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Akin’s notion of good measure, introduced to classify measures on Cantor
sets, has been translated to dimension groups and traces by Bezuglyi and
the author, but emphasizing the simple (minimal dynamical system) case.
Here we permit nonsimplicity. Goodness of tensor products of large classes
of non-good traces (measures) is established. We also determine the pure
faithful good traces on the dimension groups associated to xerox-type ac-
tions on AF C*-algebras; the criteria turn out to involve algebraic geometry
and number theory.

We also deal with a coproduct of dimension groups, wherein, despite ex-
pectations, goodness of direct sums is nontrivial. In addition, we verify a
conjecture of Bezuglyi and Handelman (2014) concerning good subsets of
Choquet simplices, in the finite-dimensional case.
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Introduction and definitions

Akin [1999; 2005] (see also [Akin et al. 2008], among others) introduced and studied
the notion of good measures in connection with the classification of (probability)
measures on Cantor sets up to homeomorphism. With the development in [Putnam
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1989; Herman et al. 1992; Giordano et al. 1995], among others, of classification and
construction of minimal actions with respect to strong orbit and orbit equivalence via
Vershik maps and ordered Grothendieck groups of AF C*-algebras, this and related
properties were translated into the language of (traces on) dimension groups (a class
of partially ordered abelian groups) in [Bezuglyi and Handelman 2014], henceforth
abbreviated [BeH 2014]. In particular, the characterizations therein of goodness of
traces on simple dimension groups provided relatively easy constructions of good
and non-good measures on minimal systems. For more details, see the discussion
in the introduction to [BeH 2014].

Recent work (e.g., [Medynets 2006; Frick and Ormes 2013; Petersen 2012])
has extended Vershik action(s) to nonminimal systems, and correspondingly to
nonsimple dimension groups. Here we give computable criteria for goodness in the
general (approximately divisible) case, and then use the criteria to give a surprising
result that tensor products of (some) non-good traces are good; this applies to the
ugly traces of [BeH 2014]. We also completely determine the pure faithful traces on
fixed point algebras under xerox actions of tori: the latter include Pascal’s triangle
and variations corresponding to spatially and temporally homogeneous random
walks with finite support on the lattice Zd .

From [Handelman 1985, Theorem III.3], the pure faithful traces correspond to
points r = (ri ) in the strictly positive orthant of Rd ; those that are good are precisely
the algebraic points that satisfy two number-theoretic conditions, which in the case
that d=1, reduce to (i) no other algebraic conjugate of r=r1 is positive and (ii) if the
leading and terminal coefficients of the polynomial implementing the random walk
are a0 and ak , then there exists s such that as

0/r and as
kr are both algebraic integers.

We also deal with a strict form of direct sum of dimension groups, determining
when the corresponding sum of traces is good; there are some surprises here, as
the direct sum can be good without either one being good. We find for each m, a
collection of simple dimension groups with traces, (Gi , τi ), such that for any strict
direct sum of m or fewer distinct summands,

⊕
i∈S Gi , the sum of the traces is not

good, but for any sum of more than m direct summands, the sum is good.
We then consider good sets of traces. The first problem is the definition; it should

be consistent with the current definition in the simple case and in the singleton case,
and we discuss various possibilities; finally, we settle on one. We show that for the
class of dimension groups considered above (arising from random walks on Zd),
with any reasonable definition, the notion is surprisingly restrictive, and even order
unit goodness turns out to be sensitive to the Newton polyhedra of the polynomials
(unlike the case for single traces).

There are three appendices. The first discusses connections with dynamical
systems, mostly for simple dimension groups. The second characterizes order unit
good traces on simplicial groups, and the resulting characterization suggests that
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there are no effective criteria for goodness or order unit goodness when there are
discrete traces, in contrast to the approximately divisible situation discussed in the
rest of this article. Appendix C verifies, in the case of a finite-dimensional trace
space, a conjecture made in [BeH 2014, Section 7] concerning the structure of good
subsets relative to a simplex.

Definitions. A partially ordered abelian group G with positive cone G+ is unper-
forated if whenever n is a positive integer and g ∈ G, then ng ∈ G+ entails g ∈ G+.
An order unit for G is an element u ∈ G+ such that for all g ∈ G, there exists a
positive integer K such that −K u ≤ g ≤ K u. A trace (formerly, state) is a nonzero
positive group homomorphism τ : G→ R; if τ(u)= 1 and u is an order unit, we
say τ is normalized (with respect to u). The trace τ is faithful if ker τ ∩G+ = {0}
(this is much weaker than being one-to-one, and corresponds to faithfulness of the
corresponding measure when there is a dynamical system nearby).

When (G, u) is a partially ordered abelian group with order unit, we may form
S(G, u), the compact convex set of normalized traces, equipped with the weak (or
point-open) topology. We denote by Aff S(G, u) the Banach space of continuous
convex-linear (affine) real-valued functions on S(G, u). There is a natural repre-
sentation G→ Aff S(G, u), given by g 7→ ĝ, where ĝ(τ )= τ(g). We call this the
affine representation of (G, u). If h in Aff S(G, u) is strictly positive (as a function
on S(G, u)), we write h� 0. When G is unperforated, we may use the notation
g� 0 or 0� g to indicate that g is an order unit; this is consistent, as ĝ� 0 if
and only if g is an order unit.

If Y ⊂ S(G, u), we define Y` = {h ∈ Aff S(G, u) | h|Y ≡ 0}; when Y = {τ }, a
singleton, we abbreviate this to τ`. In this case, τ` is a codimension-one subspace
of Aff S(G, u) and is an order ideal if and only if τ is pure. Following the convention
in [BeH 2014], we signal purity with the replacement notation τ⊥.

If (G, u) is an unperforated ordered abelian group, we say G is approximately
divisible if its range in Aff S(G, u) is norm-dense; for dimension groups with order
unit, this is equivalent to τ(G) being dense in R for all pure traces τ , or equivalently,
for all order units g ∈G, there exist order units a, b of G such that g= 2a+3b (and
there are many other equivalent formulations) [Handelman 2014, Corollary 6.2].

When I is a subgroup (typically an order ideal) of a partially ordered abelian
group G, we say I has its own order unit w or w is a relative order unit of I if
w ∈ I is an order unit of I with respect to the relative ordering inherited from G.
This is to emphasize the fact that w is not an order unit for G, merely for I .

If G is an unperforated ordered abelian group, we say G is nearly divisible if
for every order ideal (I, w) which has its own order unit, (I, w) is approximately
divisible; from the discussion above, an equivalent form not referring to order ideals
is that for all g ∈ G+, there exist a, b ∈ G+ such that g = 2a+ 3b and g ≤ ka, kb
for some positive integer k. This appears to be a new concept.
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For example, if G = H⊗U , where H is a partially ordered unperforated abelian
group and U is a noncyclic subgroup of the rationals Q, then G is nearly divisible,
and it is approximately divisible if it has an order unit. We will see plenty of nearly
divisible examples that are not of this type in later sections.

A trace on G is discrete if its image τ(G) is a cyclic (that is, discrete) subgroup
of R. An alternative characterization of approximately divisible, for dimension
groups, is that (G, u) admit no discrete traces; for nearly divisible, the characteriza-
tion is that no nonzero order ideal with order unit admits a discrete trace.

For general relevant results on partially ordered abelian groups, especially di-
mension groups, see [Goodearl 1986].

An interval in a partially ordered group G is a subset of the form [0, b] :=
{g ∈ G | 0≤ g ≤ b} for some b ∈ G+.

Following [BeH 2014], and based on Akin’s notion for measures on Cantor sets,
a trace τ : G→ R is good (as a trace of G) if for all b ∈ G+, we have τ([0, b])=
[0, τ (b)]∩τ(G); that is, if a′ ∈G and 0≤ τ(a′)≤ τ(b), there exists a ∈ [0, b] such
that a−a′ ∈ ker τ . If (G, u) is a partially ordered abelian group with order unit, we
say τ is order unit good if in the definition of good, we restrict b to be an order unit.

1. Characterization of goodness

Order unit goodness is relatively easy to characterize when (G, u) is an approxi-
mately divisible dimension group [BeH 2014, Proposition 1.7]: τ is order unit good
if and only if the image of ker τ in Aff S(G, u) is dense in

τ` := {h ∈ Aff S(G, u) | h(τ )= 0}

(the latter is a closed codimension-one subspace of Aff S(G, u)). This makes
examples and non-examples relatively easy to construct. There is a corresponding
characterization for goodness, which we shall simplify a bit, and use to actually do
something.

Proposition 1.1. Suppose (G, u) is a dimension group with order unit. Let τ be a
faithful trace of G. Then τ is good if and only if for all nonzero order ideals with
order unit (I, w), both τ(I )= τ(G) and τ |I is order unit good. If τ is pure, then
sufficient for goodness is that there exist an order ideal I such that τ |I is good and
τ(I+)= τ(G+).

Remark. Necessity is shown in [BeH 2014, Proposition 4.2]; although the state-
ment hypothesizes that τ be pure, this is not used in the proof (it is used there in the
proof of sufficiency); also shown there was that if τ is good, then τ |I is good (as
a trace on the order ideal I ), and this implies (in the case that I is approximately
divisible) that τ |I is order unit good, just from the definitions.
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Remark. It is always possible to reduce to the case that τ is faithful by factoring
out the maximal order ideal J contained in ker τ [BeH 2014, Lemma 4.4]. In this
case, the criteria apply to G/J (replacing G). This would make the statement
somewhat more complicated.

Proof. Proof of necessity is given in [BeH 2014, Proposition 4.2], requiring neither
purity of τ nor approximate divisibility.

Conversely, suppose a ∈G, b ∈G+ and 0< τ(a) < τ(b). Form the order ideal I
generated by b, that is, I ={c∈G | ∃N ∈N such that −Nb≤ g≤ Nb}. Then I is an
order ideal with its own order unit, b. Since τ(I+)= τ(G+), we have τ(I )= τ(G),
and thus there exists a1 ∈ I such that τ(a1)= τ(a). Now order unit goodness of τ |I
yields a′ ∈ I such that τ(a′)= τ(a1)= τ(a) and 0≤ a′≤ b, verifying goodness of τ .

The final statement is just the sufficiency condition of [BeH 2014, Proposi-
tion 4.2]. �

Let G be a dimension group, and let I and J be order ideals thereof. Then
H := I + J (the set of sums of elements in I and J ) and I ∩ J are both order ideals.
Most of the following are variations on [BeH 2014, Lemma 1.3]. As in [BeH 2014],
an element v of G+ is τ -good or τ -order unit good if τ([0, v])= [0, τ (v)] ∩ τ(G).

Lemma 1.2. Suppose G is a dimension group, and I and J each have relative
order units, w, y respectively. Then:

(a) I + J is an order ideal of G with a relative order unit.

(b) Let τ be a trace on G such that ker τ ∩G+= {0} and τ(I )∩τ(J ) is dense in R.
If τ |I and τ |J are good (as traces on I and J respectively), then τ |(I + J )
is good.

(c) If I + J is approximately divisible, then every order unit b of I + J can be
written in the form b = u + v, where u, v are relative order units for I , J
respectively.

(d) If v is τ -order unit good (with respect to I ) and w is τ -order unit good (with
respect to J ), and τ(I )∩ τ(J ) is dense in R, then v+w is τ -order unit good
with respect to I + J .

(e) Suppose that each of I , J and I+ J is approximately divisible, and τ is a trace
on I + J such that each of τ |I and τ |J is order unit good, and τ(I )∩ τ(J ) is
dense in R. Then τ is order unit good as a trace of I + J .

Remark. Part (c) can fail if approximate divisibility is dropped; for example, take
G = Z3 with the usual simplicial ordering, let I be the order ideal generated by
(1, 1, 0) and let J be the order ideal generated by (0, 1, 1); then I + J = G and the
order unit (1, 1, 1) cannot be realized as a sum of relative order units from I and J
respectively.
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Proof. (a) That I + J is an order ideal is ancient; see, e.g., [Goodearl 1986]. If w
and y are respective order units for I and J , then z := w+ y is an order unit for
I + J . To see this, let f ∈ (I + J )+; for dimension groups, (I + J )+ = I++ J+,
hence we can find e ∈ I+ and g ∈ J+ such that f = e+g. Since there exist positive
integers k, k ′ such that e≤ kw and g≤ k ′v, we have f ≤ k ′′z, where k ′′=max{k, k ′}.

(b) Select b ∈ G+ and a ∈ G such that τ(a) < τ(b). We may write b = i + j ,
where i ∈ I+ and j ∈ J+. Then τ(i), τ ( j) > 0. We may write τ(a)= r + s, where
r ∈ τ(I ) and s ∈ τ(J ).

Assume τ(a)≥ τ(i). By density of τ(I )∩ τ(J ), given

0< ε <min{τ(i), τ (b)− τ(a)},

there exists δ∈ τ(I )∩τ(J ) such that τ(i)−ε <r+δ<τ(i). Then s−δ= τ(a)−r−δ
satisfies

τ(a)− τ(i)+ ε > s− δ > τ(a)− τ(i) > 0.

Hence we can write τ(a)= (r+δ)+(s−δ), where the parenthesized terms are respec-
tively in the intervals (0, τ (i)) and (0, τ (a)− τ(i)+ ε). However, ε < τ(b)− τ(a)
entails τ(a)− τ(i)+ ε < τ(b)− τ(i)= τ( j). Since ±δ ∈ τ(I ∩ J ), we may thus
find a1 ∈ I and a2 ∈ J such that 0 < τ(a1) < τ(i) and 0 < τ(a2) < τ( j). Since
each of τ |I and τ |J is good, there exist c1 ∈ [0, i] (the interval in I ) and c2 ∈ [0, j]
such that τ(c1) < τ(i) and τ(c2) < τ( j). Hence we have c := c1+ c2 ∈ [0, b] and
τ(c)= τ(c1)+ τ(c2) < τ(i)+ τ( j)= τ(b), verifying goodness in this case.

Reversing the roles of i and j , the same conclusion results if τ(a)≥ τ( j), so we
are reduced to the case that τ(a) <min{τ(i), τ ( j)}. If τ(a)= 0, there is nothing
to do (except set c = 0). Otherwise, choose 0< ε < τ(a)/2, find real δ ∈ τ(I ∩ J )
such that τ(a)/2− ε < δ+ r < τ(a)/2, and consider τ(a)= (r + δ)+ (s− δ); then
r + δ ∈ (0, τ (a)/2)⊂ (0, τ (i)), so s− δ ∈ (τ (a)/2, τ (a))⊂ (0, τ ( j)). Now we can
proceed as in the previous paragraph.

(c) Now let b be an order unit of I + J . By approximate divisibility of I + J ,
the range of I + J in Aff S(I + J, b) is dense; hence given ε > 0, we may find
b0 ∈ I+ J such that (1/2−ε)1< b̂0< 1/2 (where ˆ refers only to the representation
on S(I + J, b), that is, b̂ = 1). Let ε < 1/8, so that b̂0� 0 and thus b0 is an order
unit of I + J , and moreover, 2b0 ≤ b, and b− b0 is also an order unit for I + J .

Now consider the set S := {c ∈ I+ | c≤ b0}. This is directed, as if c, c′ ∈ S, then
we have c, c′≤ b0, c+c′; interpolating, we obtain c′′ such that c, c′≤ c′′≤ b0, c+c′;
as c+ c′ ∈ I , it follows that c′′ ∈ I , so c′′ ∈ S. As there exists k such that w ≤ kb0,
we can write w =

∑k
i=1wi , where wi ∈ I+ and each wi ≤ b0. Then wi ∈ S, so

there exists u0 ∈ I+ such that wi ≤ u0 ≤ b0 for all i . Since
∑
wi = w is an order

unit for I , we know that ku0 is an order unit for I , and thus u0 is too. Hence there
exists an order unit u0 of I such that u0 ≤ b0.
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Since b−b0 is also an order unit for I+ J , applying the same process to J instead
of I yields an order unit v0 of J such that v0≤b−b0. Thus u0+v0≤b0+(b−b0)=b.
The element b− (u0+ v0) is in the positive cone of I + J , so it can be written as
b−(u0+v0)= c+d , where c ∈ I+ and d ∈ J+. This yields b= (u0+c)+(v0+d);
setting u = u0+ c, we see that u ∈ I+ and is larger than an order unit for I , and
so is itself an order unit for I ; similarly v = v0+ d is an order unit for J .

(d)–(e) Select an order unit b for I + J , and a ∈ I + J such that 0< τ(a) < τ(b).
By (c), we may write b=u+v, where u and v are order units for I and J respectively.
We can write a= r+s, where r ∈ I and s ∈ J , and set t = τ(u) (as τ |I is order unit
good, it does not vanish identically, hence t > 0), so that τ(v)= τ(b)− t , which
is again positive. Now proceed as in the proof of (b). �

The density requirement on τ(I )∩ τ(J ) is essential.

Lemma 1.3. Suppose that u and v are elements of G+, and let τ be a trace such
that each is τ -order unit good on the order ideals they generate, I (u) and I (v)
respectively.

(a) If u+v is τ -order unit good on I (u)+ I (v)= I (u+v) and τ(I (u))+τ(I (v))
is dense in R, then τ(I (u))∩ τ(I (v)) 6= {0}.

(b) If , additionally, both τ(I (u)) and τ(I (v)) are dense subgroups of R, then so
is τ(I (u))∩ τ(I (v)).

Proof. Suppose the intersection consists of just 0. We may find positive real numbers
s ∈τ(I (u)) and t ∈τ(I (v)) such that s>τ(u), t>τ(v), and 0<r := s−t<τ(u+v)
(since the value group is dense). By order unit goodness, there exists a such that
0≤a≤u+v and τ(a)=r . Riesz decomposition entails a=a1+a2, where 0≤a1≤u
and 0 ≤ a2 ≤ v. Set s ′ = τ(a1)≥ 0 and t ′ = τ(a2)≥ 0. Then s − t = s ′ + t ′, so
s−s ′= t+t ′. The intersection consisting of 0 forces s = s ′ and t =−t ′; the latter
forces t = t ′= 0, a contradiction.

Now suppose the intersection is nonzero and not dense. Then it is cyclic, so there
exists x ∈R, which we may assume to be positive, such that τ(I (u))∩τ(I (v))= xZ.
We may find 0< s, t < x with s ∈ τ(I (u)) and t ∈ τ(I (v)) such that 0< r := s− t .
Find a≤ u+v as above with r = τ(a), similarly decompose a= a1+a2, and define
s ′, t ′ as in the preceding paragraph. We deduce s− s ′ = t+ t ′, hence there exists an
integer m such that s− s ′ = mx = t + t ′; as t, t ′ ≥ 0, we have m ≥ 0, but as s < x ,
we have m < 1, hence m = 0. This forces t = t ′ = 0, again a contradiction. �

Corollary 1.4. Let G be a nearly divisible dimension group with a faithful trace τ .
Suppose that I and J are order ideals with their own order units such that each
of τ |I , τ |J , and τ |(I+J ) is order unit good. Then τ(I ) ∩ τ(J ) is a dense sub-
group of R.
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Proof. Since τ is faithful, τ |I and τ |J are nonzero, and since every trace on an order
ideal with order unit is nondiscrete (as the order ideals are approximately divisible by
definition), it follows that τ(I ) and τ(J ) are dense. Now Lemma 1.3(b) applies. �

Let (G, u) be a dimension group. Let J be a collection of nonzero order ideals,
each with their own order unit, such that every order ideal of G with order unit can
be expressed as a sum of order ideals from J (such a sum can always be made
finite, as the order ideal has an order unit); then we say J is a generating set of
order ideals of G.

