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Let S be a complete flat surface, such as the Euclidean plane. We obtain
direct characterizations of the connected components of the space of all
curves on S which start and end at given points in given directions, and
whose curvatures are constrained to lie in a given interval, in terms of all
parameters involved. Many topological properties of these spaces are inves-
tigated. Some conjectures of L. E. Dubins are proved.
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0. Introduction

To abbreviate the notation, we shall identify R2 with C throughout. A curve
γ : [0, 1] → C is called regular if its derivative is continuous and never vanishes.
Its unit tangent is then defined as

tγ : [0, 1] → S1, tγ (t)=
γ̇ (t)
|γ̇ (t)|

.

Lifting γ to the unit tangent bundle UT C≡ C×S1, we obtain its frame

(1) 8γ : [0, 1] → C×S1, 8γ (t)= (γ (t), tγ (t)).
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Keywords: curve, curvature, Dubins path, flat surface, topology of infinite-dimensional manifolds.

185

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2016.281-1


186 NICOLAU C. SALDANHA AND PEDRO ZÜHLKE

Let P = (p, w), Q = (q, z) ∈ C×S1 and consider the spaces of curves

(2)
S(P,Q)={γ : [0,1] Cr

−→C : γ is regular, 8γ (0)= P and 8γ (1)= Q},

�UT C(P,Q)={ω : [0,1] Cr−1
−−→UT C : ω(0)= P and ω(1)= Q}

endowed with the Cr and Cr−1 topologies, respectively (1 ≤ r ∈ N). In 1956,
S. Smale proved that the map

8 : S(P, Q)→�UT C(P, Q), γ 7→8γ ,

is a weak homotopy equivalence (that is, it induces isomorphisms on homotopy
groups). Actually, Smale’s theorem [1958, Theorem C] is much more general in that
it holds for any manifold, not just C. Using standard results on Banach manifolds
which were discovered later, one can conclude that the spaces in (2) are in fact
homeomorphic, and that the value of r is unimportant.

Given a regular plane curve γ , an argument of tγ is a continuous function
θγ : [0, 1] → R such that tγ = eiθγ . The total turning of γ is defined to be
θγ (1)−θγ (0); note that this is independent of the choice of θγ (0). It is easy to see that
�UT C(P, Q) is homotopy equivalent to �S1(w, z). The latter possesses infinitely
many connected components, one for each θ1 satisfying eiθ1 = zw̄ = zw−1, all of
which are contractible. Therefore, the components of S(P, Q) are all contractible as
well, and two curves in S(P, Q) lie in the same component if and only if they have
the same total turning. This generalizes the Whitney–Graustein theorem [Whitney
1937, Theorem 1] to nonclosed curves.

The main purpose of this work is to investigate the topology of subspaces of
S(P, Q) obtained by imposing constraints on the curvature of the curves.

(0.1) Definition. Suppose −∞ ≤ κ1 < κ2 ≤ +∞ and r ∈ {2, 3, . . . ,∞}. For
P = (p, w), Q = (q, z) ∈ C×S1, define Cκ2

κ1
(P, Q) to be the set of all Cr regular

curves γ : [0, 1] → C such that

(i) 8γ (0)= P and 8γ (1)= Q;

(ii) the curvature κγ of γ satisfies κ1 < κγ (t) < κ2 for each t ∈ [0, 1].

Let this set be furnished with the Cr topology.

Condition (i) means that γ starts at p in the direction of w and ends at q in
the direction of z. In this notation, S(P, Q) becomes C+∞−∞(P, Q). The connected
components of C+κ0

−κ0
(P, Q) (κ0 > 0) were first studied by L. E. Dubins [1961]. His

main result (Theorem 5.3, slightly rephrased) implies that there may exist curves
with the same total turning which are not homotopic within this space.

Theorem (Dubins). Suppose x > 0 and Qx = (x, 1), O = (0, 1) ∈ C×S1. Let
η ∈ C+1

−1(O, Qx) be the line segment parametrized by η(t) = xt. Then the con-
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catenation of η with a figure eight curve lies in the same connected component of
C+1
−1(O, Qx) as η if and only if x > 4.

Here a “figure eight” curve means any closed curve of total turning 0 whose
curvature takes values in (−1, 1), such as the one depicted in Figure 7(d).

Naturally, we always have the following decomposition of Cκ2
κ1
(P, Q) into closed-

open subspaces:
Cκ2
κ1
(P, Q)=

⊔
θ1

Cκ2
κ1
(P, Q; θ1),

where Cκ2
κ1
(P, Q; θ1) consists of those curves in Cκ2

κ1
(P, Q) which have total turning

equal to θ1 and the union is over all θ1 ∈ R satisfying eiθ1 = zw̄.
If κ1κ2 ≥ 0, it will be shown that each Cκ2

κ1
(P, Q; θ1) is either empty or a con-

tractible connected component of Cκ2
κ1
(P, Q).1 If κ1κ2 < 0, then Cκ2

κ1
(P, Q; θ1) is

never empty, and it is a contractible connected component provided that |θ1| ≥ π .
However, the remaining subspace Cκ2

κ1
(P, Q; θ1) with |θ1| < π may not be con-

tractible, nor even connected, as implied by Dubins’ theorem. It turns out that one
can obtain simple and explicit characterizations of its components in terms of κ1, κ2,
P and Q by using a homeomorphism with a space of the form C+1

−1(P0, Q0; θ1)

and an elementary geometric construction (see Figure 1).
This paper is close in spirit to Dubins’ [1961], and some of his conjectures

will be settled; it is not assumed, however, that the reader is familiar with his
work. In the sequel to this article [Saldanha and Zühlke 2015], we determine
the homotopy type of Cκ2

κ1
(P, Q). Granted the results described above, the only

remaining task is the determination of the homotopy type of the exceptional subspace
Cκ2
κ1
(P, Q; θ1)⊂ Cκ2

κ1
(P, Q) with |θ1|< π (κ1κ2 < 0) containing the curves in the

latter of least total turning. It is proved in [Saldanha and Zühlke 2015] that this
subspace may be homotopy equivalent to an n-sphere for any n ∈ {0, 1, . . . ,∞}
(recall that S∞ is contractible). The value of n can be determined in terms of
all parameters by first reducing to the case where κ1 =−1, κ2 =+1 through the
homeomorphism mentioned above, and then using a construction extending the one
depicted in Figure 1 (which only tells whether n = 0 or not).

Outline of the sections. Many useful constructions, such as the concatenation of
elements of Cκ2

κ1
(P, Q) and Cκ2

κ1
(Q, R), yield curves which need not be of class C2.

To avoid having to smoothen curves all the time, we work with curves which have
a continuously varying unit tangent at all points, but whose curvatures are defined
only almost everywhere. The resulting spaces, denoted by Lκ2

κ1
(P, Q), are defined in

Section 1, where it will also be seen that the set inclusion Cκ2
κ1
(P, Q)→Lκ2

κ1
(P, Q) is

a homotopy equivalence with dense image and that these spaces are homeomorphic.

1In determining the sign of κ1κ2, we adopt the convention that 0(±∞)= 0.
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Figure 1. Let θ1 ∈ R be fixed, z = eiθ1 and Q = (q, z). Then
C+1
−1(Q; θ1) is disconnected if and only if |θ1|< π and q lies in the

gray region. The region contains the arc of circle of radius 4, but not
the arcs of circle of radius 2. Figure (a) depicts the case θ1 ∈ [0, π),
and (b) the case θ1 ∈ (−π, 0] (here θ1 ≈ ±26◦). The theorem of
Dubins stated above corresponds to the case where θ1 = 0 and q ∈ R.

Let O = (0, 1) ∈ C × S1 denote the canonical element of UT C, and let us
denote Cκ2

κ1
(O, Q) simply by Cκ2

κ1
(Q). Using Euclidean motions, dilatations and

a construction called normal translation (see Figure 2 on p. 200), we obtain in
(2.4) an explicit homeomorphism between any space Cκ2

κ1
(P0, Q0) and a space of

one of the following types: C+∞0 (Q), C+∞1 (Q) or C+1
−1(Q), according to whether

κ1κ2 = 0, κ1κ2 > 0 or κ1κ2 < 0, respectively. Moreover, this homeomorphism
preserves the total turning of curves up to sign. Among these three, C+1

−1(Q) has
the most interesting topological properties.

We call a regular curve γ : [0, 1] → C condensed, critical or diffuse, according
to whether its amplitude

ω = sup
t∈[0,1]

θγ (t)− inf
t∈[0,1]

θγ (t)

satisfies ω < π , ω = π or ω > π , respectively. Let Q = (q, z) ∈ C×S1 and θ1

be such that eiθ1 = z. Let Uc ⊂ C+1
−1(Q; θ1) (resp. Ud ⊂ C+1

−1(Q; θ1)) denote the
subspace consisting of all condensed (resp. diffuse) curves. Both are open and
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Ud 6= ∅, since we may always concatenate a curve in C+1
−1(Q; θ1) with a curve

of total turning 0 (an eight curve, as in Figure 7(e) on p. 218). Clearly, Uc must
be empty if |θ1| ≥ π , but it may also be empty otherwise, depending on Q. We
determine exactly when this occurs in Section 3.

A condensed curve may be viewed as the graph of a function with respect to
some axis. This leads to a direct, albeit involved, proof that Uc is contractible
when nonempty. In fact, if the curvatures are allowed to be discontinuous and to
take values in the closed interval [−1, 1], then one can exhibit a contraction of the
subspace of condensed curves to the unique curve of minimal length (Dubins path)
in the corresponding space. This is also done in Section 3.

In Section 4, an indirect proof that Ud is contractible is obtained. If γ is diffuse,
then we can “graft” straight line segments onto γ , as illustrated in Figure 8, p. 223.
Such a segment can be deformed so that in the end an eight curve of large radius
traversed n times has been attached to it. These eights are then spread along the
curve, as in Figure 7(f). If n ∈ N is large enough, then the whole process can be
carried out within C+1

−1(Q). The result is a curve whose curvature is uniformly
small, and hence easily deformable.

In Section 5 we determine when the set T of all critical curves in C+1
−1(Q; θ1)

is empty. The main result in this section is that T = ∂Uc = ∂Ud . When T 6= ∅,
a finer analysis of how ∂Uc and ∂Ud fit together is required to determine the
homeomorphism class of C+1

−1(Q; θ1). This problem will be treated in [Saldanha
and Zühlke 2015].

In (6.1) we obtain various characterizations of the connected components of
C+1
−1(Q; θ1). Perhaps the simplest one is the following: this space is disconnected if

and only if |θ1|< π and q lies in the region illustrated in Figure 1, or, equivalently,
its subset T is empty, but Uc is not. In this case, it has exactly two components,
Uc and Ud , which are contractible. As mentioned previously, this is sufficient to
determine explicitly the components of any space Cκ2

κ1
(P0, Q0) with κ1κ2 < 0.

In Section 7, it is established that when κ1κ2 ≥ 0, the space Cκ2
κ1
(P, Q) has one

connected component for each realizable total turning, and they are all contractible.
The set of possible total turnings can be described in terms of all parameters using
normal translation and elementary geometry. The detailed solution to this problem
is not carried out to shorten the paper, but it can be found in the earlier unpublished
version [Saldanha and Zühlke 2014].

In Section 8 these results are extended to spaces of curves with constrained
curvature on any complete flat surface S (orientable or not) using the fact that if S
is connected then it must be the quotient of C by a group of isometries.

Even though we have imposed that the curvatures should lie in an open interval,
the main results obtained here have analogues for spaces (defined in Section 1)
where the curvature is constrained to lie in [κ1, κ2]. For κ1 =−κ2, this is the class
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with which Dubins actually worked [1957; 1961]. The necessary modifications in
the statements and proofs are sketched in Section 9, where we also prove some
conjectures appearing in [Dubins 1961] and discuss a few additional conjectures on
curves of minimal length.

Related work. The problem treated here and in [Saldanha and Zühlke 2015] for
flat surfaces can be generalized to any smooth (or even C2) surface S equipped with
a Riemannian metric: if u, v are elements of its unit tangent bundle UTS, then one
can study the space CSκ2

κ1
(u, v) of curves on S whose lift to UTS joins u to v and

whose geodesic curvature takes values in (κ1, κ2). When S is nonorientable, only
the unsigned curvature makes sense, so in this case we require that κ2 =−κ1 > 0
(cf. Section 8 below). This topic is largely unexplored, and even the problem of
determining when CSκ2

κ1
(u, v) 6=∅ is open (and probably difficult). The topology

of these spaces is very closely related to the geometry of S.
A special case which has been more intensively studied is that of the space

of nondegenerate curves on S, i.e., curves of nonvanishing curvature. In our
notation, this corresponds to CS+∞0 (u, v)tCS0

−∞
(u, v). There is also an obvious

generalization to higher-dimensional manifolds, obtained by replacing the (geodesic)
curvature by the generalized curvature of a curve γ : [0, 1] → Mn . To say that the
latter does not vanish is equivalent to requiring that the first n (covariant) derivatives
of γ at γ (t) span the tangent space to M at this point for each t ∈ [0, 1]. Some
papers treating this problem, especially for spaces of closed curves on the simplest
manifolds, such as Rn , Sn or RPn , include [Anisov 1998; Feldman 1968; 1971,
Khesin and Shapiro 1992; 1999, Little 1970; Mostovoy and Sadykov 2012; Saldanha
2015; Saldanha and Shapiro 2012; Shapiro and Shapiro 1991, Shapiro 1993]. Most
of these are concerned with obtaining characterizations of the connected components
of the corresponding spaces.

In [Saldanha 2015], the homotopy type of spaces of (not necessarily closed)
nondegenerate curves on S2 is determined, and in [Saldanha and Zühlke 2013],
the connected components of spaces of closed curves on S2 with curvature in an
arbitrary interval (κ1, κ2) are characterized. In the sequel [Saldanha and Zühlke
2015], we determine the homotopy type of CSκ2

κ1
(u, v) for any flat surface S in terms

of κ1, κ2 and u, v ∈UTS. Many of the ideas appearing in the present paper (normal
translation, diffuse vs. condensed, grafting, curvature spreading, etc.) appear in
[Saldanha 2015] or [Saldanha and Zühlke 2013] in some form as well, although
sometimes the connection is only heuristical.

1. Spaces of plane curves

Basic terminology. Let γ : [a, b] → C be a regular curve. The unit normal n =
nγ : [a, b] → S1 is given by n = i t , where i ∈ C denotes the imaginary unit and
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t = tγ is the unit tangent to γ . The arc-length parameter s of γ is defined by

s(t)=
∫ t

a
|γ̇ (τ )| dτ (t ∈ [a, b]),

and L =
∫ b

a |γ̇ (τ )| dτ is the length of γ . Assuming γ is twice differentiable, its
curvature κ = κγ is given by

(3) κ(s)= 〈t ′(s), n(s)〉 (s ∈ [0, L]).

In terms of a general parameter,

(4) κ =
1
|γ̇ |
〈 ṫ, n〉 =

1
|γ̇ |2
〈γ̈ , n〉 =

det(γ̇ , γ̈ )
|γ̇ |3

.

(We denote derivatives with respect to arc-length by a ′ (prime) and derivatives with
respect to other parameters by a ˙ (dot).) Notice that the curvature at each point is
not altered by an orientation-preserving reparametrization of the curve, while its
sign changes if the reparametrization is orientation-reversing. It follows from (3)
that if θγ : [0, L] → R is an argument of t , then

(5) κ(s)= θ ′γ (s).

The following example illustrates one reason why it is more convenient to require
that curvatures lie in an open interval, as in (0.1).

(1.1) Example. Consider the space of all C2 regular curves γ : [0, 1] → C

whose curvatures are restricted to lie in [−1, 1] and which satisfy 8γ (0)= (1, i),
8γ (1)= (i,−1), where we have identified UT C with C×S1. The arc α of the
unit circle given by t 7→ exp(π i t/2) (t ∈ [0, 1]) is a curve in this space. In fact, it
is not hard to see that α is an isolated point; i.e., its connected component does not
contain any other curve.

In contrast, the spaces Cκ2
κ1
(P, Q)r are Banach manifolds (for r 6=∞). Still, some

useful constructions, such as the concatenation of curves, lead out of this class of
spaces. To avoid having to smoothen curves all the time, we shall work with another
class of spaces, which possess the additional advantage of being Hilbert manifolds.

The group structure of UTC. The group of all orientation-preserving isometries
of C (i.e., proper Euclidean motions) acts simply transitively on UT C. An element
of this group is thus uniquely determined by where it maps (0, 1) ∈UT C, and may
be identified with this image. Therefore, UT C carries a natural Lie group structure
as a semidirect product CoS1, wherein the operation is

(p, w) · (q, z)= (p+wq, wz) (p, q ∈ C, w, z ∈ S1).
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Accordingly, viewed as a one-parameter family of Euclidean motions, the frame
8γ of a regular curve γ : [0, 1] → C operates on C through

(6) 8γ (t)a = γ (t)+ t(t)a (a ∈ C, t ∈ [0, 1]).

If we identify the Lie algebra of UT C with C×R, then the bracket operation is
given by

(7) [(a, θ), (b, ϕ)] = (i(θb−ϕa), 0) (a, b ∈ C, θ, ϕ ∈ R).

We can also realize UT C as a matrix group if we identify

P = (p, w) with

cos θ − sin θ x
sin θ cos θ y

0 0 1

 , where p = x + iy, w = eiθ .

Then 8γ corresponds to the map

(8) 8γ : [0, 1] → GL3, 8γ (t)=

cos θγ (t) − sin θγ (t) γ1(t)
sin θγ (t) cos θγ (t) γ2(t)

0 0 1

 ,
where θγ : [0, 1] → R is an argument of tγ and γ (t)= γ1(t)+ iγ2(t).2 Moreover,
under this identification the Lie algebra a of UT C becomes a subalgebra of gl3
generated by

(9) A =

0 −1 0
1 0 0
0 0 0

 , B =

0 0 1
0 0 0
0 0 0

 and C =

0 0 0
0 0 1
0 0 0

 .
The expression for the bracket in (7) can be easily derived from this.

Spaces of admissible curves. Suppose now that γ : [0, 1] → C is not only regular,
but also smooth. Let κ denote its curvature and σ = |γ̇ | its speed. Using (5), we
deduce that

8̇γ =|γ̇ |

−κ sinθγ −κ cosθγ cosθγ
κ cosθγ −κ sinθγ sinθγ

0 0 0

=8γ3γ , where 3γ =σ

0 −κ 1
κ 0 0
0 0 0

 .
Let h⊂ a denote the half-plane

(10) h= {a A+ bB : a ∈ R, b > 0}.

