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When we consider surfaces of prescribed mean curvature H with a one-to-
one orthogonal projection onto a plane, we have to study the nonparametric
H-surface equation. Now the H-surfaces with a one-to-one central projec-
tion onto a plane lead to an interesting elliptic differential equation, which
is derived in Section 2; in the case H = 0 this PDE was invented by T. Radó.
We establish the uniqueness of the Dirichlet problem for this H-surface
equation in central projection in Section 3, and develop an estimate for the
maximal deviation of large H-surfaces from their boundary values, resem-
bling an inequality by J. Serrin. In Section 4 we provide a Bernstein-type
result for the case H = 0 and classify the entire solutions of the minimal
surface equation in central projection. We also solve the Dirichlet problem
for H = 0 by a variational method. In Section 5 we solve the Dirichlet prob-
lem for nonvanishing H with compact support via a nonlinear continuity
method, and we construct large H-surfaces bounding extreme contours by
an approximation. Finally, in Section 6 we solve the Dirichlet problem on
discs for the nonparametric H-surface equation in central projection under
certain restrictions for the mean curvature.

1. Introduction

In Plateau’s problem for variable H = H(x, y, z), one constructs branched immer-
sions of prescribed mean curvature H(x, y, z) bounding a given Jordan contour 0
in R3 by minimizing an energy functional (see [Dierkes et al. 2010a, Part II]). This
parametric H-surface

X = X (u, v)= (x(u, v), y(u, v), z(u, v))

satisfies Rellich’s nonlinear elliptic system (3-31) and is given in conformal param-
eters — apart from the isolated branch points. In [Sauvigny 1982], this parametric
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surface X is shown to be a graph z = ζ(x, y) above the (x, y)-plane for certain
contours 0 and solves the Dirichlet problem for the nonparametric H-surface
equation to the given boundary values.

In the present paper we solve the Dirichlet problem for H-surfaces in the rep-
resentation (2-3) with a one-to-one central projection by a nonlinear continuity
method (compare Theorem 5.1) and an approximation (see Theorem 6.1). We
start with a solution of Plateau’s problem for H = 0 which possesses a one-to-one
central projection (see Theorem 4.1). Having answered the uniqueness question
(compare Theorem 3.1), we study intensively the stability and the compactness
of this boundary value problem with the aid of [Sauvigny 1982, Satz 1]. In the
minimal surface case, the relevant PDEs (2-17) and (2-24) already appear in a paper
by T. Radó [1932] — but the inhomogeneous equations seem to be investigated here
for the first time.

We can determine the set of entire solutions for the nonparametric minimal
surface equation in central projection (compare Theorem 4.2). While minimal
surfaces remain in the convex hull of their bounding contour, this is not the case
for surfaces of prescribed mean curvature. However, we can estimate the deviation
of our solution from their boundary values by comparison with large spherical
caps (see Theorems 2.1 and 3.2). These surfaces do not belong to the family of
graphs; however, they possess a one-to-one central projection and can be used here.
Moreover, we can construct large solutions of Plateau’s problem by a continuity
and approximation method (compare Theorem 5.2).

2. The H-surface equation in central projection

It is well-known that the set of surfaces of constant mean curvature H ∈ R is
invariant under translations and rotations. When we consider these H-surfaces with
one-to-one central projection onto a plane E , we can assume by translation that
the origin (0, 0, 0) ∈ R3 represents the center of projection. Furthermore, we can
attain by rotation that this plane E is parallel to the xy-plane. Now H-surfaces
are transformed into (a−1

· H)-surfaces after a dilation by the factor a ∈ R \ {0}.
Therefore, we can select the set

(2-1) E := {(x, y, 1) ∈ R3
| x, y ∈ R}

without loss of generality as our projection plane after a suitable dilation. For the
general study of H-surfaces with prescribed mean curvature H = H(x, y, z) on
domains in the Euclidean space, we refer our readers to Chapter 5 of the treatise
[Dierkes et al. 2010a] by U. Dierkes, S. Hildebrandt, and F. Sauvigny.