The criteria in Lemma 1.2 for goodness can be reduced to that on a generating
set of order ideals. This will make the computations of Section 4 much simpler.

Lemma 1.5. Let (G, u) be a nearly divisible dimension group, let J be a generating
set of order ideals of G, and let τ be a faithful trace of G. For τ to be a good trace
of G, it is sufficient that it satisfy

(i) for all J ∈ J , we have τ(J )= τ(G) and

(ii) for all J ∈ J , we have τ |J is an order unit good trace of J .

Proof. We can express a nonzero order ideal I with order unit as I =
∑

Jα for
some Jα ∈ J . Thus τ(I )=

∑
τ(Jα)= τ(G).

Since I has an order unit, the sum can be made finite; now we apply induction
(on the number of summands) to Lemma 1.2(d); this verifies the second property in
Proposition 1.1. �

Verifying the criteria for goodness and related properties is much simpler when
the partially ordered abelian group is an ordered ring having 1 as an order unit.

Lemma 1.6. Let (R, 1) be a (commutative) partially ordered commutative ring
with 1 as order unit. If R is approximately divisible, then it is nearly divisible.

Proof. Approximate divisibility implies the existence of order units u and v such
that 1 = 2u + 3v; for any r ∈ R+ \ {0}, we thus have r = 2(ru)+ 3(rv). From
1≤ ku, kv for some positive integer k, we deduce r ≤ k(ru), k(rv), verifying the
definition of nearly divisible. �

The following is implicit in the proof of [BeH 2014, Corollary 7.12].

Lemma 1.7. Let (R, 1) be a partially ordered (commutative) unperforated ring
with 1 as order unit, that is, an approximately divisible dimension group. Let τ be a
faithful pure trace. Then τ is order unit good if and only if for all σ ∈ ∂e S(R, 1)\{τ },
we have σ(ker τ) 6= {0}.

Proof. Since 1 is an order unit of the partially ordered ring, X := ∂e S(R, 1)
is compact and consists precisely of the normalized multiplicative traces of R;
moreover, Aff S(R, 1) = C(X,R) with the affine representation reinterpreted as
g̃(φ)= φ(g) for φ ∈ X (note the use of ˜ rather than ˆ , to distinguish them). By
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approximate divisibility, the image of R is dense in C(X,R). If A is any ideal
of R, then its closure in C(X,R) is an ideal therein, and hence is of the form
Ann(Y ) := { f ∈ C(X,R) | f |Y ≡ 0} for a unique compact subset Y of X .

Since τ is pure, it is multiplicative, and therefore ker τ is an ideal of R (not an
order ideal, unless ker τ = 0, as ker τ ∩ R+ = {0} is the definition of faithfulness).
The closure of the image of ker τ in C(X,R) can thus be written in the form Ann(Y )
for some compact subset Y .

If τ is order unit good, then Ann(Y ) is Ann({τ }) (corresponding to τ⊥ in
Aff S(R, 1)), from which it follows that Y = {τ }. Hence if σ ∈ X \ {τ }, there exists
a continuous f : X→ [0, 1] such that f (τ )= 0 but f (σ )= 1; then f ∈ Ann({τ }),
hence there exist gn ∈ R such that gn ∈ ker τ and g̃n→ f uniformly. Applying σ ,
there exists n such that σ(gn) 6= 0, so that σ(ker τ) 6= {0}.

Conversely, suppose for every σ ∈ X \ {τ }, we have σ(ker τ) 6= {0}. Then
σ 6∈ Y , hence Y = {τ }, so that the closure of the image of ker τ is codimension one
in C(X,R), hence equal to τ⊥ in Aff S(G, u). Thus τ is order unit good. �

2. Tensor products

If G and H are partially ordered abelian groups, we may form the tensor product (as
Z-modules) G⊗Z H (usually, we delete the subscripted Z); it is equipped with a cone
which makes it into a partially ordered group,

{∑
gi ⊗ hi

∣∣ gi ∈ G+ and hi ∈ H+
}

[Goodearl and Handelman 1986, Proposition 2.1]. If both are dimension groups,
then so is G⊗ H , and if u, v are respectively order units for G, H , then u⊗v is an
order unit for G⊗H . If σ , τ are respective (normalized) traces on (G, u) and (H, v),
then σ ⊗ τ (defined in the obvious way) is a (normalized) trace of (G⊗ H, u⊗ v).

Appendix A informally discusses connections between tensor products of dimen-
sion groups and products of Z-actions on Cantor minimal systems.

A special case occurs when we form the divisible hull of a dimension group,
G⊗Q, the rational vector space that G generates. Then τ extends to a trace G⊗Q

in the obvious way, denoted τ ⊗ 1Q. In general, τ being order unit good or good
implies the corresponding property for τ ⊗ 1Q, but the converse fails practically
generically. As a special case, we [BeH 2014] defined a trace τ to be ugly if τ ⊗1Q

is good and ker τ has discrete image in (the Banach space) Aff S(G, u). Ugly traces
exist in profusion.

In Akin’s original context of measures on Cantor sets, he showed that (what
amounts to) the tensor product of good traces is good; in the context of simple
dimension groups or more generally for approximately divisible dimension groups,
the tensor product of order unit good traces was shown to be order unit good [BeH
2014, Proposition 5.2]. Here, we show a somewhat surprising result for order unit
goodness: if (G, u) and (H, v) are approximately divisible, and both σ ⊗ 1Q and
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τ ⊗1Q are order unit good on their respective groups, then σ ⊗ τ is order unit good
(as a trace on G⊗ H ). This means that the tensor product has a stronger property
(in general) than its constituents. In particular, the tensor product of ugly traces is
at least order unit good.

A weaker notion is refinability; again based on Akin’s definition in the dynamical
situation, and translated to partially ordered groups: a trace τ on (G, u) is refinable if
whenever b ∈G+ \ker τ and {ai } is a finite subset of G+ such that τ(b)=

∑
τ(ai ),

there exist {a′i } ⊂ G+ such that b =
∑

a′i and τ(ai ) = τ(a′i ). Surprisingly, the
corresponding tensor product results actually fail for refinability (even though the
set of refinable traces is a dense Gδ in the trace space).

Using the criterion of Proposition 1.1, we then obtain a corresponding criterion
for goodness of the tensor product (G and H are nearly divisible, σ⊗1Q and τ⊗1Q

are good, and a condition that guarantees the value groups on the order ideals is the
same as the full value group).

Proposition 2.1. Let (G, u) and (H, v) be approximately divisible dimension
groups with traces σ and τ respectively. If each of σ ⊗ 1Q and τ ⊗ 1Q on G⊗Q

and H ⊗Q respectively is order unit good, then the trace on (G⊗ H, u⊗ v) given
by σ ⊗ τ is order unit good.

If we only require that σ ⊗ τ ⊗ 1Q (a trace on G⊗ H ⊗Q) be order unit good
(in place of each of σ ⊗ 1Q and τ ⊗ 1Q being good), the conclusion is false; an
example will be given later (Example 2.6).

We require a number of elementary results about tensor products. Here the
tensors will be over one of the rings Z, Q, or R; torsion-free (module) means
torsion-free abelian group when the underlying ring is Z; otherwise, it just means
vector space over the relevant field.

Lemma 2.2. Let A and B be torsion-free modules, and A′⊂ A, B ′⊂ B submodules
such that A/A′ and B/B ′ are torsion-free.

(a) The kernel of the map A⊗ B→ A⊗ (B/B ′) is A⊗ B ′.

(b) The kernel of the map A⊗ B→ (A/A′)⊗ (B/B ′) is A⊗ B ′+ A′⊗ B.

Proof. (a) One inclusion is obvious. Because the quotient is torsion-free, A⊗ B/B ′

is torsion-free. We have an induced map (A⊗B)/(A⊗B ′)→ A⊗(B/B ′). If z is in
the kernel, find a nonzero integer n such that nz has a representative in A⊗B of least
length (as n varies over nonzero integers), say nz=

∑
ai⊗bi+(A⊗B ′). Then {ai }

is rationally linearly independent; hence the image, nz̄, yields 0=
∑

ai ⊗ (bi + B ′).
Since B/B ′ is torsion-free, this easily implies all bi + B ′ = 0 (tensor with Q if
necessary, so we are working over a field, then use a basis for B ′Q, extended to
BQ). (This proof works for all fields.)
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(b) First, A ⊗ B/(A ⊗ B ′) is naturally isomorphic to A ⊗ B/B ′ by (a). Then
another application of (a) with the order reversed yields a natural isomorphism
(A⊗(B/B ′))/(A′⊗(B/B ′))∼= (A/A′)⊗(B/B ′). Then the kernel of the first map is
A⊗B ′, and that of the second is A′⊗(B/B ′), which pulls back to A⊗B ′+A′⊗B. �

Proof of Proposition 2.1. We will show that the closure of the image of ker σ ⊗ τ in
Aff S(G⊗ H, u⊗ v) is (σ ⊗ τ)`; by [BeH 2014, Proposition 1.7], σ ⊗ τ is order
unit good.

First, we identify the product Aff S(G, u)⊗R Aff S(H, v) with a subspace of
Aff S(G⊗ H , u⊗v) in the obvious way. Standard results (e.g., pure traces are pure
tensors) yield that it is a dense subspace.

We note that (ker σ)⊗ H +G⊗ (ker τ)⊆ ker σ ⊗ τ . It easily follows that the
closure of the image of (ker σ)⊗ H contains everything in y⊗Aff S(H, v) (real
tensors), where y varies over the image of ker σ (in σ` ⊂ Aff S(G, u)). For y
fixed, y⊗Aff S(H, v) is a real vector space, and this means that we can rewrite it
as yR⊗Aff S(H, v) (just approximate real multiples of v̂ by elements of Ĥ , and
transfer through the tensor product). Taking finite sums, we see that the closure of
the image of ker σ ⊗ H includes the closure of Im(ker σ)Q⊗Aff S(H, v).

Now σ⊗1Q being order unit good implies (ker σ)⊗Q has dense image in σ` (in
Aff S(G, u)). If e is an element of G⊗Q, there exists a nonzero integer m such that
me∈G. If in addition, σ⊗1Q(e)= 0, then σ(me)= 0; thus ker(σ⊗1Q)⊆ (ker σ)Q
(the reverse inclusion is trivial, but never needed).

Thus the closure of the image of (ker σ)⊗H contains Im(ker σ)Q⊗Aff S(H, v),
which in turn contains the closure of Im(ker σ)Q⊗Aff S(H, v), and thus includes
σ`⊗Aff S(H, v).

Similarly, the closure of the image of G⊗ ker τ contains Aff S(G, u)⊗ τ`. Set
A = Aff S(G, u), A′ = σ`, B = Aff S(H, v), and B ′ = τ`; then each is a Banach
space, and (A/A′) and (B/B ′) are both one-dimensional, and the closure of the
image of ker(σ ⊗ τ) contains A′⊗ B+ A⊗ B ′.

By (b) above, (A ⊗ B)/(A′ ⊗ B + A ⊗ B ′) is one-dimensional. Let W =
A′⊗ B+ A⊗ B ′ and Z = Aff S(G, u)⊗Aff S(H, v), so that W is a codimension-
one subspace of Z . It is now an easy exercise to show that when we complete Z to
Aff S(G⊗H, u⊗v), the closure, W , is of at most codimension one. (This is a general
Banach space result; if W 6= z̄, then W = W ∩ Z as W is codimension one in Z ;
choose z∈ Z\W ; the functional sending z 7→1 and W 7→0 is continuous (essentially
the closed graph theorem), and hence extends to a bounded linear functional p on W ;
we may write arbitrary y ∈ Z as lim yn; then yn = p(yn)z+ (yn− p(yn)z), and thus
by continuity, y = p(y)z+ (y− p(y)z), and y− p(y)z is in W , hence z+W = z̄.)

In particular, the closure of the image of ker σ ⊗ τ in Aff S(G ⊗ H, u ⊗ v) is
codimension one. As it is contained in (σ ⊗ τ)`, which is proper, it follows that
the image of ker σ ⊗ τ is dense in (σ ⊗ τ)`. �
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This explains a phenomenon exemplified in [BeH 2014, Example 9]. Let G be a
critical dimension group of rank k+1 (that is, a free rank k+1 abelian group densely
embedded in Rk , and equipped with the strict ordering therefrom [Handelman 1982]).
Then we say G is basic (as a critical group) if it is order-isomorphic to the subgroup
of Rk spanned by {ei ;

∑
α j e j }, where {ei } is the standard basis and {1, α1, . . . , αk}

is linearly independent over the rationals (this guarantees density of the subgroup).
Every critical group is topologically isomorphic to a group of the latter form.

For basic critical groups, every pure trace is ugly, as is immediate from the
definitions. Hence if Gi are basic critical groups (and there is more than one), then
all of the pure traces of their tensor product (a simple dimension group)

⊗
Gi are

good. In [BeH 2014, Example 9], an example was given of a basic critical group of
rank three, for which all pure traces on G⊗G are good. We also asked whether
the pure traces on G⊗G⊗G are good, and now we know that the answer is yes.

It is plausible that among critical groups, basic ones are characterized by all
pure traces being ugly; this is false, but is close to being true [Handelman 2013a,
Proposition 7.4]. There are lots of critical groups for which all or some are bad,
hence not ugly [BeH 2014, Section 2]. It can also happen that if both σ, τ are bad
traces (a trace τ is bad if ker τ consists of the infinitesimal elements of the group
[BeH 2014]), then σ ⊗ τ is good; but it can also arise that σ ⊗ τ is not even ugly.

Now suppose that (G, u) and (H, v) are nearly divisible, and σ , τ are normalized
traces on G, H respectively such that σ ⊗1Q and τ ⊗1Q are both good. We expect
to obtain that σ ⊗ τ is a good trace on G⊗ H .

Lemma 2.3. Let (G, u) and (H, v) be dimension groups with order unit. Then:

(a) G⊗ H is approximately divisible if and only if at least one of G or H is.

(b) G⊗ H is nearly divisible if and only if at least one of G or H is.

Proof. (a) Suppose G is approximately divisible. Every pure trace of (G⊗H, u⊗v)
is of the form σ ⊗ τ [Goodearl and Handelman 1986, Lemma 4.1], where σ , τ
are pure traces of G, H respectively. Then (σ ⊗ τ)(G ⊗ H) is σ(G) · τ(H) (the
set of sums of terms of the form σ(g) · τ(h)); as σ(G) is dense, obviously so is
σ(G) · τ(H), so that G⊗ H has no discrete pure traces, and is thus approximately
divisible. The same argument applies if instead H is approximately divisible.

If neither G nor H is approximately divisible, then there exists a discrete trace
σ of G and a discrete trace τ of H ; as these are normalized (at u, v respectively),
σ(G) = (1/n)Z and τ(H) = (1/m)Z for some positive integers m and n; then
(σ ⊗ τ)(G ⊗ H) = (1/mn)Z, which is discrete. Hence G ⊗ H admits a discrete
trace, and thus is not approximately divisible.

(b) Select a =
∑

gi ⊗ hi ∈ (G⊗ H)+; from the definition of the ordering on the
tensor product, we can assume each of gi and hi are positive in their respective
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groups. By definition, we can write gi = 2ai + 3bi , where 0 ≤ gi ≤ kai , kbi for
some positive integer k; since the sum is finite, we can take the same integer k
for all i . Set c1 =

∑
ai ⊗ hi and c2 =

∑
bi ⊗ hi . Then a = 2c1+ 3c2; moreover,∑

gi ⊗ hi ≤ k
∑

ai ⊗ hi , that is, a ≤ kc1, and similarly a ≤ kc2.
If neither G nor H is nearly divisible, there exist an order ideal of G with its

own order unit, (I, w) together with a discrete trace (of I ) φ, and an order ideal
of H with its own order unit, (J, y) and a discrete trace on it, ψ . Then φ⊗ψ is a
discrete trace (as above) of I ⊗ J ; this being an order ideal of G⊗ H , the latter is
not nearly divisible. �

Lemma 2.4. Let G and H be nearly divisible, having faithful traces σ and τ
respectively such that σ ⊗ 1Q and τ ⊗ 1Q are good as traces on G ⊗Q, H ⊗Q

respectively.

(a) Let (I, w) be an order ideal of G with its own order unit, and let (J, y) be an
order ideal of H with its own order unit. Then (σ ⊗ τ)|(I ⊗ J ) is order unit
good.

(b) Suppose for each order ideal I of G, σ(I ) = σ(G), and similarly, for each
order ideal J of H , we have τ(J ) = τ(H). Then for every nonzero order
ideal L of G⊗ H , we have (σ ⊗ τ)(L)= (σ ⊗ τ)(G⊗ H).

(c) Suppose the hypotheses of (b) apply. Let (L , e) be an arbitrary order ideal of
G⊗ H with its own order unit. Then (σ ⊗ τ)|L is order unit good.

Proof. (a) Each of the restrictions of σ ⊗ 1Q and τ ⊗ 1Q to I ⊗Q and J ⊗Q

respectively is good, hence order unit good, and thus (σ ⊗ τ)|(I ⊗ J ) is an order
unit good trace of I ⊗ J .

(b) First, if L = I ⊗ J (where I and J are nonzero order ideals in G and H respec-
tively), then (σ ⊗τ)(I ⊗ J ) is the subgroup of R generated by all terms of the form
σ(a) ·τ(b), where a ∈ I and b ∈ J , and (σ ⊗τ)(G⊗H) has the same form, except
a and b are allowed to vary over G and H respectively. Since for all a ∈ G, there
exists a′ ∈ I such that σ(a′)= σ(a), and similarly for τ , the two groups are equal.

If e ∈ L+, then by the definition of the tensor product ordering, we can write
e =

∑
gi ⊗ hi . For an element x in the positive cone of a dimension group, let I (x)

be the order ideal it generates; then it is easy to check (since sums of order ideals are
again order ideals in a dimension group) that L = I (e)=

∑
I (gi )⊗ I (hi ); in partic-

ular, L contains a tensor product of order ideals, so the previous paragraph applies.

(c) Every e ∈ (G ⊗ H)+ can be written in the form e =
∑

gi ⊗ hi with gi ∈ G+

and hi ∈ H+. By (a), the restriction of σ ⊗ τ to each of I (gi )⊗ I (hi ) is order unit
good. Since σ ⊗ τ(L)= (σ ⊗ τ)(G⊗H), for any nonzero order ideal L of G⊗H ,
we may apply Lemma 1.2(e) (the intersection of the value groups is dense), so the
restriction of σ ⊗ τ to L is order unit good. �
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Proposition 2.5. Suppose that (G, u, σ ) and (H, v, τ ) are nearly divisible dimen-
sion groups with faithful trace having the following properties:

(i) For all nonzero order ideals I and J of G and H respectively, σ(I )= σ(G)
and τ(J )= τ(H).

