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THE EISENSTEIN ELEMENTS OF MODULAR SYMBOLS
FOR LEVEL PRODUCT OF TWO DISTINCT ODD PRIMES

DEBARGHA BANERJEE AND SRILAKSHMI KRISHNAMOORTHY

We explicitly write down the Eisenstein elements inside the space of modu-
lar symbols for Eisenstein series with integer coefficients for the congruence
subgroups 00( pq) with p and q distinct odd primes, giving an answer to a
question of Merel in these cases. We also compute the winding elements
explicitly for these congruence subgroups. Our results are explicit versions
of the Manin–Drinfeld theorem.

1. Introduction

In his landmark paper on Eisenstein ideals, Mazur studied torsion points of elliptic
curves over Q and gave a list of possible torsion subgroups of elliptic curves (see
[Mazur 1977, Theorem 8]). Merel [1996b] wrote down modular symbols for the
congruence subgroups 00(p) for any odd prime p that correspond to differential
forms of the third kind on the modular curves. He then used these modular symbols
to give a uniform upper bound on the torsion points of elliptic curves over any
number field in terms of its extension degree [Merel 1996a]. The explicit expressions
of winding elements for prime level of [Merel 1996b] were used by Calegari and
Emerton [2005] to study the ramifications of Hecke algebras at the Eisenstein
primes. Several authors afterwards studied the torsion points of elliptic curves over
number fields using modular symbols.

In the present paper, we study elements of relative homology groups of the
modular curve X0(pq) that correspond to differential forms of the third kind with p
and q distinct odd primes. As a consequence, we give an “effective” proof of
the Manin–Drinfeld theorem (Theorem 9) for the special case of the image in
H1(X0(pq),R) of the path in H1(X0(pq), ∂(X0(pq)),Z) joining 0 and i∞. Since
the algebraic parts of the special values of the L-function are obtained by integrating
differential forms on these modular symbols, our explicit expression of the winding
elements should be useful for understanding the algebraic parts of the special values
at 1 of the L-functions of the quotient Jacobian of modular curves for the congruence
subgroup 00(pq) [Agashe 2000].
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For N ∈ {p, q, pq}, consider the basis EN of E2(00(pq)) (Section 4) for which
all the Fourier coefficients at i∞ belong to Z. The meromorphic differential forms
EN (z) dz are of the third kind on the Riemann surface X0(pq) but of the first kind
on the noncompact Riemann surface Y0(pq).

Let ξ : SL2(Z)→ H1(X0(pq), cusps,Z) be the Manin map (Section 3). For any
two coprime integers u and v with v ≥ 1, let S(u, v) ∈ Z be the Dedekind sum
(see Section 4.1). If g ∈ P1(Z/pqZ) is not of the form (±1, 1), (±1± kx, 1) or
(1,±1± kx) with x one of the primes p or q , then we can write it as (r −1, r +1).

Let δr be 1 or 0 depending on whether r is odd or even. For any integer k, let
sk = k + (δk − 1)pq be an odd integer. Choose integers s, s ′ and l, l ′ such that
l(sk x + 2)− 2spq = 1 and l ′sk x − 2s ′ pq/x = 1. Let

γ
x,k
1 =

(
1+ 4spq −2l

−4s(sk x + 2)pq 1+ 4spq

)
and γ

x,k
2 =

(
1+ 4s ′ pq/x −2l ′

−4s ′(sk)pq 1+ 4s ′ pq/x

)
be two matrices (see Lemma 28). For l = 1, 2, consider the integers

PN (γ
x,k

l )= sgn(t (γ x,k
l ))

(
2
(

S
(
s(γ x,k

l ), |t (γ x,k
l )|N

)
− S

(
s(γ x,k

l ), |t (γ x,k
l )|

))
− S

(
s(γ x,k

l ), 1
2 |t (γ

x,k
l )|N

)
+ S

(
s(γ x,k

l ), 1
2 |t (γ

x,k
l )|

))
with

s(γ x,k
1 )= 1− 4spq(1+ sk x), t (γ x,k

1 )=−2(l − 2s(sk x + 2)pq)

and

s(γ x,k
2 )= 1− 4s ′ pq

(
sk −

1
x

)
, t (γ x,k

2 )=−2(l ′− 2s ′sk pq).

Define the function FN : P
1(Z/pqZ)→ Z by

FN (g)=


2(S(r, N )− 2S(r, 2N )) if g = (r − 1, r + 1),
PN (γ

x,k
1 )− PN (γ

x,k
2 ) if g = (1+ kx, 1) or g = (−1− kx, 1),

−PN (γ
x,k
1 )+ PN (γ

x,k
2 ) if g = (1, 1+ kx) or g = (1,−1− kx),

0 if g = (±1, 1).

Theorem 1. The modular symbol

EEN =

∑
g∈P1(Z/pqZ)

FEN (g)ξ(g)

in H1(X0(pq), ∂(X0(pq)),Z) is the Eisenstein element (Section 5) corresponding
to the Eisenstein series EN ∈ E2(00(pq)).

In [Banerjee 2014], a description is given of Eisenstein elements in terms of
certain integrals for M = p2. In this article, we give an explicit description in
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terms of two matrices γ x,k
1 and γ x,k

2 . Let B1 :R→R be the periodic first Bernoulli
polynomial. For the Eisenstein series E pq (Section 4), we write down the Eisenstein
elements more explicitly if g = (r − 1, r + 1). Replacing p with pq [Merel 1996b,
Lemma 4], we write

Fpq(r − 1, r + 1)=
pq−1∑
h=0

B1

(
hr

2pq

)
.

Recall the concept of the winding elements (Definition 37). We write down the
explicit expression of the winding elements for the congruence subgroup 00(pq).

Corollary 2.

(1− pq)epq =
∑

x∈(Z/pqZ)∗

Fpq(1, x)
{

0, 1
x

}
.

Note that if ν = gcd(pq−1, 12) and n = (pq−1)/ν, then a multiple of winding
element nepq belongs to H1(X0(pq),Z). Manin and Drinfeld proved that the
modular symbol {0,∞} belongs to H1(X0(N ),Q) using the theory of suitable
Hecke operators acting on the modular curve X0(N )/Q. In this paper, we follow
the approach of Merel [1996b, Proposition 11]. Our explicit expression of winding
elements should be useful for understanding the algebraic part of the special values
of L-functions (see [Agashe 2000, p. 26]).

Since Hecke operators are defined over Q, there is a possibility that we can find
the Eisenstein elements for the congruence subgroups of odd level in a completely
different method without using boundary computations. It is tempting to remark
that our method should generalize to the congruence subgroup 00(N ) at least if N is
squarefree and odd. Unfortunately, generalizing our method is equivalent to having
an explicit understanding of boundary homologies of modular curves defined over
rationals. For instance, if N = pqr with p, q, r three distinct primes then there
are eight cusps. Since there are more cusps in these cases, the computation of
boundaries becomes much more tedious. One of the authors wishes to tackle the
difficulty using the “level” of the cusps in a future article.
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3. Modular symbols

Let H∪P1(Q)=H and let 0⊂ SL2(Z) be a congruence subgroup. The topological
space X0(C)= 0\H has a natural structure of a smooth compact Riemann surface.
Consider the usual projection map π : H→ X0(C) and recall that it is unramified
outside the elliptic points and the set of cusps ∂(X0). Both these sets are finite.

3.1. Rational structure of the curve X0(N) defined over Q. There is a smooth
projective curve X0(N ) defined over Q for which the space 00(N )\H is canonically
identified with the set of C-points of the projective curve X0(N ). We are interested
in understanding the Q-structure of the compactified modular curve X0(N ).

3.2. Classical modular symbols. Recall the following fundamental theorem.

Theorem 3 [Manin 1972]. For α ∈ H, consider the map c : 0→ H1(X0(N ),Z)

defined by
c(g)= {α, gα}.

The map c is a surjective group homomorphism which does not depend on the choice
of point α. The kernel of this homomorphism is generated by

(1) the commutator,

(2) the elliptic elements,

(3) the parabolic elements

of the congruence subgroup 0.

In particular, this theorem implies that {α, gα} = 0 for all α ∈ P1(Q) and g ∈ 0.