The map 3γ : [0, 1] → h is called the logarithmic derivative of γ . The crucial
observation for us is that 8γ (and hence γ ) is uniquely determined as the solution

2Notice that the first column of 8γ gives the coordinates of tγ , the second the coordinates of nγ
and the third the coordinates of γ . This justifies our terminology “frame” for 8γ .
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of an initial value problem

(11) 8(0)= P ∈UT C, 8̇=83, where 3 : [0, 1]→h, 3=σ

0 −κ 1
κ 0 0
0 0 0

 .
Equivalently, γ is uniquely determined by P = 8γ (0) and the pair of functions
κ : [0, 1] → R and σ : [0, 1] → R+. Our preferred class of spaces is obtained by
relaxing the requirements that σ and κ be smooth.

Let h = h0,+∞ : (0,+∞)→ R be the smooth diffeomorphism

h(t)= t − t−1.

More generally, for each pair κ1 < κ2 ∈ R, let hκ1,κ2 : (κ1, κ2)→ R be the smooth
diffeomorphism

hκ1,κ2(t)= (κ1− t)−1
+ (κ2− t)−1,

and, similarly, set

h−∞,+∞ : R→ R, h−∞,+∞(t)= t,

h−∞,κ2 : (−∞, κ2)→ R, h−∞,κ2(t)= t + (κ2− t)−1,

hκ1,+∞ : (κ1,+∞)→ R, hκ1,+∞(t)= t + (κ1− t)−1.

(1.2) Remark. All of these functions are monotone increasing; hence so are their
inverse functions. Also, if κ̂ ∈ L2

[0, 1], then κ = h−1
κ1,κ2
◦ κ̂ ∈ L2

[0, 1] as well.
This is obvious if (κ1, κ2) is bounded, and if one of κ1, κ2 is infinite then it is a
consequence of the fact that h−1

κ1,κ2
(t) diverges linearly to ±∞ with respect to t .

In all that follows, E denotes the separable Hilbert space L2
[0, 1] × L2

[0, 1].
The (i, j)-entry of a matrix A will be denoted by A(i, j).

(1.3) Definition. Let −∞≤ κ1 <κ2 ≤+∞ and P ∈UT C. A curve γ : [0, 1]→C,
γ = γ1 + iγ2, will be called (κ1, κ2)-admissible if γ1 = 8

(1,3), γ2 = 8
(2,3) for

8 : [0, 1] →UT C satisfying (11), with

(12) σ = h−1
◦ σ̂ , κ = h−1

κ1,κ2
◦ κ̂, (σ̂ , κ̂) ∈ E.

When it is not important to keep track of the bounds κ1, κ2, we will simply say that
γ is admissible.

The differential equation (11) has a unique solution 8 for any (σ̂ , κ̂) ∈ E and
P ∈ UT C. This follows from [Younes 2010, Theorem C.3] using the fact that
σ, κ ∈ L2

[0, 1] ⊂ L1
[0, 1]. Moreover, 8 is absolutely continuous [Younes 2010,

p. 385] and defined over all of [0, 1] (since C is complete). The resulting maps
t : [0, 1] → S1, n : [0, 1] → S1 and γ : [0, 1] → C, obtained from the first, second
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and third columns of 8, respectively, are thus absolutely continuous. It follows
from (11) that

(13) γ̇ = σ t, ṫ = σκn and ṅ=−σκ t.

Furthermore, if 9 denotes the 2× 2 matrix obtained from 8 by discarding its third
column and line, then 9 : [0, 1]→ SO2, as one sees by differentiating 99T , using
(11) and noting that 9(0) ∈ SO2. Hence, n= i t . Differentiation of |t|2 yields that

|n(t)| = |t(t)| = |t(0)| = 1 for all t ∈ [0, 1].

Comparing with (13), it is thus natural to define tγ = t , nγ =n,8γ =8, and to call σ
and κ the speed and curvature of γ , respectively, even though σ, κ ∈ L2

[0, 1]. With
this definition, tγ , nγ , 8γ and any argument θγ = arg ◦ tγ are absolutely continuous
functions, as remarked above. Although γ̇ = σ tγ is defined only almost everywhere
on [0, 1], if we reparametrize γ by arc-length then it becomes a regular curve, since
γ ′ = tγ . Instead of thinking of γ as corresponding to a pair of L2 functions, it is
more helpful to regard γ as a regular curve whose curvature is defined only a.e.
In fact, all of the concrete examples of admissible curves considered below are
piecewise C2 curves.

(1.4) Definition. Let −∞≤ κ1 < κ2 ≤+∞. For P ∈UT C, define Lκ2
κ1
(P, · ) to be

the set of all (κ1, κ2)-admissible curves γ : [0, 1] → C with 8γ (0)= P . This set
is identified with E via the correspondence γ ↔ (σ̂ , κ̂), thus furnishing Lκ2

κ1
(P, · )

with a trivial Hilbert manifold structure.

The “L” is intended to remind one of L2 functions.

(1.5) Lemma. Let −∞≤ κ1 < κ2 ≤+∞ and P ∈UT C. Then

F : Lκ2
κ1
(P, · )→UT C, γ 7→8γ (1),

is a submersion. Consequently, it is an open map.

Proof. Let δ > 0, r ∈ (−δ, δ) and σ̂ (r), κ̂(r) ∈ L2
[0, 1] be one-parameter families

of functions; set σ(r) = h−1
◦ σ̂ (r), κ(r) = h−1

κ1,κ2
◦ κ̂(r). Define a corresponding

family of curves 3(r) : [0, 1] → h by

3(r)= σ(r)

 0 −κ(r) 1
κ(r) 0 0

0 0 0

 .
Denoting derivatives with respect to t (resp. r) by a ˙ (resp. ′ ), let the map
8(r) : [0, 1] →UT C, t 7→ 8(r)(t), be the solution of 8̇(r) = 8(r)3(r). A
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straightforward computation shows that

8′(r)(t)
(
8(r)(t)

)−1

=

∫ t

0
8(r)(τ )3′(r)(τ )

(
8(r)(τ )

)−1 dτ (r ∈ (−δ, δ), t ∈ [0, 1]).

Let 3′(0) consist of three smooth narrow bumps at times t = t0, t = t1 and t = t2,
with each ti ∈ (0, 1) close to 1. Let 9 = 8(0); setting r = 0 in the previous
expression, we deduce that

9(1)−18′(0)(1)≈
3∑

i=1

(
9(ti )−19(1)

)−1
3′(0)(ti )

(
9(ti )−19(1)

)
.

Since each 3(r) is a curve in the open convex cone

{a A+ bB : a ∈ R, b > 0 and κ1b < a < κ2b},

we can make 3′(0)(ti ) assume any value in the vector subspace v generated by
A and B (with A, B as in (9)). Another computation using the fact that σ(0) > 0
a.e. shows that the planes v and

(
9(ti )−19(1)

)−1
v
(
9(ti )−19(1)

)
are transversal

for small 1− ti , with the angle between them proportional to (1− ti )+ o(1− ti ).
Hence, any vector in a can be written in the form 9(1)−18′(0)(1) for a suitable
choice of 3′(0), which shows that F is a submersion. �

(1.6) Definition. Let−∞≤ κ1<κ2≤+∞ and P, Q ∈UT C. Define Lκ2
κ1
(P, Q) to

be the subspace of Lκ2
κ1
(P, · ) consisting of all γ ∈ Lκ2

κ1
(P, · ) such that 8γ (1)= Q.

It follows from (1.5) that Lκ2
κ1
(P, Q) is a closed submanifold of codimension 3

in Lκ2
κ1
(P, · )≡ E; the proof that Lκ2

κ1
(P, Q) is always nonempty is postponed until

Section 4.
The following lemmas contain all the results on infinite-dimensional manifolds

that we shall use.

(1.7) Lemma. Let M,N be (infinite-dimensional) separable Banach manifolds.
Then:

(a) M is locally path-connected. In particular, its connected and path components
coincide.

(b) If F : M→ N is a weak homotopy equivalence, then F is homotopic to a
homeomorphism.

(c) Let E and F be separable Banach spaces. Suppose i : F→ E is a bounded,
injective linear map with dense image and M⊂ E is a smooth closed subman-
ifold of finite codimension. Then N = i−1(M) is a smooth closed submanifold
of F and i :N→M is a homotopy equivalence.
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Proof. Part (a) is obvious. Part (b) follows from [Palais 1966, Theorem 15],
[Burghelea and Kuiper 1969, Theorem 9] and [Henderson 1969, Corollary 3].
Part (c) is [Burghelea et al. 2003, Theorem 2]. �

(1.8) Lemma. Let E be a separable Hilbert space, D⊂ E a dense vector subspace,
L ⊂ E a submanifold of finite codimension and U an open subset of L. If K is a
finite simplicial complex and f : |K | →U a continuous map, then f is homotopic
within U to a map |K | → D ∩U.

Proof. See [Saldanha and Zühlke 2013, Lemma 1.10]. �

(1.9) Corollary. Let κ1 < κ2 and P, Q ∈ UT C. Then the subset of all smooth
curves in Lκ2

κ1
(P, Q) is dense in the latter.

Proof. Take E = L2
[0, 1] × L2

[0, 1], D = C∞[0, 1] ×C∞[0, 1] and U an open
subset of L = Lκ2

κ1
(P, Q). Then it is a trivial consequence of (1.8) that D ∩U 6=∅

if U 6=∅. �

(1.10) Lemma. Let (κ1, κ2)⊂ (κ̄1, κ̄2) and P, Q ∈UT C. Then

(14) j : Cκ2
κ1
(P, Q)r → L

κ̄2
κ̄1
(P, Q), γ 7→ (σ̂ , κ̂),

where σ̂ = h ◦ |γ̇ | and κ̂ = hκ̄1,κ̄2 ◦ κγ , is a continuous injection for all r ≥ 2.
Furthermore, the actual curve in C corresponding to j (γ ) ∈ Lκ̄2

κ̄1
(P, Q) is γ itself.

Proof. The curve corresponding to the right side of (14) in L
κ̄2
κ̄1
(P, · ) is the solution

of (11) with
σ = h−1

◦ σ̂ = |γ̇ | and κ = h−1
κ̄1,κ̄2
◦ κ̂ = κγ .

By uniqueness, this solution must equal γ . In particular, j is injective and its image
is indeed contained in L

κ̄2
κ̄1
(P, Q). Continuity of j is clear: if η is Cr -close to γ ,

then ση (resp. κη) is C1-close (resp. C0-close) to σγ (resp. κγ ); hence j (η) is close
to j (γ ) in the L2-norm. �

(1.11) Corollary. Let κ1 < κ2, P, Q ∈ UT C and U ⊂ Lκ2
κ1
(P, Q) be open. Let K

be a finite simplicial complex and f : |K | → U be a continuous map. Then there
exists a continuous g : |K | → U such that

(i) f ' g within U;

(ii) g(a) is a smooth curve for all a ∈ K ;

(iii) all derivatives of g(a) with respect to t depend continuously on a ∈ K .

In particular, the set inclusion j : Cκ2
κ1
(P, Q) ↪→ Lκ2

κ1
(P, Q) in (14) induces surjec-

tions πk( j−1(U))→ πk(U) for all k ∈ N.

Proof. Parts (i), (ii) follow immediately from (1.8) by setting E=L2
[0,1]×L2

[0,1],
D = C∞[0, 1]×C∞[0, 1], L = Lκ2

κ1
(P, Q) and U = U. The image of the function

g = H2 : |K | → U constructed in the proof of (1.8) [Saldanha and Zühlke 2013,
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Lemma 1.10] is contained in a finite-dimensional vector subspace of D, namely,
the one generated by all ṽi j , so (iii) also holds. �

(1.12) Lemma. Let κ1 < κ2 and P, Q ∈UT C. Then the inclusion

j : Cκ2
κ1
(P, Q)r → Lκ2

κ1
(P, Q)

of (14) is a homotopy equivalence for any r ∈ N, r ≥ 2. Consequently, Cκ2
κ1
(P, Q)r

is homeomorphic to Lκ2
κ1
(P, Q) for any r ∈ N, r ≥ 2.

Proof. Let E = L2
[0, 1] × L2

[0, 1], let F = Cr−1
[0, 1] × Cr−2

[0, 1] (where
Ck
[0, 1] denotes the set of all Ck functions [0, 1] → R with the Ck norm) and

let i : F → E be set inclusion. Setting M = Lκ2
κ1
(P, Q), we conclude from

(1.7)(c) that i : N = i−1(M) ↪→ M is a homotopy equivalence. We claim that
N is homeomorphic to Cκ2

κ1
(P, Q)r , where the homeomorphism G is obtained by

associating a pair (σ̂ , κ̂) ∈N to the curve γ obtained by solving (11), with σ and κ
as in (12). The lemma will follow from this and the easily verified commutativity of

N

i ##

G
// Cκ2

κ1
(P, Q)r

j
��

Lκ2
κ1
(P, Q)

Suppose first that γ ∈ Cκ2
κ1
(P, Q)r . Then |γ̇ | (resp. κ) is a function [0, 1] → R

of class Cr−1 (resp. Cr−2). Hence, so are σ̂ = h ◦ |γ̇ | and κ̂ = hκ2
κ1
◦ κ , since h and

hκ2
κ1

are smooth. Moreover, if γ, η ∈ Cκ2
κ1
(P, Q)r are close in the Cr topology, then

κ̂γ is Cr−2-close to κ̂η and σ̂γ is Cr−1-close to σ̂η.
Conversely, if (σ̂ , κ̂)∈N, then σ = h−1

◦σ̂ is of class Cr−1 and κ = (hκ2
κ1
)−1
◦κ̂ is

of class Cr−2. Since all functions on the right side of (11) are of class (at least) Cr−2,
the solution t = tγ to this initial value problem is of class Cr−1. Moreover, γ̇ = σ t;
hence the velocity vector of γ is seen to be of class Cr−1. We conclude that γ
is a curve of class Cr . Further, continuous dependence on the parameters of a
differential equation shows that the correspondence (σ̂ , κ̂) 7→ tγ is continuous.
Since γ is obtained by integrating σ tγ , we deduce that the map (σ̂ , κ̂) 7→ γ is
likewise continuous.

The last assertion of the lemma follows from (1.7)(b). �

(1.13) Definition. Let P = (p, w), Q = (q, z) ∈ C×S1. Given θ1 ∈ R satisfying
eiθ1 = zw̄, we denote by Lκ2

κ1
(P, Q; θ1) the subspace of Lκ2

κ1
(P, Q) consisting of all

curves which have total turning equal to θ1. When P = (0, 1), the space Lκ2
κ1
(P, Q)

(resp. Lκ2
κ1
(P, Q; θ1)) will be denoted simply by Lκ2

κ1
(Q) (resp. Lκ2

κ1
(Q; θ1)).
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Notice that (0, 1) ∈ C× S1 corresponds to the identity element in the group
structure of UT C. It will be proved in Section 4 that Lκ2

κ1
(P, Q; θ1) is never empty

if κ1κ2 < 0, but may be empty if κ1κ2 ≥ 0, depending on the value of θ1.
The next two results let us reparametrize a family of curves to better suit our needs.

(1.14) Lemma. Let M = Lκ2
κ1
(P, Q) or M = Cκ2

κ1
(P, Q). Let A be a topological

space and A→M, a 7→ γa , be a continuous map. Then there exists a homotopy
γ r

a : [0, 1] →M, r ∈ [0, 1], such that for any a ∈ A,

(i) γ 0
a = γa and γ 1

a is parametrized so that |γ̇ 1
a (t)| is independent of t ;

(ii) γ r
a is an orientation-preserving reparametrization of γa for all r ∈ [0, 1].

Proof. Let sa(t) =
∫ t

0 |γ̇a(τ )| dτ be the arc-length parameter of γa , La its length
and τa : [0, La] → [0, 1] the inverse function of sa . Define γ r

a : [0, 1] → M by

γ r
a (t)= γa

(
(1− r)t + rτa(Lat)

)
(r, t ∈ [0, 1], a ∈ A).

Then γ r
a is the desired homotopy. �

(1.15) Corollary. Let M= Lκ2
κ1
(P, Q) or Cκ2

κ1
(P, Q). Let A be a topological space

and f : S0
× A → M a continuous map such that for all a ∈ A, f (1, a) is an

orientation-preserving reparametrization of f (−1, a). Then f admits a continuous
extension F : A× [−1, 1] →M with the property that f (r, a) is an orientation-
preserving reparametrization of f (−1, a) for all r ∈ [−1, 1], a ∈ A. �

It is assumed in (1.14) and (1.15) that the parametrizations of all curves have
domain [0, 1], but it is clearly possible to have these intervals depend (continuously)
on a. A typical application is to reparametrize all curves in a family by arc-length,
not just proportionally to arc-length as in (1.14).

Spaces of curves with curvature in a closed interval.
(1.16) Definition. Let P, Q ∈UT C and −∞<κ1 <κ2 <+∞. Define L̂κ2

κ1
(P, Q)

to be the set of all C1 regular plane curves γ : [0, 1] → C satisfying

(i) 8γ (0)= P and 8γ (1)= Q;

(ii) κ1 ≤
θ(s1)− θ(s2)

s1− s2
≤ κ2

for any s1 6= s2 ∈ [0, L]. (Here the parameter is the arc-length of γ , L is its
length and θ : [0, L] → R is an argument of tγ .)

Condition (ii) implies that θ is a Lipschitz function. In particular, it is absolutely
continuous, and its derivative κγ lies in L2, since it is bounded. We give this set the
topology induced by the following distance function d: given γ, η ∈ L̂κ2

κ1
(P, Q), set

d(γ, η)= ‖γ − η‖2+‖γ̇ − η̇‖2+‖κγ − κη‖2.

For P = (0, 1) ∈ C×S1, we will denote L̂κ2
κ1
(P, Q) simply by L̂κ2

κ1
(Q).
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Remark. This definition is essentially due to L. E. Dubins, who studied paths of
minimal length, now called Dubins paths, in L̂

+κ0
−κ0
(P, Q) (κ0 > 0). Such shortest

paths always exist, but may not be unique in some special cases (see Proposition 1
and the corollary to Theorem I of [Dubins 1957]). His main result states that any
Dubins path is the concatenation of at most three pieces, each of which is either a
line segment or an arc of circle of radius 1/κ0 (see [loc. cit., Theorem I] for the
precise statement). Dubins paths and variations thereof have many applications in
engineering and are the subject of a vast literature. The space L̂κ2

κ1
(P, Q) will play

a minor role in our investigations. Its topology has been chosen to ensure that the
following result holds.

(1.17) Lemma. Let (κ1, κ2) ⊂ [κ̄1, κ̄2] ⊂ ( ¯̄κ1, ¯̄κ2) and P, Q ∈ UT C. Then the set
inclusions

Cκ2
κ1
(P, Q)→ L̂

κ̄2
κ̄1
(P, Q) and L̂

κ̄2
κ̄1
(P, Q)→ L

¯̄κ2
¯̄κ1
(P, Q)

are continuous injections.