(ii) Each of σ ⊗ 1Q and τ ⊗ 1Q is good on G⊗Q, H ⊗Q respectively.

Then σ ⊗ τ is a good trace of G⊗ H.

Proof. This follows from Lemma 2.3, Lemma 2.4, and Proposition 1.1. �

Even in the simple case, it is not true that goodness of τ ⊗ τ ⊗ 1Q (a trace on
G⊗G⊗Q) implies τ ⊗ τ is good. In fact, the next example illustrates something
more drastic.

A weaker property than goodness is refinability: a trace τ : G→R is refinable if
whenever b ∈ G+ and there exist {ai } ⊂ G+ such that τ(b)=

∑
τ(ai ), then there

exist a′i ∈G+ such that τ(ai )= τ(a′i ) and b=
∑

a′i . Good traces are refinable [BeH
2014, Lemma 7.3]. Following [BeH 2014], a trace τ is bad if Inf G = ker τ and
τ is not the only normalized trace. It is trivial that bad traces are refinable when
Inf G = {0} [BeH 2014].

More interestingly, when there is more than one trace, bad traces are generic; in
fact, they constitute a dense Gδ of S(G, u), merely under the assumption that G is
countable [Giordano et al. ≥ 2016]. Because of this, one would expect refinability
to be even better behaved under tensor products than goodness. This is not the case.

Example 2.6. There exists a simple dimension group G with a pure trace τ with
the following properties:

(a) τ is bad, and thus is refinable.

(b) τ ⊗ τ ⊗ 1Q, a trace on G⊗G⊗Q, is good.

(c) The trace τ ⊗ τ : G⊗G→ R is not even refinable.

(d) The trace τ ⊗ τ ⊗ τ ⊗ τ on G⊗4 is good.

Proof. Let α be real, quartic, and integral (that is, it satisfies a monic degree-four
irreducible polynomial with integer coefficients), and let β be a real number not
satisfying any degree-four polynomial over the rationals (in particular, β /∈Q(α),
where the latter is the field generated over the rationals by α). Let G be the subgroup
of R2 generated by {(1, 1), (α, β), (α2, β2)}. The three 2 × 2 determinants are
{β−α, β2

−α2, αβ2
−α2β}; since β 6= α, this set is rationally linearly independent

(rational linear independence of {1, α+β, αβ} follows from β 6∈Q(α)). Thus G is
dense in R2, so with the strict ordering it inherits from the latter, it will be a simple
dimension group.

Let τ : G→ R be the projection onto the first coordinate. This is a pure trace,
and moreover, ker τ = {0}, so that τ is bad, and thus is refinable.
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Now make the identifications

(1, 0)⊗ (1, 0) 7→ (1, 0, 0, 0), (1, 0)⊗ (0, 1) 7→ (0, 1, 0, 0),

(0, 1)⊗ (1, 0) 7→ (0, 0, 1, 0), (0, 1)⊗ (0, 1) 7→ (0, 0, 0, 1).

This yields order isomorphisms Z2
⊗Z2

→ Z4 and R2
⊗R2

→ R4. Then G⊗G,
being a simple dimension group, inherits the strict ordering on R4, and is spanned
by the nine elements

a = (1, 1, 1, 1), b = (α, β, α, β), c = (α2, β2, α2, β2),

d = (α, α, β, β), e = (α2, αβ, αβ, β2), f = (α3, αβ2, α2β, β2),

g = (α2, α2, β2, β2), h = (α3, α2β, αβ2, β3), j = (α4, α2β2, α2β2, β4).

The trace τ ⊗ τ identifies with the projection on the first coordinate, which we will
call σ . Since α satisfies an irreducible polynomial of degree four (and therefore of
no less degree), say α4

= Aα3
+Bα2

+Cα+D, with A, B,C, D ∈Z, it follows that

ker σ = 〈d − b, e− c, g− e, h− f, j − A f − Bc−Cb− Da〉.

(Since σ(G⊗G)⊂ Z[α] and the latter is rank four, the kernel has rank five; this
reduces the problem to showing the cokernel of the group on the right is torsion-free,
which is routine.) The first four of the generators are of the form (0, ∗, ∗, 0), and it is
easy to verify that the group that they span is dense in 0⊕R2

⊕0. The last generator
has nonzero fourth coordinate (since β satisfies no fourth degree polynomial); call
it γ . Thus the closure of ker σ is {0}⊕R2

⊕ γZ.
In particular, the closure of ker σ is not a real vector space, so σ = τ ⊗ τ is

not good; moreover, it is not even refinable, since φ(ker σ) is cyclic and nonzero,
where φ is the projection onto the fourth coordinate [BeH 2014, Proposition B.5].

On the other hand, (ker σ)⊗Q is dense in {0} ⊕ R3, and since ker(σ ⊗ 1Q)

contains (ker σ)⊗Q, it follows that σ ⊗1Q = τ ⊗τ ⊗1Q is a good trace on G⊗Q.
By Proposition 2.1, τ ⊗ τ ⊗ τ ⊗ τ is a good trace on G⊗G⊗G⊗G. �

Left open are the properties of τ ⊗ τ ⊗ τ . Short of computing with a Z-basis
consisting of 27 elements, there did not seem to be any method of attack (the kernel
has rank 23; however, the infinitesimal subgroup is substantial, too).

3. Examples from xerox actions of tori on UHF algebras

We characterize the good faithful pure traces on the dimension groups arising from
xerox-product-type actions of tori on UHF C*-algebras. It turns out that there is a
surprising number-theoretic component.

Appendix A points out strong analogies between Bernoulli measures and the
traces discussed here.
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Form the Laurent polynomial ring in d variables over the integers, Z[x±1
i ], and

let Z[x±1
i ]
+ denote the set of those with only nonnegative coefficients. As in

[Handelman 1985; 1987], we adopt monomial notation; that is, for w ∈ Zd , define
xw = xw(1)1 · xw(2)2 · · · · · xw(d)d . For any f ∈ Z[x±1

i ], we denote the coefficient of xw

in f by ( f, xw) (inner product notation, which is consistent with the origins of the
work), and we set Log f := {w ∈ Zd

| ( f, xw) 6= 0}. Let P =
∑

awxw ∈ Z[x±1
i ]
+

(where aw ∈ Z+), and form the ring RP = Z[{xw/P}w∈Log P ]. Equipped with the
partial ordering generated additively and multiplicatively by {xw/P | w ∈ Log P},
this is a dimension group and an ordered ring with 1 as order unit, and many more
properties (marked with bullets below). We may also form Z[x±1

i , 1/P] (a subring
of the field of fractions of the Laurent polynomial ring). It also has a partial ordering
given by { f/Pk

| ∃N such that P N f has no negative coefficients}. The restriction
of this to RP yields the original ordering.

This arose from the following construction. Let n = P(1, 1, 1, . . . , 1), and form
A=⊗MnC (the UHF C*-algebra). The Laurent polynomial P is the character of an
n-dimensional representation of the torus Td , say given by z 7→ diag(zw) (one for
each w that appears in P , with repetitions as indicated by the multiplicities, that is,
the coefficients). This yields a map π :Td

→MnC with nonzero entries along the di-
agonal. Form φ :=⊗Adπ :Td

→AutA, and the corresponding fixed point subrings,
Aφ(Td ), and A×φ Td , the latter the C*-crossed product. Then (K0(Aφ(T

d )), [1]) is a
naturally ordered ring isomorphic to RP and K0(A×φ Td) is similarly isomorphic
to the ordered ring Z[x±1

i , 1/P]. This will play a role in what follows.
Renault [1980] determined the positive cone and analyzed (inter alia) the structure

of RP when P = 1+ x . The pure (ergodic) traces thereon were determined by Orey
(in terms of the simple random walk) in the mid-1960s.

We normally assume that P is projectively faithful; that is, Log P − Log P
generates (as an abelian group) the standard copy of Zd in Rd (we can reduce to this
case anyway). This has the effect that whenever v ∈ Log Pk

∩ int cvx Log Pk for
some positive integer k, it follows that xv/Pk belongs to RP and RP [(xv/Pk)−1

] =

Z[x±1
i , 1/P]; i.e., the larger ring is obtained by inverting xv/Pk .

We call an element of the form xw/P with w ∈ Log P a formal monomial in RP .
(It can happen that xw/P ∈ RP even ifw 6∈Log P — e.g., ifw+Log Pk

⊆Log Pk+1

for some k. This is not significant for what follows.)
In addition to the obvious facts about RP (it is a commutative, finitely generated —

hence noetherian — domain), the following results are known:

• RP = {g/Pk
| g ∈ Z[x], Log g ⊂ Log Pk

}, RP is a partially ordered ring with 1
as an order unit, and it is a dimension group [Handelman 1985, Section I].

• All sums and finite intersections of order ideals are order ideals (this is true for
all dimension groups) [Goodearl 1986].
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• Products of order ideals are order ideals (this is not generally true for dimension
groups that are commutative partially ordered domains having 1 as an order unit)
[Handelman 1985].

• Every order ideal is an ideal (this is true in every partially ordered commutative
ring in which 1 is an order unit) [Handelman 1985, Proposition I.2].

• If f is a formal monomial, then f RP (the ideal generated by f ) is an order ideal
[Handelman 1987, Proposition II.2A].

• Every order ideal is the finite sum of ideals,
∑

fi RP , where fi are formal
monomials, and all such sums are order ideals [Handelman 1987, p. 19].

• If f is a formal monomial and a ∈ RP , then f a ∈ R+P implies a ∈ R+P (this follows
from the definitions); the conclusion is also true if we replace formal monomial by
order unit, a result that is very special for RP [Handelman 1987, Proposition II.5].

• The pure traces are exactly the multiplicative ones (this is true for any partially
ordered ring with 1 as an order unit); the pure faithful traces are exactly those of the
form τr (g/Pk)= g(r)/Pk(r), where r = (ri ) is a strictly positive d-tuple in Rd , and
these extend in the obvious way to positive homomorphisms τr : Z[x±1

i ; 1/P]→ R

(warning: although the ring Z[x±1
i ; 1/P] is partially ordered, 1 is not an order unit

for it) [Handelman 1985, Theorem III.3].

• The weighted moment map/Legendre transform corresponding to P implements a
homeomorphism ∂e S(RP , 1)→ cvx Log P (the latter is the Newton polytope of P)
sending the faithful pure traces onto the interior; unexpectedly, the set of pure traces
admits a type of convex structure; in particular, the faces correspond to traces that
factor through quotients in a particularly nice way [Handelman 1987, Theorem IV.1].

• In general, RP is not a pure polynomial ring; only rarely does it have unique
factorization [Handelman 1987, Theorem A.8A].

Now let us consider the following property of a faithful pure trace τ ≡ τr :

(1) for every nonzero order ideal I , we have τr (I )= τr (RP).

By Proposition 1.1, this is one of the two necessary conditions for τr to be a good
trace.

Here r = (ri ) ∈ (R
d)++ as described above. First we note that { f RP} (as f

varies over all products of formal monomials) is a generating set of order ideals with
order unit (they are given as ring ideals, but in fact are order ideals by the properties
above, and every order ideal is a finite sum of these). Necessary and sufficient
for (1) to hold is simply that it hold for all ideals of the form Iw = (xw/P)RP

(where w ∈ Log P , a finite set). To see this, note that τr (Iw)= (rw/P(r))τ (RP),
hence τr (Iw)= τr (RP) if and only if P(r)/rw ∈ τr (RP); thus if this holds for all
w ∈Log P , then each of P(r)/rw belong to τ(RP), and hence all their products do;
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this means that for every formal monomial f , 1/τr ( f ) belongs to τr (RP), hence
τr ( f RP)= τ(RP).

The upshot of this is that τr satisfies (1) if and only if for all w ∈ Log P , we have
P(r)/rw ∈ τr (RP). The latter is simply Z[rw/P(r)]w∈Log P . So we deduce this:

Lemma 3.1. For r ∈ (Rd)++, τr satisfies (1) if and only if for all v ∈ Log P ,
P(r)/rv ∈ Z[rw/P(r)]w∈Log P .

This is a fairly drastic condition, even when d = 1 and P = 1+ x or 2+ 3x .
For r ∈ (Rd)++ and P ∈ Z[x±1

i ]
+, let Rr = Z[{rw/P(r)}w∈Log P ]; this is exactly

τr (RP), and is a finitely generated unital subring of R. The next lemma says that r
satisfies (1) if and only if when we extend τr all the way up to Z[x±1

1 , . . . , x±1
d , P−1

],
the image of τr does not increase — something we should have expected, in terms
of the original definition.

Lemma 3.2. Let r = (ri ) ∈ (R
d)++ and P ∈ Z[x±1

i ]
+ be projectively faithful.

Then r satisfies (1) if and only if Rr = Z[r±1
i ; P(r)−1

].

Proof. We may construct RP by beginning with Z[x±1
i ] (the Laurent polynomial

ring) instead of Z[xi ]; this is how it was originally constructed in [Handelman 1985;
1987]. By replacing P by xvP t for some v ∈ Zd and positive integer t (this has no
effect on RP , up to order isomorphism), we can arrange for 0 to be in the interior
of cvx Log P and in Log P . Then 1/P ∈ RP and we may invert 1/P , creating
RP [P] = Z[x±1

i ; P−1
] [Handelman 1987]. Let I = (1/P)RP ; this is an order ideal

[Handelman 1987, p. 19], and Z[x±1
i ; P−1

] =
⋃

j∈Z+ P j RP .
If r satisfies (1) with respect to P , then applying it to I , we obtain

τr (I )= τr (1/P)τr (R)= (1/P(r))τr (R)= (1/P(r))Rr .

By hypothesis, this is Rr , so P(r) is a unit in Rr . Thus τr (P j RP)= P j (r)Rr ⊂ Rr .
Taking the union, we obtain τr (Z[x±1

i ; P−1
]) ⊆ Rr , and the reverse inclusion

is trivial.
Conversely, suppose Rr = τr (Z[x±1

i ; P−1
]). Then τr (x±1

i )= r±1
i and τr (P±1)=

P±1(r) belong to Rr and are invertible therein. Thus if f is any formal monomial,
τr ( f ) is a product of terms of the form rw/P(r), and hence is invertible in Rr .
Thus if I is an order ideal, it contains a formal monomial, and τr (I ) contains an
invertible element in Rr , and so τr (I )= Rr = τr (RP). Thus r satisfies (1). �

In other words, (1) holds if and only if the range of evaluation at r on RP is the
same as the range of the evaluation on the much larger ring Z[x±1

i , 1/P].
Now we consider what (1) means in the special case that d = 1.
Let A be a unital subring of C, the complexes. A complex number r is integral

over A (or r is an A-algebraic integer) if it satisfies a monic polynomial with
coefficients from A; equivalently, r ∈ A[r−1

]. The number r is an A-algebraic unit
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if it satisfies a monic polynomial with coefficients from A whose constant term
is invertible in A; equivalently, A[r ] = A[r−1

]. If A = Z, we just write integral
(adjective) or algebraic integer (noun). If A =Q, these notions coincide, and we
just say r is algebraic. The degree of an integral or algebraic element is the degree
of its minimal polynomial (over A).

Lemma 3.3. Let P be a projectively faithful element of Z[x]+ with smallest and
largest degree coefficients a0 and ak respectively. If r ∈ R++ satisfies (1) with
respect to P , then there exist nonnegative integers s and t such that as

0/r and at
kr

are integral.

Proof. Write P = a0 +
∑

0<i<k ai x i
+ ak xk , where ai are nonnegative inte-

gers (some can be zero, but we still need gcd({i | ai 6= 0} ∪ {k}) = 1). From
P(r) ∈ Z[{r j/P(r)} j∈Log P ], we deduce an equation of the form P(r)m+1

= p(r),
where p ∈ Z[x] and deg p ≤ deg Pm

= km. The leading term of this expres-
sion is am+1

k r (m+1)k , and so r satisfies a monic polynomial with coefficients from
A = Z[a−1

k ]. It follows that at
kr is integral for all sufficiently large s.

Replacing P by its reversal (also called reciprocal) P̃ (defined by P̃(x) =
P(x−1)xk), and redoing the process yields the other form, that as

0/r is integral. �

The following is true if we weaken the hypotheses on P to be projectively
faithful (instead of requiring all the intermediate coefficients to be strictly positive).
The modifications to the proof will muddy an already-complicated but elementary
argument; so we just outline it afterwards. We can replace P by any power of itself,
without changing anything, so the no-gaps condition is just that the second largest
and second smallest terms have nonzero coefficients.

Proposition 3.4. Let r ∈ R++ and P ∈ Z[x]+ be
∑k

i=0 ai x i , where all ai 6= 0.
Let a0 and ak be the coefficients of the least and greatest degree terms in P. Let
Rr = Z[{r i/P(r)}i∈Log P ]. Then the following are equivalent:

(i) r satisfies (1) with respect to P.

(ii) There exist nonnegative integers s and t such that both as
kr and at

0/r are
algebraic integers.

(iii) Rr = Z[r±1, P(r)±1
].

(iv) For all j ∈ Log P , we have P(r)/r j
∈ Rr .

Proof. We begin with (ii) implies (iv). Without loss of generality, we may assume
P = a0+

∑
0<i<k ai x i

+ ak xk .
If c is an algebraic integer, then Z[c] is free on the Z-basis {1, c, c2, . . . , ce−1

},
where e is the degree of c (this is an alternative definition of integrality); in particular,
for every positive integer u, we can write cu

=
∑e−1

i=0 bi ci ; in other words, there
exists a polynomial p ∈ Z[x] of degree at most e− 1 such that cu

= p(c).
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Apply this to c = as
kr ; for each positive integer u, we can write (as

kr)u =
pu(as

kr) = qu(r), where deg qu ≤ e − 1. Multiplying this by ru(s−1), we obtain
(akr)us

= ru(s−1)qu; setting Qu = xu(s−1)qu , we have (akr)us
= Qu(r), where

Qu ∈ Z[x] and deg Qu = u(s−1)+deg qu ≤ u(s−1)+ e−1. Hence (multiplying
by an additional r j ), for every j = 0, 1, 2, . . . , we have Qu, j ∈ Z[x] such that
deg Qu, j = u(s− 1)+ j and (akr)us+ j

= Qu, j (r). We will subsequently choose u
to be fairly large.

Now let N be a (large) positive integer, and consider the k leading coefficients
of P N , that is, the coefficients of the terms xk N , xk N−1, xk N−2, . . . , xk N−k+1. They
are respectively divisible by aN

k , aN−1
k , . . . , aN−k+1

k (as is trivially easy to see).
Hence we may find integers bi (with b0 = 1) such that

P N
−

k−1∑
i=0

(ak x)N−i x N (k−1)bi := G

is a polynomial of degree at most Nk−k. Assume (as we may) that N −k = us for
some integer u. Replace each (ak x N−i ) by Qu,k−i ; this has no effect on the value
at r . Setting H =

∑k−1
i=0 bi Qu,k−i x N (k−1), we have P N (r)= (G+ H)(r). Then

deg(G+ H)≤max{deg G, deg H}

≤max{Nk− k,maxi {deg Qu,k−i + Nk− N }}

≤max{Nk− k, u(s− 1)+ e− 1+ Nk− N }

=max{Nk− k, Nk− N + e− 1+ N − k− u}

≤max{Nk− k, Nk− k− u+ e− 1}.