3.3. Manin map. Let S =
(

0 −1
1 0

)
, T =

(
1 1
0 1

)
and R = ST =

(
0 −1
1 1

)
. The modular

group SL2(Z) is generated by S and T .

Theorem 4 [Manin 1972]. Let

ξ : SL2(Z)→ H1(X0(pq), ∂(X0(pq)),Z)

be the map that takes a matrix g∈SL2(Z) to the class in H1(X0(pq), ∂(X0(pq)),Z)

of the image in X0(pq) of the geodesic in H∪P1(Q) joining g0 and g∞. Then

• the map ξ is surjective;

• for all g ∈ 00(pq)\SL2(Z), we have ξ(g)+ ξ(gS) = 0 and ξ(g)+ ξ(gR)+
ξ(gR2)= 0.

We have a short exact sequence

0→ H1(X0(pq),Z)→ H1(X0(pq), ∂(X0(pq)),Z)→ Z∂(X0(pq)) δ′
→Z→ 0.
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The first map is a canonical injection. The boundary map δ′ takes a geodesic, joining
the cusps r and s to the formal symbol [r ] − [s], and the third map is the sum of
the coefficients.

3.4. Relative homology group H1(X0( pq)− R∪ I, ∂(X0( pq)), Z). Consider the
points i =

√
−1 and ρ = 1

2(1+
√
−3) on the complex upper half-plane with ν

the geodesic joining i and ρ. These are the elliptic points on the Riemann surface
X0(pq). The projection map π is unramified outside cusps and elliptic points.

Say R = π(SL2(Z)ρ) and let I = π(SL2(Z)i) be the image of these two sets
in X0(pq). These two sets are disjoint. Consider now the relative homology group
H1(Y0(pq), R∪ I,Z). For g ∈ SL2(Z), let [g]∗ be the class of π(gν) in the relative
homology group H1(Y0(pq), R ∪ I,Z). Let ρ∗ = −ρ̄ be another point on the
boundary of the fundamental domain. The homology groups H1(Y0(pq),Z) are
subgroups of H1(Y0(pq), R ∪ I,Z). Suppose z0 ∈ H is such that |z0| = 1 and
−1
2 < Re(z0) < 1. Let γ be the union of the geodesics in H ∪ P1(Q) joining 0

to z0 and z0 to i∞. For g ∈ 00(pq)\SL2(Z), let [g]∗ be the class of π(gγ ) in
H1(X0(pq)− R ∪ I, ∂(X0(pq)),Z).

We have an intersection pairing

◦ : H1(X0(pq)− R ∪ I, ∂(X0(pq)),Z)×H1(Y0(pq), R ∪ I,Z)→ Z.

Recall the following results.

Proposition 5 [Merel 1996b; 1995, Proposition 1]. For g, h ∈ 00(pq)\SL2(Z),

[g]∗ ◦ [h]∗ =
{

1 if 00(pq)g = 00(pq)h,
0 otherwise.

Corollary 6 [Merel 1995, Corollary 1]. The homomorphism of groups Z00(pq)\SL2(Z)

→ H1(Y0(pq), R ∪ I,Z) induced by the map

ξ0

(∑
g

µgg
)
=

∑
g

µg[g]∗

is an isomorphism.

The following important property of the intersection pairing will be used later.

Corollary 7 [Merel 1995, Corollary 3]. For g ∈ 00(pq)\SL2(Z), let
∑

h µhh ∈
Z00(pq)\SL2(Z) be such that

∑
h µh[h]∗ is the image of an element of H1(Y0(pq),Z)

under the canonical injection. We have

[g]∗ ◦
(∑

h

µh[h]∗

)
= µg.
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We have a short exact sequence

0→ H1(X0(pq)− R ∪ I,Z)

→ H1(X0(pq)− R ∪ I, ∂(X0(pq)),Z)→ Z{∂(X0(pq))} δ
→Z→ 0.

The boundary map δ takes a geodesic, joining the cusps r and s to the formal
symbol [r ] − [s]. Note that δ′(ξ(g))= δ([g]∗) for all g ∈ SL2(Z).

Recall that we have a canonical bijection 00(pq)\SL2(Z)∼= P1(Z/pqZ) given
by
(

a b
c d

)
→ (c, d). Say

αk =

(
0 −1
1 k

)
, βr =

(
−1 −r
p r p− 1

)
and γs =

(
−1 −s
q sq − 1

)
.

We explicitly write down the elements of P1(Z/pqZ) as the set

{(1, k), (1, tp), (1, t ′q), (p, q), (q, p), (tp, 1), (t ′q, 1), (1, 0), (0, 1)}

with k ∈ (Z/pqZ)∗, t ∈ (Z/qZ)∗, t ′ ∈ (Z/pZ)∗. Observe that (p, q) = (tp, q) =
(p, t ′q) for all t and t ′ coprime to pq .

Lemma 8. The set

Ω = {I, αk, βr , γs | 0≤ k ≤ pq − 1, 0≤ r ≤ p− 1, 0≤ s ≤ q − 1}

forms a complete set of coset representatives of 00(pq)\SL2(Z).

Proof. The orbits 00(pq)αk , 00(pq)βl and 00(pq)γm are disjoint since ab−1 does
not belong to 00(pq) for two distinct matrices a and b from the set Ω . There are
1+ pq + p+ q = |P1(Z/pqZ)| coset representatives. �

We list different rational numbers of the form α(0) and α(∞) with α ∈ Ω as
equivalence classes of cusps as follows:

0 1/p 1/q

−l
lp−1

, (lp− 1, q)= 1

−m
mq−1

, (mq − 1, p)= 1

−1
k
, (k, p) > 1

−m
mq−1

, (mq − 1, p) > 1

−1
k
, (k, q) > 1

−l
lp−1

, (lp− 1, q) > 1

3.5. Manin–Drinfeld theorem. Following [Lang 1995], we briefly recall the state-
ment of the Manin–Drinfeld theorem.

Theorem 9 (Manin–Drinfeld [Drinfeld 1973]). For a congruence subgroup 0 and
any two cusps α and β in P1(Q), the path

{α, β} ∈ H1(X0,Q).
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This theorem can be reformulated in terms of divisor classes on the Riemann
surface.

Theorem 10. Let a=
∑

i mi Pi be a divisor of degree zero on X. Then a is a divisor
of a rational function if and only if there exists a cycle σ ∈ H1(X0,Z) such that∫

a
ω =

∑
i

mi

∫ Pi

P0

ω =

∫
σ

ω

for every ω ∈ H0(X0, �X0 ).

As a corollary, we notice that {x, y} ∈H1(X0,Q) if and only if there is a positive
integer m such that m(π0(x)−π0(y)) is a divisor of a function. In other words, the
degree-zero divisors supported on the cusps are of finite order in the divisor class
group. Manin and Drinfeld proved it using the extended action of the usual Hecke
operators. In particular, it says that {0,∞} ∈ H1(X0,Q) although 0 and ∞ are
two inequivalent cusps of X0. Ogg [1974] constructed a certain modular function
X0(pq) whose divisors coincide with degree-zero divisors on the modular curves.

4. Eisenstein series for 00( pq) with integer coefficients

Let σ1(n) denote the sum of the positive divisors of n. We consider the series

E ′2(z)= 1− 24
(∑

n

σ1(n)e2π inz
)
.

Let 1 be the Ramanujan cusp form of weight 12. For all N ∈ N, the function
z → 1(N z)/1(z) is a function on H invariant under 00(N ). The logarithmic
differential of this function is 2π i EN (z) dz and EN is a classical holomorphic
modular form of weight two for 00(N ) with constant term N − 1. The differential
form EN (z) dz is a differential form of the third kind on X0(N ). The periods
(Section 4.1) of these differential forms are in Z.

By [Diamond and Shurman 2005, Theorem 4.6.2], the set Epq = {E p, Eq , E pq}

is a basis of E2(00(pq)).

Lemma 11. The cusps ∂(X0(pq)) can be identified with the set {0,∞, 1/p, 1/q}.