Choose an arbitrary domain �⊂ R2 in the plane; with the real-valued function

(2-2) % = %(x, y) ∈ C2(�,R)
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we associate the vector-valued function

(2-3) X = X (x, y) := %(x, y) · (x, y, 1), (x, y) ∈�.

At all points (x, y) ∈ � with %(x, y) 6= 0, we obtain in (2-3) a differential-
geometrically regular surface with one-to-one central projection onto the plane E .

In this context, let us calculate the first derivatives of the surface X , namely

(2-4)
Xx(x, y)= %x(x, y) · (x, y, 1)+ %(x, y) · (1, 0, 0),

Xy(x, y)= %y(x, y) · (x, y, 1)+ %(x, y) · (0, 1, 0),

and the coefficients of its first fundamental form, which are

(2-5)

X2
x (x, y)= Xx · Xx(x, y)

= %2
x(x, y) · (x2

+ y2
+ 1)+ 2%(x, y)x%x(x, y)+ %2(x, y),

Xx · Xy = %x(x, y)%y(x, y)(x2
+y2
+1)+%(x, y)[y%x(x, y)+x%y(x, y)],

X2
y (x, y)= %2

y(x, y) · (x2
+ y2
+ 1)+ 2%(x, y)y%y(x, y)+ %2(x, y),

for (x, y) ∈�. Furthermore, we determine the exterior product of the vectors (2-4)
as follows:

(2-6) Xx ∧ Xy(x, y)

=
(
%x · (x, y, 1)+ % · (1, 0, 0)

)
∧
(
%y · (x, y, 1)+ % · (0, 1, 0)

)
= %%x(x, y) · (−1, 0, x)+ %%y(x, y) · (0,−1, y)+ %2(x, y) · (0, 0, 1)

= %(x, y) ·
(
−%x(x, y),−%y(x, y), %(x, y)+ x%x(x, y)+ y%y(x, y)

)
.

The surface element W (x, y) is given by

(2-7) W (x, y)2 := |Xx ∧ Xy(x, y)|2

= %2(x, y) ·
(
|∇%(x, y)|2+ [%(x, y)+ x%x + y%y]

2)
= %2(x, y) ·

(
%2(x, y)+ (1+ x2)%2

x + (1+ y2)%2
y

+ 2xy%x%y + 2x%%x + 2y%%y
)
.

Therefore, the equivalence

(2-8) Xx ∧ Xy(x, y) 6= 0 if and only if %(x, y) 6= 0,

which we have already used above, holds true.
We determine the second derivatives of our surface (2-3) via (2-4) and obtain

(2-9)

Xxx(x, y)= %xx(x, y) · (x, y, 1)+ 2%x(x, y) · (1, 0, 0),

Xxy(x, y)= %xy(x, y) · (x, y, 1)+ (%y(x, y), %x(x, y), 0),

Xyy(x, y)= %yy(x, y) · (x, y, 1)+ 2%y(x, y) · (0, 1, 0).
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With the aid of (2-6) and (2-9), we determine the coefficients of its second funda-
mental form — multiplied by W (x, y)— in the following triple products:

(2-10)

(Xx , Xy, Xxx)|(x,y) = %
2%xx(x, y)− 2%%2

x(x, y),

(Xx , Xy, Xxy)|(x,y) = %
2%xy(x, y)− 2%%x%y(x, y),

(Xx , Xy, Xyy)|(x,y) = %
2%yy(x, y)− 2%%2

y(x, y).

For an adequate geometric formulation we need some definitions.

Definition 2.1. With each domain �⊂ R2 we associate the cone

(2-11) C(�) := {(ξ, η, ζ )∈R3
| ξ = r x, η= r y, ζ = r, (x, y)∈�, 0< r <+∞},

where �× {1} ⊂ R3 represents its base and (0, 0, 0) its vertex. The cone C(�)
consists of the generating lines

L(x,y) := {(r x, r y, r) ∈ R3
| 0< r <+∞} for all (x, y) ∈�.