We can choose u ≥ e−1 at the outset, and so guarantee that deg(G+H)≤ Nk−k.
Thus P(r) = (G + H)(r)/P N−1(r). For every 0 ≤ i ≤ k, we have r i/P(r) ∈ Rr ,
and since deg(G+ H)≤ Nk− k = deg P N−1, we obtain P(r) ∈ Rr .

Now form the reversal of P , given by P̃(x)= P(x−1)xk ; this reverses the roles of
ak and a0, and the same process (using at

0/r being integral) yields, after translating
back, P(r)/r k

∈ Rr . From P(r) ∈ Rr , we obtain r i
= (r i/P(r)) · P(r) ∈ Rr for

i ∈ Log P , and thus for all i ≥ 0. Since P(r)/r k
∈ Rr , we deduce r−k

∈ Rr , hence
r− j
∈ Rr for all j ≥ 0; thus P(r)/r j

∈ Rr .
Now (i) implies (ii) was done in the previous lemma, and the equivalence of (i),

(iii), and (iv) follows from the general results preceding this. �

To prove the result when P is only projectively faithful, we can still write P =
a0+

∑
1≤i≤k−1 ai x i

+ak xk , where gcd {i | ai 6= 0} = 1 (equivalent after translation
to projective faithfulness). Then it is elementary, and presumably well-known, that
there exists M such that for all N , we have (P N , x i ) 6= 0 if M < i < k N − M .
Now in the construction above, make sure that when the multiplications by powers
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of r take place, the exponent lands in the interval where all the coefficients are
guaranteed to be nonzero (we are of course free to take arbitrary large powers of P).

A strange consequence is that when the hypotheses on P are satisfied, the set of r
such that τr satisfies (1) is closed under multiplication; this follows immediately
from (ii), but not obviously from any of the other equivalent properties.

Multiplicativity does not appear to extend to more than one variable. For example,
if P = 2+ 3x + 5y, and we restrict to r = (m, n) with positive integer coordinates,
it is tedious but routine to see that τr satisfies (1) with respect to P if and only if
for all primes p and q,

p |m =⇒ p | (2+ 5n) and q | n =⇒ q | (2+ 3m).

For example, (7, 1), (3, 11), (2i , 2 j ) (where both i, j > 0) satisfy these conditions,
but (14, 2) does not. There may be another, more appropriate, notion of multiplica-
tion with respect to which the set is closed.

Another general property concerns approximate divisibility. Let K = cvx Log P ;
this is a compact convex polytope. Let e ∈ K be an extreme point (we do not use
the usual term, vertex, because this might be confused with lattice point); then
v ∈ Log P , and there is a pure trace σ v associated with v, given by σ v(g/Pk) =

(g, xkv)/(P, xv)k (this can also be obtained as the limit along a path of τr ), via
l’Hôpital’s rule, as in [Handelman 1985, Section III] (especially just before III.3).

Since every order ideal of RP is of the form
∑

fi RP (finite sum), if we assume
that RP is approximately divisible, then RP is nearly divisible. Thus every order
ideal has its own order unit and is approximately divisible. If τ is faithful, then
τ(I ∩ J ) 6= 0 (no finite intersections of order ideals can be zero since they are also
ideals in a domain), and I ∩ J is itself approximately divisible, hence τ(I ∩ J ) is
dense in R. Thus for any faithful trace that is order unit good for RP , its restriction
to any nonzero order ideal is also order unit good.

Thus we have the following.

Lemma 3.5. The ordered ring RP is approximately divisible if and only if for all
extreme points v of K = cvx Log P , we have (P, xv) > 1.

Lemma 3.6. Let P =
∑
λwxw ∈ Z[x±1

i ]
+ with (P, xv) > 1 for all extreme points

of K = cvx Log P.

(a) Then RP is nearly divisible

(b) If τ is a faithful trace that is order unit good for RP , then its restriction to any
nonzero ideal is order unit good for that ideal.

If we replace RP by SP := RP ⊗Q=Q[xw/P], then it is divisible, which is of
course stronger than nearly divisible, so that (a) holds automatically (without the
hypothesis on the coefficients at extreme points), and (b) also holds by the same
arguments.
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Proposition 3.7. Let r = (ri ) ∈ (R
d)++, and let P ∈ Z[x±1

i ]
+ be projectively

faithful.

(a) The pure trace τr on RP is good if and only if
(i) τr is order unit good for RP and

(ii) for all v ∈ Log P , we have P(r)/rv ∈ Z[rw/P(r)]w∈Log P .

(b) The pure trace τr on SP is good if and only if
(i) τr is order unit good for RP .

Remark. Note the absence of (ii) from (b), and the appearance of RP in (b)(i). It is
known (along the same lines as in [BeH 2014, Proposition 5.10]), that if τr is order
unit good (for either coefficient ring), then each ri is algebraic. Since Q[r1, . . . , rd ]

is thus a field, (ii) is redundant in (b).

Proof. We show that if τr is order unit good (which means that the closure of the
image of ker τr in Aff S(R, 1) is exactly τ⊥r = {h ∈ Aff S(R, 1) | h(τr )= 0}), then
its restriction to any order ideal is also order unit good. It suffices to do this for
I = f RP , where f is a formal monomial.

The map RP→ f RP , given by r 7→ f r , is an order-isomorphism of RP modules
(this of course uses the fact that f r ≥ 0 in RP entails r ≥ 0). Using f as an order
unit for I , the map on traces τ 7→ τ/τ( f ) (restricted to those τ such that τ( f ) 6= 0)
sends τr → τr/τr ( f )= τ ′, and ker τ ′ = ker τr ∩ f RP = f · ker τr (since f (r) 6= 0).
The map between RP modules induces an affine homeomorphism between S(RP , 1)
and S(I, f ), sending τr to τ ′, and it easily follows that τ ′ is order unit good. But
τ ′ is just the normalization of τ |I , hence the latter is order unit good.

The rest follows from the preceding results. �

In one variable, we can show that τr is order unit good if and only if none of the
algebraic conjugates of r (except itself) are positive real. In more than one variable,
the situation is far more complicated, and there is no decisive theorem (yet).

Example. Let d = 1 and P = 1+ x ; then we can rewrite RP = Z[1/P, x/P] =
Z[1− X, X ], where X = x/(1+ x), and the positive cone translates to 〈X, 1− X〉.
This goes back to Renault [1980]. The translation, however, obscures some of the
features, as we will see. First, RP has two discrete pure traces, τ0= σ

0 and τ∞= σ 1

(0 and 1 are the extreme points of the convex set cvx Log P = [0, 1]), so it is not
approximately divisible. However, it is interesting to calculate the condition that
τr (I )= τr (RP) for all nonzero order ideals.

By Proposition 3.7 above, this amounts to 1+r, 1+1/r ∈Z[1/(1+r), r/(1+r)];
as r/(1+r)= 1−1/(1+r), the condition (1) is equivalent to 1+r±1

∈Z[1/(1+r)].
Now for a real number s, the condition s∈Z[1/s] is equivalent to s being an algebraic
integer (that is, satisfying a monic integer polynomial). Hence we infer that if (1)
holds for τr , then r has to be an algebraic unit (that is, not only is its minimal



GOOD TRACES FOR NOT NECESSARILY SIMPLE DIMENSION GROUPS 387

polynomial over the integers monic, but the constant term must be ±1 as well).
Conversely, if r is an algebraic unit, then the desired membership property holds.

We conclude that τr satisfies (1) if and only if r is an algebraic unit.
In particular, if r is an integer, then τr satisfies (1) if and only if r = 1 (we are

restricting ourselves to actual traces, hence excluding negative values for r ).
The translation, X = x/(1+ x) converts r to r/(1+ r); then of course τ(X) is

a fractional linear transformation of an algebraic unit, but this characterization is
not as pleasant as the pretranslation version. �

Let V ⊂Cd . For A a subring of C, define IA(V ) to be the ideal in the polynomial
ring A[x1, . . . , xd ] consisting of polynomials that vanish at all points of V . Given
an ideal I of A[x1, . . . , xd ], define Z A(I ) to be the common zero set (in Cd ) of all
elements of I . The variety generated by V over A is simply Z A IA(V ). If A = Z,
we drop the subscript.

We say r = (ri ) ∈ (R
d)++ is really isolated if ZI ({r}) ∩ (Rd)++ = {r}. For

example, if d = 1, then r is really isolated if r is algebraic and all algebraic
conjugates of r other than r itself are not positive real. In general, r is really
isolated means that the slice of the variety generated by r (or more simply, the
Zariski closure of {r}) by the positive orthant contains only r .

The argument in [BeH 2014, Proposition 5.10] shows that if r is really isolated
(or more generally, {r} is an isolated point in (Rd)++ ∩ ZI ({r})), then all of its
coordinates are algebraic (there is an assumption in [BeH 2014] concerning interior
points which is automatic here). We remind the reader that we have assumed
that P is projectively faithful, which implies in particular, that its Newton polytope
contains a d-ball.

The condition that r be really isolated appears in [BeH 2014, Examples 5
and 10], for which the relevant dimension groups are remotely related to the ones
appearing here.

Proposition 3.8. Suppose RP is approximately divisible, and τ is a pure faithful
trace. Then:

(a) τ is an order unit good trace of RP if and only if τ = τr , where r ∈ (Rd)++ is
really isolated.

(b) τr is a good trace of RP if and only if r is really isolated and for all v ∈ Log P ,
we have P(r)/rv ∈ Z[{rw/P(r)}w∈Log P ].

(c) τr is a good trace of RP ⊗Q if and only if r is really isolated.

Proof. Every pure faithful trace of RP is of the form τr for (a unique) r in the
positive orthant.

If r is not really isolated, then there exists r ′ ∈ (Rd)++ such that every polynomial
that vanishes at r also vanishes at r ′. Suppose a := g/Pk

∈ RP ; we may assume
Log g ⊆ Log Pk . If τr (a)= 0, then g(r)= 0, hence g(r ′)= 0, whence τr ′(a)= 0;
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thus with σ = τr ′ , we have σ ∈ ∂e S(R, 1)\ {τr } such that σ | ker τr ≡ 0. Hence τr is
not order unit good. The same of course applies with RP ⊗Q in place of RP .

Conversely, suppose that r is really isolated, but there exists σ ∈ ∂e S(R, 1)\ {τr }

such that σ | ker τr = 0. Then σ cannot be faithful (as otherwise, σ = τr ′ for some
r ′∈ (Rd)++, and r ′∈ ZI ({r})). Consider S= RP⊗Q, and let Tr ,6 be the extension
to S of τr and 6 (both extend, since the ranges are torsion-free abelian groups).
Then Tr (S) = Q[rw/P(r)], which is a field (since the coordinates are algebraic,
so are all the rw/P(r)). Then ker Tr is a field, so ker Tr is a maximal ideal. Also,
ker Tr ∩ RP = ker τr and ker6 ∩ RP = σ . If ker τr ⊆ ker σ , then ker Tr ⊂ ker6,
but maximality of ker Tr implies ker Tr = ker6, and thus ker τr = ker σ . However,
since σ is not faithful, ker σ contains a positive nonzero element of RP , whereas
ker τr does not, a contradiction.

Hence if r is really isolated, then σ ∈ ∂e S(RP , 1) \ {τr } implies σ(ker τr ) 6= 0,
and by Lemma 1.7 above, this implies τr is order unit good. The same of course
applies to Tr as a trace on SP . This yields (a), and contributes to (c).

Part (b) now follows from preceding results in this section.
Part (c) comes from Q[rw/P(r)] being a field (which in turn arises because the

coordinates of r are algebraic), so that condition (1) is automatic. �

A particular consequence is that the set of good pure faithful traces of SP =

RP⊗Q is the same for all choices (with d fixed) of faithfully projective P ∈Z[xi ]
+

(or P ∈Q[xi ]
+), whereas for RP , there is dependence on P .

When d = 1, the conditions for τr to be good are precisely that no distinct alge-
braic conjugate of r be positive and the integrality condition, (ii), of Proposition 3.4.

Example. Let d = 1 and P = 2+3x . By Proposition 3.4, the positive real number r
satisfies (1) if and only if there exists s such that both 2s/r and 3sr are integral. Let
K =Q(r), and ZK denote the ring of integers in K . The fractional ideal rZK factors
as
∏

Pi/
∏

Q j (where Pi and Q j are prime ideals in ZK , and we allow repetitions;
the products might also be over the empty set). The intersections Pi ∩Z and Q j ∩Z

determine primes in Z, denoted respectively pi and q j . Then (1) is equivalent to
pi =2 and q j =3 for all i and j . Hence τr is good for RP if and only if no nonidentity
algebraic conjugate is positive and the prime factorization of the fractional ideal
rZK consists of primes sitting over 2 in the numerator and over 3 in the denominator.

In this section, we have restricted ourselves to pure faithful traces; this is a
technical convenience. By the comment after Proposition 1.1, we can factor out
the largest order ideal contained in the kernel of a trace, and in the case that the
dimension group is RP , these correspond to quotients corresponding to faces of the
Newton polytope [Handelman 1985, Section VII]. This amounts to a reduction to a
lower dimensional lattice and vector space, that is, a polynomial in fewer variables.
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There are related naturally occurring classes of dimension groups whose pure
traces can be similarly analyzed. For example, for the matrix-valued random
walks appearing in [Handelman 2009], in nondegenerate cases, the pure faithful
traces are similarly parameterized by the positive orthant (the nonfaithful traces
are generically terrible, but can be analyzed in reasonable cases). An example
appears in [Petersen 2012], where very specific local limit asymptotics were used
to derive the one-parameter family (indexed by the unit interval) of pure traces. In
fact, that random walk can be represented as M =

( 1+x
1

x
0

)
, and in this very simple

case, via [Handelman 2009], we can write down the pure traces parameterized by
[0,∞] (the endpoints corresponding to the two nonfaithful pure traces) via the
large eigenvalue function. Alternatively (in the notation of [Handelman 2009]), it
is elementary that (1+ x)M̂−1 is an order unit in Eb(G M), so on setting P = 1+ x ,
we can view M/P as a matrix with entries in RP without changing the pure trace
space. This yields a parameterization of the pure traces by those of RP (again
via the large eigenvalue function, an algebraic function), which are indexed by
the unit interval.

4. Direct sums and goodness

For (noncyclic) simple dimension groups, there is a notion of direct sum (corre-
sponding to coproduct; see [BeH 2014, Appendix B] for a discussion). This actually
extends to nearly divisible dimension groups. Let G and H be dimension groups.
Form the group direct sum K = G⊕ H , and impose on it the strict ordering given
by the positive cone

K+ :=
{
(g, h)

∣∣ g ∈ G+ \ {0} and h ∈ H+ \ {0}
}
∪ {(0, 0)}.

We see immediately that K is an unperforated partially ordered group; we denote it
by G⊕s H , although we frequently suppress the subscript s. In general, K need
not be a dimension group (as a simple example, if G is simple and H = Z, then K
is a simple partially ordered abelian group with a discrete trace, and hence cannot
be a dimension group [Goodearl 1986, Proposition 4.22]).

A partially ordered abelian group G is prime if the intersection of any two
nonzero order ideals contains a nonzero positive element; for dimension groups,
this definition simplifies to “the intersection of any nonzero order ideals is nonzero”.
Here is a natural generalization of [Effros et al. 1980, Corollary 1.2].

Lemma 4.1. Let G and H be dimension groups. Then the strict direct sum K =
G⊕s H is a dimension group if and only if both of the following conditions hold:

(a) Both G and H are prime.

(b) Both G and H are nearly divisible.
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Proof. Assume (a) and (b). The unperforation and directedness of K are trivial, so
it suffices to prove Riesz decomposition. Suppose 0≤ a ≤ b+ c, where a = (g, h),
b = (e, f ), and c = (k, l) and all of a, b, c are in K+ \ {0} (if any of a, b, or c is
zero, the decomposition is immediate). This entails all of g, h, e, f, k, l are nonzero
positive elements of their respective groups, and moreover, that either a = b+ c
(in which case, the decomposition condition is satisfied) or both g < e+ k and
h < f + l in their respective groups. Assume the latter.

By Riesz decomposition in G, there exist 0 ≤ e1 ≤ e and 0 ≤ k1 ≤ k such
that g = e1 + k1. If e = e1, then k1 < k, and the intersection of the order ideals
〈e〉∩〈k−k1〉 is thus nonzero, and contains a nonzero positive element, z. The order
ideal 〈z〉 has z as an order unit, hence (by (b)) is approximately divisible, and it
follows immediately that there exists a positive, nonzero x such that x < e, k− k1.
Then we can write g= (e1−x)+(k1+x). Now e−(e1−x)> 0, and k−(k1+x)> 0.

Now suppose that e1 = 0, so that g = k1. By the same procedure as in the
previous paragraph, there exists a nonzero positive x such that x < e, k1, so we can
write g = x + (k1− x), with x < e and k1− x < k.

This leaves the case that 0< e1 < e. If k1 is zero or k, we reverse the roles of e
and k and apply the preceding, so that in all cases, we can find nonzero positive
xi ∈ G such that g = x1+ x2, with 0< x1 < e and 0< x2 < k.

By applying the preceding to H in place of G, we obtain yi ∈ H such that
h = y1+ y2 with 0 < y1 < f and 0 < y2 < l. Then g = (x1, y1)+ (x2, y2) is the
desired decomposition.

Conversely, suppose that K satisfies Riesz decomposition. If H were not prime,
we could find nonzero y, z in H+ such that 0≤ h ≤ y, z implies h = 0. Consider,
for g ∈ G+ \ {0}, (5g, y) ≤ (3g, y) + (3g, z): this holds in K ; hence if Riesz
decomposition applies, we can write (5g, y)= (3g, y1)+ (3g, z1) with the latter
two terms in K+, and at the very least y1 ≤ y and zi ≤ z. In particular y = y1+ z1,
but since z1 ≤ y, z, we have z1 = 0, so that y1 = y. But this entails (3g, 0) is in the
positive cone of K , which is a contradiction, since g > 0. Now the same argument
applies to G, so both have to be prime.

Suppose that K is a dimension group; we can also assume that G admits an order
unit. Now assume that H is not nearly divisible. Then H admits an order ideal with
its own order unit, (I, w), that has a discrete pure trace; call it τ . Then ker τ is a
maximal order ideal of H ; call it T . Since G has an order unit, it has a maximal order
ideal, J . Consider J ⊕s T . This is an order ideal of K , and it is easy to verify that
K/(J ⊕T ) is order isomorphic to K ′ := (G/J )⊕s Z. Since both pieces are simple,
K ′ is simple, but admits a discrete trace (projection on the second coordinate). Thus
K ′ is not a dimension group. On the other hand, since K is a dimension group, and
the quotient of it by an order ideal is also a dimension group, we have a contradiction.
Hence H must be nearly divisible. The same applies with H replaced by G. �
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If K = G⊕s H , and σ and τ are traces on G and H respectively, we consider
the possibility that φ := σ ⊕ τ (defined by (g, h) 7→ σ(g)+ τ(h)) is good or order
unit good. This turns out to be surprisingly interesting. Iteration of this process
yields some weird examples.

