follows:

Theorem 2. Let M be an n-dimensional (n ≥ 3) complete Riemannian manifold
with radial curvature Kr satisfying −a2

≤ Kr ≤ −b2 < 0 with a ≥ b > 0 and
(n− 1)b− (2p− 1)a ≥ 0. Let ξ : E→ M be a smooth Riemannian vector bundle
over (M, g). If ω ∈ Ap(ξ) satisfies the conservation law, that is, div Sω = 0, then

1
sinhC(ar1)

∫
Br1 (x0)

cosh(ar)
[1

2 |ω|
2
−

1
2p |i∂/∂rω|

2] dv

≤
1

sinhC(ar2)

∫
Br2 (x0)

cosh(ar)
[1

2 |ω|
2
−

1
2p |i∂/∂rω|

2] dv

for any 0 < r1 < r2, where C = [(n − 2)b− (2p− 2)a]/a and Br (x0) ⊆ M is a
geodesic ball of radius r centered at x0 in M. In particular, if∫

Br (x0)
|ω|2 dv

ea(C−1)r → 0 as r→+∞,

then ω = 0.

Siu [1980] introduced and studied pluriharmonic maps from a compact Kähler
manifold to a Kähler manifold. When the domain of such a map is complete, Dong
[2013] proved the following:

Theorem C. Let M be a complex n-dimensional (n ≥ 2) complete Kähler manifold
with radial curvature Kr satisfying Kr ≤−b2 < 0 with b > 0. Suppose φ : M→ N
is either a pluriharmonic map between Kähler manifolds or a harmonic map into a
Kähler manifold with strongly seminegative curvature. Then∫

Br1 (x0)
|∂̄φ|2 dv

r2(n−1)
1

≤

∫
Br2 (x0)

|∂̄φ|2 dv

r2(n−1)
2

and

∫
Br1 (x0)

|∂φ|2 dv

r2(n−1)
1

≤

∫
Br2 (x0)

|∂φ|2 dv

r2(n−1)
2

for any 0< r1 < r2. In particular, if∫
Br (x0)
|dφ|2 dv

r (2n−2) → 0 as r→+∞,

then φ is constant.

We can also improve Theorem C as follows:

Theorem 3. Let M be a complex n-dimensional (n ≥ 2) complete Kähler manifold
with radial curvature Kr satisfying Kr ≤−b2 < 0 with b > 0. Suppose φ : M→ N
is either a pluriharmonic map between Kähler manifolds or a harmonic map into a
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Kähler manifold with strongly seminegative curvature. Then∫
Br1 (x0)

cosh(br)|∂̄φ|2 dv

sinh2(n−1)(br1)
≤

∫
Br2 (x0)

cosh(br)|∂̄φ|2 dv

sinh2(n−1)(br2)
and ∫

Br1 (x0)
cosh(br)|∂φ|2 dv

sinh2(n−1)(br1)
≤

∫
Br2 (x0)

cosh(br)|∂φ|2 dv

sinh2(n−1)(br2)

for any 0< r1 < r2. In particular, if∫
Br (x0)
|dφ|2 dv

e(2n−3)br → 0 as r→+∞,

then φ is constant.

2. Preliminaries

Let (M, g) be an n-dimensional complete Riemannian manifold. Let ξ : E→ M
be a smooth Riemannian vector bundle over (M, g). Let Ap(ξ)= 0(3pT ∗M ⊗ E)
be the space of smooth p-forms on M with values in the vector bundle ξ : E→ M .
For ω ∈ Ap(ξ), we define the energy functional of ω by

E(ω)=
∫

M

1
2 |ω|

2 dvg.

The stress-energy tensor associated with E(ω) is defined by

(2-1) Sω(X, Y )= 1
2 |ω|

2g(X, Y )− (ω�ω)(X, Y ),

where ω�ω denotes the 2-tensor

(ω�ω)(X, Y )= 〈iXω, iYω〉.