Proof. If a/c and a′/c′ are in P1(Q), then

00(pq)
a
c
= 00(pq)

a′

c′
⇐⇒

(
ay
c

)
≡

(
a′+ jc′

c′y

)
(mod pq)

for some j and y such that gcd(y, pq) = 1 (see [Diamond and Shurman 2005,
p. 99]). A small check shows that the orbits 00(pq)0, 00(pq)∞, 00(pq)1/p and
00(pq)1/q are disjoint. �
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Let Div0(X0(pq), ∂(X0(pq)),Z) be the group of degree-zero divisors supported
on cusps. For all cusps x , let e00(pq)(x) denote the ramification index of x over
SL2(Z)\H∪P1(Q) and let

r00(pq)(x)= e00(pq)(x)a0(E[x]).

By [Stevens 1982, p. 23], there is a canonical isomorphism δ : E2(00(pq))→
Div0(X0(pq), ∂(X0(pq)),Z) that takes the Eisenstein series E to the divisor

(4-1) δ(E)=
∑

x∈00(pq)\P1(Q)

r00(pq)(x)[x].

Hence, the Eisenstein element is related to the Eisenstein series by the boundary
map. In Proposition 34, we prove that the boundary of the Eisenstein element is
indeed the boundary of the Eisenstein series. By [Stevens 1985, p. 538], we see that

e00(pq)(x)=


q if x = 1/p,
p if x = 1/q,
1 if x =∞,
pq if x = 0.

Since
∑

x∈∂(X0(pq)) e00(pq)(x)a0(E[x])=0, we write the corresponding degree-zero
divisor as

δ(E)= a0(E)({∞}− {0})+ qa0

(
E
[

1
p

])({
1
p

}
−{0}

)
+pa0

(
E
[

1
q

])({
1
q

}
−{0}

)
.

4.1. Period homomorphisms. We now define period homomorphisms for differ-
ential forms of the third kind.

Definition 12 (period homomorphism). For EN ∈ Epq , the differential forms
EN (z) dz are of the third kind on the Riemann surface X0(pq) but of the first
kind on the noncompact Riemann surface Y0(N ). For any z0 ∈ H and γ ∈ 00(pq),
let c(γ ) be the class in H1(Y0(pq),Z) of the image in Y0(pq) of the geodesic in H

joining z0 and γ (z0). That the class is nonzero follows from Theorem 3. This class
is independent of the choice of z0 ∈ H. Let πEN (γ ) =

∫
c(γ )EN (z) dz. The map

πEN : 00(pq)→ Z is the “period” homomorphism of EN .

Let B1(x) be the first Bernoulli polynomial of period one defined by

B1(0)= 0, B1(x)= x − 1
2
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if x ∈ (0, 1). For any two integers u and v with v ≥ 1, we define the Dedekind sum

S(u, v)=
v−1∑
t=1

B1

( tu
v

)
B1

(u
v

)
.

Recall some well-known properties of the period mapping πEN (see [Mazur 1979,
p. 10; Merel 1996b, p. 14]) for the Eisenstein series EN ∈ Epq .

Proposition 13. Let γ =
(

a b
c d

)
be an element of 00(pq). Then

(1) πEN is a homomorphism 00(pq)→ Z;

(2) the image of πEN lies in µZ, where µ= gcd(N − 1, 12);

(3) πEN (γ )=


a+d

c
(N − 1)+ 12 sgn(c)

(
S(d, |c|)− S

(
d, |c|

N

))
if c 6= 0,

b
d
(N − 1) if c = 0;

(4) πEN (γ )= πEN

((
d c/N

Nb a

))
.

5. Eisenstein elements

Following [Merel 1996b] and [Merel 1993], we recall the concept of Eisenstein
elements of the space of modular symbols. For any natural number M > 4, the con-
gruence subgroup 00(M) is the subgroup of SL2(Z) consisting of all matrices

(
a b
c d

)
such that M | c. The congruence subgroup 00(M) acts on the upper half-plane H in
the usual way. The quotient space00(M)\H is denoted by Y0(M). A priori, these are
all Riemann surfaces and hence algebraic curves defined over C. There are models
of these algebraic curves defined over Q and they parametrize elliptic curves with
cyclic subgroups of order M . Let X0(M) be the compactification of the Riemann
surface Y0(M) obtained by adjoining the set of cusps ∂(X0(M))= 00(M)\P1(Q).

Definition 14 (Eisenstein elements). Let πEN : H1(Y0(pq),Z)→ Z be the period
homomorphism of EN (Section 4.1). The intersection pairing ◦ [Merel 1993]
induces a perfect, bilinear pairing

H1(X0(pq), ∂(X0(pq)),Z)×H1(Y0(pq),Z)→ Z.

Since ◦ is a nondegenerate bilinear pairing, there is a unique element EEN ∈

H1(X0(pq), ∂(X0(pq)),Z) such that EEN ◦ c = πEN (c). The modular symbol EEN

is the Eisenstein element corresponding to the Eisenstein series EN .

We intersect with the congruence subgroup 0(2) to ensure that the Manin maps
become bijective (rather than only surjective), compute the Eisenstein elements
for these modular curves, calculate the boundaries and show that these boundaries
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coincide with the original Eisenstein elements. In the case of 00(p2), although
it is difficult to find the Fourier expansion of modular forms at different cusps,
fortunately for all g ∈ 00(p) the matrices g

(
1 1
0 1

)
g−1 belong to 00(p2), and hence

it is easier to tackle the explicit coset representatives. Unfortunately, for N = pq or
N = p3 this is no longer true.

To get around this problem for the congruence subgroup 00(pq) with p and q
distinct primes, we use the relative homology groups H1(X0(pq), R ∪ I,Z). For
these relative homology groups, the associated Manin maps are bijective and the
push forward of the Eisenstein elements inside the original modular curves turns
out to have the same boundary as the original Eisenstein elements. We consider
three different homology groups in this paper. In particular, the study of the relative
homology group H1(X0(N ), R∪ I,Z) to determine the Eisenstein element is a new
idea. That these relative homology groups should be useful in the study of modular
symbols was discovered by Merel.

Definition 15 (almost Eisenstein elements). For N ∈ {p, q, pq}, the differential
form EN (z) dz is of the first kind on the Riemann surface Y0(pq). Since ◦ is a
nondegenerate bilinear pairing, there is a unique element

E ′EN
∈ H1(X0(pq)− R ∪ I, ∂(X0(pq)),Z)

such that E ′EN
◦c=πEN (c) for all c ∈H1(Y0(pq), R∪ I,Z). We call E ′EN

the almost
Eisenstein element corresponding to the Eisenstein series EN .

6. Even Eisenstein elements

6.1. Simply connected Riemann surface of genus zero with three marked points.
Recall that there is only one simply connected (genus zero) compact Riemann
surface up to conformal bijections: namely, the Riemann sphere or the projective
complex plane P1(C). A theorem of Belyi states that every compact, connected,
nonsingular algebraic curve X has a model defined over Q if and only if it admits a
map to P1(C) branched over three points.

Consider the subgroup 0(2) of SL2(Z) consisting of all matrices which are the
identity modulo the reduction map modulo 2. The Riemann surface 0(2) mod H

is a Riemann surface of genus zero, denoted by X (2). Hence, it can be identified
with P1(C).

The subgroup 0(2) has three cusps 0(2)0, 0(2)1 and 0(2)∞. Hence, 0(2)\H
becomes the simply connected Riemann surface P1(C) with the three marked
points 0(2)0, 0(2)1 and 0(2)∞ given by the respective cusps. The modular curve
X0(pq) has no obvious morphism to X (2). So we consider the modular curve X0
(Section 6.2). There are two obvious maps π, π ′ from X0 to the compact Riemann
surface X0(pq).
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6.2. Modular curves with bijective Manin maps. For the congruence subgroup
0 = 00(pq)∩0(2), consider the compactified modular curve X0 = 0\H∪P1(Q)

and let π0 : H∪P1(Q)→ X0 be the canonical surjection.
Let π0 : 0\H ∪P1(Q)→ 0(2)\H ∪P1(Q) be the map π0(0z) = 0(2)z. The

compact Riemann surface X (2) contains three cusps 0(2)1, 0(2)0 and 0(2)∞. Let
P−=π−1

0 (0(2)1) and let P+ be the union of two sets π−1
0 (0(2)0) and π−1

0 (0(2)∞).
Consider now the Riemann surface X0 with boundary P+ and P−.