Lemma 4.2 (a consequence of the method of proof of [BeH 2014, Proposition 1.7]).
Suppose (K , w) is an approximately divisible dimension group with order unit, and
φ is an order unit good trace. Then whenever a ∈G, b ∈G++ and 0<φ(a) < φ(b),
for all ε > 0, there exists a′ ∈ [0, b] such that φ(a′)= a and ‖â′− b̂σ(a)/σ (b)‖<ε.

Proof. Approximate divisibility implies density of G in Aff S(G, u). Set j =
σ(b)b̂/σ(a), so that j (σ ) = σ(a) and inf j = σ(a)σ (b)−1 inf b̂. There exists
gn ∈G such that ĝn→ j uniformly. If for infinitely many n, we have gn(σ )= σ(a),
we are done (taking large enough n). Otherwise, select σ(a)(σ (b)2)−1 inf b>ε > 0
and ‖ĝn − j‖ < ε. Then |σ(gn)− σ(a)| < ε provided n is sufficiently large; if
σ(gn) > σ(a), set cn = gn−a. There exists an order unit zn such that 0<σ(cn)1<
ẑn < 2ε. By order unit goodness, there exists vn� zn such that σ(cn)= σ(vn), and
of course, ‖vn‖ ≤ ‖ẑn‖< 2ε. Then gn− vn has image within 3ε of j , and it is easy
to check that gn − vn is strictly positive, and hence is an order unit.

If instead, σ(a) > σ(cn) for infinitely many n, we obtain a corresponding
cn = gn − a and vn� zn , and this time, gn+vn has all the right properties. In both
cases, by taking n sufficiently large, we make the error terms go to zero, and hence
obtain the a′ as one of gn ± vn . �

In the following, the function ψ need not be a group homomorphism.

Lemma 4.3. Suppose G and H are nearly divisible dimension groups, each with
order unit, and respective trace σ and τ . Let K = G⊕ H with the strict ordering,
and suppose that the trace on K , φ := σ ⊕ τ , is order unit good. Then provided the
following condition holds, σ is order unit good as a trace on G:

• There exists a function ψ : τ−1(σ (G)∩ τ(H))→ σ−1(σ (G)∩ τ(H)) that is
pseudonorm continuous with the additional property that σψ = τ .

Remark. As we will see below, without the weird extra condition, the result fails.

Proof. Select an order unit b in G, and a in G such that 0 < σ(a) < σ(b). As
H is approximately divisible, there is a sequence of order units (hn) in H such
that hn → 0 (with respect to the pseudonorm topology on H ; equivalently, as
functions on S(H, v), ĥn converges uniformly to zero). There also exists δ in
G such that σ(b− a)/4 < δ̂ < min{σ(b− a)/2, infθ∈S(G,u) θ(b)/2} uniformly on
S(G, u). Then Bn := (b− δ, hn) are order units of G⊕ H , and φ(a, 0) < φ(Bn)=

σ(b)− σ(δ)+ τ(hn).
Since φ is order unit good and each Bn is an order unit, there exist (an, zn) such

that 0� an� b−δ and 0� zn� hn , with φ((an, zn))= σ(a), and by the previous
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lemma, infS(G,u) ân is bounded below (as n → ∞); in particular, ‖zn‖H → 0
and σ(an)+ τ(zn) = σ(a). Thus zn ∈ τ

−1(σ (G) ∩ τ(H)), so we may consider
the sequence ψ(zn) ∈ σ

−1(σ (G) ∩ τ(H)). Since ψ is pseudonorm continuous,
ψ̂(zn)→ 0 uniformly on S(G, u).

Consider an+ψ(zn); its value at σ is σ(an)+σ(ψ(zn))=σ(an)+τ(zn)=σ(a). If
we choose n sufficiently large so that ‖ψ̂(zn)‖< inf δ, then an+ψ(zn)�b−δ+δ=b.
In addition, we can also choose n sufficiently large so that inf ψ̂(zn)>− infS(G,u) ân ,
by the uniform boundedness below of the an (there is no guarantee that ψ(zn) is
positive). Then an+ψ(zn) is an order unit in the interval [0, b] and we are done. �

One advantage of not requiring normalization of σ and τ is that we can re-
place them by any positive scalar multiples in testing for order unit goodness of
λσ ⊕µτ ; the first hypotheses are unchanged, but the second translates to density of
(λσ(G))∩ (µτ(G)) in R. In the following, we cannot apply earlier results directly,
since G⊕ 0 is not an order ideal of G⊕ H (strict ordering).

Lemma 4.4. Suppose that σ is a trace on G, τ is a trace on H , and σ ⊕ τ = φ is
order unit good for K = G⊕ H with the strict ordering, and moreover assume that
each of G and H is nearly divisible. Then σ(G)∩ τ(H) is dense in R.

Proof. We use the characterization of order unit good traces on approximately
divisible dimension groups; namely kerφ has dense image in φ` [BeH 2014,
Proposition 1.7].

Suppose the intersection is not dense; then there exists a real δ ≥ 0 such that
σ(G) ∩ τ(H) = δZ. We have that kerφ has dense range in Aff S(K , (u, v)) =
Aff S(G, u)×Aff S(H, v). But

kerφ = {(g, h) ∈ G⊕ H | σ(g)=−τ(h)}.

If δ = 0, then kerφ = ker σ ⊕ ker τ (since σ(g) = −τ(h) implies σ(g) ∈
τ(H)∩σ(H), and hence is zero). The image of kerφ is then contained in σ`× τ`,
which is closed and of codimension two in Aff S(K , (u, v)), and so kerφ cannot
be dense in φ` (which has codimension one), hence φ cannot be order unit good.

If δ 6= 0, select g and h in G and H respectively such that σ(g) = δ = τ(h).
Then it is easy to see that kerφ = (ker σ ⊕ ker τ)+ (g,−h)Z, and then its range
is contained in (σ`× τ`)+ (ĝ,−ĥ)Z. However, the latter is closed (easy to see),
and so the image of kerφ is contained in a proper closed subspace (with a discrete
direct summand) of φ`; hence in this case as well, φ is not order unit good. �

Now we want to determine when σ ⊕ τ is good or order unit good. Let
πG : G⊕ H → G and πH : G⊕ H → H be the obvious projection maps. Un-
like the inclusions G, H → G ⊕ H , these are order-preserving. First, consider
σ ◦πG : kerφ→σ(G)∩τ(H)⊆R. The kernel is exactly ker σ⊕ker τ ; we also note
that σ extends to a map 6 : φ`→R (sending ( j, l) to j (σ )), the kernel of which is
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σ`× τ`. Via the identification of Aff S(K , (u, v)) with Aff S(G, u)×Aff S(H, v),
we have the following diagram:

0 - ker σ ⊕ ker τ - kerφ
σ ◦πG- σ(G)∩ τ(H) - 0

k̂er σ × k̂er τ

?

- k̂erφ

?
6 - R

?

0 - σ`× τ`
?

- φ`
?

6 - R
?

- 0

The long horizontal overlines indicate closure, as subgroups of the affine function
vector spaces; of course, there is no requirement that any of the three overlined
groups be real vector spaces (they are norm-complete subgroups). The two leftmost
top vertical arrows are just induced by the affine representations; the right one is
the inclusion, compatible with 6 restricted to the image of kerφ. The two leftmost
bottom vertical arrows are the obvious inclusions. The 6 in the middle row is an
abuse of notation; it represents the restriction of 6 to k̂erφ, the closed subgroup
of φ`, but the notation is already rather complex.

The middle row need not be exact at either end. For example, if kerφ has dense
image in φ` but one or both of ker σ or ker τ does not have dense image in σ` or
respectively τ`, then it is not left exact; if σ(G)∩ τ(H) is discrete, then the middle
line is not right exact.

If kerφ has dense image in φ`, then σ(G) ∩ τ(H) is a dense subgroup of R:
we simply note that density of the image of kerφ in φ`, the latter being a closed
and therefore a norm-complete subspace of Aff S(K , (u, v)), entails that for every
bounded linear functional that is not zero on φ`, its restriction to a dense subgroup
must be not zero and have dense range in the reals. �

It also leads to a straightforward proof that if ker σ and ker τ have dense images
in σ` and τ` respectively, and if σ(G)∩τ(H) is a dense subgroup of R, then kerφ
has dense image in φ`. We have that

σ`× τ` = k̂er σ × k̂er τ ⊆ k̂erφ ⊆ φ`.

The left and right terms of these inclusions are vector spaces, and since σ`× τ`

is a closed codimension-two subspace of Aff S(K , (u, v)) and φ` is codimension
one, it follows that σ`× τ` is a codimension-one subspace of φ`. (The proof does
not stop here — we do not know that k̂erφ is a real vector space.)

The map 6 induces a map from

k̂erφ/(k̂er σ ⊕ k̂er τ )
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to a subgroup of the reals. However, this subgroup of the reals includes the dense
subgroup σ(G)∩ τ(H), and as k̂erφ is a norm-complete abelian group, the image
must be complete, and thus must be onto. In addition, since

ker6 = σ`× τ` = k̂er σ × k̂er τ ,

it follows that
ker6 ∩ k̂erφ = k̂er σ × k̂er τ .

We thus have
ker6 ⊂ k̂erφ ⊆ φ`,

but 6 induces the equality

k̂erφ/(ker6 ∩ k̂erφ)= φ`/ ker6.

It follows immediately that k̂erφ = φ`.
Now we can show that if the closure of the images of ker σ and ker τ are real

vector spaces, and if kerφ is order unit good, then σ and τ are order unit good.
We wish to show

k̂er σ × k̂er τ = σ`× τ`,

as from this it follows trivially that

k̂er σ = σ` and k̂er τ = τ`.

Since the left thing is a vector space, and a complete normed abelian group (hence
a closed vector subspace of Aff S(K , (u, v))), if equality does not hold, there exists
a bounded linear functional α on Aff S(K , (u, v)) that kills k̂er σ × k̂er τ but not
σ`× τ`; in particular, α does not kill φ`.

By composition with the affine representation, we “restrict” α to a real-valued
bounded group homomorphism β : G ⊕ H → R (for a treatment of bounded
group homomorphisms on dimension groups, see [Goodearl 1986]; their behaviour
is just what you’d expect). Since α kills k̂er σ × k̂er τ , it follows that β kills
ker σ ⊕ ker τ . We form the normed abelian group kerφ/(ker σ ⊕ ker τ), which
via σ , we know to be σ(G)∩ τ(H) ⊂ R. Thus β induces a bounded real-valued
group homomorphism on kerφ/(ker σ⊕ker τ); call it β̄. We thus have two bounded
group homomorphisms on the quotient, β̄ and σ̄ , but as the quotient is isomorphic
(as a normed abelian group) to a subgroup of the reals, there must be a positive real
number λ such that β̄ = λσ̄ .

This forces β = λ · σ ◦πG (as bounded group homomorphisms on kerφ). Since
kerφ has dense image in its completion (!) which happens to be φ`, we have that
α|φ` = λ6. Thus α kills σ`× τ`, a contradiction. �

To summarize, we have the following results.
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Proposition 4.5. Suppose (G, u, σ ) and (H, v, τ ) are nearly divisible dimension
groups with order unit and distinguished trace, and form K = G⊕H , and the trace
φ = σ ⊕ τ : K → R.

(a) If φ is order unit good (with respect to either the usual or the strict ordering
on K ), then σ(G)∩ τ(H) is a dense subgroup of the reals, and σ ⊗ 1Q and
τ ⊗ 1Q are order unit good as traces on G⊗Q and H ⊗Q respectively.

(b) If the closure of the images of ker σ and ker τ in σ` and τ` respectively are
real vector spaces, and if φ is order unit good, then both σ and τ are order
unit good.

(c) If σ and τ are order unit good and σ(G)∩ τ(H) is dense in R, then φ is order
unit good.

We can also rephrase this as follows.

Proposition 4.6. Let (G, u, σ ) and (H, v, τ ) be nearly divisible dimension groups
with order units and normalized traces. Consider the following properties:

(1) σ ⊕ τ is an order unit good trace on G⊕s H.

(2) σ(G)∩ τ(H) is a dense subgroup of R.

(3) The closures of the images of ker σ and ker τ in their respective affine spaces
are real vector spaces.

(4) Both σ and τ are order unit good traces.

Then the following implications hold: (1) implies (2); (1) and (3) jointly imply (4);
(4) implies (3); (4) and (2) jointly imply (1).

Remark. The implications are invariant under the transformation (x) 7→ (5− x).

Examples exist (Example 4.8) where G and H are simple dimension groups that
show that if φ is order unit good, then neither σ nor τ (or exactly one of them)
need be order unit good.

This method suggests what to do with multiple traces. Let (Gi , ui , σi ), where
i = 1, 2, . . . , n, be approximately divisible dimension groups, each with order
unit and (unnormalized) trace. Form K =

⊕
Gi with the strict ordering, and

φ = σ1⊕ σ2⊕ · · ·⊕ σn : K → R, and the map T : K → Rn defined by φ((gi ))=∑
σi (gi ) and T ((gi )) = (σ1(g1), σ2(g2), . . . , σn(gn)). Identify Aff S(K , ((ui )))

with the cartesian product Aff S(G1, u1)× · · ·×Aff S(Gn, un).
If (gi ) ∈ kerφ, then σn(gn) = −

∑n−1
i=1 σi (gi ), and we can interchange n with

any other integer less than n. In particular, V := σ−1
n (σn(Gn)∩ (

∑n
i=1 σi (Gi ))) is

independent of permutations and the range of T on kerφ is T (V ).
Extend T to T : Aff S(K , (ui ))→ Rn (sending ( ji ) to ( ji (σi ))). Restricted to

φ`, the range of T is exactly (1, 1, 1, . . . , 1)⊥, i.e., the entries add to zero.



396 DAVID HANDELMAN

Now we can form the diagram analogous to the previous one.

0 - ker σ1⊕ · · ·⊕ ker σn - kerφ
T - T (V ) - 0

k̂er σ1× · · ·× k̂er σn

?

- k̂erφ

?
T - T (V )

?

0 - σ`1 × · · ·× σ
`

n

?
- φ`

? T- (1, 1, . . . , 1)⊥
?

- 0

We quickly see that density of T (V ) (a subgroup of Rn contained in (1, . . . , 1)⊥)
in (1, . . . , 1)⊥ is necessary for φ to be order unit good; that is, it is necessary in
order for kerφ to have norm dense image in φ`.

Suppose all the σi are order unit good and T (V ) is dense in (1, . . . , 1)⊥. Then

k̂er σ1× · · ·× k̂er σn = σ
`

1 × · · ·× σ
`

n

is a closed subspace of φ`, and the middle line yields that the codimension of k̂erφ in
Aff S(K ) is n− (n− 1) = 1, so being a closed subspace of the codimension-one
space φ`, k̂erφ must equal it, and therefore φ is order unit good.

Suppose that φ is order unit good (hence we have density of T (V ) in (1, . . . , 1)⊥)
and each k̂er σi is a vector space. To show that the σi are all order unit good, it is
sufficient to show that the ker σi have dense image in σ`, and it is easy to show
that k̂er σ1× · · ·× k̂er σn equals σ`1 × · · ·× σ

`
n is sufficient for this.

We note that the bounded real-valued group homomorphisms on T (V ), and of
course on its closure, are linear combinations of the coordinate functions, which
correspond to the σi , with lack of uniqueness arising from the relation that the sum
of the coefficients is zero.

By assumption, each k̂er σi is a vector space (and closed in Aff S(Gi , ui )),
whence the whole batch L := k̂er σ1× · · · × k̂er σn is a closed subspace of M :=
σ`1 × · · · × σ

`
n (which is itself a closed codimension-n subspace of Aff S(K )). If

they are not equal, there exists a bounded linear functional α on Aff S(K , (ui )) that
kills L but not M . This induces a bounded real-valued group homomorphism β

on kerφ which kills ker σ1⊕ · · ·⊕ ker σn . Hence it induces a bounded real-valued
group homomorphism on the quotient, T (V ), B : T (V )→ R.

Each σi induces 6i on T (V ), and these are the coordinate functions. Hence
there exist real λi such that B =

∑
λi6i . Thus β −

∑
λiσi vanishes identically

on kerφ, and by density, α =
∑
λiσi (where σi is now interpreted as the map

( ji ) 7→ ji (σi ) on Aff S(K )). But this obviously kills σ`1 ×· · ·×σ
`
n , a contradiction.

Hence each σi is order unit good.
To summarize what happens with multiple traces, we have the following:
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Theorem 4.7. Let (Gi , ui , σi ) be approximately divisible dimension groups with
order unit (ui ) and (unnormalized) trace (σi ). Form K =

⊕
Gi (with the strict

ordering), and the trace φ =
⊕
σi on K . Set J = σn(Gn)∩

(∑
i≤n−1 σi (Gi )

)
, a

subgroup of R.

(a) If φ is order unit good, then T (σ−1
n (J )) is dense in (1, 1, . . . , 1)⊥.

(b) If the closure of the image of ker σi in σ`i is a real vector space for all i , and if
φ is order unit good, then all σi are order unit good.

(c) If the image of ker σi is dense in σ`i for all i (that is, each σi is order unit
good), and if T (σ−1

n (J )) is dense in (1, 1, . . . , 1)⊥, then φ is order unit good.

The conditions for order unit goodness with n direct summands are slightly
different, in that they involve the density of a subgroup of Rn−1 (identified with
(1, . . . , 1)⊥), or simply that the closure of T (V ) is a vector space of dimension n−1
(in general, the closure need not be a vector space). To some extent, this explains
some of the phenomena illustrated in the examples below, with direct sums of
two not yielding an order unit good trace, but direct sums of three doing so. In
fact, the argument in the example, Gn = Z+ (

√
3+ n
√

2)Z, essentially boils down
to showing the closure of T (V ) is a two-dimensional vector space. But actually
calculating with T (V ) seems awkward.

However, computation is feasible in special cases. Suppose G1 = Z+
√

6Z,
G2=Z+

√
15Z, and G3=Z+

√
10Z. Then T (V ) is discrete, so σ1⊕σ2⊕σ3 is not

order unit good. However, if we add a fourth term, G4 = Z+ (
√

6+
√

15+
√

10)Z,
then with φ =

⊕
i≤4 σi ,

kerφ =
{(

a+ b
√

6, c+ b
√

15, d + b
√

10,

−(a+ c+ d)− b
(√

6+
√

15+
√

10
)) ∣∣ a, b, c, d ∈ Z

}
.

Let v1 = (1, 0, 0,−1), v2 = (0, 1, 0,−1), and v3 = (0, 0, 1,−1); then kerφ is the
Z-span of

{v1, v2, v3,
√

6v1+
√

15v2+
√

10v3}.

The map from kerφ to R3 given by vi 7→ ei (standard basis elements) has range
equal to the free abelian group on {e1, e2, e3,

√
6e1 +

√
15e2 +

√
10e3}. Since

{1,
√

6,
√

10,
√

15} is linearly independent over the rationals, this group is dense.
It is trivial that {vi } is a real basis for φ`, so φ is good. In this example, all the
ker σi are trivial, so T (V ) is all of kerφ.