Proof. The proof is a straightforward verification, which will be left to the reader. �

2. Normal translation

The radius of curvature ρ of an admissible curve γ is given by ρ = 1/κ; when
κ(t)= 0, it is to be understood that ρ(t)=∞ (unsigned infinity). An analogue of
the following construction has already appeared in [Saldanha and Zühlke 2013]. It
can be used to uniformly shift the radii of curvature of a family of curves.

(2.1) Definition. Let γ : [0, 1]→C be admissible and u∈R. The normal translation
γu of γ by u is the curve given by

γu(t)= γ (t)+ un(t) (t ∈ [0, 1]).

Observe that the normal translation αu of a circle α of radius of curvature
ρ ∈ R r {0} is a circle of radius of curvature ρ − u for any u in the component
of Rr {ρ} containing 0 (see Figure 2). The following lemma generalizes this to
arbitrary curves.

(2.2) Lemma. Let γ ∈Lκ2
κ1
(P, Q) be parametrized proportionally to arc-length and

let t, κ, ρ denote its unit tangent, curvature and radius of curvature, respectively.
Suppose u ∈ R satisfies 1− uk > 0 for all k ∈ (κ1, κ2) and set

(15) κ̄i =
κi

1− uκi
(i = 1, 2).

Then the normal translation γu of γ by u has the following properties:
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Figure 2. The normal translation of a general curve γ and of a
circle α.

(a) γu ∈ L
κ̄2
κ̄1
(P, Q) for P = (p+ iuw,w), Q = (q + iuz, z) and its unit tangent

t̄ satisfies t̄(t)= t(t) for each t ∈ [0, 1]. In particular, γ and γu have the same
total turning.

(b) (γu)−u = γ .

(c) If η is a reparametrization of γ , then ηu is a reparametrization of γu .

(d) For almost every t ∈ [0, 1], the curvature κ̄ of γu is given by

κ̄(t)=
κ(t)

1− uκ(t)
and its radius of curvature ρ̄ by

ρ̄(t)= ρ(t)− u.

In (15) above, it should be understood that κ̄i =−1/u if κi is infinite and that
κ̄i =±∞ has the same sign as κi if 1− uκi = 0.

Proof. Let θγ : [0, 1]→R be an argument of t = tγ and define 9 : [0, 1]→ GL3 by

(16) 9 =

cos θγ − sin θγ γ1− u sin θγ
sin θγ cos θγ γ2+ u cos θγ

0 0 1

 .
Let L be the length of γ . Since γ is parametrized proportionally to arc-length, a
straightforward calculation shows that 9 satisfies 9̇ =93 for

(17) 3 : [0, 1] → a⊂ gl3, 3= L

0 −κ 1− uκ
κ 0 0
0 0 0

 .
By hypothesis, the image of 3 is contained in the half-plane h of (10). Comparing
the third column of (16) with the definition of γu , we deduce that 9 is the frame
of γu . Further, looking at the first and second columns, we deduce that t̄ = t and
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n̄ = n. That 8γu (0) = P and 8γu (1) = Q then follows immediately from the
definition. This establishes (a) except for the fact that γu is (κ̄1, κ̄2)-admissible,
which will be proved below.

Part (b) is an easy verification:

(γu)−u = γu − un̄= (γ + un)− un= γ.

Part (c) is obvious.
We know that the curvature κ̄ of γu is given by the quotient of 3(2,1) by 3(1,3),

that is,

κ̄ =
κ

1− uκ
=

1
ρ− u

=
1
ρ̄
.

This proves (d).
It is straightforward to check that u ∈R satisfies 1−uk > 0 for all k ∈ (κ1, κ2) if

and only if u lies in the maximal closed interval J containing 0 and not containing
any number of the form 1/k for k ∈ (κ1, κ2). More explicitly:

(i) If 0≤ κ1 < κ2 then J = (−∞, ρ2];

(ii) If κ1 < 0< κ2 then J = [ρ1, ρ2];

(iii) If κ1 < κ2 ≤ 0 then J = [ρ1,+∞).

By (17), |γ̇u| = L(1− uκ). To establish that γu is (κ̄1, κ̄2)-admissible, it suffices to
prove that

h0,+∞ ◦ (1− uκ)= (1− uκ)− (1− uκ)−1
∈ L2
[0, 1],(18)

hκ̄1,κ̄2 ◦ κ̄ ∈ L2
[0, 1].(19)

By (1.2), κ ∈ L2
[0, 1]; hence so is (1− uκ). Moreover, (1− uκ)−1 is bounded

unless u is one of the endpoints of J , but we claim that even in this case (1−uκ)−1
∈

L2
[0, 1]. Suppose for concreteness that u = ρ2 ∈ ∂ J . If κ2 = +∞ (ρ2 = 0) then

there is nothing to prove, and otherwise

(20) (1− uκ)−1
= (1− ρ2κ)

−1
= κ2(κ2− κ)

−1.

Now by hypothesis, γ ∈ Lκ2
κ1
(P, Q); therefore

hκ1,κ2 ◦ κ = (κ1− κ)
−1
+ (κ2− κ)

−1
∈ L2
[0, 1].

This implies that both

(21) (κ1− κ)
−1
∈ L2
[0, 1] and (κ2− κ)

−1
∈ L2
[0, 1],

since as one of them increases in absolute value, the other one decreases. Conse-
quently, (20) lies in L2

[0, 1] and (18) follows from Minkowski’s inequality.
The proof of (19) involves the tedious consideration of several cases, because it

depends on which of the four h functions defined on p. 193 is used, both for (κ1, κ2)
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and (κ̄1, κ̄2). Assume first that κ1 < κ2 are both finite. If u /∈ ∂ J , then κ̄1, κ̄2 are
also finite, so

hκ̄1,κ̄2 ◦ κ̄ = (1− uκ)(1− uκ1)(κ1− κ)
−1
+ (1− uκ)(1− uκ2)(κ2− κ)

−1.

Since κ ∈ (κ1, κ2) is bounded, this is a sum of two functions in L2
[0, 1] by (21);

hence it lies in L2
[0, 1]. If u is an endpoint ρi of J then κ̄i is infinite. For instance,

if u = ρ2 then

hκ̄1,κ̄2 ◦ κ̄ = hκ̄1,+∞ ◦ κ̄ = (1− ρ2κ)(1− ρ2κ1)(κ1− κ)
−1
+ κ2κ(κ2− κ)

−1.

Because κ is bounded, we conclude from (21) that (19) holds in this case also.
If one of the κi , say κ2, is infinite, then the hypothesis that γ is admissible implies

that
hκ1,+∞ ◦ κ = (κ1− κ)

−1
+ κ ∈ L2

[0, 1].

As above, it follows that each of the summands lies in L2
[0, 1]. If u 6= ρ1 then

κ̄1 = κ1/(1− uκ1), κ̄2 =−1/u are both finite, and

hκ̄1,κ̄2 ◦ κ̄ = (1− uκ1)(1− uκ)(κ1− κ)
−1
− u(1− uκ).

Observe that (1−uκ)(κ1−κ)
−1
∈ L2
[0, 1] because as κ increases to+∞, (κ1−κ)

−1

remains bounded, while as κ→ κ1, obviously (1− uκ) remains bounded. Thus,
(19) holds. We leave the similar verification in the remaining cases to the reader. �

(2.3) Remark. The necessity of reparametrizing an admissible curve by arc-length
before applying normal translation stems from the fact that the product of two
L2 functions need not be of class L2: for a general parametrization, the speed of
γu is given by σ(1− uκ), where σ , κ are the speed and curvature of γ ; hence, γu

need not be admissible. This has no serious consequences because of (1.14).

The next result greatly simplifies the study of the spaces Lκ2
κ1
(P, Q). In all that

follows, the notation X ≈ Y means that X is homeomorphic to Y .

(2.4) Theorem. Let P = (p, w), Q = (q, z) ∈ C×S1, −∞≤ κ1 < κ2 ≤+∞ and
ρi = 1/κi .

(a) Suppose κ1 < 0 < κ2. If at least one of κ1, κ2 is finite, then Lκ2
κ1
(P, Q) ≈

L+1
−1(Q1) for

Q1 =

( 2
ρ2−ρ1

w̄
(
(q − p)+ i

2
(ρ1+ ρ2)(z−w)

)
, zw̄

)
.

(b) Suppose 0< κ1 < κ2. Then Lκ2
κ1
(P, Q)≈ L+∞1 (Q2) for

Q2 =

(
w̄

ρ1−ρ2

(
(q − p)+ iρ2(z−w)

)
, zw̄

)
.
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(c) Suppose 0= κ1 < κ2. Then Lκ2
κ1
(P, Q)≈ L+∞0 (Q3) for

Q3 =
(
w̄
(
(q − p)+ iρ2(z−w)

)
, zw̄

)
.

(d) Suppose κ1 < κ2 < 0. Then Lκ2
κ1
(P, Q)≈ L+∞1 (Q4) for

Q4 =

( z̄
ρ1−ρ2

(
(q − p)+ iρ1(z−w)

)
, wz̄

)
.

(e) Suppose κ1 < κ2 = 0. Then Lκ2
κ1
(P, Q)≈ L+∞0 (Q5) for

Q5 =
(
z̄
(
(q − p)+ iρ1(z−w)

)
, wz̄

)
.

In cases (a)–(c) (resp. (d)–(e)), the total turning of the image of a curve under the
homeomorphism is equal (resp. opposite) to that of the original curve.

Proof. Suppose first that κ1 < 0<κ2 and let k ∈ (κ1, κ2) be arbitrary. If ρ1+ρ2 ≤ 0,
then

1−
(
ρ1+ ρ2

2

)
k > 1−

(
ρ1+ ρ2

2

)
κ1 =

1
2(1− ρ2κ1)≥

1
2 > 0,

and if ρ1+ ρ2 ≥ 0, then

1−
(
ρ1+ ρ2

2

)
k > 1−

(
ρ1+ ρ2

2

)
κ2 =

1
2(1− ρ1κ2)≥

1
2 > 0.

Consequently, u = (ρ1+ ρ2)/2 satisfies the hypothesis of (2.2). Let

κ0 =
2

ρ2− ρ1
.

Note that 0 < κ0 < +∞; in the notation of (2.2), −κ0 = κ̄1 and κ0 = κ̄2. Define
a map F : Lκ2

κ1
(P, Q)→ L

+κ0
−κ0
(P, Q) by letting F(γ ) be the translation by u of

its reparametrization (still with domain [0, 1]) by a multiple of arc-length. This
is continuous by (1.14). In fact, it is a homotopy equivalence: there is a similarly
defined map G :L+κ0

−κ0
(P, Q)→Lκ2

κ1
(P, Q) using translation by −u, and GF(γ ) is

just a reparametrization of γ by (2.2)(b) and (c).
Let T : C→ C be the dilatation x 7→ κ0x . If γ ∈L+κ0

−κ0
(P, Q), then T ◦ γ lies in

L+1
−1(P̃, Q̃), where

P̃ =
(
κ0

(
p+

ρ1+ ρ2

2
iw
)
, w

)
, Q̃ =

(
κ0

(
q +

ρ1+ ρ2

2
i z
)
, z
)
,

and the correspondence γ 7→ T ◦ γ yields a homeomorphism between these two
spaces. Write P̃ = ( p̃, w) ∈ C×S1 and let E : C→ C be the Euclidean motion
given by E(x)= w̄(x − p̃). Then the map γ 7→ E ◦ γ is a homeomorphism from
L+1
−1(P̃, Q̃) onto L+1

−1(Q1), with Q1 as in the statement. The composition of all
of these maps yields a homotopy equivalence Lκ2

κ1
(P, Q)→ L+1

−1(Q1), which is
homotopic to a homeomorphism by (1.7)(b).
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The proofs of parts (b) and (c) are analogous, so only a brief outline will be
provided. In part (b), we first use normal translation by ρ2, and then compose with
the dilatation x 7→ x/(ρ1− ρ2) and an Euclidean motion; in part (c) the dilatation
is not necessary. Parts (d) and (e) follow from (b) and (c), respectively, by reversing
the orientation of all curves in the corresponding space.

By (2.2)(a), the normal translations used in establishing (a)–(c) preserve the
total turning of a curve. Clearly, so do dilatations and Euclidean motions, while a
reversal of orientation changes the sign of the total turning. This proves the last
assertion of the theorem. �

(2.5) Remark. Normal translations, and hence also the homotopy equivalences
constructed in (2.4), do not generally respect inequalities between lengths. This is
clear from Figure 2: two circles of the same radius r > 0 but different orientations
are mapped to circles of radii equal to r ± u under normal translation by u ∈ (0, r).
See also the remarks at the end of Section 9.

A more concise version of (2.4) is the following; recall that 0(±∞) = 0 by
convention.

(2.6) Corollary. Let P, Q ∈UT C. Then Lκ2
κ1
(P, Q) is homeomorphic to a space of

type L+1
−1(Q0), L+∞0 (Q0) or L+∞1 (Q0), according to whether κ1κ2 < 0, κ1κ2 = 0

or κ1κ2 > 0, respectively. �

Out of the three possibilities, the spaces of type Lκ2
κ1
(P, Q) with κ1κ2 < 0 are

the ones with the most interesting topological properties. We deal with the two
remaining cases in Section 7.

(2.7) Remark. We may replace L with C throughout in the statement of (2.4). In
fact, the difficulty indicated in (2.3) disappears in this case, so the proof is simpler
because it is not necessary to reparametrize the curves by arc-length before applying
normal translation. This yields explicit homeomorphisms of the corresponding
spaces, without relying on (1.7)(b). Because the curves in a space of type L̂κ2

κ1
are

C1 regular by definition, this simpler proof also works for this class (except that
here κ1 < κ2 must be finite); see (9.1) for the precise statement.

3. Topology of Uc

(3.1) Definition. Let γ : [0, 1] → C be a regular curve and θ : [0, 1] → R be an
argument of tγ . The amplitude of γ is given by

ω = sup
t∈[0,1]

θ(t)− inf
t∈[0,1]

θ(t).

We call γ condensed, critical or diffuse according to whether ω < π , ω = π
or ω > π .
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Our main objective now is to understand the topology of Lκ2
κ1
(P, Q) when

κ1κ2 < 0. By (2.6), no generality is lost in assuming that κ1 = −1, κ2 = +1
and P = (0, 1) ∈ C×S1

(3.2) Definition. Let Q = (q, z) ∈ C×S1 and θ1 ∈ R satisfy eiθ1 = z. We denote
by Uc, Ud and T the subspaces of L+1

−1(Q; θ1) consisting of all condensed, diffuse
and critical curves, respectively.

(3.3) Theorem. The subspace Uc ⊂L+1
−1(Q; θ1) consisting of all condensed curves

is either empty or homeomorphic to E, and hence contractible.

Recall that E denotes the separable Hilbert space. In what follows, a function φ
of a real variable will be called increasing (resp. decreasing) if x < y (resp. x > y)
implies that φ(x)≤ φ(y). The previous theorem will be derived as a corollary of
the following result.

(3.4) Proposition. Let κ0 > 0 and Ûc ⊂ L̂
+κ0
−κ0
(Q; θ1) be the subspace consisting of

all condensed curves. If Ûc 6=∅, then there exists a continuous H : [0, 1]×Ûc→ Ûc

such that for all γ ∈ Ûc,

(i) H(1, γ )= γ and H(0, γ )= γ0 (where γ0 is independent of γ );

(ii) the amplitude of γs = H(s, γ ) is an increasing function of s ∈ [0, 1];

(iii) the length of γs = H(s, γ ) is an increasing function of s ∈ [0, 1].

In particular, Ûc is contractible. Moreover, γ0 is the unique curve of minimal length
in L̂

+κ0
−κ0
(Q).

We believe that this proposition and its proof may be useful for other purposes
which are not pursued here, e.g., for calculating the minimal length of curves in
L̂
+κ0
−κ0
(Q). We shall first describe the effect of H on a single curve γ ∈ Ûc and then

derive its main properties separately as lemmas. First we record two results which
will be used to show that H(0, γ ) is independent of γ .

(3.5) Lemma. Let Q = (q, z) ∈ C×S1, γ ∈ L̂+κ0
−κ0
(Q) and L be the length of γ .

Suppose that q lies on the line through i/κ0 having direction −ieiα for some
α ∈ [0, π). Then L ≥ α/κ0 and equality holds if and only if γ is a reparametrization
of the arc of the circle centered at i/κ0 joining 0 to 1/κ0(i − ieiα).

Proof. We lose no generality in assuming that κ0 = 1. If α = 0, there is nothing to
prove, so suppose α ∈ (0, π). Let γ : [0, L] → C be parametrized by arc-length,
and let η : [0, α] → C be given by

η(s)=
∫ s

0
eiσ dσ = i − ieis (s ∈ [0, α]),
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Figure 3. An illustration of (3.5) and (3.6).

so that η is the parametrization by arc-length of the arc of circle described in (3.5);
see Figure 3(a). Set

f : [0, L] → R, f (s)= 〈γ (s)− i, eiα
〉,

g : [0, α] → R, g(s)= 〈η(s)− i, eiα
〉.

Let A denote the line in the statement. Note that f (s)= 0 if and only if γ (s) ∈ A.
We need to prove that f (s) < 0 for all s ∈ [0, α)∩ [0, L]. Let θγ be the argument
of tγ satisfying θγ (0)= 0. Then

(22) f ′(s)=〈eiθγ (s), eiα
〉= cos(α−θγ (s)) and g′(s)=〈eis, eiα

〉= cos(α−s).

We have f (0)= g(0). Since g(s) < 0 for all s ∈ [0, α), it suffices to establish
that f ′(s) ≤ g′(s) for all s ∈ [0, α] ∩ [0, L]. By the definition of L̂+1

−1(Q), θγ is
1-Lipschitz. Hence, |θγ (s)| ≤ s for all s ∈ [0, L]. Consequently,

α− s ≤ α− θγ (s)≤ α+ s for all s ∈ [0, L].

In particular, α − θγ (s) ∈ [0, 2π ] for all s ∈ [0, α] ∩ [0, L]. Since the cosine is
decreasing over [0, π], it follows immediately from (22) that if α−θγ (s)≤ π , then
f ′(s)≤ g′(s). On the other hand, if α−θγ (s)∈ [π, 2π ], then from α−θγ (s)≤α+s,

we obtain that
cos(α− θγ (s))≤ cos(α+ s)≤ cos(α− s),

the latter inequality coming from α ∈ (0, π) and s ∈ [0, α]. Thus, f ′(s) ≤ g′(s)
in this case also. We conclude that f (s) ≤ g(s) < 0 for all s ∈ [0, α)∩ [0, L]. In
particular, L ≥ α, as γ (L) ∈ A.