Here 〈 · , · 〉 is the induced inner product on Ap−1(ξ) and iXω is the interior multi-
plication by the vector field X given by

(iXω)(Y1, . . . , Yp−1)= ω(X, Y1, . . . , Yp−1)

for ω ∈ Ap(ξ) and any vector fields Y1, . . . , Yp−1 on M .
Let D be any bounded domain of M with C1 boundary. We have the integral

formula [Dong 2013]

(2-2)
∫
∂D

Sω(X, ν) dv =
∫

D
{〈Sω,∇θX 〉+ (div Sω)(X)} dv,

where ν is the unit normal vector field along ∂D in D, and θX is the dual 1-form
of X and ∇θX is given by

(2-3) (∇θX )(Y, Z)= g(∇Y X, Z).
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Proposition 2.1 [Greene and Wu 1979]. Let (M, g) be a complete Riemannian
manifold with a pole x0 and let r be the distance function relative to x0. Denote
by Kr the radial curvature of M. If −a2

≤ Kr ≤−b2 < 0, where a ≥ b > 0, then

b coth(br)[g− dr ⊗ dr ] ≤ Hess(r)≤ a coth(ar)[g− dr ⊗ dr ],

where Hess(r) is the Hessian of the distance function r .

3. Monotonicity formulae for Kähler manifolds

A Hermitian metric on a complex manifold M is a Riemannian metric g such
that g(JX, JY ) = g(X, Y ) for any X, Y ∈ TM , where J denotes the complex
structure of M . We say that (M, g) is a Kähler manifold if ∇J = 0, where ∇
is the Levi-Civita connection of g. A p-form ω ∈ Ap(ξ) is called J-invariant if
(ω � ω)(JX, JY ) = (ω � ω)(X, Y ). Now we consider J-invariant p-forms on
Kähler manifolds and can prove the following:

Theorem 3.1. Let M be a complex n-dimensional (n≥3) complete Kähler manifold
with radial curvature Kr satisfying −a2

≤ Kr ≤ −b2 < 0 with a ≥ b > 0 and
(n − 1)b ≥ (p − 1)a. Let ξ : E → M be a smooth Riemannian vector bundle
over (M, g). If ω ∈ Ap(ξ) is J-invariant and satisfies the conservation law, that is,
div Sω = 0, then

1
sinhC(ar1)

∫
Br1 (x0)

cosh(ar)
[1

2 |ω|
2
−

1
p |i∂/∂rω|

2] dv

≤
1

sinhC(ar2)

∫
Br2 (x0)

cosh(ar)
[1

2 |ω|
2
−

1
p |i∂/∂rω|

2] dv

for any 0 < r1 < r2, where C = [2(n− 2)b− 2(p− 2)a]/a and Br (x0) ⊆ M is a
geodesic ball of radius r centered at x0 in M.

Proof. If X = grad(ψ) is the gradient of a smooth function ψ on M , then θX = dψ
and ∇θX = Hess(ψ). Let ψ = cosh(ar). It is easy to see that

(3-1) Hess(cosh(ar))= a2 cosh(ar) dr ⊗ dr + a sinh(ar)Hess(r).

Let {ei , Jei } with en = ∂/∂r be an orthonormal frame field around x0 ∈M . Then,
for ω ∈ Ap(ξ), we have

(3-2) |ω|2 = 1
p

[
(ω�ω)

(
∂

∂r
,
∂

∂r

)
+ (ω�ω)

(
J ∂
∂r
, J ∂
∂r

)
+

n−1∑
λ=1

(ω�ω)(eλ, eλ)+
n−1∑
λ=1

(ω�ω)(Jeλ, Jeλ)
]

=
2
p

{
|i∂/∂rω|

2
+

n−1∑
λ=1

(ω�ω)(eλ, eλ)
}
.
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It follows from (3-1), (3-2) and Proposition 2.1 that

(3-3) 〈Sω,∇θX 〉

=
1
2 |ω|

2
〈g,Hess(ch(ar))〉−〈(ω�ω),Hess(ch(ar))〉

=
1
p |i∂/∂rω|

2
{∑

λ

a sinh(ar)Hess(r)(eλ,eλ)