On the other hand, if we omit any one or two of the Gi , the resulting trace is not
order unit good, since the resulting T (V ) will be discrete.

We can similarly construct (Gi , σi ) (the Gi subgroups of the reals), i = 1, . . . , n,
such that

⊕n
i=1 σi is order unit good, but for no proper subset J of {1, 2, . . . , n}

with |J | > 1 is
⊕

i∈J σi order unit good: Let {pi }
n
i=1 be distinct primes; set
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Gi = Z+
√

pi Z for 1 ≤ i ≤ n − 1, and Gn = Z+
(∑n−1

i=1
√

pi
)
Z. The resulting

T (V ) will be a critical group of rank n, so all subgroups of lesser rank are discrete.

Example 4.8. There exist simple dimension groups (G, σ ) and (H, τ ) with traces
such that φ = σ ⊕ τ is (order unit) good on the strict direct sum K = G⊕ H , but σ
is not good as a trace on G (and in one case, τ is good, in another case, it is not).

Proof. For simple dimension groups (as G, H , and K are), order unit goodness is
equivalent to goodness. Begin with three subgroups of the reals,

G1 = Z+
√

3Z+
√

5Z,

G2 = Z+
√

2Z+
√

5Z,

G3 = Z+ (
√

3+
√

2)Z.

Let τi denote the respective identifications of Gi with subgroups of the reals; these
are traces on each of these three totally ordered dimension groups. Each τi is the
unique (up to scalar multiple) trace, and thus is good. Now form L = G1 ⊕G2

with the strict order; since both subgroups contain Z+
√

5Z, which is dense, it
follows from the criterion above that τ1⊕ τ2 is a good trace thereon. Next, form
K = L ⊕G3, with the strict order; since the value group of τ1⊕ τ2(L) includes
Z+ (
√

3+
√

2)Z and the latter is dense, we can apply the criterion again, and so
deduce that τ1⊕ τ2⊕ τ3 is good, as a trace on K .

However, we can obtain K by proceeding in a different order. Set G = G1⊕G3

with the strict order. Either by direct examination or by the necessity of the density
condition, τ1⊕ τ3 is not good — note in particular, that the intersection of the value
groups is just Z. Let H = G2; then the obvious permutation-order isomorphism
which takes K to G⊕H takes τ1⊕τ2⊕τ3 to τ1⊕τ3⊕τ2, hence the latter is good. But
with σ =τ1⊕τ3 and τ =τ2, we have that σ is not good, whereas σ⊕τ (and τ ) is good.

To obtain an example wherein neither σ nor τ is good, let G4 be another copy
of G3, set G =G1⊕G3 and H =G2⊕G4 (with the strict orderings of course); τ =
τ2⊕τ4 is not good for the same reason as σ = τ1⊕τ3, but their direct sum is good. �

5. Good sets of traces

As in [BeH 2014], a compact convex subset Y of S(G, u) is order unit good with
respect to (G, u) if given b ∈ G+ \ {0} (b is an order unit of G) and a ∈ G such that
0� â|K � b̂|K , there exists a′ ∈G such that â|K = â′|K and 0≤ a′ ≤ b. When Y
is a face (it need not be; e.g., for any singleton subset of S(G, u), {τ } is good if and
only if the trace τ is good as defined for individual traces), Y is order unit good if and
only if ker Y :=

⋂
τ∈K ker τ has dense range in Y⊥ = {h ∈ Aff S(G, u) | h|K ≡ 0}.

When G is simple, this was defined as good in [BeH 2014]. When G = Aff K
(where K is a Choquet simplex), equipped with the strict ordering, goodness of
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subsets of K is an interesting geometric property. In Appendix B, we show that
at least when K is finite-dimensional, the good subsets of K are as conjectured in
[BeH 2014, Section 7, Conjecture].

There is a problem in defining what a good subset Y should be in the nonsimple
case. It should be consistent with what has been defined in the simple case (where
good is the same as order unit good), and the singleton case (whence came the
original definition of good); additionally, it would be desirable that if Y = S(G, u),
then Y should be good whenever G is a dimension group such that Inf G = {0}.

We give a definition of good in more complicated situations, including for a set of
traces; this extends some of the definitions in [BeH 2014]. For any partially ordered
abelian group H and h ∈ H+, recall the definition of the interval generated by h,
denoted [0, h] (possibly with a subscript H if necessary to avoid ambiguity about
the choice of group), to be { j ∈ H | 0≤ j ≤ h}. Let (G, u) be a dimension group (at
this stage, we really only require that it be a partially ordered unperforated group)
with order unit. Let L be a subgroup of G; we say L is a good subgroup of G if

(i) L is convex (that is, if a ≤ c ≤ b with a, b ∈ L and c ∈ G, then c ∈ L), and
G/L is unperforated;

(ii) using the quotient map π : G→ G/L , the latter equipped with the quotient
ordering, for every b ∈ G+, we have π([0, b])= [0, π(b)].

Convexity is required in order that the quotient positive cone be proper, that is,
the only positive and negative elements are zero. Unperforation is often redundant;
it may always be (in the presence of (ii); see the discussion concerning refinability
in [BeH 2014]). The second property says that for all b ∈ G+, and for all a ∈ G
such that 0≤ a+ L ≤ b+ L (or equivalently, (a+ L)∩G+ and (b− a+ L)∩G+

are both nonempty), there exists a′ ∈ G such that a− a′ ∈ L and 0≤ a′ ≤ b. This
is a strong lifting property.

For example, if τ is a trace, set L = ker τ ; this is convex, and is a good subgroup
of G if and only if τ is good (as a trace); in this case, G/L is naturally isomorphic
to a subgroup of the reals, so unperforation is automatic.

For a subset U of S(G, u) define ker U =
⋂
σ∈U ker σ ; for a subset W of G,

define Z(W )={σ ∈ S(G, u) |σ(w)=0}. For good sets, we may as well assume that
Y = Z(ker Y ) at the outset; in other words, σ ∈ Y if and only if σ(ker K )= 0, since
in any reasonable definition for good or order unit good, the candidate set will satisfy
Y = Z(ker Y ). As explained in [BeH 2014], these form the collection of closed
sets with respect to a Zariski-like topology, and also extend the definition of facial
topology (relative to G) defined on ∂e S(G, u), to S(G, u). If Y ⊂ S(G, u), set Ỹ =
Z(ker Y )={σ ∈ S(G, u) |σ(ker Y )={0}}; this is a closure operation, corresponding
to the facial topology and analogous to the Zariski topology from algebraic geometry.
In many cases, we just assume Y = Ỹ already, since ker Y = ker Ỹ .
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We say Y is a good subset of S(G, u) with respect to (G, u) if Y = Ỹ and ker Y
is a good subgroup of G. If Y = {τ }, and τ is merely an order unit good trace, then
ker τ has dense image in τ`, and this implies Y = Ỹ .

If L is a subgroup of G, then we may form

Y ≡ Z(L)= {σ ∈ S(G, u) | σ(L)= {0}}.

Then Y satisfies Ỹ = Y . However, it can happen that L is a good subgroup of G,
but Z(L) is not a good subset of S(G, u) with respect to G.

For example, let (H, [χX ]) be the ordered Čech cohomology group of any
noncyclic primitive subshift of finite type. It is known not to be a dimension group,
but is unperforated and has numerous other properties (see [Boyle and Handelman
1996] as well as unpublished results of Boyle and the author). There exists a
dimension group (G, u) such that H ∼= G/ Inf G with the quotient ordering. Set
Y = S(G, u), so that ker Y = Inf G. Since the quotient H = G/ Inf G is not a
dimension group, it follows from results below that property (ii) fails. However,
L = {0} is clearly a good subgroup of G, and Z(L)= Y , but ker Y = Inf G. So Y
is not a good subset of S(G, u).

In the definition of a good subgroup, it may be that the relatively strong condition
that G/L is unperforated can be replaced by the much weaker G/L is torsion-
free, in the presence of (ii), the lifting property. This is the case in the situation
described in [BeH 2014, Proposition 7.6], dealing with simple dimension groups
and L = ker Y . There are criteria for the quotient G/L to be unperforated [BeH
2014, Lemma B1], but these are not always easy to verify.

The following is implicit in [BeH 2014, Proposition 7.6].

Lemma 5.1. Suppose (G, u) is a dimension group and L is a convex subgroup
of G satisfying (ii). Then G/L with the quotient ordering is an interpolation group,
and its trace space is canonically affinely homeomorphic to L`. The latter is a
Choquet simplex.

Proof. If 0 ≤ a + L ≤ (b+ L)+ (c+ L) in G/L , first lift b and c separately to
positive elements of G; it doesn’t hurt to relabel them b and c. Applying (ii) to
0 ≤ a+ L ≤ (b+ c)+ L , we can find a′ ∈ [0, b+ c] such that a− a′ ∈ L . Hence
0≤ a′ ≤ b+ c; by interpolation in G, we may find a1 ∈ [0, b] and a2 ∈ [0, c] such
that a′ = a1 + a2. Then a + L = a′ + L = (a1 + L)+ (a2 + L) and ai + L are
positive elements of G/L , and each is less than b+ L , c+ L respectively. Thus
G/L satisfies Riesz decomposition. The rest is standard. �

We may consider the simplest definition possible for goodness of a set; that is,
Y is better (a facetious, but not inapt, name) for (G, u) if (i) Y = Z(ker Y ) and
(ii) whenever a ∈ G, b ∈ G+ and 0 ≤ â|Y ≤ b̂|Y , there exists a′ ∈ G+ such that
â′|Y = â|Y and a′ ≤ b. This turns out to be much too restrictive (although it is an
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interesting property); for example, if Y = S(G, u), then Y is better implies G/ Inf G
(with the quotient ordering; this need not be a dimension group) is archimedean,
which hardly ever occurs; and if G is simple, this is generally stronger than order
unit good. If Y is a singleton, then better agrees with the original definition of good.

Lemma 5.2. Let (G, u) be a dimension group with order unit u. If Y ⊆ S(G, u) is
good with respect to (G, u), then G/ ker Y is a dimension group, with trace space
canonically affinely homeomorphic to Y .

Proof. As good implies order unit good, ker Y has dense image in Y`, and thus
its closure is a vector space, so that by [BeH 2014, Corollary B2], G/ ker Y is
unperforated. Now suppose 0 ≤ a + ker Y ≤ (b + ker Y )+ (b′ + ker Y ), where
the latter two terms are nonnegative. Hence we may assume b, b′ ≥ 0, and
thus 0 ≤ a + ker Y ≤ (b + b′) + ker Y implies there exists a′ ∈ G+ such that
a′ + ker Y = a + ker Y and a′ ≤ b + b′. Riesz interpolation in G yields a de-
composition a′ = a1 + a2, where 0 ≤ a1, a2 and a1 ≤ b and a2 ≤ b′. Hence
a+ ker Y = a′+ ker Y = (a1+ ker Y )+ (a2+ ker Y ), and a1+ ker Y ≤ b+ ker Y ,
and a2+ ker Y ≤ b′+ ker Y . Thus G/ ker Y satisfies interpolation.

Any trace τ of G/ ker Y , normalized at u+ker Y , induces a trace τ̃ of (G, u) by
composing with the quotient map. Conversely, if σ is a trace that kills ker Y , then
from the definition, σ ∈Y . Hence the map S(G/ ker Y, u+ker Y )→ S(G, u) is one-
to-one and onto, and it is easy to see that it is an affine homeomorphism to Aff Y . �

Lemma 5.3. If Y is a good subset of S(G, u), then (I, w) is an order ideal of G
with its own order unit, and for all σ ∈ Y , we have σ |I 6≡ 0, then the map

I/(I ∩ ker Y )→ G/ ker Y

is an order isomorphism.

Proof. First we show I/(ker Y ∩ I ) is unperforated, by showing the image of I
is an order ideal in G/ ker Y (which is unperforated, by the preceding). Select
0≤ a+ ker Y ≤ b+ ker Y , where b ∈ I ; we can write b = b1− b2, where bi ∈ I+,
and thus 0≤ a+ker Y ≤ b1+ker Y , and now b1 ∈ I+. There thus exists a′ ∈ [0, b1]

such that a−a1 ∈ ker Y . As 0≤ a′ ≤ b1 and b1 ∈ I , it follows that a1 ∈ I+, so that
a1+ ker Y is in the image of I ; the latter is thus a convex subgroup of G/ ker Y .
Directedness of the image is trivial, so I/(I ∩ ker Y ) is an order ideal in G/ ker Y .

Any order ideal in an unperforated partially ordered group is itself unperforated,
so I/(ker Y ∩ I ) is unperforated.

If σ ∈ Y and σ(w)= 0, then σ(I )= 0, contradicting the property of Y ; hence
ŵ|Y � δ for some δ > 0. Since G/ ker Y is unperforated and its trace space is
canonically identified with Y , it follows that w+ker Y is an order unit for G/ ker Y .
Hence the order ideal generated by w+ ker Y is all of G/ ker Y . Hence the image
of I in G/ ker Y is onto.
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So far, the map I/(I ∩ker Y )→ G/ ker Y is one-to-one (by construction), order-
preserving (by definition), and now we know that it is onto. To show it is an
order-isomorphism, it suffices to show that the image of I+ is all of the positive cone.

Select b ∈ G+. Then b̂|Y � m for some integer m, so there exists an integer N
such that b̂� N ŵ, and thus 0≤ b+ker Y ≤ Nw+ker Y (the latter by unperforation,
again). By goodness, there exists a ∈ [0, Nw] such that a−b ∈ ker Y ; 0≤ a ≤ Nw
implies a ∈ I+, and it maps to b+ ker Y . �

The latter property is the analogue of τ(I ) = τ(G) for a single good trace τ
of G. If we weaken the hypotheses to “ker Y does not contain I ”, then the result is
unclear. We have similar problems with the following characterization when some
points of Y are not faithful.

Lemma 5.4. Let (I, w) be an order ideal of G with its own order unit, and suppose
that every point of Y does not kill I . Then the map φI : Y → S(I, w), given by
σ 7→ σ/σ(w)|I , is continuous. If Y is good with respect to (G, u), then φI (Y ) is
good with respect to (I, w).

Proof. The restriction map on traces sends every point to a nonzero trace of I , and
thus the map is continuous (as Y is compact, infσ∈Y σ(w) > 0). Suppose ρ is a
normalized trace on (I, w) such that ρ|(I∩ker ρ) is identically zero. Then ρ induces
a trace on I/(I∩ker Y ), hence is a trace on G/ ker Y , and therefore ρ is the restriction
of a trace from G, necessarily killing Y . If r is the lifted trace, we must have r ∈ Y ,
and thus ρ ∈φI (Y ). In particular, relative to (I, w), we have φI (Y )= Z(kerφI (Y )),
and it follows immediately that φI (Y ) is good with respect to (I, w). �

The condition on Y in the next result, that every point be faithful, is rather strong,
but makes things easier to deal with. The much weaker faithfulness condition
(ker Y ∩ G+ = {0}) is innocuous, as we can factor out the maximal order ideal
contained in ker Y .

Lemma 5.5. Let (G, u) be a dimension group, and Y a subset of S(G, u) for
normalized traces σ . Then σ | ker Y ≡ 0 if and only if σ ∈ Y and ker Y ∩G+ = {0}.

(a) The trace space of the quotient G/ ker Y is canonically affinely homeomorphic
to Y .

(b) If G/ ker Y is unperforated and Y satisfies the additional condition that every
element of Y is faithful, then G/ ker Y is simple.

Proof. Let φ be a normalized trace of (G/ ker Y, u+ker Y ), and let π :G→G/ ker Y
be the quotient map. Then σ ′ := σ ◦π is a normalized trace of (G, u) satisfying
σ(ker Y )= 0, so σ ∈ Y . Thus the map S(G/ ker Y, u+ ker Y )→ S(G, u) given by
σ 7→ σ ◦π has image in Y , and is clearly onto Y .

(a) The map is obviously one-to-one, affine, and continuous, with continuous inverse
Y → S(G/ ker Y, u+ ker Y ), and so is an affine homeomorphism.
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(b) Suppose a+ker Y is nonzero and a+ker Y ≥ 0+ker Y ; there thus exists a′ ≥ 0
such that a′− a ∈ ker Y (from the definition of the ordering on the quotient group).
If a+ ker Y is not an order unit, then there exists a normalized trace σ on G/ ker Y
such that σ(a + ker Y ) = 0 (otherwise, â|Y is strictly positive, and as G/ ker Y
is unperforated, this would imply a + ker Y is an order unit in G/ ker Y ). Then
σ ′ = σ ◦π belongs to Y and σ ′(a′)= 0, contradicting ker σ ′ ∩G+ = {0}.

Hence every nonzero element of G/ ker Y is an order unit. �

If in part (b), we drop the unperforated hypothesis, then we can still say something.
From a + ker Y ≥ 0+ ker Y , we have 0 ≤ â|Y ; if for all positive integers m, we
have that ma + ker Y is not an order unit in G/ ker Y , then there must exist a
trace φ on G/ ker Y such that φ(a′)= 0. As in the argument above, this leads to
a contradiction. So in the perforated case, we obtain that there exists m > 0 such
that m(a + ker Y ) is an order unit. If we define simple to mean no proper order
ideals, then the quotient group is simple. (We normally deal with unperforated order
groups, wherein the lack of order ideals is equivalent to every nonzero nonnegative
element being an order unit.)

The following is a variant of [BeH 2014, Lemma 7.1].

Lemma 5.6. Let (G, u) be an approximately divisible dimension group, and let L
be a convex subgroup. If G/L is unperforated, then order units lift. (That is, given
a such that a+ L is an order unit of G/L , there exists an order unit v of G such
that a− v ∈ L.)

Proof. The traces of G/L are the traces of G that kill L , Z := Z(L) ⊂ S(G, u).
As a + L is an order unit, â|L � δ for some δ > 0. As G is approximately
divisible, there exists w ∈ G such that δ/3 < ŵ < δ/2. Then (â − ŵ)|Z � δ/2;
as G/L is unperforated, a−w+ L is in (G/L)+. From the definition of quotient
ordering, there exists c ∈ G+ such that c+ L = a−w+ L . Set v = c+w. Then
v+ L = a−w+w+ L = a+ L; since v ≥ w and w is an order unit, it follows
that v is an order unit. �

If we drop approximate divisibility, we obtain that for all order units a + L
of G/L , there exists an integer N such that for all n ≥ N , there exist order units vn

of G such that vn − na ∈ L . (Instead of using a small order unit w, we take u or
any other order unit we can find.)

The following gives a general result (without assuming G/ ker Y is unperforated,
but instead, that Y is a face) about lifting order units.