If f (α)= g(α)= 0, then we must have f ′= g′, that is, θγ (s)= s for all s ∈ [0, α].
Thus, in this case, γ |[0,α] is a reparametrization of η|[0,α]. �

(3.6) Corollary. Suppose that η ∈ L̂+κ0
−κ0
(Q) is a concatenation of an arc of circle

of curvature ±κ0, a line segment, and another arc of circle of curvature ±κ0, where
some of these may be degenerate and both arcs have length less than π/κ0. Then η
is the unique curve in L̂

+κ0
−κ0
(Q) of minimal length.
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This result should be compared to [Dubins 1957, Proposition 9]. Their proofs
are essentially the same.

Proof. Let η : [0, L]→ C be parametrized by arc-length, with η|[0,L1], η|[L1,L2] and
η|[L2,L] corresponding to the first arc, line segment and second arc, respectively
(see Figure 3(b)). Let Ai be the line perpendicular to η′(L i ) passing through η(L i ),
i = 1, 2. Notice that A1 and A2 are parallel (or equal). Suppose that γ : [0,M]→C

is another curve in L̂
+κ0
−κ0
(Q), parametrized by arc-length. Let

M1 = inf{s ∈ [0,M] : γ (s) ∈ A1}, M2 = sup{s ∈ [0,M] : γ (s) ∈ A2}.

By (3.5), we have M1≥ L1 and M−M2≥ L−L2. It is clear that M2−M1≥ L2−L1

since any path joining a point of A1 to a point of A2 must have length greater than or
equal to the distance between these lines. Hence, M ≥ L . Furthermore, if equality
holds, then M1 = L1, M −M2 = L − L2 and M2−M1 = L2− L1. By (3.5), the
two former equalities imply that γ |[0,M1] = η|[0,L1] and γ |[M2,M] = η|[L2,L]. The
condition M2−M1 = L2− L1 then implies that γ |[M1,M2] must coincide with the
line segment η|[L1,L2]. �

(3.7) Remark. Notice that a condensed curve must be an embedding of [0, 1]. In
fact, its image is the graph of a function of x , after a suitable choice of the x-axis.

(3.8) Construction. Let γ ∈ Ûc, θ : [0, 1] → R be the argument of tγ satisfying
θ(0)= 0. A number ϕ ∈ (−π/2, π/2) will be called an axis of γ if 〈tγ (t), eiϕ

〉> 0
for all t ∈ [0, 1]. Since γ is condensed, the set of all axes of γ is an open interval.
The most natural axis, and the center of this interval, is

(23) ϕ̄γ =
1
2

(
sup

t∈[0,1]
θ(t)+ inf

t∈[0,1]
θ(t)

)
.

Let ϕ be any axis of γ . Rotating around the origin through ϕ and writing γ (t)=
(x(t), y(t)) in terms of the new x- and y-axes, the hypothesis that 〈tγ , eiϕ

〉 > 0
becomes equivalent to the fact that ẋ is bounded and positive over [0, 1]. Let

γ (x)= (x, y(x)) (x ∈ [0, b])

be the reparametrization of γ by x and define

f : [0, b] → R by f (x)= ẏ(x).

Let fs : [0, b] → R (s ∈ [0, 1]) be a family of absolutely continuous functions
and set

γs(x)=
(

x,
∫ x

0
fs(u) du

)
(x ∈ [0, b]).

A straightforward computation shows that the curvature of γs is given by

κγs (x)=
ḟs(x)

(1+ fs(x)2)3/2
(x ∈ [0, b]).
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Figure 4. An illustration of (3.8).

Therefore, γs lies in L̂
+κ0
−κ0
(Q; θ1) if and only if fs satisfies

(i) | ḟs(x)|≤κ0(1+ fs(x)2)3/2 for almost every x ∈[0, b] (i.e., κγs∈[−κ0,+κ0] a.e.);

(ii) fs(0)=r0 := ẏ(0) and fs(b)=rb := ẏ(b) (i.e., tγs (0)= tγ (0) and tγs (b)= tγ (b));

(iii)
∫ b

0 fs(x) dx = A1 := y(b)− y(0) (i.e., γs(b)= γ (b)).

We will now produce a homotopy of f = f1 through absolutely continuous functions
satisfying (i)–(iii).

Define

(24) α±=∓
r0√
1+r2

0

, g±(x)=±
κ0x−α±√

1−(κ0x−α±)2
for x ∈

(
α±−1
κ0

,
α±+1
κ0

)

(see Figure 4) and, similarly,
(25)

β±= κ0b±
rb√
1+r2

b

, h±(x)=∓
κ0x−β±√

1−(κ0x−β±)2
for x ∈

(
β±−1
κ0

,
β±+1
κ0

)
.

The functions g± are the solutions of the differential equations ġ =±κ0(1+ g2)3/2

with g(0) = r0. Similarly, h± are the solutions of the differential equations
ḣ =∓κ0(1+ h2)3/2 with h(b)= rb. Extend their domains to all of R by setting

g±(x)=±∞ if x ≥
α±+ 1
κ0

and g±(x)=∓∞ if x ≤
α±− 1
κ0

,
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and do similarly for h±. Since the curvature of γ = γ1 takes values in [−κ0,+κ0],
condition (i) applied to f = f1 gives

(26) g−(x), h−(x)≤ f (x)≤ g+(x), h+(x) for all x ∈ [0, b].

Let

(27)
m− = inf

x∈[0,b]
f (x), m+ = sup

x∈[0,b]
f (x),

1= {(µ−, µ+) ∈ [m−,m+] : µ− ≤ µ+}.

For (µ−, µ+) ∈1, let f (µ−,µ+) : [0, b] → R be given by

(28) f (µ−,µ+)(x)=median
(
h−(x), g−(x), µ−, f (x), µ+, g+(x), h+(x)

)
(see Figure 4). The functions f (µ−,µ+) automatically satisfy conditions (i) and (ii).
Define A :1→ R to be the area under the graph of f (µ−,µ+):

A(µ−, µ+)=
∫ b

0
f (µ−,µ+)(x) dx .

It is immediate from (28) that

(A) A is increasing as a function of either µ− or µ+;

(B) A is a Lipschitz function of (µ−, µ+). In fact,∣∣A(µ−+ u, µ++ v)− A(µ−, µ+)
∣∣≤ b(|u| + |v|).

By (A), for each s ∈ [0, 1], the set{
(µ−, µ+) ∈1 : A(µ−, µ+)= A1 and µ+−µ− = (m+−m−)s

}
is an interval of the latter line in the (µ−, µ+)-plane. Let (µ−(s), µ+(s)) be the
coordinates of the center of this interval. By (B), µ−(s) and µ+(s) are continuous
(even Lipschitz), and (A) implies that µ− is a decreasing, while µ+ is an increasing
function of s ∈ [0, 1]. The functions

fs : [0, b] → R, fs = f (µ−(s),µ+(s)),

satisfy all of conditions (i)–(iii) by construction. We repeat their definition for
convenience:

(29)
fs(x)=median

(
h−(x), g−(x), µ−(s), f (x), µ+(s), g+(x), h+(x)

)
,

γs(x)=
(

x,
∫ x

0
fs(u) du

)
(x ∈ [0, b]).

We will denote µ+(0)= µ−(0) by µ0. The monotonicity of µ−, µ+ implies that

(30) µ−(s)≤ µ0 ≤ µ+(s) for all s ∈ [0, 1]. �
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(3.9) Remark. We deduce from (26) and (29) that

f0 =median(h−, g−, µ0, g+, h+).

The graph of f0 is composed of at most three parts: a piece of the graph of g−
or g+, a piece of the graph of the constant function y =µ0, and a piece of the graph
of h− or h+. The corresponding curve γ0 is thus the concatenation of an arc of
circle of curvature ±κ0, a line segment and another arc of circle of curvature ±κ0,
though some of these may degenerate to a point. It is an immediate consequence of
(3.6) that γ0 (and hence f0) is independent of γ and of the chosen axis ϕ.

(3.10) Lemma. Let ϕ be an axis of γ ∈ Ûc and s 7→ γs (s ∈ [0, 1]) be the defor-
mation described in (3.8). Then γ0 ∈ Ûc is the unique curve of minimal length
in L̂

+κ0
−κ0
(Q). �

Remark. Notice that this proves Dubins’ Theorem I [1957] in the case where
L̂
+κ0
−κ0
(Q) contains condensed curves. Furthermore, given Q and κ0, we can use

(3.8) to describe γ0 explicitly.

(3.11) Lemma. Let S+={x ∈[0, b] : f (x)≥µ0} and S−={x ∈[0, b] : f (x)≤µ0}.
Then fs(x) is an increasing (resp. decreasing) function of s ∈ [0, 1] if x ∈ S+
(resp. S−). Moreover, for all s ∈ [0, 1], fs(x) ≥ µ0 if x ∈ S+ and fs(x) ≤ µ0

if x ∈ S−.

Proof. Suppose that x ∈ S+. From (26) and (30), we deduce that

g−(x), h−(x), µ−(s)≤ f (x)≤ g+(x), h+(x).

Hence, fs(x) = min{µ+(s), f (x)} ≥ µ0 and fs(x) increases with s since µ+(s)
does. The proof for x ∈ S− is analogous. �

(3.12) Corollary. Let m−(s)= infx∈[0,b] fs(x) and m+(s)= supx∈[0,b] fs(x). Then
m+(s) is an increasing and m−(s) a decreasing function of s ∈ [0, 1]. �

(3.13) Lemma. Let γ ∈ Ûc and s 7→ γs ∈ L̂
+κ0
−κ0
(Q; θ1) be the homotopy described

in (3.8). Let ωs denote the amplitude of γs . Then ωs is an increasing function of s;
in particular, γs is condensed (i.e., γs ∈ Ûc) for all s ∈ [0, 1].

Proof. Let ϕ be the axis of γ chosen for the construction. Recall that, by definition,

(31) ωs = sup
x∈[0,b]

θs(x)− inf
x∈[0,b]

θs(x) (s ∈ [0, 1]),

where θs is the argument of tγs such that θs(0)= 0. By (29),

(32) fs(x)= tan(θs(x)−ϕ).

Because the tangent is an increasing function, (3.12) immediately implies that ωs is
increasing. �
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Remark. Although γ0 has minimal amplitude in Ûc by the previous lemma, there
may be other curves in Ûc with the same amplitude. This is the case, for instance,
for the curves γ0 and γ corresponding to the functions f and f0 of Figure 4.

(3.14) Lemma. Let γ ∈ Ûc and s 7→ γs be the deformation described in (3.8). Then
the length of γs is an increasing function of s ∈ [0, 1].

Proof. Let λ :R→R be given by λ(u)= (1+u2)1/2. A straightforward computation
shows that

(33) λ′′(u)= (1+ u2)−3/2 > 0 for all u ∈ R.

Moreover, by the definition (29), the length Ls of γs is given by

Ls =

∫ b

0
(λ ◦ fs)(x) dx .

Let s1 ≤ s2 ∈ [0, 1], S+, S− be as in (3.11) and

T+ ={(x, y) ∈ [0, b]×R : fs1(x)≤ y ≤ fs2(x)},

T− ={(x, y) ∈ [0, b]×R : fs2(x)≤ y ≤ fs1(x)}.

Using (3.11), we deduce that

Ls2 − Ls1 =

∫ b

0
(λ ◦ fs2)(x)− (λ ◦ fs1)(x) dx

=

(∫
S+
+

∫
S−

)
(λ ◦ fs2)(x)− (λ ◦ fs1)(x) dx

=

(∫
T+
−

∫
T−

)
λ′(y) dy dx

≥

(∫
T+
−

∫
T−

)
λ′(µ0) dy dx (by (33))

= λ′(µ0)

(∫ b

0
fs2 −

∫ b

0
fs1

)
= 0 (by the definition of fs).

Therefore, Ls is an increasing function of s ∈ [0, 1]. �

We are finally ready to prove (3.4) and (3.3).

Proof of (3.4). For each γ ∈ Ûc, let

(34) ϕ̄γ =
1
2

(
sup

t∈[0,1]
θγ (t)+ inf

t∈[0,1]
θγ (t)

)
,

where θγ : [0, 1] → R is the argument of tγ satisfying θγ (0)= 0. It is clear that ϕ̄γ
depends continuously on γ ∈ Ûc. Define H : [0, 1] × Ûc→ Ûc by H(s, γ ) = γs ,
where γs is the curve (29) constructed in (3.8) with chosen axis ϕ̄γ . Then part (ii)
of (3.4) follows from (3.13), and part (iii) from (3.14). The last assertion of (3.4)
and part (i) were established in (3.9). �



212 NICOLAU C. SALDANHA AND PEDRO ZÜHLKE

Proof of (3.3). Assume that Uc is nonempty. It is certainly open in L+1
−1(Q; θ1).

Hence, by (1.7), it suffices to prove that Uc is weakly contractible. Let K be a
compact manifold and g : K → Uc, a 7→ γ a , be a continuous map. Using (1.11),
we may assume that the image of g is contained in (the image under set inclusion
of) C+κ0

−κ0
(Q; θ1) for some κ0 ∈ (0, 1). By (1.17), we have continuous injections

C
+κ0
−κ0
(Q; θ1)→ L̂

+κ0
−κ0
(Q; θ1)→ L+1

−1(Q; θ1).

Let G : [0, 1]× K → L+1
−1(Q; θ1) map (s, a) to (the image under set inclusion of)

H(s, γ a), with H as in (3.4). Then G is a null-homotopy of g in Uc. �

The next couple of lemmas will only be needed in later sections.

(3.15) Lemma. Suppose that there exists ω̂∈(0,π) such that if γ∈Ûc⊂L̂
+κ0
−κ0
(Q;θ1)

then its amplitude ωγ satisfies ωγ ≤ ω̂. Let L(η) denote the length of η. Then
sup

γ∈Ûc
L(γ ) is finite. In particular, the images of γ ∈ Ûc are all contained in some

bounded subset of C.

Proof. Let γ ∈ Ûc and ϕ̄γ be as in (34). By hypothesis, the image of θγ : [0, 1]→R is
contained in

[
ϕ̄γ−ω̂/2, ϕ̄γ+ω̂/2

]
. Let f : [0, b]→R be the function corresponding

to γ and the axis ϕ̄γ , in the notation of (3.8). Note that b= 〈ei ϕ̄γ , q〉 ≤ |q|, where q
is the C-coordinate of Q. By (32),

| f (x)| ≤ tan
(
ω̂

2

)
for all x ∈ [0, b].

Therefore, the length L(γ ) of γ satisfies

L(γ )=
∫ b

0

√
1+ f (x)2 dx ≤ b sec

(
ω̂

2

)
≤ |q| sec

(
ω̂

2

)
. �

(3.16) Lemma. Let Ûc⊂ L̂
+κ0
−κ0
(Q; θ1) and H : [0, 1]×Ûc→ Ûc be the deformation

described in (3.4) and (3.8). Suppose that θ1 = 0. Then ω0 < ω1 unless γ1 = γ0.

Proof. It is obvious that ω1 = ω0 if γ1 = γ0. The condition θ1 = 0 is equivalent to
r0 = rb, in the notation of (3.8). Suppose without loss of generality that µ0 ≥ r0, so
that m+(0)= µ0.

If m+(1)≤µ0, then S−=[0, b]. Hence, by (3.11), f1(x)≤ f0(x) for all x ∈[0, b].
Since f1 and f0 have the same area, we conclude that f1 = f0, that is, γ1 = γ0.

By (3.12), m−(1) ≤ m−(0). Hence, if m+(1) > µ0 = m+(0), then ω0 < ω1 by
(31) and (32). �

Existence of condensed curves. The question of whether Uc 6= ∅ is settled by
means of an elementary geometric construction. In all that follows, Cr (a) denotes
the circle of radius r > 0 centered at a ∈ C.
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Figure 5. Let θ1 ∈ [0, π) be fixed and Q = (q, z), where z = eiθ1 .
There exist condensed curves in L+1

−1(Q; θ1) if and only if q belongs
to the open gray region.

(3.17) Proposition. Let θ1 ∈ [0, π) be fixed, z = eiθ1 and Q = (q, z) ∈ C× S1.
Let RUc be the open region of the plane which does not contain −i + i z and
which is bounded by the shortest arcs of the circles C2(±(i + i z)) joining i − i z
to i − i z± 2(i + i z) and their tangent lines at the latter points. Then L+1

−1(Q; θ1)

contains condensed curves if and only if q ∈ RUc . (See Figure 5.)

It is clear from the definition of condensed curve that Uc ⊂L+1
−1(Q; θ1) is empty

if |θ1| ≥ π . In other words, all condensed curves in L+1
−1(Q) must be contained in

the subspace L+1
−1(Q; θ1) with θ1 the unique number in (−π, π) satisfying eiθ1 = z

(for z 6= −1). We have assumed that θ1 ∈ [0, π) just to simplify the statement.
If θ1 ∈ (−π, 0], the only difference is that i − i z should be interchanged with
−i + i z. The proof is analogous to the one given below. Alternatively, it can be
deduced from the proposition by applying a reflection across the x-axis. When
θ1 = 0, the statement becomes ambiguous; in this case the arcs of circles which
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bound RUc are centered at ±2i , bounded by 0 and ±4i , and pass through the
points 2± 2i , respectively.

Proof of (3.17). Let η : [0, 1] → C be condensed and let θη : [0, 1] → R be the
argument of tη satisfying θη(0)= 0. Observe that

inf{θη(t) : t ∈ [0, 1]} ∈ [θ1−π, 0] and sup{θη(t) : t ∈ [0, 1]} ∈ [θ1, π].

The proof relies on the study of the following curves. For each ϕ ∈ [θ1, π], define
γ+ϕ : [0, 2ϕ− θ1]→ C to be the unique curve parametrized by arc-length satisfying

γ+ϕ (0)= 0 and tγ+ϕ (s)=
{

eis if s ∈ [0, ϕ],
ei(2ϕ−s) if s ∈ [ϕ, 2ϕ− θ1].

Then γ+ϕ is the concatenation of two arcs of circles of radius 1,

inf
t∈[0,1]

θγ+ϕ (t)= 0, sup
t∈[0,1]

θγ+ϕ (t)= ϕ, tγ+ϕ (2ϕ− θ1)= z,

γ+ϕ (2ϕ− θ1)=

∫ ϕ

0
eis ds+

∫ 2ϕ−θ1

ϕ

ei(2ϕ−s) ds = (i + i z)− 2ieiϕ.

Thus, as ϕ increases from θ1 to π , the endpoints of the γ+ϕ trace out the arc of
C2(i + i z) bounded by i − i z and 3i + i z. Further, the tangent line to C2(i + i z) at
γ+ϕ (2ϕ− θ1) is parallel to eiϕ , for it must be orthogonal to −2ieiϕ .