+

∑
λ

a sinh(ar)Hess(r)(Jeλ, Jeλ)

−(p−1)a2 cosh(ar)− pa sinh(ar)Hess(r)
(
∂

∂r
,
∂

∂r

)
−(p−1)a sinh(ar)Hess(r)

(
J ∂
∂r
, J ∂
∂r

)}
+

∑
λ

1
p (ω�ω)(eλ,eλ)

{
a2 cosh(ar)+a sinh(ar)Hess(r)

(
J ∂
∂r
, J ∂
∂r

)
+

∑
µ

a sinh(ar)Hess(r)(eµ,eµ)+
∑
µ

a sinh(ar)Hess(r)(Jeµ, Jeµ)

− p Hess(cosh(ar))(eλ,eλ)− p Hess(cosh(ar))(Jeλ, Jeλ)
}

≥
1
p |i∂/∂rω|

2
{2(n−1)ab sinh(ar) coth(br)−2(p−1)a2 cosh(ar)}

+

∑
λ

1
p (ω�ω)(eλ,eλ){2(n−2)ab sinh(ar) coth(br)

−2(p−2)a2 cosh(ar)}

≥
1
p |i∂/∂rω|

2a cosh(ar){2(n−1)b−2(p−1)a}

+

∑
λ

1
p (ω�ω)(eλ,eλ)a cosh(ar){2(n−2)b−2(p−2)a}

≥

∑
λ

1
p (ω�ω)(eλ,eλ)a cosh(ar){2(n−2)b−2(p−2)a}.

On the other hand, we have

(3-4) Sω
(
X, ∂
∂r

)
=

1
2 |ω|

2a sinh(ar)− a sinh(ar)(ω�ω)
(
∂

∂r
,
∂

∂r

)
≤
[ 1

2 |ω|
2
−

1
p |i∂/∂rω|

2]a sinh(ar).

Substituting (3-3) and (3-4) into (2-2), we obtain

(3-5)
∫
∂Br (x0)

[ 1
2 |ω|

2
−

1
p |i∂/∂rω|

2]a sinh(ar) ds

≥

∫
Br (x0)

[ 1
2 |ω|

2
−

1
p |i∂/∂rω|

2]
[2(n− 2)b− 2(p− 2)a]a cosh(ar) dv.



MONOTONICITY FORMULAE AND VANISHING THEOREMS 131

It can be seen from (3-5) that

(3-6)
cosh(ar)

∫
∂Br (x0)

[1
2 |ω|

2
−

1
p |i∂/∂rω|

2
]

ds∫
Br (x0)

[ 1
2 |ω|

2− 1
p |i∂/∂rω|2

]
cosh(ar) dv

≥
aC cosh(ar)

sinh(ar)
,

where C = [2(n− 2)b− 2(p− 2)a]/a.
Thus we obtain from (3-6)

(3-7) d
dr

ln
{∫

Br (x0)

[1
2 |ω|

2
−

1
p |i∂/∂rω|

2] cosh(ar) dv
}
≥

d
dr
{C ln[sinh(ar)]}.

Integrating (3-7) over [r1, r2], we have

(3-8) ln
∫

Br2 (x0)

[1
2 |ω|

2
−

1
p |i∂/∂rω|

2] cosh(ar) dv

− ln
∫

Br1 (x0)

[1
2 |ω|

2
−

1
p |i∂/∂rω|

2] cosh(ar) dv

≥ C ln[sinh(ar2)] −C ln[sinh(ar1)]. �

Now we can deduce the following vanishing theorem from the above monotonicity
formula.

Theorem 3.2. Let M be a complex n-dimensional (n≥3) complete Kähler manifold
with radial curvature Kr satisfying −a2

≤ Kr ≤ −b2 < 0 with a ≥ b > 0 and
(n− 1)b ≥ (p− 1)a. Let ξ : E→ M be a smooth Riemannian vector bundle over
(M, g). If the J-invariant p-form ω ∈ Ap(ξ) satisfies the conservation law, that is,
div Sω = 0, and ∫

Br (x0)
|ω|2 dv

ea(C−1)r → 0 as r→+∞,

where C = [2(n− 2)b− 2(p− 2)a]/a, then ω ≡ 0.