The boundary of our cone ∂C(�) is composed of the generating lines L(x,y),
(x, y) ∈ ∂�.

Definition 2.2. At first, we define the logarithmic mean curvature on the cylinder
�×R by the continuous function

(2-12) D = D(x, y, z) :�×R→ R ∈ C0(�×R).

Then we prescribe the associate mean curvature on the cone C(�) by setting

(2-13)
H(ξ, η, ζ ) :=

D(x, y, ln r)
r

,

(ξ, η, ζ )= (r x, r y, r) ∈ C(�), (x, y) ∈�, 0< r <+∞.

At all points with %(x, y) > 0, the representation (2-3) yields a surface of
prescribed mean curvature H from (2-12) and (2-13), or briefly an H-surface,
if and only if the following partial differential equation (PDE) holds true:

(2-14) 2D(x, y, ln %)%2

×
(
%2
+ (1+ x2)%2

x + (1+ y2)%2
y + 2xy%x%y + 2x%%x + 2y%%y

)3/2

= 2H(%x, %y, %)%3

×
(
%2
+ (1+x2)%2

x + (1+y2)%2
y + 2xy%x%y + 2x%%x + 2y%%y

)3/2

= 2H(%x, %y, %)W 3(x, y)

= X2
y (Xx , Xy, Xxx)− 2(Xx · Xy)(Xx , Xy, Xxy)+ X2

x (Xx , Xy, Xyy)

= %2(X2
y%xx(x, y)− 2(Xx · Xy)%xy(x, y)+ X2

x %yy(x, y)
)

− 2%(x, y)
(
X2

y%
2
x(x, y)− 2(Xx · Xy)%x%y(x, y)+ X2

x %
2
y(x, y)

)
.
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Besides the prescription (2-13) for the mean curvature, we have used the identity
(2-7) for the surface element and the equations (2-10) for the triple products. With
the aid of the relations (2-5) we immediately calculate

(2-15) X2
y%

2
x(x, y)− 2(Xx · Xy)%x%y(x, y)+ X2

x %
2
y(x, y)= %2(x, y)|∇%(x, y)|2.

When we insert the identity (2-15) into the equation (2-14), we arrive at the PDE

(2-16) 2D(x, y, ln %)

×
(
%2
+ (1+ x2)%2

x + (1+ y2)%2
y + 2xy%x%y + 2x%%x + 2y%%y

)3/2

= X2
y%xx(x, y)− 2(Xx · Xy)%xy(x, y)+ X2

x %yy(x, y)

− 2%(x, y)|∇%(x, y)|2.

Taking the coefficients of the first fundamental form (2-5) into account, we obtain
the PDE

(2-17) 2D(x, y, ln %)

×
(
%2
+ (1+ x2)%2

x + (1+ y2)%2
y + 2xy%x%y + 2x%%x + 2y%%y

)3/2

=
(
%2

y · (x
2
+ y2
+ 1)+ 2%y%y + %

2)%xx

− 2
(
%x%y · (x2

+ y2
+ 1)+ %[y%x + x%y]

)
%xy

+
(
%2

x · (x
2
+ y2
+ 1)+ 2%x%x + %

2)%yy(x, y)− 2%|∇%(x, y)|2,

for (x, y) ∈�.
Since our surface X is regular in �, we can assume the property

(2-18) %(x, y) > 0, (x, y) ∈�,

after an eventual reflection. Now we use the logarithmic representation

(2-19) σ(x, y) := ln %(x, y), (x, y) ∈�.

Then we determine their first derivatives

(2-20) σx(x, y)=
%x

%
(x, y), σy(x, y)=

%y

%
(x, y), (x, y) ∈�,

as well as their second derivatives

(2-21)

(σxx + σ
2
x )|(x,y) =

%xx

%
(x, y),

(σxy + σxσy)|(x,y) =
%xy

%
(x, y),

(σyy + σ
2
y )|(x,y) =

%yy

%
(x, y).
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From the identity (2-15) we deduce the relation

(2-22) X2
yσ

2
x (x, y)− 2(Xx · Xy)σxσy(x, y)+ X2

x σ
2
y (x, y)= |∇%(x, y)|2

= %2
|∇σ(x, y)|2.