Let δr be 1 or 0 depending on whether r is odd or even. For any integer k, let
sk = k + (δk − 1)pq be an odd integer. Let l and m be two unique integers such
that lq +mp ≡ 1 (mod pq) with 1≤ l ≤ p− 1 and 1≤ m ≤ q − 1. The matrices

α′pq =

(
pq pq − 1

pq + 1 pq

)
,

α′k =

(
sk(pq)2 sk pq − 1
sk pq + 1 sk

)
,

β ′r =

(
−1 −(r + δr q)

p+ pq −1+ (r + δr q)(p+ pq)

)
,

γ ′s =

(
−1 −(s+ δs pq)

q + pq −1+ (s+ δs pq)(q + pq)

)
are useful for calculating the boundaries of the Eisenstein elements.

Lemma 16. The set

1= {I, α′k, β
′

r , γ
′

s | 0≤ k ≤ pq − 1, 0≤ r ≤ q − 1, 0≤ s ≤ p− 1} ⊂ 0(2)

forms an explicit set of coset representatives of P1(Z/pqZ).

Proof. An easy check shows that the orbits 00(pq)α′k , 00(pq)β ′r and 00(pq)γ ′s are
disjoint. Since |P1(Z/pqZ)| = pq + p+ q + 1, the result follows. �

The coset representatives in the above lemma are chosen such that 00(pq)βr =
00(pq)β ′r and 00(pq)γs=00(pq)γ ′s .

Lemma 17. 0\0(2) is isomorphic to P1(Z/pqZ).

Proof. The explicit coset representatives of Lemma 16 produce the canonical
bijection. �

We study the relative homology groups H1(X0 − P−, P+,Z) and H1(X0 − P+,
P−,Z). The intersection pairing is a nondegenerate bilinear pairing ◦ :H1(X0−P+,
P−,Z)×H1(X0− P−, P+,Z)→Z. For g ∈0\0(2), let [g]0 (respectively [g]0) be
the image in X0 of the geodesic in H∪P1(Q) joining g0 and g∞ (respectively g1
and g(−1)). Recall the following fundamental theorems.
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Theorem 18 [Merel 1996b]. Let

ξ0 : Z
0\0(2)

→ H1(X0 − P+, P−,Z)

be the map which takes g ∈ 0\0(2) to the element [g]0 and

ξ 0
: Z0\0(2)→ H1(X0 − P−, P+,Z)

be the map which takes g ∈ 0\0(2) to the element [g]0. The homomorphisms ξ0

and ξ 0 are isomorphisms.

Theorem 19 [Merel 1996b]. For g, g′ ∈ 0(2), we have

[g]0 ◦ [g′]0 =
{

1 if 0g = 0g′,
0 otherwise.

The following two lemmas about the set P− are true for the congruence sub-
group 00(N ) with N odd.

Lemma 20. We can explicitly write the elements of the set P− in the form 0x/y
with x and y both odd.

Proof. Suppose that some element of P− is of the form 0x/y with x and y coprime
and y even. Consider the corresponding element in the marked simply connected
Riemann surface X (2). The cusp 0(2)x/y is an element such that y is even and p
is odd (gcd(x, y)= 1). First, choose p′, q ′ such that xq ′− yp′ = 1 and hence

D =
(

x p′

y q ′

)
∈ SL2(Z).

Clearly, q ′ is odd since y is even. If p′ is odd then replace the matrix D with DT−1

to produce a matrix in 0(2) that takes i∞ to x/y. This contradicts 0x/y ∈ P−.
If x is even then the projection of 0x/y produces an element of 0(2)0. So x is

necessarily odd. �

The following lemma is deeply influenced by important results of Manin [1972,
Proposition 2.2] and Cremona [1997, Proposition 2.2.3].

Corollary 21. We can explicitly write the set P− as {01, 01/(pq), 01/p, 01/q}.

Proof. Since P− = π−1
0 (0(2)1), we can write every element of the set P− as 0θ1

for some θ ∈ 1 (Lemma 16). Let δ ∈ {1, p, q, pq}. Then every element of P−
can be written as 0u/(vδ) with gcd(u, vδ)= 1 and gcd(vδ, pq/δ)= 1. Choose an
odd integer m and an even integer l such that lu−mvδ = 1. Matrix multiplication
shows that (

1 0
δ− 1 1

)(
1+ c −c

c 1− c

)
=

1
δ
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and (
−m u+m
−l l + vδ

)
=

u
vδ
,

and hence

A =
(

1 0
δ− 1 1

)(
1+ c −c

c 1− c

)(
l + vδ −m− u

l −m

)
is a matrix such that A(u/(vδ))= 1/δ. The matrix A belongs to 0 if and only if
cvδ≡ l ′ (mod pq/δ). Since vδ is coprime to pq/δ, there is always such a c. Hence,
the set P− consists of the four elements given in the statement of the corollary. �

Let π, π ′ : 0\H→ 00(pq)\H be the maps π(0z) = 00(pq)z and π ′(0z) =
00(pq)1

2(z + 1) respectively. Consider the matrix h =
(

1 1
0 2

)
. The morphism π ′

is well defined since the matrix hγ h−1 belongs to 00(pq) for all γ ∈ 0. The
morphisms π, π ′ together induce a map

κ : C(X0)→ C(X0(pq))

between the function fields of the Riemann surfaces X0 given by κ( f (z)) =
f (π(0z))2/ f (π ′(0z)). Recall the description of the coordinate chart around a
cusp 0x [Miyake 1976] of the Riemann surface X0.

Definition 22. For a cusp y of the congruence subgroup 0, let 0y be the subgroup
of 0 fixing y. Let t ∈ SL2(R) be such that t (y) = i∞ and let m be the smallest
natural number such that t0y t−1 is generated by

(
1 m
0 1

)
. For the modular curve X0 ,

the local coordinate around the point 0y is given by z→ e2π i t (z)/m .

Example 23. Let y = 1/δ with δ one of the primes p or q . Then h(y)= u/δ with
(u, pq) = 1. Choose integers u′, δ′ with δ′ even such that uδ′ − u′δ = 1; hence
ρh(y) =

(
δ′ u′
−δ u

)
is such that ρh(y)(h(y))= i∞. We can choose such a δ′ ∈ Z since δ

is odd.
Matrix multiplication shows that

ρh(y)T eρh(y)
−1
=

(
1+ eδδ′ e(δ′)2

−eδ2 1− eδδ′

)
.

Hence, the smallest possible e to ensure tT et−1
⊂ 00(pq) is pq/δ.

Example 24. Since det(ρh(y) ◦ h)= 2,

t =
( 1

2 l 0
0 1

)
ρh(y) ◦ h ∈ SL2(R)

and t (y)= i∞. A calculation shows that

tT et−1
=

(
1+ 1

2 eδδ′ 1
4 eδ′2

−eδ2 1− 1
2 eδδ′

)
.
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Hence, the smallest possible e to ensure tT et−1
⊂ 0 is e = 2pq/δ.

We use the following lemma to construct differential forms of the first kind on
the ambient Riemann surface X0 − P+.

Lemma 25. Let f : X0(pq)→ C be a rational function. The divisors of κ( f ) are
supported on P+.

Proof. Suppose f is a meromorphic function on the Riemann surface X0(pq).
Then f is given by g/h with g and h holomorphic functions on X0(pq). Every
element of P− is of the form 01/δ with δ | N . By [Miranda 1995, Proposition 4.1],
every holomorphic map on a Riemann surface locally looks like z→ zn.

Consider the morphism π ′ and the point on the modular curve 01/δ. The local
coordinates around the points 00(pq)0, 00(pq)∞ and 00(pq)1/p are given by
q0(z)= e2π i/(−pqz), q∞(z)= e2π i z and q1/q(z)= e2π i z/(p(−qz+1)) respectively. In
the modular curve X0, the local coordinates around the points of P− are given by

q1(z)= e2π i/(2pq(−z+1)),

q1/(pq)(z)= e2π i z/(2(−pqz+1)),

q1/p(z)= e2π i z/(2q(−pz+1)),

q1/q(z)= e2π i z/(2p(−qz+1)).