Similarly, for each ψ ∈ [θ1 − π, 0], let γ−ψ : [0, θ1 − 2ψ] → C be the curve,
parametrized by arc-length, which satisfies

γ−ψ (0)= 0 and tγ−ψ (s)=
{

e−is for s ∈ [0,−ψ],
ei(2ψ+s) for s ∈ [−ψ, θ1− 2ψ].

Then γ−ψ is the concatenation of two arcs of circles of radius 1, tγ−ψ (θ1− 2ψ)= z
for all ψ ∈ [θ1−π, 0], and as ψ decreases from 0 to θ1−π , the endpoints of the
γ−ψ traverse the arc of C2(−i − i z) bounded by i − i z and −i − 3i z. Moreover, the
tangent line to this circle at γ−ψ (θ1− 2ψ) is parallel to eiψ .

Any q ∈ RUc is the endpoint of a curve of one of the following three types:

(i) The concatenation of a γ+ϕ or a γ−ψ with a line segment of direction z.

(ii) The concatenation of γ+π |[0,π ], a line segment of length ` ≥ 0 having direc-
tion −1, the arc −`+ γ+π |[π,2π−θ1], and a line segment of direction z.

(iii) The concatenation of γ−θ1−π
|[0,π−θ1], a line segment of length `1 ≥ 0 of direc-

tion−z, the arc−`1z+γ−θ1−π
|[π−θ1,3π/2−θ1], a line segment of length `2≥0 and

direction −i z, the arc −`1z− `2i z+ γ−θ1−π
|[3π/2−θ1,2π−θ1], and a line segment

of direction z.

The curves which we have described have curvature equal to ±1 over intervals
of positive measure and, additionally, may be critical curves. Nevertheless, for
any q ∈ RUc , we can find a condensed γ ∈ L+1

−1(Q; θ1) by composing one of these
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curves with a dilatation through a factor c > 1, with c close to 1 if q lies close
to ∂RUc , and by avoiding the argument π (for a curve of type (i)) or θ1−π (for a
curve of type (iii)).

Conversely, suppose that L+1
−1(Q) contains condensed curves. Let η : [0, L]→C

be such a curve, parametrized by arc-length, and let ϕ= sup θ , where θ : [0, L]→R

is an argument of tη satisfying θ(0)= 0. Define

g : [0, L] → R by g(s)=
〈
η(s)− γ+ϕ (2ϕ− θ1), ieiϕ 〉.

Note that g(s)>0 if and only if η(s) lies to the left of the line through γ+ϕ (2ϕ−θ1)∈

C2(i + i z) having direction eiϕ; we have already seen that this line is tangent to
this circle at this point. We claim that g(L) < 0. Since η is admissible, θ = arg ◦ tη
is an absolutely continuous function, and |θ ′| = |κη|< 1 almost everywhere by (5).
Moreover, θ(s) ∈ [ϕ−π, ϕ] for all s because η is condensed. Hence,

(35) g′(s)= 〈eiθ(s), ieiϕ
〉 = cos

(
θ(s)−ϕ− π

2

)
≤ 0 for all s ∈ [0, L].

Let Ji = (ai , bi )⊂ (0, L) (i = 1, 2, 3) be disjoint intervals such that

(I) θ(a1)= 0 and θ(b1)= θ1;

(II) θ(a2)= θ1 and θ(b2)= ϕ;

(III) θ(a3)= ϕ and θ(b3)= θ1.

Such intervals exist because θ is a continuous function satisfying θ(0)= 0, θ1≤ϕ=

sup θ and θ(L)= θ1. Let λ denote the Lebesgue measure on R. Fix i and let [α, β]
be any nondegenerate subinterval of θ((ai , bi )). Since θ is strictly 1-Lipschitz, if
S = {s ∈ (ai , bi ) : α ≤ θ(s) ≤ β}, then λ(S) > β − α. Combining this with (35),
we deduce that

g(L)− g(0)≤
(∫ b1

a1

+

∫ b2

a2

+

∫ b3

a3

)
g′(s) ds

<

∫ θ1

0
〈ei t , eiϕ

〉 dt + 2
∫ ϕ

θ1

〈ei t , eiϕ
〉 dt = 〈γ+ϕ (2ϕ− θ1), ieiϕ

〉.

Therefore, g(L) < 0 as claimed. Similarly, if ψ = inf θ , then η(L) lies on the side
of the tangent to C2(−i − i z) at γ−ψ (θ1− 2ψ) which does not contain −i + i z. It
follows that q = η(L) ∈ RUc . �

4. Topology of Ud

Throughout this section, let K denote a compact manifold, possibly with boundary.
Also, let Q = (q, z) ∈ C × S1 be fixed (but otherwise arbitrary) and let Ud ⊂

L+1
−1(Q; θ1) denote the subset consisting of all diffuse curves in L+1

−1(Q) having total
turning θ1, for some fixed θ1 ∈R satisfying eiθ1 = z. Finally, let O = (0, 1)∈C×S1,
the identity element of the group UT C.
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Our next objective is to prove that Ud is contractible. The idea behind the proof
is quite simple. If γ is diffuse, then we can “graft” a straight line segment of length
greater than 4 onto γ , as illustrated in Figure 8. By the theorem of Dubins stated in
the introduction, this segment can be deformed so that in the end an eight curve
of large radius traversed n times has been attached to it, as in Figure 7(e). These
eights are then spread along the curve, as in Figure 7(f). If n ∈ N is large enough,
the spreading can be carried out within L+1

−1(Q). The result is a curve which is so
loose that the constraints on the curvature may be safely forgotten, allowing us to
use the following fact.

(4.1) Theorem (Smale). Let Q = (q, z) ∈ C×S1. Then C+∞−∞(Q) and L+∞−∞(Q)
have ℵ0 connected components, one for each θ1 ∈ R satisfying eiθ1 = z, all of which
are contractible.

Proof. For the space C+∞−∞(Q), the proof was discussed in the introduction. We may
replace C+∞−∞(Q) by L+∞−∞(Q) using (1.12). �

(4.2) Lemma. Let P ∈UT C. Then C+1
−1(P, P) and L+1

−1(P, P) have ℵ0 connected
components, one for each turning number n ∈ Z, all of which are contractible.

Proof. By (1.12), it suffices to prove the result for C+1
−1(P, P). Let Cn ⊂ C+1

−1(P, P)
denote the subset of all curves which have turning number n. Then each Cn is
closed and open. Hence, to establish that Cn is a contractible component, it suffices,
by (1.7)(b), to prove that it is weakly contractible.

Recall that C+1
−1(P, P)≈ C+1

−1(O), the homeomorphism coming from composing
all curves with a suitable Euclidean motion. We may thus assume that P = O .
Let K be a compact manifold and f : K → Cn a continuous map. By (4.1), there
exists a continuous F : [0, 1]×K→C+∞−∞(O) such that F0= f and F1 is a constant
map. Let

M = 2 sup
{
|κF(s,a)(t)| : s, t ∈ [0, 1], a ∈ K

}
.

Given a curve γ , let Mγ denote the dilated curve t 7→ Mγ (t). It is easy to see
that κMγ = κγ /M . Hence, MF is a homotopy between M f and a constant map
within C+1

−1(O). But f and M f are homotopic within C+1
−1(O) through u 7→ u f

(u ∈ [1,M]). Therefore, f is null-homotopic. �

Loops and eights. We shall now explain how to attach loops and eights to a curve,
and how to spread eights along it (Figure 7).

(4.3) Definition. We denote by α : R→ C the loop of radius 2 and by β : R→ C

the eight curve of the same radius (see Figure 7(b) and (d)) given by

α(t)= 2i
(
1− exp(2π i t)

)
,

β(t)=

{
α(2t) for t ∈

[m
2 ,

m+1
2

]
,m ≡ 0 (mod 2),

−α(−2t) for t ∈
[m

2 ,
m+1

2

]
,m ≡ 1 (mod 2)

(m ∈ Z).
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Figure 6. The graphs of φ and ψ given in (4.4).

We shall also denote by αn : [0, 1] → C (resp. βn : [0, 1] → C) a loop (resp. eight)
traversed n ≥ 1 times: αn(t)= α(nt) and βn(t)= β(nt) (t ∈ [0, 1]).

Note that αn, βn ∈ L
+1
−1(O). The curvature of αn is everywhere equal to 1

2 , and
that of βn equals ± 1

2 except at the 2n− 1 points where it is undefined. The turning
number of αn is n, and that of βn is 0.

(4.4) Definition. Let t0 ∈ (0, 1), 0< 2ε <min{1− t0, t0}, 1 ≤ n ∈ N and γ be an
admissible plane curve. Define piecewise linear functions φ,ψ : [0, 1] → [0, 1]
(whose graphs are depicted in Figure 6) by

(36)

φ(t)=


t if t /∈ [t0− 2ε, t0+ 2ε],
2t − t0+ 2ε if t ∈ [t0− 2ε, t0− ε],
t0 if t ∈ [t0− ε, t0+ ε],
2t − t0− 2ε if t ∈ [t0+ ε, t0+ 2ε],

ψ(t)=


0 if t ∈ [0, t0− ε],
(t − t0+ ε)/2ε if t ∈ [t0− ε, t0+ ε],
1 if t ∈ [t0+ ε, 1].

Define curves Aγ,n,t0 , Bγ,n,t0 (attaching loops, eights) and Sγ,n : [0, 1]→C (spread-
ing eights) by (see Figure 7)

Aγ,n,t0(t)=8γ (φ(t))αn(ψ(t)),

Bγ,n,t0(t)=8γ (φ(t))βn(ψ(t)), (t ∈ [0, 1]).

Sγ,n(t)=8γ (t)βn(t)

Here 8γ : [0, 1]→C×S1 is the frame of γ (as in (1)), but viewed as a curve in the
group UT C: each 8γ (t) is an Euclidean motion, with 8γ (t)a = γ (t)+ tγ (t)a for
a ∈ C. Different values of ε and t0 yield curves which are homotopic in whichever
space one is working with.
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Figure 7. A depiction of how to attach loops and eights to a curve
and how to spread eights along it.

(4.5) Lemma. Let t0 ∈ (0, 1), 1≤ n ∈N and γ be an admissible plane curve. Then:

(a) Aγ,n,t0 , Bγ,n,t0 and Sγ,n have the same initial and final frames as γ .

(b) Bγ,n,t0 and Sγ,n lie in the same connected component of L+∞−∞(P,Q) (P=8γ(0),
Q =8γ (1)).

(c) If γ ∈ L+1
−1(P, Q), then Aγ,n,t0, Bγ,n,t0 ∈ L

+1
−1(P, Q) also.

(d) Let O = (0, 1) ∈ C × S1. Then α1 and Bα1,n,t0 lie in the same connected
component of L+1

−1(O) for all n ≥ 1.

(e) If f, g : K → Ud are continuous and homotopic within Ud , then so are B f,n,t0
and Bg,n,t0 .

(f) If γ is a reparametrization of α1, then Aγ,n,t0 is a reparametrization of αn+1.

Proof. It is clear that Aγ,n,t0 , Bγ,n,t0 have the same initial and final frames as γ ,
since they agree with γ in neighborhoods of the endpoints of [0, 1]. From the
definition of Sγ,n , we find that

Ṡγ,n = γ̇ + ṫγβn + tγ β̇n.

Using that 8βn (0)=8βn (1)= (0, 1) ∈ C×S1, we deduce that

Sγ,n(0)= γ (0) and Ṡγ,n(0)=
(
|γ̇ (0)| + |β̇n(0)|

)
tγ (0).

Similarly, Sγ,n(1) = γ (1) and Ṡγ,n(1) is a positive multiple of tγ (1). This estab-
lishes (a).
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Let φ,ψ : [0, 1] → [0, 1] be as in (36), and set

(37) φs(t)= (1− s)φ(t)+ st and ψs(t)= (1− s)ψ(t)+ st (s, t ∈ [0, 1]).

Then
(s, t) 7→8γ (φs(t))βn(ψs(t)) (s, t ∈ [0, 1])

defines a homotopy between Bγ,n,t0 and Sγ,n in L+∞−∞(P, Q). This proves (b).
Part (c) follows from (a) and the fact that the curvatures of αn, βn equal ±1

2 a.e.
Part (d) is a corollary of (4.2).
For part (e), let H : [0, 1] × K → Ud be a continuous map with H0 = f and

H1 = g. Set

Ĥ(s, a)(t)=8H(s,a)(φ(t))βn(ψ(t)) (s, t ∈ [0, 1], a ∈ K ).

Then Ĥ is a homotopy between B f,n,t0 = Ĥ0 and Bg,n,t0 = Ĥ1 in Ud .
Part (f) is obvious. �

(4.6) Lemma. Let f : K → C+∞−∞(Q) be continuous. Then there exists n0 ∈N such
that S f (a),n ∈ L

+1
−1(Q) for all a ∈ K whenever n ≥ n0 (n ∈ N).

Proof. For a ∈ K , let γa = f (a) and ta = tγa . Let

T =
{ 1

2n
,

2
2n
, . . . ,

2n−1
2n

}
.

Then,

Sγa,n(t)=8γa (t)βn(t)= γa(t)+ta(t)β(nt) (t ∈ [0,1], a ∈ K ),

Ṡγa,n(t)= γ̇a(t)+ ṫa(t)β(nt)+n ta(t)β̇(nt) (t ∈ [0,1], a ∈ K ),

S̈γa,n(t)= γ̈a(t)+ ẗa(t)β(nt)+2n ṫa(t)β̇(nt)+n2 ta(t)β̈(nt) (t ∈ [0,1]rT, a ∈ K ).

Since f : K → C+∞−∞(Q) is continuous and K is compact, |γ (k)a (t)| and |t(k)a (t)|
(k = 0, 1, 2) are all bounded by some constant as (t, a) ranges over [0, 1] × K .
Using the third expression for the curvature in (4) and the multilinearity of the
determinant, we conclude that

κSγa ,n
(t)= 1

2
+ O

(1
n

)
(t ∈ [0, 1]r T, a ∈ K ),

where O(1/n) is a function of (t, a) such that n|O(1/n)| is uniformly bounded
over ([0, 1]r T )× K as n ranges over N. It follows that Sγa,n ∈ L

+1
−1(Q) for all

sufficiently large n. �

(4.7) Lemma. Let f : K → C+1
−1(Q) be continuous, t0 ∈ (0, 1). Then for all

sufficiently large n ∈ N, there exists a continuous H : [0, 1] × K → L+1
−1(Q) with

H0 = B f,n,t0 and H1 = S f,n .
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Proof. Let H be given by

H(s, a)(t)=8 f (a)(φs(t))βn(ψs(t)) (s, t ∈ [0, 1], a ∈ K ),

where φs , ψs are as in (37). Then H(0, a) = B f (a),n,t0 and H(1, a) = S f (a),n .
A computation entirely similar to the one in the proof of (4.6) establishes that
H(s, a) ∈ L+1

−1(Q) for all s ∈ [0, 1], a ∈ K if n is sufficiently large. The details
will be left to the reader, but to make things easier, notice that φs, ψs are piecewise
linear for all s ∈ [0, 1], so that ψ̈s = φ̈s = 0 except at a finite set of points (which
depends on s). �

The next result provides a sufficient condition, which does not involve g, for one
to be able to write a compact family of curves f as f = Ag,n,t0 .

(4.8) Lemma. Let X be a compact Hausdorff topological space and

f : X→ Ud ⊂ L+1
−1(Q; θ1), t0 : X→ (0, 1)

be continuous maps. Then it is possible to reparametrize each f (a) (continuously
with a) and find a continuous g : X→ L+1

−1(Q; θ1) so that f (a)= Ag(a),n,t0(a) for
all a ∈ X if and only if there exists a continuous function ε : X→ (0, 1) such that
for all a ∈ X ,

(i) 0< t0(a)− ε(a) < t0(a)+ ε(a) < 1;

(ii) f (a)|[t0(a)−ε(a),t0(a)+ε(a)] is some parametrization of 8 f (a)(t0(a)− ε(a))αn .

Proof. Suppose that such a function ε : X → (0, 1) exists. Since X is compact,
we may reparametrize all f (a) so that ε becomes a constant function and, for all
a ∈ X , satisfies

(I) 0< t0(a)− 2ε < t0(a)+ 2ε < 1;

(II) f (a)|[t0(a)−ε,t0(a)+ε] is a parametrization of 8 f (a)(t0(a)− ε)αn by a multiple
of arc-length.

Define g : X→ L+1
−1(Q) by

g(a)(t)=


f (a)(t) if t /∈[t0(a)−2ε,t0(a)+2ε],

f (a)
( 1

2(t+t0(a)−2ε)
)

if t∈[t0(a)−2ε,t0(a)],

f (a)
(1

2(t+t0(a)+2ε)
)

if t∈[t0(a),t0(a)+2ε]

(a∈X,t∈[0,1]).

Then g is continuous because f and t0 are continuous, and f (a)= Ag(a),n,t0(a) for
all a ∈ X . This proves the “if” part of the lemma. The converse is obvious. �

As a simple application of (4.6), we prove that this article is not a study of the
empty set.
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(4.9) Lemma. Let κ1 < κ2, P = (p, w), Q = (q, z) ∈C×S1 and let θ1 ∈R satisfy
eiθ1 = zw̄. Then:

(a) Lκ2
κ1
(P, Q) 6=∅.

(b) Lκ2
κ1
(P, Q; θ1) 6=∅ if κ1κ2 < 0.

(c) If κ1<κ2≤0, then Lκ2
κ1
(P, Q; θ1)=∅ for all sufficiently large θ1. If 0≤κ1<κ2,

then Lκ2
κ1
(P, Q; θ1)=∅ for all sufficiently small θ1.

Proof. By (2.6), we need only consider spaces of the form L+1
−1(Q), L

+∞

0 (Q)
and L+∞1 (Q). It is clear that C+∞−∞(Q) 6= ∅ for all Q ∈ UT C. Let γ ∈ C+∞−∞(Q)
be arbitrary.

By (4.6), if n is sufficiently large, then Sγ,n ∈ L+1
−1(Q). Furthermore, attach-

ing loops (possibly with reversed orientation) to Sγ,n , we can obtain a curve in
L+1
−1(Q; θ1) for any θ1 ∈ R satisfying eiθ1 = z. This proves (b), and also part (a)

when κ1κ2 < 0.
Similarly, define a curve Sγ,n by Sγ,n(t)=8γ (t)

( 1
4αn(t)

)
(t ∈ [0, 1]). In words,

Sγ,n is obtained from γ by spreading n loops of radius 1
2 , instead of n eights of

radius 2. Using an argument analogous to the one which established (4.6), one sees
that Sγ,n ∈ L+∞1 (Q) for all sufficiently large n. This completes the proof of (a).

To see that Lκ2
κ1
(P, Q; θ1) may be empty if κ1κ2 ≥ 0, we use (5): if κ1, κ2 are

both nonnegative, for example, then Lκ2
κ1
(P, Q) can only contain curves having

positive total turning. �

Remark. Invoking (1.11), we obtain a version of (4.9) with C in place of L.