Into the equation (2-17) we insert the second derivatives (2-21) and observe (2-22)
to obtain

(2-23) 2D(x, y, ln %)%2

×

(
1+ (1+ x2)

(
%x

%

)2

+ (1+ y2)

(
%y

%

)2

+2xy
%x

%

%y

%
+2x

%x

%
+2y

%y

%

)3/2

=
(
%2

y · (x
2
+ y2
+ 1)+ 2%y%y + %

2)%xx

%

− 2
(
%x%y · (x2

+ y2
+ 1)+ %[y%x + x%y]

)%xy

%

+
(
%2

x · (x
2
+ y2
+ 1)+ 2%x%x + %

2)%yy

%
(x, y)

− 2|∇%(x, y)|2

=
(
%2

y · (x
2
+ y2
+ 1)+ 2%y%y + %

2)σxx

− 2
(
%x%y · (x2

+ y2
+ 1)+ %[y%x + x%y]

)
σxy

+
(
%2

x · (x
2
+ y2
+ 1)+ 2%x%x + %

2)σyy(x, y)

− %2(x, y)|∇σ(x, y)|2,

for (x, y) ∈�. Now we use formulae (2-20) for the first derivatives and arrive at
the PDE

(2-24) 2D(x, y, σ )
(
1+ (1+ x2)σ 2

x + (1+ y2)σ 2
y + 2xyσxσy + 2xσx + 2yσy

)3/2
=
(
σ 2

y · (x
2
+ y2
+ 1)+ 2yσy + 1

)
σxx

− 2
(
σxσy · (x2

+ y2
+ 1)+ [yσx + xσy]

)
σxy

+
(
σ 2

x · (x
2
+ y2
+ 1)+ 2xσx + 1

)
σyy(x, y)− |∇σ(x, y)|2,

for (x, y) ∈�.

Definition 2.3. Let us address the PDE (2-17) as the H-surface equation in central
projection and the PDE (2-24) as the logarithmic H-surface equation. In the special
case D≡ 0≡ H , we speak of the PDE (2-17) as the minimal surface equation in cen-
tral projection and of the PDE (2-24) as the logarithmic minimal surface equation.

In the case D= D(x, y) :�→R, where the logarithmic mean curvature does not
depend on the z-variable, we prescribe the associate mean curvature H from (2-13)
on the base of the cone C(�). The mean curvature is positive-homogeneously
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continued on each generating line L(x,y), (x, y) ∈ �, of the degree −1. Then
our PDE (2-17) is positive-homogeneous in the following sense: for any positive
solution %(x, y) of (2-17) and all parameters a>0, the function a·%(x, y) solves this
differential equation as well. In the special case that the logarithmic mean curvature

(2-25) D̂(x, y) :=
−2

1+ x2+ y2 , (x, y) ∈ R2,

is prescribed on the base of our cone, we can explicitly solve the PDE (2-17) as
follows.

Theorem 2.1. Let the right-hand side D̂ from (2-25) with its homogeneous continu-
ation Ĥ of (2-13) be given on the cone C(�) for �= R2. Then the functions

(2-26) %̂(x, y) :=
a

1+ x2+ y2 , (x, y) ∈R2, for arbitrary parameters a > 0,

solve the Ĥ-surface equation (2-17) in central projection.

Proof. Equivalently to the PDE (2-17) for the function %̂, we consider the PDE (2-24)
for its logarithmic representation σ̂ (x, y) := ln %̂(x, y), (x, y) ∈ R2, and obtain

(2-27)

σ̂ (x, y)= ln a− ln(1+ x2
+ y2),

σ̂x(x, y)=
−2x

1+ x2+ y2 , σ̂y(x, y)=
−2y

1+ x2+ y2 .