Proof. Case 1. If 1≥ (n− 1)b− (p− 1)a ≥ 0, i.e., C ≤ 1, it is obvious that ω ≡ 0.

Case 2. If (n − 1)b− (p− 1)a > 1, i.e., C > 1, using the fact coth(ar)→ 1 as
r→+∞ and our condition, we have

(3-9) 1
sinhC(ar2)

∫
Br2 (x0)

cosh(ar)
[ 1

2 |ω|
2
−

1
p |i∂/∂rω|

2] dv

≤

cosh(ar2)
∫

Br2 (x0)
1
2 |ω|

2 dv

sinhC(ar2)

=

∫
Br2 (x0)

1
2 |ω|

2 dv

ea(C−1)r2

[ ear2

sinh(ar2)

]C−1
coth(ar2)

→ 0 as r2→+∞.
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It follows from (3-9) and Theorem 3.1 that

(3-10) 1
2 |ω|

2
−

1
p |i∂/∂rω|

2
= 0, i.e., (ω�ω)(eλ, eλ)= 0.

Set X = r∂/∂r . It is easy to see from (3-10), (3-4), (3-3), (3-2) and (2-2) that

(3-11)
∫
∂Br (x0)

−
p−1

p
r |i∂/∂rω|

2 ds

=

∫
∂Br (x0)

[ r
2 |ω|

2
−r |i∂/∂rω|

2] ds

=

∫
∂Br (x0)

Sω
(
X, ∂
∂r

)
ds

=
1
p |i∂/∂rω|

2
{∑
λ

r Hess(r)(eλ,eλ)+
∑
λ

r Hess(r)
(
Jeλ, Jeλ

)
−(p−1)− pr Hess(r)

(
∂

∂r
,
∂

∂r

)
−(p−1)r Hess(r)

(
J ∂
∂r
, J ∂
∂r

)}
≥

∫
Br (x0)

1
p [2(n−1)br coth(br)− p+1−(p−1)ar coth(ar)]|i∂/∂rω|

2 dv

≥

∫
Br (x0)

1
p

{
(n−1)br coth(br)− p+1

+[(n−1)br−(p−1)ar ] coth(br)
}
|i∂/∂rω|

2 dv

≥

∫
Br (x0)

1
p [(n−1)br coth(br)− p+1]|i∂/∂rω|

2 dv

≥

∫
Br (x0)

1
p [n− p]|i∂/∂rω|

2 dv.

Using our condition (n− 1)b− (p− 1)a ≥ 0, we get n− p ≥ 0, which, together
with (3-11) and x coth x > 1 for x > 0, yields |i∂/∂rω|

2
= 0. �

4. Monotonicity formulae for Riemannian manifolds

Theorem 4.1. Let M be an n-dimensional (n ≥ 3) complete Riemannian manifold
with radial curvature Kr satisfying −a2

≤ Kr ≤ −b2 < 0 with a ≥ b > 0 and
(n− 1)b− (2p− 1)a ≥ 0. Let ξ : E→ M be a smooth Riemannian vector bundle
over (M, g). If ω ∈ Ap(ξ) satisfies the conservation law, that is, div Sω = 0, then

1
sinhC(ar1)

∫
Br1 (x0)

cosh(ar)
[1

2 |ω|
2
−

1
2p |i∂/∂rω|

2] dv

≤
1

sinhC(ar2)

∫
Br2 (x0)

cosh(ar)
[1

2 |ω|
2
−

1
2p |i∂/∂rω|

2] dv
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for any 0 < r1 < r2, where C = [(n − 2)b− (2p− 2)a]/a and Br (x0) ⊆ M is a
geodesic ball of radius r centered at x0 in M.