(4.10) Corollary. Let Ud denote the subset of L+1
−1(Q; θ1) consisting of all diffuse

curves, where Q = (q, z) and eiθ1 = z. Then Ud 6=∅.

Proof. Lemma (4.5)(c) implies that Bγ,1,1/2 ∈ Ud for any γ ∈ L+1
−1(Q; θ1). Since

the latter is nonempty by (4.9)(b), so is Ud . �

(4.11) Theorem (Dubins). Let x > 0, Q = (x, 1) and η ∈ L+1
−1(Q) be the line

segment η : t 7→ xt. Then η and Bη,1,1/2 lie in the same component of L+1
−1(Q) if

and only if x > 4.

Proof. See [Dubins 1961, Theorem 5.3]. �

The next construction provides a homotopy of the straight line segment [0, x] to
the same segment with an eight attached which is continuous with respect to x .

(4.12) Construction. For x > 0, let ηx : [0, x]→C be the line segment t 7→ t . Take
t0= 1

2 in (36) and let h : [0, 1]×[0, 6]→C be a fixed homotopy between h0=η6 and

h1 =8η6

(
6φ
( t

6

))
β1

(
ψ
( t

6

))
(η6 with an eight attached)
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such that t 7→ hs(6t) (t ∈ [0, 1]) is a curve in L+1
−1(Q) for all s ∈ [0, 1]. The

existence of h is guaranteed by (4.11). Let µ : [0,+∞)→ [0, 1] be a smooth
function such that µ(x) = 0 if x ∈ [0, 6] and µ(x) = 1 if x ≥ 8. Define a family
of curves ηu

x : [0, 1] → C by

(38) ηu
x (t)=

{
ηx(t) if t ≥ 6 or x ≤ 6,
h(uµ(x), t) if t ≤ 6 and x ≥ 6

(u ∈[0, 1], t ∈[0, x], x>0).

Of course, η0
x = ηx for all x > 0. If x ≥ 8, then η1

x equals ηx with an eight attached;
in particular, η1

x |[3−6ε,3] is a loop.

Grafting. We now explain how to graft straight line segments onto a diffuse curve
(see Figure 8).

(4.13) Definition. Let γ ∈ L+1
−1(Q) be a curve of length L parametrized by arc-

length, σi ≥ 0 and si ∈ [0, 1], i = 1, . . . , 2n, where the si form a nondecreasing
sequence. Suppose that there exists a bijection p of {1, . . . , 2n} onto itself such
that for each i ,

(∗) σp(i) = σi and tγ (sp(i))=−tγ (si ).

Then we define the graft Gγ = Gγ,(si ),(σi ) :
[
0, L +

∑2n
i=1 σi

]
→ C by

(39)

Gγ (s)=



γ (s) if s ∈ [0,s1],

γ (s1)+(s−s1)tγ (s1) if s ∈ [s1,s1+σ1],

γ (s−σ1)+σ1 tγ (s1) if s ∈ [s1+σ1,s2+σ1],

γ (s2)+σ1 tγ (s1)+(s−s2−σ1)tγ (s2) if s ∈ [s2+σ1,s2+σ1+σ2],
...

...

γ (s−
∑2n

i=1σi )+
∑2n

i=1σi tγ (si ) if s ∈
[
s2n+

∑2n
i=1σi , L+

∑2n
i=1σi

]
.

Although it simplifies the previous formula, the assumption that (si ) is a nondecreas-
ing sequence is not necessary for the construction to work, since we may always
relabel the si .

(4.14) Lemma. Let γ ∈L+1
−1(Q) be diffuse and Gγ be as in (4.13). Then Gγ is para-

metrized by arc-length and lies in the same connected component of L+1
−1(Q) as γ .

Proof. It is obvious from (39) that 8Gγ
(0) = 8γ (0). Looking at the last line of

(39) and using (∗), we deduce that

Gγ (s)= γ
(

s−
2n∑

i=1

σi

)
for s ∈

[
s2n +

2n∑
i=1

σi , L +
2n∑

i=1

σi

]
.

Hence,8Gγ
(L+

∑2n
i=1 σi )=8γ (L). Since Gγ is made up of line segments and arcs

of γ (composed with translations), Gγ ∈L
+1
−1(Q). It is clear that Gγ is parametrized
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Figure 8. A diffuse curve γ and its graft Gγ = Gγ,(s1,s2,s3,s4),(σ1,σ2,σ3,σ4).

by arc-length. Finally,

u 7→ Gγ,(si ),(uσi ) (u ∈ [0, 1])

defines a path in L+1
−1(Q) joining γ to Gγ . �

Contractibility of Ud . Recall that K denotes a compact manifold, possibly with
boundary.

(4.15) Lemma. Let f : K → Ud be continuous. Then there exist an open cover
(V j )

m
j=1 of K and continuous maps τ±j : K → (0, 1), f1 : K → Ud such that

(i) f ' f1 within Ud and f1 satisfies conditions (ii) and (iii) of (1.11).

(ii) t f1(a)(τ
+

j (a))=−t f1(a)(τ
−

j (a)) whenever a ∈ V j .

Proof. Apply (1.11) to f and Ud to obtain f1. The idea is to use the implicit
function theorem to find τ±j . However, some care must be taken since f1 need not
be differentiable with respect to a.

For each a ∈ K , let θa : [0, 1]→R be the argument of t f1(a) satisfying θa(0)= 0,
and set

ϕa =
1
2

(
sup

t∈[0,1]
θa(t)+ inf

t∈[0,1]
θa(t)

)
.

Because each γa is diffuse and K is compact, we can find δ > 0 such that

θa([0, 1])⊃
(
ϕa −

π

2
− δ, ϕa +

π

2
+ δ

)
for all a ∈ K .

Fix a0 ∈ K . By Sard’s theorem, we can find ψ ∈ (ϕa0 + π/2, ϕa0 + π/2 + δ)
such that both ψ and ψ −π are regular values of θa0 . Let τ±(a0) ∈ (0, 1) satisfy
θa0(τ

+(a0))= ψ and θa0(τ
−(a0))= ψ −π . No generality is lost in assuming that
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θ̇a0(τ
+(a0)) > 0. From (5), θ̇a = |γ̇ f1(a)|κ f1(a). Thus, θ̇a depends continuously on a,

so we can find µ, ε > 0 and a compact neighborhood V ⊂ K of a0 such that

ψ ∈ θa
(
(τ+(a0)− ε, τ

+(a0)+ ε)
)

and θ̇a(t) > µ

whenever a ∈ V , |t − τ+(a0)| < ε. Hence, for each a ∈ V , there exists a unique
τ+(a) ∈ (τ+(a0)− ε, τ

+(a0)+ ε) with θa(τ
+(a))=ψ . We claim that the function

τ+ : V → (0, 1) so defined is continuous. Consider the equation

θa(τ
+(b))− θa(τ

+(a))

=
(
θb(τ

+(b))− θa(τ
+(a))

)
+
(
θa(τ

+(b))− θb(τ
+(b))

)
(a, b ∈ V ).

The first term on the right side equals 0 by the definition of τ+, and the sec-
ond converges to 0 as b→ a since θb(t) is a uniformly continuous function of
(b, t) ∈ K ×[0, 1]. Hence, by the mean value theorem,

|τ+(b)− τ+(a)|< 1
µ

∣∣θa(τ
+(b))− θa(τ

+(a))
∣∣→ 0 as b→ a (a, b ∈ V ).

It follows that τ+ is continuous. Similarly, reducing V if necessary, we can find
a continuous function τ− : V → (0, 1) with θa(τ

−(a))= ψ −π for all a ∈ V . To
finish the proof, cover K by finitely many such compact neighborhoods V j , let
τ±j : V j → (0, 1) be the corresponding functions and extend each τ±j to K using
the Tietze extension theorem. �

(4.16) Lemma. Let f : K → Ud be continuous. Then there exist an open cover
(W j )

m
j=1 of K and continuous maps t j : K → (0, 1), g j : W j → L+1

−1(Q) and
f2 : K → Ud such that

(i) f ' f2 within Ud ;

(ii) f2(a)= Ag j (a),1,t j (a) for all a ∈W j .

Proof. Take f1 as in (4.15). By (1.15), we may assume that each map γa =

f1(a) : [0, La] → C is parametrized by arc-length, so that now τ±j (a) ∈ (0, La) for
each a. Let (λ j )

m
j=1 be a partition of unity subordinate to (V j )

m
j=1, with V j as in

(4.15). Set σ j = 10mλ j and W j = {a ∈ K : σ j (a) > 8}. Then W j ⊂ V j and the W j

form an open cover of K . Define

γ u
a =Gγa,(τ

−

1 (a),...,τ
−
m (a),τ+1 (a),...,τ

+
m (a)),(uσ1(a),...,uσm(a),uσ1(a),...,uσm(a)) (u∈[0,1],a∈K )

as in (4.13). Let us suppose that τ−1 ≤ · · · ≤ τ
−
m (a) ≤ τ

+

1 (a) ≤ · · · ≤ τ
+
m (a) for

each a to abbreviate the notation, and set

ξ−j (a)=
∑
i< j

σi (a) and ξ+j (a)= 10m+
∑
i< j

σi (a) (a ∈ K , j = 1, . . . ,m).

Then
γ 1

a
(
[τ−j (a)+ ξ

−

j (a), τ
−

j (a)+ ξ
−

j (a)+ σ j (a)]
)
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is a line segment, corresponding to the graft at γa(τ
−

j (a)). Its length σ j (a) is at
least 8 if a ∈ W j . Of course, the same statements hold with + instead of −. We
obtain f2 by deforming all of these segments to eights. More precisely, for u ∈ [1, 2]
and a ∈ K , let

γ u
a (s)=

{
8γ 1

a
(τ±j (a)+ ξ

±

j (a))η
u−1
σ j (a)(s− τ

±

j (a)− ξ
±

j (a)),

γ 1
a (s)

(s∈[0, La+20m])

according to whether s ∈ [τ±j (a)+ ξ
±

j (a), τ
±

j (a)+ ξ
±

j (a)+ σ j (a)] for some j or
not, respectively. Here ηu

x is as in (4.12). Let f2 : K →Ud be given by f2(a)= γ 2
a .

Note that

γ 2
a
(
[τ±j (a)+ ξ

±

j (a)+ 3− 6ε, τ±j (a)+ ξ
±

j (a)+ 3]
)
( j = 1, . . . ,m)

is a loop whenever a ∈W j . Thus (after reparametrizing the γ 2
a so that their domains

become [0, 1]), we may apply (4.8) to each family f2|W j
to find g j :W j→L+1

−1(Q)
and t j :W j → (0, 1) such that

f2(a)= Ag j (a),1,t j (a) for all a ∈W j .

The functions t j may be extended to all of K by the Tietze extension theorem. �

(4.17) Lemma. Let f : K→Ud be continuous. Suppose that there exist a covering
of K by open sets W j and continuous maps t j : K→ (0, 1), g j :W j→L+1

−1(Q) with
f (a)= Ag j (a),1,t j (a) whenever a ∈W j , j = 1, . . . ,m. Then there exist continuous
g : K → L+1

−1(Q) and H : [0, 1]× K → Ud with H0 = f and H1 = Ag,1,1/2.

Proof. The proof will be by induction on m. If m = 1 then W1 = K , and H just
slides the loop from t1 to 1

2 :

H(s, a)= Ag1(a),1,(1−s)t1(a)+s/2 (s ∈ [0, 1], a ∈ K ).

Suppose now that m > 1. Let W be an open set such that W ⊂Wm and

W1 ∪ · · ·Wm−1 ∪W = K .

Let λ : K → [0, 1] be a continuous function such that λ(a) = 1 if a ∈ W and
λ(a)= 0 if a /∈Wm . Define Ĥ : [0, 1]× K → Ud by

Ĥ(s, a)=
{

Agm(a),1,(1−λ(a)s)tm(a)+λ(a)stm−1(a) if a ∈Wm,

f (a) if a /∈Wm
(s ∈ [0, 1], a ∈ K ).

Then the induction hypothesis applies to Ĥ1 : K → Ud , the open sets Ŵi = Wi

(i = 1, . . . ,m − 2) and Ŵm−1 = Wm−1 ∪W , and the same functions t j as before,
j = 1, . . . ,m−1. The existence of ĝm−1 as in the statement is guaranteed by (4.8):
using (4.5)(f), we deduce that there is at least one loop at tm−1(a) for a ∈ Ŵm−1. �

(4.18) Proposition. Let f : K → Ud be continuous. Then f ' B f,n,1/2 within Ud

for all n ≥ 1.
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Proof. Applying (4.16) and (4.17) to f , we obtain continuous maps g :K→L+1
−1(Q)

and h : K → Ud such that f ' h in Ud and

h(a)= Ag(a),1,1/2 for all a ∈ K .

Using (4.5)(d), we may deform the loop at t = 1
2 to attach n eights to h at t = 1

2
(for arbitrary n ≥ 1). Thus h ' Bh,n,1/2. Together with (4.5)(e), this implies that
f ' B f,n,1/2 within Ud . �

(4.19) Theorem. Let Q = (q, z) ∈ C×S1 and θ1 ∈ R satisfy eiθ1 = z. Then the
subspace Ud ⊂ L+1

−1(Q; θ1) consisting of all diffuse curves is homeomorphic to E,
and hence contractible.

Proof. Because Ud is open, it suffices to prove that it is weakly contractible, by
(1.7)(b). Let k ∈N, f :Sk

→Ud be continuous and g :Sk
→Ud be a map satisfying

(i)–(iii) of (1.11) (with U= Ud ). By (4.1), there exists G : [0, 1]×Sk
→ C+∞−∞(Q)

such that G0 = g and G1 is a constant map. By (4.6), there exists n0 ∈ N such that
if n ≥ n0, then SG(s,a),n ∈ Ud for all s ∈ [0, 1], a ∈ Sk . Applying (4.18) and (4.7)
to g, we obtain n1 ≥ n0 and a continuous F : [−1, 0]×Sk

→Ud with F−1 = g and
F0 = Sg,n1 . Concatenating F and SG,n1 we obtain a null-homotopy of g in Ud . �

5. Critical curves

Fix Q = (q, z) ∈ C×S1 and θ1 ∈ R satisfying eiθ1 = z. Let γ ∈ L+1
−1(Q; θ1) and

θ : [0, 1] → R be the argument of tγ satisfying θ(0)= 0. Finally, let

(40) θ+ = sup
t∈[0,1]

θ(t) and θ− = inf
t∈[0,1]

θ(t).

Recall that γ is called critical if θ+− θ− = π . A curve η ∈ L+1
−1(Q; θ1) must be

either condensed, diffuse or critical. It has already been shown that the subspace Uc

(resp. Ud ) of L+1
−1(Q; θ1) consisting of all condensed (resp. diffuse) curves is con-

tractible. Let T⊂L+1
−1(Q; θ1) denote the subspace of all critical curves. Clearly, T is

closed as the complement of Uc∪Ud . Since the difference θ+−θ− depends continu-
ously on γ , we deduce that ∂Uc⊂T and ∂Ud⊂T, where ∂Uc denotes the topological
boundary of Uc considered as a subspace of L+1

−1(Q; θ1) and similarly for Ud .

(5.1) Proposition. Let |θ1| < π and Uc,Ud ,T ⊂ L+1
−1(Q; θ1) be as above. Then

∂Uc = ∂Ud = T. Therefore, Uc ∪Ud = L+1
−1(Q; θ1) and Uc ∩Ud = T.

Observe that T = ∅ if |θ1| > π and Uc = ∅ if |θ1| ≥ π . However, in any case
∂Ud = T.

Proof. Let γ ∈ L+1
−1(Q; θ1) be a critical curve and V⊂ L+1

−1(Q; θ1) be an open set
containing γ . Let θ be the argument of tγ satisfying θ(0)= 0, and let θ+, θ− be as
in (40).
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We first prove that V∩Uc 6=∅. Our immediate objective is to replace γ with
another curve in V∩T having smaller curvature. Choose t1 ∈ (0, 1) and δ > 0 such
that θ(t) ∈ (θ−, θ+) for all t ∈ [t1− δ, t1]. Let Q0 =8γ (t1− δ), Q1 =8γ (t1) and
consider the map

F : L+1
−1(Q0, · )→UT C, F(η)=8η(1).

(Recall that L+1
−1(Q0, · ) consists of all (−1, 1)-admissible curves having initial

frame equal to Q0 and arbitrary final frame.) By (1.5), F is an open map. It follows
that for any Q̃1 close enough to Q1, we can find η ∈ L+1

−1(Q0, Q̃1) such that

(41) θη([0, 1])⊂ (θ−, θ+).

Let Q1 = (q1, z1) and Q = (q, z). Since γ is critical, the image of tγ is contained
in a semicircle. Consequently, q 6= 0. Choose κ0 ∈ (0, 1) close to 1. Replace the arc
γ |[t1−δ,t1] by a curve η as above with Q̃1 = (q1+ (κ0− 1)q, z1), and the arc γ |[t1,1]
by its translate γ |[t1,1]+ (κ0− 1)q . Let γ1 be the resulting curve; observe that γ1 is
critical, 8γ1(0)= (0, 1) and 8γ1(1)= (κ0q, z). Set γ2 = (1/κ0)γ1 (that is, γ2(t) is
obtained from γ1(t) by a dilatation through a factor of 1/κ0 for all t ∈ [0, 1]). Then

8γ2(0)= (0, 1), 8γ2(1)= (q, z),

tγ2(t)= tγ1(t), κγ2(t)= κ0κγ1(t) for all t ∈ [0, 1].

Thus, γ2 is a critical curve inL+1
−1(Q; θ1)whose curvature is constrained to (−κ0, κ0).

Moreover, if κ0 is close enough to 1 and η is chosen appropriately, we can guarantee
that γ2 ∈ V.

Having established the existence of γ2 with these properties, let us return to the
beginning, setting γ = γ2 ∈ V. Since |θ1|< π , either

θ−1({θ−})∩ {0, 1} =∅ or θ−1({θ+})∩ {0, 1} =∅,

and we lose no generality in assuming the latter. Choose ε > 0 small enough to
guarantee that

W = θ−1((θ+− ε, θ+])⊂ (0, 1).

Cover θ−1({θ+}) by the finite union of disjoint intervals (ai , bi )⊂W with θ(ai )=

θ(bi ) = θ
+
− ε, i = 1, . . . ,m. Let Pi = 8γ (ai ), Qi = 8γ (bi ). We can obtain a

curve in Uc∩V by modifying γ in each of these intervals to avoid the argument θ+

using (3.4): note that P−1
i γ |[ai ,bi ] satisfies the hypotheses of (3.16) because it has

curvature in the open interval (−κ0,+κ0) and is not a line segment. Moreover, the
inclusion L̂

+κ0
−κ0
(P−1

i Qi )→ L+1
−1(P

−1
i Qi ) is continuous by (1.17).