Now around the points 01 and 01/(pq) we have the equalities q0 ◦ π = q2
1 ,

q0 ◦π
′
= q4

1 and q1/(pq) ◦π = q2
1/(pq), q1/(pq) ◦π

′
= q4

1/(pq).
Let y = 1/δ with δ one of the primes p or q . The local coordinate chart around

the point 01/δ is z→ e2π iρh(x)◦h(z)/(4e). The map π ′ takes it to e2π i2ρh(x)(h(z))/e. For
this coordinate chart the map π ′ is given by z→ z4.

We now consider the map π and a matrix t =
(

1 0
−δ 1

)
such that t (y)= i∞ and

e = pq/δ. The local coordinate around the point 01/δ is z→ e2π i t (z)/(2e) and the
map π takes it to e2π i t (z)/e. In this coordinate chart, the map π is given by z→ z2.
Hence, the function ( f ◦π)2/( f ◦π ′) has no zero or pole on P−. �

Definition 26 (even Eisenstein elements). For EN ∈ Epq , let λEN : X0(pq)→ C

be the rational function whose logarithmic differential is 2π i EN (z) dz = 2π iωEN .
Consider the rational function λEN ,2= (λEN ◦π)

2/(λEN ◦π
′) on X0 . By Lemma 25,

this function has no zeros and poles in P−. Let κ∗(ωEN ) be the logarithmic dif-
ferential of the function. Let ϕEN (c) =

∫
c κ
∗(ωEN ) be the corresponding period

homomorphism H1(X0 − P+, P−,Z)→ Z.
By the nondegeneracy of the intersection pairing, there is a unique element

E0
EN
∈H1(X0−P−, P+,Z) such that E0

EN
◦c=ϕEN (c) for all c∈H1(X0−P+, P−,Z).

The modular symbol E0
EN

is the even Eisenstein element corresponding to the
Eisenstein series EN .
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For EN ∈ Epq , define a function FEN : P
1(Z/pqZ)→ Z by

FEN (g)= ϕEN (ξ0(g))=
∫ g(−1)

g(1)

(
2EN (z)− EN

(1
2(z+ 1)

))
dz.

Remark 27. It is easy to see that for any γ =
(

a b
c d

)
∈ 0(2),

hγ h−1
=

(
a+ c 1

2(b+ d − a− c)
2c d − c

)
∈ SL2(Z).

For any matrix γ ∈ 0, consider the rational numbers

PN (γ )=
1
12(2πEN (γ )−πEN (hγ h−1)),

t (γ )= b+ d − a− c,

s(γ )= a+ c.

Lemma 28. For γ =
(

a b
c d

)
∈ 0 with c 6= 0,

PN (γ )= sgn(t (γ ))
(

2
(

S
(
s(γ ), |t (γ )|pq

)
− S

(
s(γ ), |t (γ )|

))
− S

(
s(γ ),

∣∣ 1
2 t (γ )

∣∣pq
)
+ S

(
s(γ ), 1

2 |t (γ )|
))
.

In particular, PN (γ ) ∈ Z for all γ ∈ 0.

Proof. Recall the properties of period homomorphism (see Proposition 13). We
calculate the corresponding periods:

πEN (γ )= πE(T γ T−1)

= πEN

((
a+ c −(a+ c)+ b+ d

c −c+ d

))
= πEN

((
a+ c −(a+ c)+ b+ d

c −c+ d

))
= πEN

((
d − c c/N

t (γ )N a+ c

))
.

By Proposition 13, we have

πEN (γ )=
a+d

t (γ )N
(N − 1)+ 12 sgn(t (γ ))

(
S
(
s(γ ), |t (γ )|N

)
− S

(
s(γ ), |t (γ )|

))
.
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Similarly,

πEN (hγ h−1)

= πEN

((
a+ c 1

2(b+ d − a− c)
2c d − c

))
= πEN

((
d − c 2c/N

1
2 t (γ )N 2 a+ c

))
=

2(a+d)
t (γ )N

(N − 1)+ 12 sgn(t (γ ))
(

S
(
s(γ ), 1

2 |t (γ )|N
)
− S

(
s(γ ), 1

2 |t (γ )|
))
.

Hence, we deduce the formula given in the lemma statement. From the formula,
we see that PN (γ ) ∈ Z for all γ ∈ 0. �

Let x be one of the primes p or q. Choose integers s, s ′ and l, l ′ such that
l(sk x + 2)− 2spq = 1 and l ′sk x − 2s ′ pq/x = 1. Let

γ
x,k
1 =

(
1+ 4spq −2l

−4s(sk x + 2)pq 1+ 4spq

)
and γ

x,k
2 =

(
1+ 4s ′ pq/x −2l ′

−4s ′(sk)pq 1+ 4s ′ pq/x

)
be two matrices in 0. Since the integers l and l ′ are necessarily odd, we have
γ

x,k
1 (1/(sk x + 2))=−1/(sk x + 2) and γ x,k

2 (1/(sk x))=−1/(sk x).
Using the formula of Lemma 28, we deduce that

s(γ x,k
1 )= 1− 4spq(1+ sk x), t (γ x,k

1 )=−2(l − 2s(sk x + 2)pq)

and
s(γ x,k

2 )= 1− 4s ′ pq
(

sk −
1
x

)
, t (γ x,k

2 )=−2(l ′− 2s ′sk pq).

We can now calculate PN (γ
x,k
1 ) and PN (γ

x,k
2 ) using Lemma 28.

Proposition 29.

FEN (g)=


12(S(r, N )− 2S(r, 2N )) if g = (r − 1, r + 1),
6(PN (γ

x,k
1 )− PN (γ

x,k
2 )) if g = (1+ kx, 1) or g = (−1− kx, 1),

−6(PN (γ
x,k
1 )− PN (γ

x,k
2 )) if g = (1,−1− kx) or g = (1, 1+ kx),

0 if g = (±1, 1).

Proof. If g = (r − 1, r + 1) and EN ∈ Epq , we get [Merel 1996b, p. 18]

FEN (g)= ϕEN (ξ0(g))= 12(S(r, N )− 2S(r, 2N )).

We now find the value of the integrals in the remaining cases. The differential
form k∗(ωEN ) is of the first kind on the Riemann surface X0 − P+. We also note
that if g = (±1, 1), (±1± kx, 1) or (1,±1± kx) with x one of the primes p or q ,
then we can’t write it as (r − 1, r + 1).
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Since all the Fourier coefficients of the Eisenstein series are real-valued, an
argument similar to one in [Merel 1996b, p. 19] shows that FEN (sk x + 1, 1) =
FEN (−sk x − 1, 1). Consider the path{

1
sk x+2

,
−1

sk x+2

}
=

{
1

sk x+2
,

1
sk x

}
+

{
1

sk x
,
−1
sk x

}
+

{
−1
sk x

,
−1

sk x+2

}
.

The rational number 1/(sk x) corresponds to a point of P− in the Riemann surface X0 .
The differential form k∗ωEN has no zeros and poles on P−. We deduce that∫

−1/(sk x+2)

1/(sk x+2)
k∗(ωEN )

=

∫ 1/(sk x)

1/(sk x+2)
k∗(ωEN )+

∫
−1/(sk x)

1/(sk x)
k∗(ωEN )+

∫
−1/(sk x+2)

−1/(sk x)
k∗(ωEN )

= 2FN (sk x + 1, 1)+
∫
−1/(sk x)

1/(sk x)
k∗(ωEN ).

Let γ x,k
1 and γ x,k

2 be two matrices in 0 such that γ x,k
1 (1/(sk x+2))=−1/(sk x+2)

and γ x,k
2 (1/(sk x))=−1/(sk x). Then

2FN (sk x + 1, 1)=
∫ γ

x,k
1 (1/(sk x+2))

1/(sk x+2)
k∗(ωEN )−

∫ γ
x,k
2 (1/(sk x))

1/(sk x)
k∗(ωEN ).