Proof. Set X = sinh(ar)∂/∂r , where ∂/∂r denotes the unit radial vector. Obviously,
the unit normal vector to ∂Br (x0) is ∂/∂r . Let {eλ, ∂/∂r} be an orthonormal frame
field on Br (x0), where λ= 1, . . . , n− 1. Then we have that

(4-1) ∇∂/∂r X = a cosh(ar) ∂
∂r

and ∇eλ X = sinh(ar)
∑
µ

hλµeµ,

where the −hλµ are the components of the second fundamental form of ∂Br (x0)

in Br (x0).
On the other hand, we have

(4-2) Hess(r)(eλ, eµ)= 〈eλ,∇∂/∂r eµ〉 = 〈eλ, hµνeν〉 = hλµ.

We can choose an orthonormal frame field {eλ} on ∂Br (x0) such that hλµ=δλµhλλ.
It follows from (4-1), (4-2), (2-1) and (2-3) that

(4-3) 〈Sω,∇θX 〉

=
1

2p |i∂/∂rω|
2
{

a cosh(ar)+sinh(ar)
∑
λ

hλλ−2pa cosh(ar)
}

+

n−1∑
λ=1

1
2p (ω�ω)(eλ, eλ)

{
a cosh(ar)+sinh(ar)

∑
µ

hνν−2p sinh(ar)hλλ

}
≥
[1

2 |ω|
2
−

1
2p |i∂/∂rω|

2]aC cosh(ar).

On the other hand, we have

(4-4) Sω
(
X, ∂
∂r

)
≤
[1

2 |ω|
2
−

1
2p |i∂/∂rω|

2] sinh(ar).

Substituting (4-3) and (4-4) into (2-2), we obtain

(4-5)
∫
∂Br (x0)

[ 1
2 |ω|

2
−

1
2p |i∂/∂rω|

2] sinh(ar) ds

≥

∫
Br (x0)

[ 1
2 |ω|

2
−

1
2p |i∂/∂rω|

2]aC cosh(ar) dv.

The proof is completed using (4-5) along with the same arguments used in the
proof of Theorem 3.1. �

Similarly, using Theorem 4.1 along with the same arguments used in the proof
of Theorem 3.2, we get the following vanishing theorem:

Theorem 4.2. Let M be an n-dimensional (n ≥ 3) complete Riemannian manifold
with radial curvature Kr satisfying −a2

≤ Kr ≤ −b2 < 0 with a ≥ b > 0 and
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(n− 1)b− (2p− 1)a ≥ 0. Let ξ : E→ M be a smooth Riemannian vector bundle
over (M, g). If ω ∈ Ap(ξ) satisfies the conservation law, that is, div Sω = 0, and∫

Br (x0)
|ω|2 dv

ea(C−1)r → 0 as r→+∞,

where C = [(n− 2)b− (2p− 2)a]/a, then ω ≡ 0.

5. Monotonicity formulae for pluriharmonic maps

Let M be a complex n-dimensional (n≥ 3) Kähler manifold. The complex structure
of M gives a decomposition of TMC into tangent vectors of types (1,0) and (0,1), i.e,

TMC
= T 1,0M ⊕ T 0,1M.

Let φ : M→ N be a smooth map between Kähler manifolds. Then we have the
following bundle maps:

∂φ : T 1,0 M→ T 1,0 N , ∂̄φ : T 0,1 M→ T 1,0 N ,

∂φ : T 1,0 M→ T 0,1 N , ∂φ : T 0,1 M→ T 0,1 N .

A direct computation gives

(5-1) |∂̄φ|2= 1
4

n∑
i=1

{
〈dφ(ei ),dφ(ei )〉+〈dφ(Jei ),dφ(Jei )〉−2〈dφ(Jei ), J ′dφ(ei )〉

}
and

(5-2) |∂φ|2= 1
4

n∑
i=1

{
〈dφ(ei ),dφ(ei )〉+〈dφ(Jei ),dφ(Jei )〉+2〈dφ(Jei ), J ′dφ(ei )〉

}
,

where {ei , Jei } is an orthonormal frame field on M , and J and J ′ are the complex
structures of M and N , respectively.