The proof that V∩Ud 6= ∅ is easier. Let the critical curve γ : [0, L] → C be
parametrized by arc-length. Then we can find s0, s1 ∈ [0, 1] with tγ (s0)=−tγ (s1).
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Choose ε > 0 and let
Gγ = Gγ,(s0,s1),(ε,ε).

(See (4.13) and Figure 8.) Choose κ0 ∈ (0, 1) and construct a curve ζ ∈L+1
−1(Q; θ1)

by replacing the line segment Gγ |[s0,s0+ε] by three small arcs of circles of radius 1/κ0

as indicated below:

If the bump is chosen to lie on the correct side, the curve ζ will be diffuse, and if
ε > 0 is small enough, then ζ ∈ V. (Notice that this part of the proof works even if
|θ1| = π .)

We have established that T ⊂ ∂Ud ∩ ∂Uc. As explained at the beginning of the
section, ∂Uc ⊂ T and ∂Ud ⊂ T. Thus, ∂Uc = ∂Ud = T. �

Existence of critical curves. It is immediate from the definition of “critical curve”
that if |θ1|>π , then the subspace T⊂L+1

−1(Q; θ1)must be empty. In this subsection
we shall determine exactly when T =∅ for |θ1| ≤ π .

(5.2) Definition. A sign string σ is an alternating finite sequence of signs, such
as +−+ or −+−+ . As part of the definition we require that its length |σ |, the
number of terms in the string, satisfy |σ | ≥ 2. Let σ(k) denote its k-th term
(1≤ k ≤ |σ |). The opposite −σ of σ is the unique sign string satisfying |−σ | = |σ |
and (−σ)(k)=−σ(k).

A critical curve γ : [0,1]→C is of type σ if there exist 0≤ t1< t2< · · ·< t|σ |≤ 1
with θ(tk) = θσ(k) (recall that θ+ = supt∈[0,1] θ(t) and θ− = inft∈[0,1] θ(t), where
eiθ
= tγ ), but it is impossible to find 0≤ s1 < · · ·< s|σ |+1 ≤ 1 such that tγ (sk)=

−tγ (sk+1) for each k = 1, . . . , |σ |.

Given a sign string σ , one can determine whether there exist critical curves of
type σ in L+1

−1(Q; θ1) using an elementary geometric construction; see Figure 9.

(5.3) Proposition. Let θ1 ∈ [0, π], z = eiθ1 and Q = (q, z) ∈ C×S1. Let σ be a
sign string,

a = iσ(1)(1+ (−1)|σ |+1z) ∈ C and r = 2|σ | ∈ N.

Let Rσ be the open region of the plane which does not contain −i + i z and which is
bounded by the shortest arc of Cr (a) joining a+ ri to a− ri z and the tangent lines
to Cr (a) at these points. Then L+1

−1(Q; θ1) contains critical curves of type σ if and
only if q ∈ Rσ .
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Figure 9. The regions Rσ of (5.3).

We have assumed that θ1 ∈ [0, π] just to simplify the statement. If θ1 ∈ [−π, 0],
then the only differences are that the points bounding the arc of Cr (a) are now a−ri
and a+ ri z and the region Rσ is the one not containing i − i z. Indeed, reflection
across the x-axis yields a homeomorphism between L+1

−1(Q; θ1) and L+1
−1(Q;−θ1),

where Q= (q̄, z̄), which maps critical curves of type σ to critical curves of type−σ .
When θ1 = 0, the points a+ ri and a− ri determine two shortest arcs of Cr (a),

not just one; the region Rσ is bounded by the one which goes through a+ r . When
θ1 = ±π , the arc of circle degenerates to a single point. In this case, Rσ is the
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component of the complement of the horizontal line through a+ sign(θ1)ri which
does not contain the real axis.

Proof of (5.3). There are four essentially distinct types of sign strings to consider:

+− · · ·+−︸ ︷︷ ︸
2n

, −+ · · ·−+︸ ︷︷ ︸
2n

, + −+ · · ·−+︸ ︷︷ ︸
2n

and − +− · · ·+−︸ ︷︷ ︸
2n

(n ∈ N, n ≥ 1).

(Note that these are distinguished by the values of σ(1) and |σ | appearing in the
expression for a.) We shall prove the theorem for a string of the first type; the proof
in the remaining three cases is analogous. The argument given here is the same as
the one which was used to prove (3.17), so some details will be omitted.

For each µ ∈ [θ1 − π, 0], let γµ : [0, 2nπ + θ1] → C be the unique curve
parametrized by arc-length satisfying

γµ(0)= 0,

tγµ(s)=
{

eis if s ∈ [0,µ+π ]∪[µ+2nπ,θ1+2nπ ]
⋃

k[µ+kπ,µ+(k+1)π ],
ei(2µ−s) if s ∈

⋃
k[µ+kπ,µ+(k+1)π ],

where the first (resp. second) union is over all k ≡ 0 (resp. k ≡ 1) (mod 2),
1≤ k ≤ 2n− 1. Notice that γµ is the concatenation of arcs of circles of radius 1;
see Figure 9. (Vaguely speaking, γµ is the “most efficient” critical curve γ of type σ
with inf θγ = µ and |κγ | ≤ 1.) We have

8γµ(0)= (0, 1), tγµ(2nπ + θ1)= z, inf θγµ = µ, sup θγµ = µ+π,

γµ(2nπ + θ1)=

(∫ µ+π

0
+(2n− 1)

∫ µ+π

µ

+

∫ θ1

µ

)
eis ds = (i − i z)+ 4nieiµ.

From the previous equation it follows that as µ increases from θ1 − π to 0, the
endpoint of γµ traces out the arc of Cr (a) joining a−ri z to a+ri , where a= i− i z
and r = 4n = 2|σ |. Further, the tangent line to Cr (a) at γµ(2nπ + θ1) is parallel
to eiµ, for it must be orthogonal to 4nieiµ.

It is easy to see that any q ∈ Rσ is the endpoint of a curve of one of the following
three types:

(i) The concatenation of γµwith a line segment of direction z for someµ∈[θ1−π,0].

(ii) The concatenation of γ0|[0,π ], a line segment of length `≥0 having direction−1,
the arc −`+ γ0|[π,2nπ+θ1], and a line segment of direction z.

(iii) The concatenation of γθ1−π |[0,θ1+π ], a line segment of length `1 ≥ 0 of direc-
tion −z, the arc −`1z+ γ0|[θ1+π,θ1+3π/2], a line segment of length `2 ≥ 0 and
direction −i z, the arc −`1z− `2i z+γ0|[θ1+3π/2,2nπ+θ1], and a line segment of
direction z.



COMPONENTS OF SPACES OF CURVES ON FLAT SURFACES 231

If q ∈ Rσ , then we can find a critical curve γ of type σ in L+1
−1(Q; θ1) by a slight

modification of one of these curves.
Conversely, suppose that L+1

−1(Q; θ1) contains critical curves of type σ . Let
η : [0, L]→C be such a curve, parametrized by arc-length, and let µ= inf θ , where
θ : [0, L] → R is the argument of tη satisfying θ(0)= 0. Define

g : [0, L] → R by g(s)=
〈
η(s)− γµ(2nπ + θ1), ieiµ〉.

Note that g(s)>0 if and only if η(s) lies to the left of the line through γµ(2nπ+θ1)∈

Cr (a) having direction eiµ; we have already seen that this line is tangent to Cr (a)
at this point. We claim that g(L) > 0. Since η is critical, θ(s) ∈ [µ,µ+π ] for all s.
Hence,

(42) g′(s)= 〈eiθ(s), ieiµ
〉 = cos

(
θ(s)−

(
µ+ π

2

))
≥ 0 for all s ∈ [0, L].

Let Ji = (ai , bi )⊂ (0, L), i = 0, . . . , 2n = |σ |, be disjoint intervals such that

(I) θ(a0)= 0 and θ(b1)= µ+π ;

(II) θ(ai )= µ+π and θ(bi )= µ for i = 1, 3, . . . , 2n− 1;

(III) θ(ai )= µ and θ(bi )= µ+π for i = 2, 4, . . . , 2n− 2;

(IV) θ(a2n)= µ+π and θ(b2n)= θ1.

Such intervals exist because θ([0, L])⊂ [µ,µ+π ], θ(0)= 0, θ(L)= θ1 and η is
critical of type σ . It follows from (42) and the fact θ is strictly 1-Lipschitz (by (5)
and the fact that θ = arg ◦ tη is absolutely continuous) that

g(L)−g(0)≥
( 2n∑

i=0

∫ bi

ai

)
g′(s)ds

>

(∫ µ+π

0
+(2n−1)

∫ µ+π

µ

+

∫ θ1

µ

)
〈ei t , ieiµ

〉dt =
〈
γµ(2nπ+θ1), ieiµ〉.

Therefore, g(L) > 0 as claimed. We conclude that q = η(L) lies on the side of a
tangent to Cr (a) which only contains points of Rσ . �

(5.4) Corollary. Let Q = (q, z) ∈ C×S1,

a = sign(Im(z))i(z− 1) ∈ C,

and let RT be the open region of the plane which does not contain a and which is
bounded by the shortest arc of C4(a) joining a+sign(Im(z))4i to a−sign(Im(z))4i z
and the tangent lines to C4(a) at these points. Then L+1

−1(Q) contains critical curves
if and only if q ∈ RT .

Proof. Let z = eiθ1 , |θ1| ≤ π . For θ1 ∈ [0, π] (resp. θ1 ∈ [−π, 0]), RT is the same
as the region R−+ (resp. R+− ) appearing in (5.3). �
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If z = ±1, then sign(Im z) is not defined. When z = 1, RT is bounded by the
semicircle centered at 0 through 4 and ±4i and the tangents to C4(0) at the latter
two points. When z =−1, RT is bounded by the horizontal lines through ±2i .

(5.5) Corollary. Let Q = (q, z) ∈ C×S1 and eiθ1 = z. Then there exist condensed
curves but not critical curves in L+1

−1(Q; θ1) if and only if |θ1|< π and q lies in the
region illustrated in Figure 1.

Proof. This is an immediate consequence of (3.17) and (5.4). �

(5.6) Lemma. Let Q = (q, z) ∈ C×S1 and eiθ1 = z, |θ1| ≤ π . Let ω ∈ [|θ1|, π]

and r(ω)= 4 sin
(
ω/2

)
. Suppose that q lies inside of Cr(ω)

(
sign(θ1)i(z−1)

)
. Then

there does not exist a curve in L̂+1
−1(Q; θ1) or L+1

−1(Q; θ1) having amplitude ω.

Proof. Assume that θ1 ∈ [0, π]; the proof for θ1 ∈ [−π, 0] is analogous. Let
ω ∈ [θ1, π], µ ∈ [θ1 − ω, 0] and let γµ : [0, 2ω − θ1] → C be the unique curve
parametrized by arc-length satisfying

γµ(0)= 0 and tγµ(s)=


e−is if s ∈ [0,−µ],
ei(s+2µ) if s ∈ [−µ,−µ+ω],
e−i(s−2ω) if s ∈ [−µ+ω, 2ω− θ1].

Notice that tγµ(0)= 1, tγµ(2ω− θ1)= z and γµ is a concatenation of three arcs of
circles of radius 1. Moreover, inf θγµ = µ and sup θγµ = µ+ω, where θγµ is the
argument of tγµ satisfying θγµ(0)= 0. Consequently, γµ has amplitude ω. Further,

γµ(2ω− θ1)=

(∫ 0

µ

+

∫ µ+ω

µ

+

∫ µ+ω

θ1

)
eis ds = (−i + i z)+ 4 sin

(
ω

2

)
ei(µ+ω/2).

Thus, as µ increases from θ1 − ω to 0, the endpoint of γµ traverses an arc of
Cr(ω)(−i + i z). Suppose that there exists η ∈ L̂+1

−1(Q; θ1) of amplitude ω, and let
η : [0, L]→C be parametrized by arc-length. Let θη be the argument of η satisfying
θη(0)= 0, take µ= inf θη and define

g : [0, L] → R by g(s)=
〈
η(s)− γµ(2ω− θ1), ei(µ+ω/2)〉.

Then the same reasoning used to establish (3.17) and (5.3) shows that g(L) ≥ 0.
This implies that η(L) = q lies on or to the left of the line through γµ(2ω− θ1)

having direction exp
(
i(µ+ (ω−π)/2)

)
. This line is tangent to Cr(ω)(−i + i z) at

this point; therefore q cannot lie inside of this circle. This proves the assertion
about L̂+1

−1(Q; θ1). Since the latter contains L+1
−1(Q; θ1) as a subset, the proof is

complete. �

The next result will only be needed in [Saldanha and Zühlke 2015]. Recall the
definition of ϕ̄γ in (34).
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(5.7) Corollary. Let |θ1| ≤ π , eiθ1 = z, Q = (q, z) ∈C×S1 and σ be a sign string.
Then the set of all ϕ ∈ R such that there exists a critical curve γ ∈ L+1

−1(Q; θ1) of
type σ for which ϕ̄γ = ϕ is an open interval.

Proof. No generality is lost in assuming that θ1 ∈ [0, π). Let ϕ ∈ R. It was
established in the proof of (5.3) that a curve γ as in the statement exists if and only
if ϕ ∈ [θ1−π/2, π/2] and q lies in the open external region Eϕ determined by the
tangent orthogonal to eiϕ to a certain circle C (which depends only on θ1 and σ ).
It is straightforward to check that Eϕ1 ∩ Eϕ2 ⊂ Eϕ whenever ϕ ∈ [ϕ1, ϕ2] with
ϕ2−ϕ1 ≤ π . Moreover, if q ∈ Eϕ , then q ∈ Eϕ̃ for all ϕ̃ sufficiently close to ϕ. �

6. Components of Lκ2
κ1(P, Q) for κ1κ2 < 0

Recall that E denotes the separable Hilbert space and Bγ,1,1/2 is obtained from γ

by attaching a figure eight curve (at t = 1/2); see (4.4) and Figure 7(d).

(6.1) Theorem. Let Q = (q, z) ∈ C× S1 and θ1 ∈ R satisfy eiθ1 = z. Then the
following assertions are equivalent:

(i) L+1
−1(Q; θ1) is disconnected.

(ii) |θ1|< π and q lies in the region depicted in Figure 1.

(iii) |θ1|< π and there exist condensed curves, but not critical curves, in L+1
−1(Q).

(iv) |θ1|< π and there exist condensed curves in L+1
−1(Q), but no condensed curve

is homotopic to a diffuse curve within L+1
−1(Q).

(v) |θ1|< π and there exists an embedding γ ∈ L+1
−1(Q) which cannot be homo-

toped within this space to create self-intersections.

(vi) |θ1|<π and there exists γ ∈L+1
−1(Q) which does not lie in the same component

as Bγ,1,1/2.

Furthermore, if L+1
−1(Q; θ1) is disconnected, then it has exactly two components;

one of them is Uc and the other is Ud ⊂ L+1
−1(Q; θ1), and both are homeomorphic

to E, and hence contractible.

Proof. We know from (3.3) and (4.19) that each of Uc,Ud ⊂ L+1
−1(Q; θ1) is home-

omorphic to E, and hence connected. By (4.10), Ud 6= ∅. By (5.1), Uc ∪Ud =

L+1
−1(Q; θ1), and Uc ∩Ud consists of all the critical curves in L+1

−1(Q; θ1). Thus,
the latter has at most two connected components. It has exactly two if and only
if Uc 6= ∅ but Uc ∩Ud = ∅, that is, if and only if there exist condensed curves,
but not critical curves. This proves the last assertion of the theorem and also the
equivalence (i)⇔(iii). The equivalence (ii)⇔(iii) was proved in (5.5).

Suppose that s 7→ γs ∈ L+1
−1(Q; θ1) is a path joining a condensed curve to a

diffuse curve. Let θs be the argument of tγs satisfying θs(0) = 0. By continuity,
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there must exist s0 ∈ (0, 1) such that

sup
t∈[0,1]

θs0(t)− inf
t∈[0,1]

θs0(t)= π;

that is, there must exist s0 such that γs0 is critical. Hence, (iii)⇒(iv).
Suppose that (iv) holds, and let γ ∈ L+1

−1(Q) be smooth and condensed. Then γ
is an embedding, but it cannot be deformed to have a self-intersection since any
curve with double points must be diffuse. Thus, (iv)⇒(v).

Finally, it is obvious that (v)⇒(vi) and (vi)⇒(i). �

(6.2) Corollary. Let Q = (q, z) ∈ C×S1 and θ1 ∈ R satisfy eiθ1 = z. If |θ1| ≥ π ,
then L+1

−1(Q; θ1) is connected. If |θ1|> π , then L+1
−1(Q; θ1) is homeomorphic to E,

and hence contractible.

Proof. The first assertion is an immediate consequence of (6.1). If |θ1|> π then
L+1
−1(Q; θ1) can only contain diffuse curves, and we know from (4.19) that Ud is

homeomorphic to E. �

Remark. The results of Section 4 go through to show that L+1
−1(Q; θ1)= T ∪Ud

is also contractible when θ1 = ±π . Of course, if |θ1| < π then L+1
−1(Q; θ1) need

not even be connected. We shall prove in the sequel [Saldanha and Zühlke 2015]
that it may also be contractible, or connected but not contractible, depending on Q.

(6.3) Corollary. Let Q = (q, z) ∈ C× S1 and θ1 ∈ R satisfy eiθ1 = z. Then the
subset L+1

−1(Q; θ1) is either a connected component or the union of two contractible
components of L+1

−1(Q). The latter can occur only if |θ1| < π , that is, for at most
one value of θ1. �

(6.4) Theorem. Let P = (p, w), Q= (q, z)∈C×S1, κ1< 0<κ2 and let θ1 satisfy
eiθ1 = zw̄.

(a) If |θ1| ≥ π , then the subspace Lκ2
κ1
(P, Q; θ1) consisting of all curves having

total turning θ1 is a contractible connected component of Lκ2
κ1
(P, Q), homeo-

morphic to E.

(b) If |θ1|<π , then Lκ2
κ1
(P, Q; θ1) has at most two components. It is disconnected

if and only if any of the conditions in (6.1) are satisfied for Q̂ = (q̂, zw̄), where

q̂ = 2
ρ2−ρ1

w̄
(
(q − p)+ i

2
(ρ1+ ρ2)(z−w)

) (
ρi =

1
κi
, i = 1, 2

)
.

In this case, one component consists of all condensed and the other of all
diffuse curves in Lκ2

κ1
(P, Q; θ1), and both are homeomorphic to E.