We now prove that
∫ γ x,k

2 (1/(sk x))
1/(sk x) k∗(ωEN ) is independent of the choice of the

matrices γ x,k
2 ∈ 0 that take 1/(sk x) to −1/(sk x). Suppose γ x,k

2 and γ ′x,k2 are two
matrices such that γ x,k

2 (1/(sk x))= γ ′x,k2 (1/(sk x))=−1/(sk x). Since γ x,k
2 ∈ 0,

ϕEN (γ
x,k
2 )=

∫ γ
x,k
2 (1/(sk x))

1/(sk x)
k∗(ωEN )

is independent of the choice of any point in H∪ {−1}. By replacing 1/(sk x) with
(γ

x,k
2 )−1(γ ′

x,k
2 )(1/(sk x)), we get that the above integral is the same as∫ γ ′

x,k
2 (1/(sk x))

1/(sk x)
k∗(ωEN )

and the integral is independent of the choice of exceptional matrices. Similarly, we
can prove that ∫ γ x,k(1/(sk x+2))

1/(sk x+2)
k∗(ωEN )

is also independent of the choice of the matrices that take 1/(sk x+2) to−1/(sk x+2).
Since we have already written down two matrices γ x,k

1 and γ x,k
2 in 0 such that
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γ
x,k
1 (1/(sk x + 2)) = −1/(sk x + 2) and γ x,k

2 (1/(sk x)) = −1/(sk x), we use these
matrices to find those integrals.

The above calculation shows that

2πEN (γ
x,k
1 )−πEN (hγ

x,k
1 h−1)= 2FN (sk x+1, 1)+2πEN (γ

x,k
2 )−πEN (hγ

x,k
2 h−1).

We get

FEN (sk x + 1, 1)

=
1
2(2πEN (γ

x,k
1 )−πEN (hγ

x,k
1 h−1)− 2πE(γ

x,k
2 )+πE(hγ

x,k
2 h−1))

= 6(PN (γ
x,k)− PN (γ

x,k
2 )).

Since FEN (1+ sk x, 1) = −FEN (1,−1− sk x), the above equation determines the
Eisenstein elements for the Eisenstein series EN completely. �

From the above lemma, we conclude that 6FN (g)= FEN (g).

Lemma 30. For EN ∈E2(00(pq)), consider the element E0
EN
∈H1(X0−P−, P+,Z)

defined by E0
EN
=
∑

g∈P1(Z/pqZ) FEN (g)ξ
0(g). For all c ∈ H1(X0− P+, P−,Z), we

have E0
EN
◦ c = ϕEN (c).

Proof. By Theorem 19, we can write the even Eisenstein element uniquely as∑
g∈P1(Z/pqZ)

HEN (g)ξ
0(g).

By the same theorem, [g]0 ◦ [h]0 = 1 if and only if 0g = 0h. The functions HEN

and FEN coincide since

HEN (g)=
∑

g∈P1(Z/pqZ)

HEN (g)ξ
0(g) ◦ ξ0(g)= E0

EN
◦ ξ0(g)= FEN (g). �

For the modular curve X0, we have a similar short exact sequence

0→ H1(X0 − P−,Z)→ H1(X0 − P−, P+,Z) δ
0
→ZP+→ Z→ 0.

The boundary map δ0 takes a geodesic, joining the points r and s of P+ to the
formal symbol [r ] − [s].

7. Eisenstein elements and winding elements for 00( pq)

7.1. Eisenstein elements for 00( pq). We first prove an elementary number theo-
retic lemma. Recall, l and m are two unique integers such that lq+mp≡1 (mod pq)
with 1≤ l ≤ p− 1 and 1≤ m ≤ q − 1.

Lemma 31. For all k with 1 ≤ k ≤ q − 1, we can choose an integer s(k) ∈ Z/qZ

such that
(kp,−1)= (p, s(k)p− 1)
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in P1(Z/pqZ). The map k→ s(k) is a bijection (Z/qZ)∗→ Z/qZ−{m}.

Proof. For all k with 1 ≤ k ≤ q − 1, let k ′ be the inverse of k in (Z/qZ)∗. By
the Chinese remainder theorem, we choose a unique x with 1 ≤ x ≤ pq − 1
such that x ≡ −1 (mod p) and x ≡ −k ′ (mod q). Observe that x is coprime to
both p and q. We write x = s(k)p− 1 for a unique s(k) with 0 ≤ s(k) ≤ q − 1.
Since 00(pq)\SL2(Z) ∼= P1(Z/pqZ), we deduce that (kp,−1) = (xkp,−x) =
(−p,−x)= (p, x)= (p, s(k)p− 1) in P1(Z/pqZ).

Consider the map (Z/qZ)∗→Z/qZ given by k→ s(k). If lq+mp≡1 (mod pq)
then m is not in the image. This map is one-to-one since s(k) = s(h) implies
k ≡ h (mod q). Thus the map (Z/qZ)∗→ Z/qZ−{m}k→ s(k) is a bijection. �

For all t coprime to pq , consider the set V of all matrices of the form αt .

Proposition 32. The boundary of any element

X =
∑

g∈P1(Z/pqZ)

F(g)[g]∗

in H1(X0(pq)− R ∪ I, ∂(X0(pq)),Z) is of the form

δ(X)= A(X)
[

1
p

]
+ B(X)

[
1
q

]
+C(X)[∞]− (A(X)+ B(X)+C(X))[0]

with

A(X)=
q−1∑
k=0

(F(βk)− F(βk S)),

B(X)=
p−1∑
i=0

(F(γi )− F(γi S)),

C(X)= F(0, 1)− F(1, 0).

Proof. Choose an explicit coset representative of 00(pq)\SL2(Z) (see Lemma 8)
and write

X = C(X)[I ]∗+
∑
αt∈V

F(1, t)[αt ]
∗
+

q−1∑
k=1

F(1, kp)[αkp]
∗

+

p−1∑
k=1

F(1, kq)[αkq ]
∗
+

q−1∑
i=0

F(p, i p− 1)[βi ]
∗
+

p−1∑
j=0

F(q, jq − 1)[β j ]
∗.
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According to Lemma 31 for 1 ≤ k ≤ q − 1, we have αkp S = Zβs(k) for some
Z ∈ 00(pq). We deduce that

q−1∑
k=1

F(1, kp)[αkp]
∗
+

q−1∑
i=0

F(p, i p− 1)[βi ]
∗

=

q−1∑
k=1

(
F(1, kp)[αkp]

∗
+ F(kp,−1)[αkp S]∗

)
+ F(βm)[βm]

∗

and
p−1∑
k=1

F(1, kq)[αkq ]
∗
+

p−1∑
j=0

F(q, jq − 1)[γ j ]
∗

=

p−1∑
k=1

(
F(1, kq)[αkq ]

∗
+ F(kq,−1)[αkq S]∗

)
+ F(γl)[γl]

∗.

A small check shows that δ([αkp]
∗)= δ([αp]

∗) and δ([αkp]
∗)=−δ([αkp S]∗).

We now calculate δ([βm]
∗) and δ([γl]

∗). Since lq + mp ≡ 1 (mod pq) and
−I ∈ 00(pq), we get

(7-1)
(

1− q(l − 1) m(l − 1)
(l − 1)pq 1+ lq(l − 1)

)(
m −l
q p

)
= γβm S

and (
1− p(m+ 1) −l(m+ 1)
(1+m)pq 1−mp(l +m)

)(
m −l
q p

)
=

(
−1 −l
q −mp

)
= γl

for some γ ∈ 00(pq), and hence we have 00(pq)βm S = γl . From δ([βm]
∗) =

δ([αq ]
∗
− [αp]

∗) and δ([γl]
∗)= δ([αp]

∗
− [αq ]

∗), it is easy to see that

δ

( q−1∑
k=1

F(1, kp)[αkp]
∗
+

q−1∑
i=0

F(p, j p− 1)[β j ]
∗

)

=

q−1∑
k=1

(
F(1, kp)− F(kp,−1)

)
δ([αp]

∗)+ F(βm)δ([βm]
∗)

and

δ

( p−1∑
k=1

F(1, kq)[αkq ]
∗
+

p−1∑
j=0

F(q, jq − 1)[γ j ]
∗

)

=

p−1∑
k=1

(
F(1, kq)− F(kq,−1)

)
δ([αq ]

∗)+ F(q, lq − 1)δ([γl]
∗).
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We have

F(p,mp− 1)δ([βm]
∗)+ F(q, lq − 1)δ([γl]

∗)

=
(
F(βm)− F(βm S)

)(
δ([αq ]

∗)− δ([αp]
∗)
)
.