We easily determine the expressions

(2-28)

(1+ x2)σ̂ 2
x + (1+ y2)σ̂ 2

y + 2xyσ̂x σ̂y + 2x σ̂x + 2yσ̂y = 0,

σ̂ 2
y · (x

2
+ y2
+ 1)+ 2yσ̂y + 1= 1,

σ̂x σ̂y · (x2
+ y2
+ 1)+ [yσ̂x + x σ̂y] = 0,

σ̂ 2
x · (x

2
+ y2
+ 1)+ 2x σ̂x + 1= 1,

for (x, y) ∈�. Therefore, the PDE (2-24) is reduced to the equation

1σ̂(x, y)−|∇σ̂ (x, y)|2 =
−4

1+x2+y2+
4x2
+4y2

(1+x2+y2)2
−

4x2
+4y2

(1+x2+y2)2

=
−4

1+x2+y2 = 2D̂(x, y),

for (x, y) ∈ R2. Consequently, the PDE (2-17) with the right-hand side from (2-25)
is satisfied for the functions (2-26). �

Remark. For each a> 0, the surface (2-3) on the domain �=R2 with the function
(2-26) represents a surface of constant mean curvature−2/a with one-to-one central
projection onto the plane E . More precisely, we obtain a sphere of radius a/2 about
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the center (0, 0, a/2), where its south pole (0, 0, 0) has been exempted. We shall
use these solutions, which represent a foliation of spheres, as comparison surfaces
in the next section.

Proof. In the case a = 1, the equations (2-3) and (2-26) represent the stereographic
projection of this sphere onto the plane E . Here we employ a theorem of Euclid on
right triangles: the square of a small side equals its projection on the hypotenuse
times the hypotenuse. Based on a simple diagram with a right triangle, we thus
obtain 12

= %(x, y)
√

1+ x2+ y2 ·
√

1+ x2+ y2, which yields

%(x, y)=
1

1+ x2+ y2 .

By a dilation with the factor a, we can easily inspect the general case a > 0. �

3. Uniqueness of Dirichlet’s problem and estimates

Definition 3.1. Let the logarithmic mean curvature D(x, y, z) :�×R→R be given
on the cylinder adjoint to the bounded Jordan domain �⊂ R2, with its associate
mean curvature H(ξ, η, ζ ) :C(�)→R from (2-13) on the cone C(�). On the Jordan
contour ∂� let the positive continuous boundary distribution φ : ∂�→ (0,+∞)
be prescribed. Then the positive solution

% = %(x, y) :�→ (0,+∞) ∈ C2(�)∩C0(�)

of the PDE (2-17) under the Dirichlet boundary condition

(3-1) %(x, y)= φ(x, y) for all (x, y) ∈ ∂�

is named the solution of the Dirichlet problem P(�, φ, H) for the H-surface equa-
tion in central projection.

Definition 3.2. The logarithmic mean curvature D(x, y, z) :�×R→ R satisfies
the monotonicity condition if, for each point (x, y) in the domain �, the function d
defined by

d(z) := D(x, y, z) for z ∈ R

is of class C1 and satisfies

(3-2) d ′(z)= ∂

∂z
D(x, y, z)≥ 0 for z ∈ R.

The maximum principle for elliptic equations implies the following.

Theorem 3.1 (uniqueness of P(�, φ, H)). Let %( j)
= %( j)(x, y), j = 1, 2, denote

two solutions of the Dirichlet problem P(�, φ, H) in the Jordan domain �⊂ R2,
where the logarithmic mean curvature satisfies the monotonicity condition. Then

%(1)(x, y)= %(2)(x, y) for (x, y) ∈�.
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Proof. Let us consider two solutions

(3-3) %( j)
= %( j)(x, y) : R2

→ (0,+∞) ∈ C2(�)∩C0(�), with j = 1, 2,

of the Dirichlet problem P(�, φ, H). We can apply the maximum principle to the
difference of their logarithmic representations,

σ ( j)(x, y) := ln %( j)(x, y), (x, y) ∈�, with j = 1, 2,

since the associate PDE (2-24) is quasilinear. The elliptic differential operator for the
difference function possesses a nonpositive coefficient of 0 order, due to the mono-
tonicity condition (compare [Sauvigny 2012a, Chapter 6, §2]). Therefore, we obtain

%(1)(x, y)= %(2)(x, y), (x, y) ∈�,

and the Dirichlet problem P(�, φ, H) is uniquely determined. �

Furthermore, we prove the following interesting theorem.