Lemma 5.7. Suppose Y = Z(ker Y ) is a face of S(G, u) such that the image of
ker Y is dense in Y⊥. Let a ∈ G satisfy a+ ker Y ≥ 0 and â|Y � δ for some δ > 0.
Then there exists a′ ∈ G++ such that a′+ ker Y = a+ ker Y .
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Proof. From the quotient ordering, there exists c ∈ G+ such that c− a ∈ ker Y . Let
F = {τ ∈ S(G, u) | τ(c)= 0}; because c ∈ G+, F is a face, and is obviously closed.
Since ĉ|Y = â|Y , we must have F ∩ Y = ∅. There thus exists h ∈ Aff S(G, u)+

such that h|Y ≡ 0 and h|F ≡ 1.
As h ∈ Y⊥, there exist gn ∈ ker Y such that ĝn→ h uniformly. Hence ĝn + c→

h+ ĉ uniformly. The latter however is strictly positive (since ĉ≥ 0 and ĉ−1(0)= F).
Hence there exists n such that ĝn + c is strictly positive; as G is unperforated,
a′ := gn+c is an order unit of G. Its image modulo ker Y is c+ker Y =a+ker Y . �

Proposition 5.8. Suppose that (G, u) is a nearly divisible dimension group, and
Y = Z(ker Y ) is a subset of S(G, u) such that for all σ ∈ Y , ker σ ∩ G+ = {0}.
Suppose that either Y is a face or G/ ker Y is unperforated. Then Y is good (with
respect to (G, u)) if and only if

(a) φI (Y ) is order unit good for all order ideals I having their own order unit,

(b) for every nonzero order ideal I , we have I + ker Y = G+ ker Y .

Remark. Condition (b) is just a restatement of the map I/(I ∩ ker Y )→ G/ ker Y
being onto. It does not require the stronger property, that it be an order isomorphism.

Proof. Sufficiency of the conditions: Suppose b ∈ G+ and a ∈ G and in addition,
0 ≤ a + ker Y ≤ b + ker Y . Let I ≡ I (b) be the order ideal generated by b;
that is, I (b) = {g ∈ G | ∃N ∈ N such that − Nb ≤ g ≤ Nb}. By (b), there
exists a1 ∈ I (b) such that a1+ ker Y = a + ker Y . Since I/(I ∩ ker Y ) is simple,
0≤ a1+ker Y ≤ b+ker Y entails either a1+ker Y = 0+ker Y or a1+ker Y is an
order unit. In the former case, set a′ = 0.

Otherwise, if Y is a face, there exists a2 ∈ I++ such that a2+ker Y = a1+ker Y .
Similarly, either b + ker Y = a1 + ker Y (in which case, we take a′ = b) or the
difference b+ ker Y − (a2+ ker Y ) is an order unit in I/(ker Y ∩ I ).

If G/ ker Y is unperforated, then I/(I ∩ker Y ) is unperforated (this follows from
I being an order ideal in G), and applying Lemma 5.6(b) to φI (Y ), is simple with
trace space canonically φI (Y ). This means that the order-preserving one-to-one
and onto map I/(I ∩ker Y )→G/ ker Y induces an affine homeomorphism on their
respective trace spaces; since the images in their affine function representations are
the same, that of I/(I ∩ker Y ) has dense range, and being simple (and φI (Y ) being
a simplex), the latter is a simple dimension group. A one-to-one order-preserving
group homomorphism between simple dimension groups which induces an affine
homeomorphism on the trace spaces is necessarily an order isomorphism.

Thus in either case, we have 0 � â|Y � b̂|Y ; now order unit goodness of
(I (b), b) yields a′ ∈ I+ such that a′ ≤ b.

Necessity of the conditions follows from the preceding results. �
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Now we briefly examine examples in RP . When R is a partially ordered com-
mutative unperforated ring with 1 as an order unit, every closed face of S(R, 1)
is uniquely determined by its extreme points and these form a compact subset
of X = ∂e S(R, 1) (and conversely, every closed subset of X yields a closed face
in this way). Thus, as a preliminary question, we can ask when the closed face
obtained from the closed subset Y of X is good (for R) or order unit good. We
say Y generates an (order unit) good face when this occurs.

It is easy to see that Y generates an order unit good face for R if and only
if for all pure traces σ 6∈ Y , we have σ | ker Y is not identically zero (we define
ker Y =

⋂
τ∈Y ker τ , as usual).

To verify this, if Y generates an order unit good face for R, then ker Y has dense
image in Ann Y := { f ∈ C(X,R) | f |Y ≡ 0}. There exists f ∈ Ann Y such that
f (σ ) 6= 0, and there exist an ∈ ker Y such that ân→ f uniformly, so there exists
a ∈ {an} such that 0 6= â(σ )= σ(a), hence σ | ker Y is not identically zero.

Conversely, suppose σ(ker Y ) 6= {0} for every σ ∈ X \ Y . It is trivial that ker Y
is an ideal of R (not generally an order ideal), so its closure in C(X,R) is a closed
ideal thereof, hence of the form Ann Z for some closed Z ⊂ X . Obviously Y ⊂ X ,
but if σ ∈ Z \ Y , there exists a ∈ ker Y such that σ(a) 6= 0, so that â 6∈ Ann Z , a
contradiction. Hence Z = Y , so ker Y has dense image in Ann Z , and thus Y is
order unit good for R.

Lemma 5.9. Let R be a partially ordered unperforated approximately divisible
commutative ring, and let Y be a compact subset of the set of faithful pure traces.
Let (I, v) be a nonzero order ideal with its own order unit.

(a) The set Y maps by normalized restriction to a compact set of pure faithful
traces on (I, v), YI .

(b) If the closed face generated by Y is order unit good for R, then the closed face
of S(I, w) generated by YI is order unit good for (I, v).

Goodness for RP (several variables) of sets corresponding to faces (that is, closed
subsets of the pure trace space) is dependent on the coefficients. For example, as we
will see below, if V is the variety given by f = (x−3)2+ (y−3)2−1, the circle of
radius one centred at (3, 3) and P= c0+c1x+c2 y, then V (or its corresponding face
in S(RP , 1) is order unit good, but not good, no matter what the choice of (positive)
integers c0, c1, c2. On the other hand, if P1 = P ·Q where Q = c+ x f + yg+ xyh,
where f is a polynomial in x with no negative coefficients such that (x − 3)2+ 8
divides some power of c + x f (such exist!), g is a polynomial in y such that
(y − 3)2+ 8 divides some power of c+ yg, and h is a polynomial in xy−1 such
that (1+ X2) divides some power of h(X), then V is a good subset for RP1 (the
conditions on the coefficients of monomials appearing in the faces of the Newton
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polytope described by the divisibility condition are necessary and sufficient for
Proposition 5.8(b) to apply; however they are also extremely complicated).

Now we specialize to R= RP or RP⊗Q, and to avoid severe complications, also
assume that the compact Y consists of pure faithful traces (that is, Y is a compact
subset of the positive orthant, (Rd)++, after identifying the pure faithful traces with
points of the orthant). Then ker Y = { f/Pk

∈ RP | f |Y ≡ 0}. Recall that for f ∈
Z[x1, . . . , xd ], f/Pk

∈ RP means that there exists l such that Log f P l
⊆Log Pk+l ;

we can well assume Log f ⊆ Log Pk .
Hence Y is order unit good for R if and only if whenever σ is a pure trace not

in Y , we have σ | ker Y 6= 0. If we restrict σ to the faithful pure traces, then we
deduce a necessary condition: if Y ⊂ (Rd)++ is compact, then Y is order unit good
for RP implies

ZI (Y )∩ (Rd)++)= Y.

That is, intersecting the Zariski closure of Y with (Rd)++ gives no new points. In
the singleton case, we have seen that this condition, real isolation, is sufficient.
However, for general compact Y , it is no longer sufficient.

In fact, examples to illustrate this are ubiquitous (when d > 1). The very
simplest one I could think of is the following. Let P = 1 + xy + x (the co-
efficients, here all ones, are not terribly important); then Log P is the triangle
with vertices {(0, 0), (1, 1), (1, 0)}, and as rings RP ∼= Z[X,W ] (the pure poly-
nomial ring in two variables) via the transformation X = x/P and W = xy/P .
Let f = (x − 3)2+ (y− 3)2− 1, so Z( f ) ∩ R2 is the circle of radius one cen-
tred at (3, 3), and we set Y to be this circle, sitting inside the positive quadrant
of R2. In particular, Log f = {(0, 0), (1, 0), (2, 0), (0, 1), (0, 2)}. It is trivial
that ZI (Y ) ∩ (R2)++ = Y . However, there exists σ ∈ ∂e S(RP , 1) \ Y such that
σ | ker Y = 0.

Explicitly, σ is the pure trace corresponding to the extreme point of cvx Log P
given by (0, 0); σ(g/Pk) = (g, x0,0)/(P, x0,0)k . Suppose a = h/Pk

∈ RP ; we
may assume Log h ⊆ Log Pk . If r ∈ Y implies h(r)/Pk(r)= 0, that is, τ(a)= 0
for all τ ∈ Y , then h|Y ≡ 0 (since Y is in the positive quadrant, P|Y vanishes
nowhere). Hence there exists e ∈Q[x, y] such that h= e · f (as IQ( f )= f Q[x, y]);
multiplying by a positive integer N , we may assume Nh = e · f , where e ∈ Z[x, y].

We claim that this forces h(0, 0) = 0, that is, its constant term must be zero,
from which it would follow that σ(a)= 0, showing that ker Y ⊂ ker σ , as desired.
If h(0, 0) 6= 0, then as Log h ⊆ Log Pk , we would have to have (0, 0) ∈ Log h,
and in particular, this point is an extreme point of cvx Log h. Since (0, 0) is also
an extreme point of cvx Log f , it easily follows that (0, 0) is an extreme point
of cvx Log e (we are working with Laurent polynomials as opposed to ordinary
polynomials, hence this complicated argument). Now consider the coefficients of e
and of f restricted to the line x = 0 (that is, throw away all the monomials with
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a power of x), e0 and f0 = y2
− 6y + 17. The product is not zero, and cannot

be a single monomial (since f0 is not), hence there must be, in addition to the
constant term, a term of the form y j in the product. It is easy to check that this
forces (0, j) ∈ Log e · f = Log h. However, Log Pk is contained in the lattice cone
generated by {(0, 0), (1, 1), (1, 0)}, which does not contain (0, j). This contradicts
Log h ⊆ Log Pk .

This example does not depend on the coefficients in P , that is, we could just
as well have taken P = 2+ 3xy+ 5x (which guarantees that RP is approximately
divisible), or whether we take RP or RP ⊗Q.

In contrast, if we take the same f , but P = 2+ 3x + 5y (or with any other
positive coefficients), then f/P2

∈ RP and for all nonfaithful pure σ , we have
σ( f/P2) > 0; hence the same Y is now order unit good for RP . This is part of a
more general criterion.

Let h be a polynomial in d variables, and let S be a finite set of lattice points in
Zd , and K (S)= cvx S. Suppose F is a proper face of K (S), and Log h ⊆ kS (the
set of sums of k elements of S). We define hF,k , the facial polynomial of h relative
to F and k, by throwing away all the terms in xw of h for which w 6∈ k F . In the
case S = Log P , we can form the element hF,k/(PF )

k
∈ RPF (in fewer variables,

the number being the dimension of F). This yields a positive homomorphism
RP → RPF as described in [Handelman 1985].

Let Y satisfy ZI (Y )∩ (Rd)++ = Y , and form the ideal I (Y ) of Z[x1, . . . , xd ].
Let P be a projectively faithful polynomial in Z[x1, . . . , xd ]. We say that Y can be
fitted with respect to P if there exists a polynomial h ∈ I (Y ) such that

(a) Log h ⊆ Log Pk for some k,

(b) for every proper face F of cvx Log P , hF,k has no negative coefficients.

This depends on Log P , but not so much on the coefficients P [Handelman 1987,
Proposition II.5].

Condition (b) can be somewhat weakened, since we are permitted to multiply the
numerator and denominator of h/Pk by powers of P , and apply eventual positivity
criteria, e.g., [Handelman 1986]. The condition is equivalent to “for all pure σ
that are not faithful, there exists h ∈ I (Y ) such that σ(h/Pk) > 0”. For example,
with Log P = {(0, 0), (0, 1), (1, 0)} and Y the circle in (R2)++ of radius 1 centred
at (3, 3), Y is fitted with respect to P . Just observe that f has the three facial
polynomials (corresponding to the three edges of cvx Log P (the extreme points
take care of themselves, so we need not worry about the zero-dimensional faces),
(x − 3)2+ 17, (y− 3)2+ 17, x2

+ y2. If we multiply the first two by a sufficiently
high power, say N , of 1+x (respectively (1+y)), the outcome will have no negative
coefficients. It follows that if h = P N f , then h will be positively fitted with respect
to P , with k = N + 2.
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Now the following is practically tautological.

Proposition 5.10. Let P be a faithfully projective element of Z[xi ], and Y a com-
pact subset of ((R)d)++. Then Y generates an order unit good face for RP (and
simultaneously for RP ⊗Q) if and only if

(i) ZI (Y )∩ (Rd)++ = Y and

(ii) Y can be fitted with respect to P.

Conditions on Y to guarantee property (b) of Lemma 5.9 seem to be very
difficult, involving divisibility of polynomials (and so depend on the coefficients).
So goodness of subsets of ∂e S(RP , 1) is still problematic.

Appendix A: Connections with zero-dimensional topological dynamics

The referee has observed that this paper uses methods almost entirely from partially
ordered abelian groups and Choquet theory, and its results refer to the former. As
a result, the connections with dynamics are invisible. This informal appendix is
intended to outline some of the connections. We assume that the reader has some
knowledge of Cantor dynamical systems.

Let (X, T ) be a nonatomic zero-dimensional compact separable Hausdorff
space (a Cantor set) together with a self-homeomorphism; we call this pair a
Cantor minimal system. We may functorially attach a partially preordered abelian
group, K0(X, T ), to (X, T ), in any of several equivalent ways, e.g., the preordered
Grothendieck group of the crossed-product C*-algebra C(X)×T Z, or directly by
computing the preordered Čech cohomology, C(X,Z)/(I − T )C(X,Z) (where T
has its natural action on C(X,Z)), with the quotient preordering.

When T is minimal (an abbreviation for the action of T on X is minimal), not only
is the preordering a genuine partial ordering, but K0(X, T ) is a simple dimension
group; moreover (in the minimal case), together with a distinguished order unit, it is
a complete invariant for strong orbit equivalence, and a complete invariant for orbit
equivalence is obtained from the simple dimension group K0(X, T )/ Inf(K0(X, T ))
[Giordano et al. 1995; Herman et al. 1992].

When T is no longer minimal, chain recurrence (a weak condition) will guarantee
that K0(X, T ) is partially ordered [Boyle and Handelman 1996]. Unfortunately,
even for rather natural systems, such as shifts of finite type, K0(X, T ) need not be
a dimension group [Kim et al. 2001], and more recent work suggests that being a
dimension group is a relatively rare phenomenon — moreover, not all (countable)
dimension groups can appear as a K0(X, T ). This calls into question the usefulness
of the results here, since we work almost exclusively with dimension groups.
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Fortunately, many questions in nonminimal cases can be reduced to questions
concerning dimension groups. This is because of the following result of Boyle and
the author.

Theorem. If T is chain recurrent, then there exists a dimension group G together
with an onto, order-preserving group homomorphism φ : G→ K0(X, T ) such that

(a) kerφ ⊆ Inf G, and

(b) φ(G+)= K0(X, T )+.

Not only does this say that K0(X, T ) is order-isomorphic to G/ kerφ with
the quotient ordering on the latter, but it also implies that φ induces a natural
affine homeomorphism between S(G, u), the normalized trace space of G, and
the normalized trace space of K0(X, T ), which itself is just the space of invariant
probability measures on X . The images of G and of K0(X, T ) in their affine
representation agree, and this means that some properties of measures/traces transfer
between (X, T ) and G (a dimension group). For example, order unit goodness is
the same whether we take K0(X, T ) or G.

This allows one to transfer problems about traces (or finite invariant measures)
on K0(X, T ) to the dimension group G. As a simple example (already a known
consequence of Krieger’s marker lemma), if T has no periodic points, then the
image of K0(X, T ) in its affine representation (taking as order unit u = [χX ]) is
dense. In particular, almost divisibility transfers (near divisibility probably does
not). More relevantly, order unit goodness and its refinable counterpart transfer
completely between the two ordered groups, as does the purity criterion of [Goodearl
and Handelman 1980]. Properties involving order ideals do not do so well, but very
often there is a one-way implication. There is obviously more to be done.

Tensor products. Tensor products of dimension groups, or more generally, of
partially ordered abelian groups, as discussed in Section 2, arise naturally. However,
their translation to dynamical systems is not so clear. Nonetheless, there are
examples — every minimal Cantor system can be realized as a continuous adic map
on a Bratteli diagram, and the Cartesian product of the two Cantor sets admits an
adic map compatible with the tensor product [BeH 2014, Appendix A].

There is a less tenuous interrelation. Let (X, T ) and (Y, S) be Cantor dynamical
systems (not necessarily minimal, although not much is known in the nonmini-
mal case), which are at least chain recurrent. Form the product, (X × Y, T × S)
(meaning the Z-action, not the Z2-action). There is a natural order-preserving
group homomorphism, 8 : K0(X × Y, T × S)→ K0(X, T )⊗ K0(Y, S) (with the
usual positive cone on the tensor product). This is induced by the isomorphism
C(X ×Y,Z)∼= C(X,Z)⊗C(Y,Z), the latter factoring onto K0(X, T )⊗ K0(Y, S);
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then (I− (T × S))(C(X × Y,Z)) ⊆ (I− T )C(X × Y,Z)+ (I− S)(C(X × Y,Z))

shows that 8 is well-defined.
Call the system constructed in [BeH 2014, Appendix A] realizing the tensor

product, (X × Y, R). For the following observation, we don’t really need the
construction of R, merely that such a minimal system (realizing the tensor product
of the dimension groups) exists, which is a consequence of [Giordano et al. 1995].

Observation. Suppose (X, T ) and (Y, S) are minimal Cantor dynamical systems.
In the following, any of (b), (c), or (d) implies that T × S is minimal. Moreover,
(b), (c), and (d) are equivalent, and each implies (a); finally, if each of (X, T ) and
(Y, S) has only finitely many ergodic measures, then (a) implies (b).

(a) T × S is orbit equivalent to R.

(b) The kernel of the natural order-preserving homomorphism

8 : K0(X × Y, T × S)→ K0(X, T )⊗ K0(Y, S)

consists of infinitesimals.

(c) Every invariant (T × S)-ergodic measure is of the form µ× ν, where µ is an
invariant measure on (X, T ) and ν is an invariant measure on (Y, S).

(d) For every continuous f : X→Z of X and every coboundary h = (I− S)g of Y
(where g :Y→Z is continuous), [ f ·h] is an infinitesimal in K0(X×Y, T×S).

Remark. The apparent asymmetry in X and Y of (d) is illusory, as

(I− T × S)( f · g)= f · h+ ((I− T ) f ) · (g ◦ S).

Remark. Without the assumption that (X, T ) and (Y, S) have only finitely many
ergodic measures, it is still very likely true that (a) implies (b) anyway.

Proof. We show that (c) implies minimality of the product, and then that (b), (c),
and (d) are equivalent in general. If T × S were not minimal, there would be a
proper closed invariant subset A ⊂ X × Y . Then any invariant ergodic measure
supported on A cannot be a product measure, and of course, one exists.