Recall, δ([αp]
∗)= [0]− [1/p] and δ([αq ]

∗)= [0]− [1/q]. The above calculation
shows that

δ(X)= C(X)δ([I ]∗)+ A(X)δ([αp]
∗)+ B(X)δ([αq ]

∗)

with

A(X)=
q−1∑
k=0

(F(p, kp− 1)− F(kp− 1,−p)),

B(X)=
p−1∑
m=0

(F(γ ′l )− F(γ ′l S)),

C(X)= F(I )− F(S). �

We also prove a similar proposition for 0 ⊂ 0(2).

Proposition 33. The boundary of any element

X =
∑

g∈P1(Z/pqZ)

F(g)ξ 0(g)

in H1(X0 − P−, P+,Z) is of the form

δ0(X)= A′(X)
[

1
p

]
+ B ′(X)

[
1
q

]
+C ′(X)[∞]− (A′(X)+ B ′(X)+C ′(X))[0]

with

A′(X)=
q−1∑
k=0

F(β ′k)−
( q−1∑

k=1

F(α′kp)

)
− F(γ ′l ),

B ′(X)=
p−1∑
i=0

F(γ ′i )−
( p−1∑

k=1

F(α′kq)

)
− F(β ′m),

C ′(X)= F(0, 1)− F(α′pq).

Proof. This is a straightforward calculation using the coset representatives of 0\0(2)
(see Lemma 16). �

Proposition 34. For E ∈ Epq , the boundaries of almost Eisenstein elements E ′E
in H1(X0(pq)− R ∪ I, ∂(X0(pq)),Z) corresponding to the Eisenstein series E
are −δ(E) (Section 4).
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Proof. For E ∈ Epq , let E ′E =
∑

g∈P1(Z/pqZ) G E(g)[g]∗ be the almost Eisenstein ele-
ment. According to Proposition 32, we need to calculate A(E ′E), B(E ′E) and C(E ′E).

For all 0≤ k < q − 1, βk T = βk+1 and βq−1T = γβ0 with

γ =

(
1+ pq q
−qp2 1− qp

)
.

We have an inclusion H1(Y0(pq),Z)→ H1(Y0(pq), R ∪ I,Z). Since {ρ∗, γρ∗} =
{β0ρ

∗, γβ0ρ
∗
} = −

∑q−1
k=0{βkρ, βkρ

∗
}, we deduce that

πE(γ )=

∫ γ z0

z0

E(z) dz

= E ′E ◦ {z0, γ z0}

= −E ′E ◦
( q−1∑

k=0

{βkρ, βkρ
∗
}

)

=−

q−1∑
k=0

E ′E ◦ {βkρ, βkρ
∗
}.

Applying Corollary 6, we have

q−1∑
k=0

E ′E ◦ {βkρ, βkρ
∗
} =

q−1∑
k=0

(G E(βk)−G E(βk S))=−A(E ′E).

Hence, we prove that A(E ′E) = −πE(γ ). By interchanging p and q, we have
B(E ′E)=−πE(γ0) for

γ0 =

(
1+ pq p
−pq2 1− qp

)
.

We now calculate πE(γ ) and πE(γ0) using [Stevens 1985]. Recall, 1/p is a cusp
with e00(pq)(1/p)= q. Consider the matrices

x =
(

1 −q
−p 1+ qp

)
and y =

(
1 −p
−q 1+ qp

)
.

One can easily check that x
( 1 q

0 1

)
x−1
=γ and y

( 1 p
0 1

)
y−1
=γ0. Notice that x(i∞)=

00(pq)1/p and y(i∞)= 00(pq)1/q. By [Stevens 1985, p. 524], we deduce that
πE(γ )= e00(pq)(1/q)a0(E[1/p]) and πE pq (γ0)= e00(pq)(1/p)a0(E[1/p]).

According to Proposition 32, the boundary of the almost Eisenstein element
corresponding to an Eisenstein series E is

δ(E ′E)= A(E ′E)
[

1
p

]
+ B(E ′E)

[
1
q

]
+C(E ′E)[∞]− (A(E

′

E)+ B(E ′E)+C(E ′E))[0]
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with A(E ′E)= qa0(E[1/p]), B(E ′E)= pa0(E[1/q]) and C(E ′E)=−(F(I )−F(S)).
Applying Corollary 6 again, we deduce that F(I )− F(S)=

∫ ρ∗
ρ

E(z) dz =−a0(E).
For E ∈ E2(00(pq)), the boundary of E is

δ(E)= a0(E)([∞]− [0])

+ qa0

(
E
[

1
p

])([
1
p

]
− [0]

)
+ pa0

(
E
[

1
q

])([
1
q

]
− [0]

)
= δ(E ′E). �

Let β and h be the matrices
(

1 2
0 1

)
and

(
1 1
0 2

)
respectively. Let

π∗ : H1(X0 − P−, P+,Z)→ H1(X0(pq)− R ∪ I, ∂(X0(pq)),Z)

be the isomorphism defined by π∗(ξ0(g))= [g]∗ [Merel 1995, Corollary 1]. It is
easy to see that δ(π∗(X))= δ0(X) for all X ∈ H1(X0 − P−, P+,Z).

Proposition 35. For all E ∈ Epq , let E0
E denote the even Eisenstein element in

H1(X0 − P−, P+,Z) (Section 6). The boundary of the modular symbol π∗(E0
E)

is −6δ(E).

Proof. By Theorem 18, we can explicitly write down the even Eisenstein element E0
E

in the relative homology group H1(X0 − P−, P+,Z) as

E0
E =

∑
g∈P1(Z/pqZ)

FE(g)ξ0(g).

According to Proposition 33, we need to calculate A′(E0
E), B ′(E0

E) and C ′(E0
E). For

0 ≤ k < q − 2, we have β ′kβ = β
′

k+2. A small check shows that β ′q−1β = β
′

1 and
β ′q−2β = γ

′β ′0 with

γ ′ =

(
1+ 2pq(1+ q) 2q
−2q(p+ pq)2 1− 2pq(1+ q)

)
∈ 0.

As a homology class in H1(X0 − P+, P−,Z), we have

{−1, γ ′(−1)} = {β ′0(−1), γ ′β ′0(−1)}

= −

q−1∑
k=0

{β ′k(1), β
′

k(−1)}

=

q−1∑
k=0

{β ′k(−1), β ′k(1)}.
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By the definition of the even Eisenstein elements, we conclude that∫ γ ′z0

z0

k∗(ωE)= E0
E ◦ {z0, γ

′z0}

= −E0
E ◦

q−1∑
k=0

(β ′k(1), β
′

k(−1))

=−

q−1∑
k=0

E0
E ◦ {β

′

k(1), β
′

k(−1)}.

It is easy to see that h ASBh−1
∈ SL2(Z) for all A, B ∈0(2). Since [α′kq S] = [γ ′s(k)]

in P1(Z/pqZ), we have κ ′ = α′kq S(γ ′s(k))
−1
∈ 00(pq) and hκ ′h−1

∈ 00(pq). We
deduce that the differential form

k∗(ωE)= f (z) dz =
(
2E(z)− 1

2 E
(1

2(z+ 1)
))

dz

is invariant under κ ′. According to the above argument,

(7-2) FE(α
′

kq)=

∫ α′kq (−1)

α′kq (1)
f (z) dz

=

∫ α′kq S(1)

α′kq S(−1)
f (z) dz

=−

∫ α′kq S(−1)

α′kq S(1)
f (z) dz

=−

∫ κ ′−1α′kq S(−1)

κ ′−1α′kq S(1)
f (κ ′z) dκ ′z

=−

∫ γ ′s(k)(−1)

γ ′s(k)(1)
f (z) dz

=−FE(γ
′

s(k)).

A similar calculation shows that FE(γ
′

l ) = −FE(β
′
m) and FE(αkp) = −FE(βs(k))

for some s(k) ∈ (Z/qZ)∗. Applying Theorem 18, we have

q−1∑
k=0

FE(β
′

k)=

q−1∑
k=0

E0
E ◦ {β

′

k(1), β
′

k(−1)} = −
∫ γ ′z0

z0

k∗(ωE).