We introduce two 1-forms σ, τ ∈ A1(φ−1T N ) given by

σ(X)= dφ(X)+ J ′dφ(JX)
2

and τ(X)= dφ(X)− J ′dφ(JX)
2

for any X ∈ TM .

Lemma 5.1 [Dong 2013]. σ , τ are J-invariant, and |σ |2 = 2|∂̄φ|2, |τ |2 = 2|∂φ|2.

Siu [1980] introduced pluriharmonic maps. A smooth map φ : M→ N between
Kähler manifolds is called pluriharmonic if (∇dφ)(X, Y )= 0, for all X, Y ∈ T 1,0 M .

Lemma 5.2 [Dong 2013]. If a map φ : M → N between Kähler manifolds is
pluriharmonic, then we have div Sσ = div Sτ = 0, where Sσ = 1

2 |σ |
2g− σ � σ and

Sτ = 1
2 |τ |

2g− τ � τ .
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In this section, we will establish monotonicity formulae for pluriharmonic maps
and harmonic maps.

Theorem 5.3. Let M be a complex n-dimensional (n≥2) complete Kähler manifold
with radial curvature Kr satisfying Kr ≤−b2 < 0 with b > 0. Suppose φ : M→ N
is either a pluriharmonic map between Kähler manifolds or a harmonic map into a
Kähler manifold with strongly seminegative curvature. Then∫

Br1 (x0)
cosh(br)|∂̄φ|2 dv

sinh2(n−1)(br1)
≤

∫
Br2 (x0)

cosh(br)|∂̄φ|2 dv

sinh2(n−1)(br2)

and ∫
Br1 (x0)

cosh(br)|∂φ|2 dv

sinh2(n−1)(br1)
≤

∫
Br2 (x0)

cosh(br)|∂φ|2 dv

sinh2(n−1)(br2)

for any 0< r1 < r2.

Proof. When φ : M → N is a pluriharmonic map between Kähler manifolds, it
follows from Lemmas 5.1 and 5.2 and (3-4), in which p = 1 and ω = σ , that

(5-3) 〈Sσ ,∇θX 〉

≥ |i∂/∂rσ |
22(n− 1)b2 cosh(br)+ (σ � σ)(eλ, eλ)2(n− 1)b2 cosh(br)

= (n− 1)b2 cosh(br)|σ |2 = 2(n− 1)b2 cosh(br)|∂̄φ|2.

On the other hand, we have

(5-4) Sσ (X, v)≤ b sinh(br)|∂̄φ|2.

Substituting (5-3) and (5-4) into (2-2) yields

(5-5)
∫
∂Br

b sinh(br)|∂̄φ|2 ds ≥
∫

Br

2(n− 1)b2 cosh(br)|∂̄φ|2 dv.

When φ : M → N is a harmonic map into a Kähler manifold with strongly
seminegative curvature, we have

∫
Br
(div Sσ )(X) dv =

∫
Br
(div Sτ )(X) dv ≥ 0 [Dong

2013]. Then φ also satisfies the integral formula (5-5).
The proof is completed using (5-5) and the same arguments used in the proof of

Theorem 3.1. �

Similarly, using Theorem 5.3 along with the same arguments used in the proof
of Theorem 3.2, we get the following theorem:

Theorem 5.4. Let M be a complex n-dimensional (n≥2) complete Kähler manifold
with radial curvature Kr satisfying Kr ≤−b2 < 0 with b > 0. Suppose φ : M→ N
is either a pluriharmonic map between Kähler manifolds or a harmonic map into a
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Kähler manifold with strongly seminegative curvature. If∫
Br (x0)
|∂̄φ|2 dv

e(2n−3)br → 0
(

resp.

∫
Br (x0)
|∂φ|2 dv

e(2n−3)br → 0
)

as r→+∞

then φ is holomorphic (resp. antiholomorphic). In particular, if∫
Br (x0)
|dφ|2 dv

e(2n−3)br → 0 as r→+∞,

then φ is constant.
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