(b) implies (c): Since the kernel of the map to the tensor product is onto and has only
infinitesimals in its kernel, it induces a homeomorphism on the normalized trace
spaces, and clearly product traces map to product traces under this; since all pure
traces on the tensor product are of the form σ ⊗τ , where σ and τ are pure traces on
the two components respectively, it implies every pure trace on K0(X × Y, T × S)
is a product trace, and this translates to product measure.

(c) implies (d): For any product measure on X × Y , dρ = dµ dν, we have∫
X×Y

f · h dρ =
(∫

X
f dµ

)
·

(∫
Y

h dν
)
= 0.
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From (c), the closed convex hull of the product invariant measures is the set of all
invariant measures, so

∫
X×Y f ·h dζ = 0 for every invariant measure ζ on X × Y .

Hence [ f ·h] vanishes at every trace on K0(X×Y, T×S), and thus is an infinitesimal.

(d) implies (b): The kernel of the map K0(X ×Y, T × S)→ K0(X, T )⊗ K0(X, S)
is spanned by the images (in K0) of

(I−T×S)C(X×Y,Z), C(X,Z)·(I−S)(C(Y,Z)), (I−T )(C(X,Z))·C(Y,Z).

By the remark, every element of (I− T )(C(X,Z)) ·C(Y,Z) belongs to the abelian
group generated by the other two, whose images obviously land in the infinitesimal
subgroup.

(b) implies (a): Factoring out the infinitesimals from both groups yields a unital
order isomorphism (since the original map sends the positive elements onto the
positive elements), so T × S is orbit equivalent to R.

(a) implies (b) (if each of (X, T ) and (Y, T ) has only finitely many ergodic mea-
sures): Let m and n be the respective number of pure traces (ergodic measures). The
number of pure traces on the tensor product is exactly mn, and orbit equivalence
implies the same number of pure traces for K0(X × Y, T × S). The natural map to
the tensor product induces a positive map between the corresponding affine function
spaces (of the same dimension, mn), which must therefore be an isomorphism.
Hence every trace on K0(X × Y, T × S) factors through the tensor product. Thus
the kernel of the map must be contained in the kernel of all the traces, and hence is
contained in the infinitesimal subgroup. �

Bernoulli measures and xerox actions. The results of Section 3 are reminiscent
of those of [Akin et al. 2008], characterizing goodness of Bernoulli measures.
Let {ei } be the standard basis for Zn , and set xi = xei (in monomial notation),
and P = 1+

∑n
i=1 xi (for notational convenience, we sometimes write 1 = xe0 ,

where e0 = 0). Form RP , a very special case of the ordered rings discussed in
this section. This particular one is ring isomorphic to the pure polynomial ring,
AP = Z[X1, . . . , Xn], under the assignment X i = xi/P , and the positive cone is
generated multiplicatively and additively by {X1, . . . , Xn; 1−

∑
X i }.

The pure traces of AP are precisely the multiplicative ones, determined by
X i 7→ pi , where 0 ≤ pi and

∑
pi ≤ 1. Let p = (p1, . . . , pn) denote the corre-

sponding point in the standard simplex in Rn . If p0 : 1−
∑

pi > 0 (which occurs at
least when the corresponding pure trace is faithful, and in other cases as well), we
can reconstruct the point in (Rn)+ (the faithful pure trace of RP whence it came;
explicitly, xi 7→ pi/p0), and when the measure is faithful (meaning all of pi and
p0 are nonzero), these run over the entire open orthant, (Rn)++.

For all choices of (faithfully projective) P , there is a natural map from the pure
trace space of (RP , 1) to the Newton polytope of P , given by the weighted moment
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map; because this particular choice for P is so pleasant, the weighted moment
map is particularly explicit. (For generic P , RP is not even a unique factorization
domain — for example, if P is irreducible over the integers, faithfully projective,
and RP satisfies unique factorization, then up to the natural action of AGL(n,Z)

on the exponents, P =
∑n

i=0 ai xi , where x0 = 1 and ai are positive integers.)
Now back to our specific choice of P; this RP is not approximately divisible

(for example, X i 7→ 0 yields a Z-valued trace on AP ; we could fix this if we
permitted nonmonic coefficients at all of the vertices). Nonetheless, we can analyze
conditions (1) and (2) here.

For the point r := (pi/p0) ∈ Rn)++, τr will satisfy (1) and (2) precisely if r
is really isolated and p0/pi ∈ Z[p j/p0] = τr (RP); in particular, p0/pi are units
in τr (RP) and are algebraic. Since

∑n
1 pi = 1− p0, we quickly deduce that all

of p0, p1, . . . , pn must be algebraic and are units in Z[p0, p1, . . . , pn] (the image
of AP under the corresponding trace).

The density matrices that implement the pure traces on the fixed point C*-algebras
are exactly those whose diagonals are p. In a sense, C*-algebra traces are the
noncommutative analogue of Bernoulli measures.

Strict direct sums. There is no obvious connection between strict direct sums (even
for simple dimension groups) and dynamical systems. In fact, although we know
that a strict direct sum of dimension groups is again a dimension group, given
realizations of the two components (as direct limits, that is, given Bratteli diagrams
for each of them), there is no way known to construct the strict direct sum as such
a direct limit from the two direct limits (that is, there does not seem to be a way of
finding a Bratteli diagram based on the two given ones). There are a few (very few)
ad hoc constructions in very special cases.

Appendix B: Order unit good traces on Zk

The criteria for goodness of traces on nearly divisible dimension groups depend
on order unit goodness; and the usefulness of the former is a consequence of
the relatively simple characterization of order unit good traces on approximately
divisible dimension groups, namely density of the image of ker τ in τ` via the
affine representation of (G, u).

To obtain useful criteria for goodness on a larger class of dimension groups, it
would be helpful to find an analogous characterization of order unit goodness in the
presence of discrete traces. In this appendix, we consider the extreme dimension
groups with discrete traces, namely the simplicial ones, Zk , with the usual ordering.
It is already known that up to scalar multiple, the only good traces are given by left
multiplication by a vector whose entries consist only of zeros and ones [Handelman
2013b, Lemma 6.2].



GOOD TRACES FOR NOT NECESSARILY SIMPLE DIMENSION GROUPS 413

With the current definition of order unit good (really intended for approximately
divisible groups), the order unit good traces on Zk can be characterized, but the
characterization makes it difficult to see how to obtain goodness criteria for more
general dimension groups, as we did in the nearly divisible case.

Let v ∈ (Rk×1)+ \ {0}; then v induces a trace on Zk , via left multiplication,
φv : Zk

→ R sending w 7→ vw (we think of Zk as a set of columns, so matrix
multiplication makes sense). Obviously we can replace v by any positive real
multiple of itself without changing properties such as goodness or order unit
goodness. In addition, we may apply any permutation to the entries, with the
same lack of bad consequences. We may also discard any zeros (reducing the size
of the vectors, that is, decreasing k).

Suppose v has only integer entries; then we may order the nonzero entries, so that

v = (n(1), n(2), . . . , n(r); 0, 0, . . . , 0), where n(1)≤ n(2)≤ · · · .

We may also assume that gcd{n(i)} = 1.

Lemma B.1. With this choice of v, we have that φv is order unit good if and only if
n(1)= 1 and for all r ≥ j > 1, we have n( j)≤ 1+

∑
i< j n(i).

Proof. Assume v is in the form indicated, and φv is order unit good. Since
gcd{n(i)} = 1, there exists a vector w such that vw = 1. Set u = (1, 1, 1, . . . , 1);
we have that u is an order unit, hence it is φv-order unit good. Since vu > 1 (unless
v = (1, 0, 0, . . . , 0) which is trivially good), there must exist w0 ∈ (Z

d)+ such that
vw0 = vw = 1< vu. Since the nonzero entries of v are increasing, this forces the
smallest one, n(1), to be 1. Hence n(1)= 1.

Since vu =
∑

n(i) := N , and there exists w ∈ Zk such that vw = 1, for each s
with 1< s< N , there exists ws ∈ {0, 1}k (as 0≤w0≤ u) such that vws = s, by order
unit goodness of u. Now suppose that for some j , we have n( j) > 1+

∑
i< j n(i).

Then n( j)− 1 cannot be realized as a sum of n(i)s (using at most one for each
choice of i), since n( j)− 1>

∑
i< j n(i), and n( j)≤ n( j ′) for all j ′ > j (if there

are any such j ′). Hence no such w0 can exist.
Thus, if u is φv-order unit good, then the constraint on growth must hold.
Conversely, suppose the inequalities hold. It is then an easy induction argument

(on r , augmenting the vector by adjoining n(k+ 1)) to show that u is τv-order unit
good, by realizing every integer in the interval (0, N ). Finally, to show that every
order unit is φv-order unit good (u was the smallest choice), it suffices to show that
if we add a single one to a φv-order unit good vector, the outcome is again φv-order
unit good. �

In particular, the choices for v, (1, 2, 4, 8, 16) and (1, 1, 1, 4) yield order unit
good traces, but (1, 3) and (1, 1, 1, 5) do not. This rather complicated set of
conditions, when applied to order ideals in dimension groups that have a simplicial
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quotient by an order ideal, likely makes order unit goodness unusable for the
purposes we had in mind.

Lemma B.2. If φv : Zk
→ R is an order unit good trace, then up to scalar multiple,

v ∈ (Zk×1)+.

Proof. In Zk , all intervals of the form [0, u] (where u is an order unit) are finite sets.
If there were an irrational ratio among the nonzero entries of v, we would obtain
φv(Z

k)∩ [0, N ] is infinite for any positive integer N . If order unit goodness held,
this would be impossible. Hence all the ratios are rational, and it easily follows that
after suitable scalar multiplication, we can convert v to an integer row. �

Proposition B.3. Let v be an element of (Rk)+ \ {0}. Then φv is an order unit
good trace if and only if up to scalar multiple and after rearrangement so that
v = (n(1), . . . , n(r); 0, 0, . . .) with n(i − 1) ≤ n(i), we have n(i) ∈ N, n(1) = 1,
and for all 1< j ≤ r ,

n( j)≤ 1+
∑
i< j

n(i).

Appendix C: Good simplices

In the finite-dimensional case, we verify a conjecture from [BeH 2014, Section 7]
that good subsets of Choquet simplices are obtained as coproducts of faces with
singleton subsets of disjoint faces.

Let K be a Choquet simplex. A nonempty subset J of K is said to be good
(following [BeH 2014]) if it satisfies the following (redundant set of) properties:

(i) J is a (compact) Choquet simplex.

(ii) There exists a closed flat L such that J = L∩ K .

(iii) If a ∈ Aff(J )++ and b ∈ Aff(K )++ are such that a� b|J , then there exists
a′ ∈ Aff(K )++ such that a′|J = a and a′� b.

We denote this relationship between J and K by J ⊂G K (there is a G inside the
inclusion sign). If F is a closed face of K , we denote it FGK . A question arising out
of [BeH 2014] is to characterize good subsets of Choquet simplices. For example,
closed faces are good, and singleton sets are also good, and coproducts (within the
category of simplices and good subsets) preserve these properties. A conjecture
was made concerning the structure of good subsets; we verify this in the case that
K is finite-dimensional.

Now (ii) is redundant, and only the compact convex part of (i) is necessary. This
is based on the following simple construction.

If X is a subset of a real vector space, define the affine span of X , denoted
Aspan X , as the set of finite sums

{∑
ri xi

∣∣ ri ∈ R,
∑

ri = 1, xi ∈ X
}
.
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If J is a singleton or a line segment, there is (almost) nothing to do. Define
L0 = Aspan J . If there exists v ∈ (K ∩L0) \ J , we can write v =

∑
αivi −β jw j ,

where vi , w j ∈ J , and αi , β j > 0, and
∑
αi −

∑
β j = 1. We can also arrange that

cvx{vi } ∩ cvx{w j } =∅. Hence for any positive η < 1, there exists a ∈ (Aff J )++

such that 1− η < a| cvx{w j } < 1 and a| cvx{ai } < η. Since a is continuous, it is
bounded above, so (iii) applies with some constant b ∈ Aff K .

Hence there exists a′ ∈ (Aff K )++ such that a = a′|J . Evaluating the equation
at a′, we obtain

0< a′(w)=
∑

αi a(vi )−
∑

β j a(w j ) < η
∑

αi − (1− η)
∑

β j .

This entails η
(∑

αi +
∑
β j
)
>
∑
β j . Now

∑
β j > 0, since otherwise v ∈ J .

Hence we can choose at the outset positive η <
∑
β j
/ (∑

αi +
∑
β j
)
, which

yields a contradiction.
Thus L0 ∩ K = J . If xn ∈ L0 and xn → x ∈ K , but x 6∈ J , there exists a line

segment joining x to an element of the relative interior of J ; it must pass through
at least two points in J , hence x ∈ L0. In other words, with L equalling the closure
of L0, we have J = L0 ∩ K = L∩ K .

To check that the compact convex set J must be a simplex if (iii) is sat-
isfied, observe that the quotient Aff K/J` (with the strict ordering on Aff K ,
J` = {a ∈ Aff K | a|J ≡ 0}, and the quotient ordering) is order isomorphic to Aff J
(with the strict ordering). But goodness implies [BeH 2014] that it satisfies Riesz
interpolation, which of course forces J to be a Choquet simplex.

Let K ′ and K ′′ be simplices (simplices mean Choquet simplices; but most
of the time we will working in finite dimensions, so simplex means the usual
simplex) sitting inside some common simplex K which in turn is contained in some
topological vector space. Suppose that Aspan K ′ ∩Aspan K ′′ =∅; we write this
as K ′ ∧ K ′′ =∅. Then the closure of cvx(K ′, K ′′) is itself a simplex, and we refer
to this as the coproduct, written K ′∨̇K ′′ (this is more an internal coproduct, but we
shall not distinguish internal from external). If K ′ and K ′′ are faces of K , sufficient
for K ′ ∧ K ′′ =∅ is that their intersection be empty (since K is a simplex); in this
case, we say that K ′ and K ′′ are disjoint. If {K i

} is a finite family of subsimplices,
then disjointness of the set is defined inductively in the obvious way, so that

∨̇
i K i

makes sense and is a simplex.
We record elementary properties related to goodness.

Lemma C.1. (a) Suppose J ⊂G K and K ⊂G L; then J ⊂G L.

(b) If F G K , then F ⊂G K .

(c) If J ⊂G K and F G K , then J ∩ F G J and J ∩ F ⊂G K whenever J ∩ F 6=∅.

(d) If Ji ⊂G Ki for i = 1, 2 and K1 ∧ K2 =∅, then J1∨̇J2 ⊂G K1∨̇K2.



416 DAVID HANDELMAN

The crucial result is the following. Its proof rests heavily on finite-dimensionality,
but is a minor modification of the previous argument.

Lemma C.2. Let K be a finite dimensional simplex, and suppose J ⊂G K . Let J1

and J2 be disjoint faces of J . Set Fi (i = 1, 2) to be the smallest face of K that
contains Ji . Then F1 and F2 are disjoint.

Proof. It suffices to show that F1 ∩ F2 =∅. If not, the intersection is a face, and
hence contains a vertex (that is, extreme point) of K ; call it v. We may suppose
that v 6∈ J2 (since J1 ∩ J2 =∅). Since J is itself a finite-dimensional simplex and
Ji are disjoint faces, for any η > 0 (which we will specify later), we may find
a ∈ Aff(J )++ such that a|J2� 1− ε, a|J1� η, and a� 1 (on all of J ). Set b to
be the constant function 1 on all of K , so that 0� a� b|J .

By goodness, there exists a′ ∈ Aff(K )++ such that a′� b and a′|J = a. It is
now easy to show that for suitably small η (depending on the boundary measure of
elements of Ji ⊂ Fi ), this leads to a contradiction.

Since v 6∈ J and F2 is the smallest face containing J2, there must exist w ∈ J2

such that w = λv+
∑

s λsvs , where vs ∈ ∂e F2, λ > 0, λs ≥ 0 and λ = 1−
∑
λs .

Evaluating at a′, we obtain

λa′(v)= a(w)−
∑

λsa′(vs)≥ 1− η− (1− λ)

(since a′(vs)≤ b(vs)= 1). Thus a′(v)≥ 1− η/λ.
Now working within F1, again since F1 is the smallest face containing J1, there

must exist y ∈ J1 such that y =µv+
∑

t µt yt , where {v, yt } ⊆ ∂e F1, µ> 0, µs ≥ 0,
and µ= 1−

∑
µs . Applying a′, we obtain µa′(v)= a(y)−

∑
µt a′(yt)< η. Hence

a′(v) < η/µ.
Thus the two inequalities force η/µ+ η/λ > 1. We reach a contradiction if we

choose η < 1/(1/µ+ 1/λ). �

One obstruction (among several) to extending this to infinite-dimensional sim-
plices is the fact that the representing measures of relative interior points might
vanish on the intersection of the faces. We would also have to restrict to closed
faces in this case (since otherwise it is not clear that the smallest face exists), and
this presents problems.

Let {Fi } be a disjoint collection of faces — that is, for all i , Fi∧
(∨̇

j 6=i F j
)
=∅—

of the simplex K , and for each i , let vi be a point in the relative interior of Fi ; we
also assume that the Fi are not themselves singletons. We may form J0 := cvx{vi }

and F0 := cvx{Fi }; of course, this is the coproduct of ({vi }, Fi ), and J0 is thus a
good subset of F0 (since each {vi } ⊂G Fi ). As in [BeH 2014], we call the (vi , Fi ),
together with (F, F) (that is, the face F ⊂G F) building blocks. It was conjectured (in
the finite-dimensional case) that if J ⊂G K , then there exists a face F of K , together
with a disjoint face F0 obtained as the coproduct, such that J = F∨̇J0; in other
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words, that coproducts of the building blocks yield all good subsets; alternatively,
that there is a maximal face F of K sitting inside J , and J is obtained by taking
coproducts with respective singleton sets sitting inside pairwise disjoint faces. This
now follows easily.

Corollary C.3. Suppose K is a finite-dimensional simplex and J ⊂G K . Then
there exist a (possibly empty) face F of K together with a finite set of faces Fi

of dimension at least one such that {F, F1, . . . } is disjoint, together with vi in the
relative interior of Fi such that J = cvx{F, vi }.

Proof. We proceed by induction on the dimension of J . Let F be the convex hull
of all the vertices of K that lie in J ; these are automatically vertices of J . If this
exhausts the vertices of J , then F= J and F is a face (since K is a finite-dimensional
simplex), and there is nothing to do. Of course, F can be empty.

Otherwise, there exists a vertex v1 of J that is not in ∂e K ; necessarily this belongs
to a proper face (it cannot be in the interior, in fact by property (ii), but this can
also be proved using only (i) and (iii)) of K , and let F1 be the smallest face of K
containing v1. Then v1 is in the relative interior of F1. Let J 1 be the complementary
face to {v1} in J (that is, the convex hull of all the other vertices of J ).

If J 1 is empty, then J = J 1 is already a singleton, and we are done.
If J 1 is not empty, then J 1

G J , so J 1
⊂G J , and thus by transitivity, J1 ⊂G K . We

can apply the previous lemma. Let F1 be the smallest face of K containing J 1;
then F1

∩ F1 =∅, and thus J decomposes as the coproduct of J 1 and {v1} (using
faces F1 and F1), so by induction on the dimension of J , and we are done. �
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