Proof. This is just a corollary of (2.4)(a), (6.1) and (6.2). �

We emphasize that the subspace of Lκ2
κ1
(P, Q) which contains curves having

least total turning, described in (b), does not have to be contractible even if it is
connected. Observe also that we may replace L by C invoking (1.12).
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7. Homeomorphism class of Lκ2
κ1(P, Q) for κ1κ2 ≥ 0

An admissible plane curve γ is called locally convex if either κγ >0 a.e. or κγ <0 a.e.
Notice that Lκ2

κ1
(P, Q) consists of locally convex curves if and only if κ1κ2≥ 0. This

corresponds to parts (b)–(e) of (2.4). The topology of these spaces is very simple.
Suppose that γ : [0, 1] → C is an admissible curve such that κγ > 0 a.e. and

8γ (0)= (0, 1). By (5), any argument θ : [0, 1]→R of tγ must be strictly increasing;
in particular, the total turning θ1 of γ is positive. Thus, γ may be parametrized by
its argument θ ∈ [0, θ1]. By the chain rule,

(43) γ̇ (θ)= ρ(θ)eiθ (θ ∈ [0, θ1]),

where ρ : [0, θ1] → (0,+∞) is the radius of curvature of γ .3

(7.1) Theorem. Let P, Q ∈UT C and suppose that either κ1 ≥ 0 or κ2 ≤ 0. Then
Lκ2
κ1
(P, Q) has infinitely many connected components, one for each realizable total

turning. All of these components are homeomorphic to E, and hence contractible.

Proof. Using an Euclidean motion if necessary, we may assume that P = (0, 1).
Further, by reversing the orientation of all curves, we pass from the case where
κ2 ≤ 0 to the case where κ1 ≥ 0.

Let Q = (q, z) and eiθ1 = z. The subspace Lκ2
κ1
(Q; θ1) is both open and closed

in Lκ2
κ1
(Q) (but it may be empty; see (4.9). In particular, two curves which have

different total turnings cannot lie in the same component of Lκ2
κ1
(Q). For any

k ∈N, we may concatenate a curve in Lκ2
κ1
(Q) with a circle of curvature in (κ1, κ2)

traversed k times. This shows that the number of components is infinite.
Suppose that Lκ2

κ1
(Q; θ1) 6=∅. Since κ1≥ 0 by hypothesis, we may reparametrize

all curves in Lκ2
κ1
(Q; θ1) by the argument θ ∈[0, θ1] of their unit tangent vectors using

(1.15). Choose any γ0 ∈ L
κ2
κ1
(Q; θ1) and define a map H on [0, 1]×Lκ2

κ1
(Q; θ1) by

H(s, γ )= γs, γs(θ)= (1− s)γ0(θ)+ sγ (θ) (s ∈ [0, 1], θ ∈ [0, θ1]).

Then γs(0)= 0, γs(θ1)= q and the unit tangent vector tγs to γs satisfies

tγs (θ)= eiθ for all γ ∈ Lκ2
κ1
(Q; θ1), s ∈ [0, 1] and θ ∈ [0, θ1].

Consequently, each γs has total turning θ1, 8γs (0)= (0, 1) and 8γs (θ1)= Q. Let
ρ0, ρ : [0, 1] → (0,+∞) denote the radii of curvature of γ0, γ , respectively. It
follows from (43) that the radius of curvature ρs of γs is given by

ρs = (1− s)ρ0+ sρ.

3The idea of parametrizing a locally convex curve by the argument of its unit tangent vector is not
new. It appears in [Little 1970], where it is attributed to W. Pohl. We do not know whether it is older
than that.
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Therefore, the curvature κs = 1/ρs of γs takes values in (κ1, κ2) and H is a con-
traction of Lκ2

κ1
(Q; θ1). We conclude that the latter is a connected component of

Lκ2
κ1
(Q) and, using (1.7)(b), that it is homeomorphic to E. �

Possible total turnings of a curve in L
κ2
κ1(P, Q) when κ1κ2 > 0. Let T denote

the set of all total turnings which are realized by some curve in Lκ2
κ1
(P, Q). If

P = (p, w), Q = (q, z), then obviously

T ⊂ {θ1+ 2kπ : k ∈ Z}, where eiθ1 = zw̄.

If κ1κ2 < 0, this inclusion is an equality by (4.9)(b). However, it must be proper
when κ1κ2 ≥ 0. If κ1, κ2 are both positive, for instance, then, by (5) and the second
paragraph of the above proof, T must have the form {µ+2kπ : k ∈N}, where µ∈R

(eiµ
= zw̄) is the minimal attainable total turning in this space. It is possible to find

the value of µ in terms of all parameters involved. Because this determination is
of lesser interest and relatively technical, we shall not go into it here. However,
interested readers can find the details, including the analogue for spaces of the
form L̂, in [Saldanha and Zühlke 2014]. We mention only that (2.4) allows one to
restrict attention to the two classes L+∞1 (Q) and L+∞0 (Q).

8. Components of spaces of curves on complete flat surfaces

By a flat surface we mean a connected Riemannian 2-manifold whose Gaussian cur-
vature is identically zero; it will not be necessary to assume that S is a submanifold
of some Euclidean space. The unit tangent t = tγ : [0, 1]→UTS to a regular curve
γ : [0, 1] → S is defined as before, t = γ̇ /|γ̇ |. If S is orientable, the unit normal
n = nγ : [0, 1] → UTS to γ is defined by the condition that (t(t), n(t)) should
be a positively oriented orthonormal basis of TSγ (t) for each t ∈ [0, 1]. For γ of
class C2, we can then define its curvature κγ : [0, 1] → R by

κγ =
1
|γ̇ |

〈
D t
dt
, n
〉
,

where D denotes covariant differentiation (along γ ).
If S is nonorientable, we can still speak of the unsigned curvature κγ : [0, 1] →
[0,+∞) of a curve γ : [0, 1] → S, given by

κγ =
1
|γ̇ |

∣∣∣∣〈D t
dt
, n
〉∣∣∣∣,

where now n(t) denotes any of the two unit vectors in TSγ (t) orthogonal to t(t).

(8.1) Definition. Let S be an orientable flat surface, u,v∈UTS,−∞≤κ1<κ2≤+∞,
and 2≤ r ∈N. Define CSκ2

κ1
(u, v) to be the set of all Cr regular curves γ : [0, 1]→ S

satisfying
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(i) tγ (0)= u and tγ (1)= v;

(ii) κ1 < κγ (t) < κ2 for each t ∈ [0, 1].

In case S is nonorientable, define CS+κ0
−κ0
(u, v) (κ0 > 0) as above, but replacing

condition (ii) by

(ii′) κγ (t) < κ0 for each t ∈ [0, 1].

In both cases, let Cκ2
κ1
(u, v) be furnished with the Cr topology.

Remark. A complete flat surface must be homeomorphic to one of the following
five: C itself, a cylinder S1

×R, an open Möbius band, a torus or a Klein bottle.
This is essentially a corollary of the following result; cf. [Hopf 1926, p. 319].

(8.2) Theorem (Killing–Hopf). Any complete flat surface is isometric to the quo-
tient of the Euclidean plane C by a group of isometries acting freely and properly
discontinuously on C. �

Hence, if S is a complete flat surface, there exists a covering map C→ S which
is a local isometry. Any curve on S may thus be lifted to a plane curve whose
curvature is the same as that of the original curve, with the proviso that we ignore
its sign if S is nonorientable. Let pr :UT C→UTS denote the natural projection
induced by the covering map. In what follows, when referring to CSκ2

κ1
(u, v), we

adopt the convention that κ1 =−κ2 < 0 if S is nonorientable.

(8.3) Proposition. Let S be a complete flat surface, u,v∈UTS,−∞≤κ1<κ2≤+∞

and P ∈UT C be a fixed element of pr−1(u). Then CSκ2
κ1
(u, v) is homeomorphic to∐

Q∈pr−1(v) C
κ2
κ1
(P, Q), where the homeomorphism maps a curve in the latter to its

image under the quotient map C→ S. �

Here
∐

denotes topological sum. Clearly, this decomposition is sufficient to
determine the connected components of CSκ2

κ1
(u, v) explicitly, using (1.12) and (6.4)

if κ1κ2 < 0 or (7.1) if κ1κ2 ≥ 0.

(8.4) Corollary. Let S be a complete flat surface, κ1 < κ2 and u, v ∈ UTS. Then
CSκ2

κ1
(u, v) is nonempty and has an infinite number of connected components.

Proof. By (4.9) and the remark which follows it, Cκ2
κ1
(P, Q) is always nonempty.

The assertion is thus an immediate consequence of (8.3). �

Notice that it is irrelevant here whether S is compact. This should be compared
to the case of S = S2, where, at least when u = v, the number of components of
CSκ2

κ1
(u, v) is finite for any choice of κ1 < κ2 (see [Saldanha and Zühlke 2013, §7]).

This is actually not surprising, since the fundamental group of UT C is isomorphic
to Z, but that of U T S2

≈ SO3 is isomorphic to Z2. We remark without proof that
CSκ2

κ1
(u, v) may be empty for more general surfaces (for instance, CS+1

−1(u, u)=∅
when S is the hyperbolic plane H2 for any u ∈UTH2).
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(8.5) Corollary. Let S be a complete flat surface and u, v ∈ UTS. Let η ∈
CS+∞−∞(u, v) and suppose that κ1κ2 < 0. Then there exists γ ∈ CSκ2

κ1
(u, v) lying in

the same component of CS+∞−∞(u, v) as η.

In other words, given a regular curve η on S with tη(0)= u, tη(1)= v, we may
deform η through regular curves, keeping t(0), t(1) fixed, to obtain a curve having
curvature in (κ1, κ2) everywhere.

Proof. Take P ∈UT C such that pr(P)= u. Let η̃ be the lift of η to C with initial
frame P ; let Q be its final frame and θ1 its total turning. By (4.9)(b), Cκ2

κ1
(P, Q; θ1)

is nonempty. Let γ̃ be one of its elements. Then the projection γ of γ̃ on S satisfies
the conclusion of the corollary because of (8.3) and the fact that η̃, γ̃ lie in the
same component of C+∞−∞(P, Q). �

Again, the analogue of this result does not hold for a general surface S, e.g., for
S =H2. It is also false for a flat surface if κ1κ2 ≥ 0. To see this, let P, Q ∈UT C

satisfy pr(P)= u, pr(Q)= v, choose η̃ ∈ C+∞−∞(P, Q) to have a total turning which
is unattainable for curves in Cκ2

κ1
(P, Q) and let η be the projection of η̃ on S.

9. Final remarks

Spaces of curves with curvature in a closed interval. Dubins [1957; 1961] worked
with the set L̂+κ0

−κ0
(Q) of (1.16) (but with the C1 topology), where the curvatures are

restricted to lie in a closed interval. This choice is motivated by the fact that these
spaces, unlike those of the form L

+κ0
−κ0
(Q), always contain curves of minimal length

(see [Dubins 1957, Proposition 1]). All of the main results in our paper concerning
the topology of Lκ2

κ1
(P, Q) have analogues for L̂κ2

κ1
(P, Q). We shall now briefly

indicate the modifications which are necessary.
Notice that L̂κ2

κ1
(P, Q) is not a Banach manifold, and that the analogue of (1.5)

is false for these spaces, as shown by (1.1). In contrast, (1.14) and (1.15) still hold
when M= L̂κ2

κ1
(P, Q). The important corollary (2.6) has the following analogue,

whose proof is essentially the same as that of (2.4); see (2.7).

(9.1) Proposition. Let P, Q ∈UT C and κ1<κ2 be finite. Then there exists a home-
omorphism between L̂κ2

κ1
(P, Q) and a space of type L̂+1

−1(Q0), L̂1
0(Q0) or L̂2

1(Q0),
according to whether κ1κ2 < 0, κ1κ2 = 0 or κ1κ2 > 0, respectively. Moreover, this
homeomorphism preserves the total turning of curves unless κ1 < κ2 ≤ 0, in which
case it reverses the sign. �

In case κ1κ2 < 0, we actually have L̂κ2
κ1
(P, Q) ≈ L̂+1

−1(Q1) with Q1 as in the
statement of (2.4). We leave the task of determining Q0 in the other two cases to
the interested reader.

Let us denote by Ûc, Ûd and T̂ ⊂ L̂+1
−1(Q; θ1) the subspaces consisting of all

condensed, diffuse and critical curves, where Q = (q, z), eiθ1 = z and L̂+1
−1(Q; θ1)
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consists of those curves in L̂+1
−1(Q) which have total turning θ1. The analogue of

(3.3), stating that Ûc is either empty or contractible, is, naturally, (3.4), which was
used to prove (3.3). The results and proofs in Section 4 all need minimal or no
modifications. In particular, Ûd is always nonempty and weakly contractible.

The proof that ∂Ûd = T̂ is the same as the one given in (5.1). The proof that
∂Ûc = T̂, however, needs to be modified, since we have relied on (1.5). The idea is
again to apply construction (3.8), but to all of γ , not just to some of its arcs as in
the proof of (5.1). If γ is a critical curve, then the corresponding function f (see
Figure 4) will attain the values ±∞, and at these points we need to assign weights,
corresponding to the lengths of the line segments where θγ attains its maximum and
minimum. Then we redefine A(µ−, µ+) as the sum of the area under the graph of
f (µ−,µ+) plus the weight at +∞ minus the weight at −∞. The process described
in (3.8) will transform f into a bounded function of the same area; that is, it will
decrease the amplitude of γ , making it a condensed curve.

The proofs of (3.17), (5.3) and (5.4), which deal with the existence of condensed
and critical curves, go through unchanged; the only difference in the conclusions is
that the corresponding regions R

Ûc
, Rσ and R

T̂
of the plane are now closed, instead

of open. Thus, in the analogue of (6.1), the region of Figure 1 should contain the
two circles of radius 2, but not the circle of radius 4, and we cannot assert that Ûc

and Ûd are homeomorphic to E, only that they are weakly contractible. The rest of
the statement and the proof hold without modifications.

Similarly, the version of (7.1) for L̂κ2
κ1
(P, Q) states that this space has one

contractible connected component for each realizable total turning when κ1κ2 ≥ 0.
The proof is the same as that of (7.1) if κ1κ2 > 0. If κ1 = 0, then we cannot really
parametrize γ ∈ L̂κ2

κ1
(P, Q) by argument. Nevertheless, the proof still works if we

replace ρ(θ)dθ by a measure µ(θ) on the Borel subsets of [0, θ1] which has an
atom at θ if the curvature of γ vanishes at γ (θ); note that the convex combination
of two measures is again a measure. The case where κ2 = 0 can be deduced from
this one by reversing orientations.

A few conjectures of Dubins. All of the results in the next proposition were con-
jectured by Dubins [1961, §6].

(9.2) Proposition. Let q ∈ C, θ1 ∈ R, z = eiθ1 and Q = (q, z). Then:

(a) The set of all (q, θ1)∈C×R such that L̂+1
−1(Q; θ1) is disconnected is a bounded

subset of C×R, neither open nor closed.4

(b) L̂+1
−1(Q; θ1) has at most two components.

4Actually, Dubins had guessed that this set would be bounded and open in C×R.
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(c) If L̂+1
−1(Q; θ1) is disconnected, then one component (Ûd) contains curves of

arbitrarily large length, while the supremum of the lengths of curves in the
other component (Ûc) is finite.

(d) Every point of C lies in the image of some γ ∈ Ûd , while the images of curves
in Ûc are contained in a bounded subset of C.

Proof. Parts (a) and (b) are immediate from the analogue of (6.1) for L̂. As discussed
above, L̂+1

−1(Q; θ1) is disconnected if and only if |θ1|< π and q lies in the region
in Figure 1 including the circles of radius 2 but not the circle of radius 4. Suppose
that q does lie in this region. Choose ω̂ ∈ (θ1, π) such that

|q − sign(θ1)i(z− 1)|< 4 sin
(
ω̂

2

)
.

Then (5.6) implies that there does not exist any curve in L̂+1
−1(Q; θ1) having am-

plitude in [ω̂, π]. The assertions about Ûc in (c) and (d) now follow from (3.15).
The assertions about Ûd are obvious, because, by (the version for L̂ of) (4.18), this
subspace always contains curves of amplitude ≥ 2π , and onto such a curve we may
graft line segments of any direction and arbitrary length. �

As expected, there is a version of the foregoing proposition for L+1
−1(Q; θ1). The

corresponding assertions in (a) and (b) are immediate from (6.1), and the assertions
about Ud are again obvious. A curve in Uc parametrized by arc-length can also be
considered as an element of Ûc, so the properties stated in (c) and (d) for Uc follow
from those for Ûc unless q lies on the circle of radius 4 in Figure 1. In this case,
L+1
−1(Q; θ1) is disconnected, but L̂+1

−1(Q; θ1) is not. One can prove directly that the
length of any γ ∈ Uc must be smaller than that of the “canonical” critical curves of
type +− or −+ that were constructed in the proof of (5.3).

Conjectures on minimal length. Let L(γ ) denote the length of γ and suppose that
L̂+1
−1(Q; θ1) is disconnected. We believe that the results developed here may be

used to prove that if m = sup
γ∈Ûc

L(γ ) and M = inf
γ∈Ûd

L(γ ), then m < M ; this
is another conjecture of Dubins. It would be interesting, and probably useful for
applications, to find the values corresponding to m and M for the more general
spaces L̂κ2

κ1
(Q).

We observed in (2.5) that normal translations, and hence the homeomorphisms
of (9.1) need not preserve inequalities between lengths. Since they do map circles
to circles and lines to lines, it could still be expected that the image of a curve
which minimizes length under these homeomorphisms is likewise of minimal
length. Unfortunately, this is false. Suppose, for instance, that we apply the
homeomorphism L̂+1

−1(Q)→ L̂100
−1 (Q0) to the Dubins path in Figure 3(b). It should

be clear that its image, which again consists of a line segment and two arcs of
circles of opposite orientation with the same amplitude as before, does not minimize
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length in L̂100
−1 (Q0), since in the latter space it is generally much more efficient to

curve to the left than to the right, even if this yields a path of greater total turning.
In spite of this difficulty, we conjecture that Dubins’ theorem that any shortest

path in L̂
+κ0
−κ0
(P, Q) must be a concatenation of three pieces, each of which is either

an arc of circle or a line segment, still holds for the spaces L̂κ2
κ1
(P, Q), κ1κ2 < 0.

For κ1κ2 > 0, we conjecture that a curve of minimal length is a concatenation of n
arcs of circles of curvature κ1 and κ2. However, for fixed P, Q ∈UT C, we must
have limκ1,κ2→+∞ n=∞. Indeed, a curve of this type has total turning at most 2nπ ,
and the minimal total turning of a curve in L̂κ2

κ1
(Q) increases to infinity as κ1 > 0

increases to infinity (for fixed Q = (q, z) with q 6= 0).
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