According to the definition of the period πE of the Eisenstein series E(z) (see
Section 4), we get∫ γ ′z0

z0

k∗(ωE)=

∫ γ ′z0

z0

(
2E(z)− 1

2 E
(1

2(z+ 1)
))

dz = 2πE(γ
′)−πE(hγ ′h−1).
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We calculate πE(γ
′) and πE(hγ ′h−1). From Remark 27, we see that

hγ ′h−1
=

(
1+ z qv2

−4p2q(1+ q)2 1− z

)
with v = 1− p(1+ q) and z = 2pqv(1+ q). Furthermore, the matrix hγ ′h−1

decomposes as

hγ ′h−1
=

(
1− p(1+ q) 1

2 p(1+ q)
−2p(1+ q) 1+ p(1+ q)

)(
1 q
0 1

)(
1− p(1+ q) 1

2 p(1+ q)
−2p(1+ q) 1+ p(1+ q)

)−1

.

Since the matrix (
1− p(1+ q) 1

2 p(1+ q)
−2p(1+ q) 1+ p(1+ q)

)−1

takes the cusp i∞ to 1/p, we have πE(hγ ′h−1) = qa0(E[1/p]). We further
decompose γ ′ as(

1 −2q
−p(1+ q) 1+ 2pq(1+ q)

)(
1 2q
0 1

)(
1 −2q

−p(1+ q) 1+ 2pq(1+ q)

)−1

.

The matrix (
1 −2q

p(1+ q) 1+ 2pq(1+ q)

)
takes the cusp i∞ to 1/p. We see that πE(γ

′)= 2qa0(E[1/p]) and
∫ γ ′z0

z0
k∗(ωE)=

3a0(E[1/p]). A simple calculation shows that

A′(E0
E)=

q−1∑
k=0

FE(β
′

k)−

q−1∑
k=0

FE(α
′

kp)− FE(γ
′

m)= 2
q−1∑
k=0

FE(β
′

k)=−6a0

(
E
[

1
p

])
.

By interchanging p and q , we get B ′(E0
E)=−6a0(E[1/q]). Since α′pq S ∈ 00(pq),

a calculation similar to (7-2) shows that

FE(I )=−FE(αpq)

=

∫
−1

1

(
2E(z)− 1

2 E
( 1

2(z+ 1)
))

dz

=−

∫ β(−1)

−1

(
2E(z)− 1

2 E
( 1

2(z+ 1)
))

dz

=−3a0(E).

We conclude that C ′(E0
E) = FE(I )− FE(αpq) = −6a0(E) and hence δ0(E0

E) =

δ(E0
E)=−6δ(E). �
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The inclusion map

i : (X0(pq)− R ∪ I, ∂(X0(pq)))→ (X0(pq), ∂(X0(pq)))

induces an onto map

i∗ : H1(X0(pq)− R ∪ I, ∂(X0(pq)),Z)→ H1(X0(pq), ∂(X0(pq)),Z)

with i∗([g]∗) = ξ(g). Note that δ([g]∗) = [g0] − [g∞] = δ′(ξ(g)) = δ′(i∗([g]∗)).
From Section 3.4, we have that δ(c) = δ′(i∗(c)) for all homology classes c ∈
H1(X0(pq)− R ∪ I, ∂(X0(pq)),Z).

Lemma 36. The integrals of every holomorphic differential on X0(pq) over i∗(E ′E)
and i∗π∗(E0

E) are zero.

Proof. The proof is a straightforward generalization of [Merel 1996b, Lemma 5]. �

We now prove the main theorem.

Proof of Theorem 1. By [Merel 1995, Corollary 3], we obtain i∗(E ′E)◦c= E ′E ◦i
∗c=∫

c i∗(E(z) dz). Hence, i∗(E ′E) is the Eisenstein element inside the space of modular
symbols corresponding to E . By Propositions 34 and 35, the boundary of π∗(E0

E)

is the same as the boundary of 6i∗(E ′E).
There is a nondegenerate bilinear pairing S2(00(pq))×H1(X0(pq),R)→ C

given by ( f, c)=
∫

c f (z) dz. Hence, the integrals of holomorphic differentials over
H1(X0(pq),Z) are not always zero. By Lemma 36, the integrals of holomorphic
differentials over i∗(E ′E) and i∗(π∗(E0

E)) are always zero. We deduce that

EE = i∗(E ′E)=
1
6

i∗π∗(E0
E)=

1
6

∑
g∈P(Z/pqZ)

FE(g)ξ(g)

for E ∈ Epq . Since FN (g)= 1
6 FEN (g), we obtain the theorem. �

7.2. Winding elements of level pq. Recall the concept of the winding element.

Definition 37 (winding element). Let {0,∞} denote the projection of the path from
0 to∞ in H∪P1(Q) to X0(pq)(C). We have an isomorphism H1(X0(pq),Z)⊗R=

HomC(H0(X0(pq),�1),C). Let epq ∈ H1(X0(pq),R) correspond to the homo-
morphism ω→−

∫
∞

0 ω. The modular symbol epq is called the winding element.

The winding elements are the elements of the space of modular symbols whose
annihilators define ideals of the Hecke algebras with the L-functions of the cor-
responding quotients of the Jacobian nonzero. In this paper, we find an explicit
expression of the winding element. Let epq ∈ H1(X0(pq),Z)⊗R be the winding
element. The following lemma will help us write down the winding element
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explicitly. Since
∑

x∈∂(X0(pq)) e00(pq)(x)a0(E[x])= 0, we write

δ(E)=a0(E)({∞}−{0})+qa0

(
E
[

1
p

])({
1
p

}
−{0}

)
+pa0

(
E
[

1
q

])({
1
q

}
−{0}

)
.

Lemma 38. The constant Fourier coefficients of E pq at cusps 0, 1/p, 1/q and∞
are 1

24(1− pq)/(pq), 0, 0 and 1
24(pq − 1) respectively.

Proof. We first prove that the constant coefficient for the Fourier expansion of E pq

at the cusp 1/p is 0. As usual, the constant term of the Fourier expansion of E pq at
the cusp 1/p is the constant term at∞ of E pq [β0]. Similarly, the constant term of
the Fourier expansion of E pq at the cusp 1/q is the constant term at∞ of E pq [γ0].
Let 1 be the Ramanujan cusp form of weight 12. We write

d
dz

log1(β(z))= 12 d
dz

log(pz+ 1)+ d
dz

log1(z) for β =
(

1 0
p 1

)
.

A simple calculation shows that

1

(
pqz

pz+ 1

)
=1

((
q 0
1 1

)
pz
)

=1

((
q −1
1 0

)(
1 1
0 q

)
pz
)

=1

((
q −1
1 0

)(
pz+ 1

q

))
=

(
pz+ 1

q

)12

1

(
pz+ 1

q

)
.

By taking logarithmic derivative, we deduce that

d
dz

log1
(

q −1
1 0

)(
pz+ 1

q

)
= 12

d
dz

log(pz+ 1)+
d
dz

log1
(

pz+ 1
q

)
.

Since

E pq(z)=
1

2π i
d
dz

log
1(pqz)
1(z)

,

the above calculation shows that the constant term of E pq at the cusp 1/p is 0.
Similarly, the constant term of E pq at the cusp 1/q is 0. The constant term of E pq

at the cusp∞ is 1
24(pq − 1) and at 0 is 1

24(1− pq)/(pq). �

Using Lemmas 36 and 38, we have:

Corollary 39.

(1− pq)epq =
∑

x∈(Z/pqZ)∗

Fpq(1, x)
{

0, 1
x

}
.
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Remark 40. For the Eisenstein series E p ∈ E2(00(p)), 1/p represents the cusp∞
and 1/q represents the cusp 0. We deduce that a0(E p[β0]) =

1
24(p − 1) and

a0(E p[γ0])=
1
24(1− p)/p. For the other Eisenstein series Eq ∈ E2(00(q)), 1/q

represents the cusp∞ and 1/p represents the cusp 0. We deduce that a0(Eq [γ0])=
1
24(q − 1) and a0(Eq [β0])=

1
24(1− q)/q.
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