Theorem 3.2 (geometric maximum principle). Let % = %(x, y) denote a solution
of the Dirichlet problem P(�, φ, H) in the Jordan domain � ⊂ R2, which is
contained in the disc �b := {(x, y) ∈ R2

| x2
+ y2 < b2

} of radius 0 < b < +∞.
Furthermore, let the logarithmic mean curvature satisfy the monotonicity condition
and the inequalities

(3-4) D̂(x, y)≤ D(x, y, z)≤ 0 for all (x, y, z) ∈�×R.

Then we have the estimate

(3-5) 0< min
(ξ,η)∈∂�

φ(ξ, η)≤ %(x, y)≤ (1+ b2) · max
(ξ,η)∈∂�

φ(ξ, η),

for all points (x, y) ∈�.

Proof. (1) From (2-17) and (3-4) we infer the elliptic differential inequality

(3-6)
(
%2

y · (x
2
+ y2
+ 1)+ 2%y%y + %

2)%xx

− 2
(
%x%y · (x2

+ y2
+ 1)+ %[y%x + x%y]

)
%xy

+
(
%2

x · (x
2
+ y2
+ 1)+ 2%x%x + %

2)%yy(x, y)− 2%|∇%(x, y)|2 ≤ 0,

for (x, y) ∈�. Within the domain � our function % cannot attain a strict minimum,
and the estimate on the left-hand side of (3-5) is established.

(2) We compare the solution % with the spherical solution of Theorem 2.1,

(3-7) %̂(x, y) :=
a

1+ x2+ y2 , (x, y)∈R2, where a := (1+b2) max
(ξ,η)∈∂�

φ(ξ, η).

By construction we have the inequality

(3-8) %̂(x, y)≥ %(x, y) for all (x, y) ∈ ∂�
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on the boundary. From the condition (3-4) and the PDE (2-24) for the logarithmic
representation

σ̂ (x, y) := ln %̂(x, y), (x, y) ∈�,

we deduce the differential inequality

(3-9)
(
σ̂ 2

y ·(x
2
+ y2
+1)+2yσ̂y+1

)
σ̂xx−2

(
σ̂x σ̂y ·(x2

+ y2
+1)+[yσ̂x+x σ̂y]

)
σ̂xy

+
(
σ̂ 2

x · (x
2
+ y2
+ 1)+ 2x σ̂x + 1

)
σ̂yy(x, y)− |∇σ̂ (x, y)|2

= 2D̂(x, y)
(
1+(1+x2)σ̂ 2

x +(1+y2)σ̂ 2
y +2xyσ̂x σ̂y+2x σ̂x+2yσ̂y

)3/2

≤ 2D(x, y, σ̂ )

×
(
1+ (1+ x2)σ̂ 2

x + (1+ y2)σ̂ 2
y + 2xyσ̂x σ̂y + 2x σ̂x + 2yσ̂y

)3/2
,

at all points (x, y) ∈�. The logarithmic representation

σ(x, y) := ln %(x, y), (x, y) ∈�,

of the function % satisfies the quasilinear PDE (2-24). Together with (3-9) the
difference function

τ(x, y) := σ(x, y)− σ̂ (x, y), (x, y) ∈�,

is subject to the differential inequality

Lτ(x, y)≥ 0, (x, y) ∈�,

for an elliptic differential operator L (see [Sauvigny 2012a, Chapter 6, §2]). Due to
the monotonicity condition, the coefficient for the 0-order term of L is nonpositive.
Because of (3-8) we have τ(x, y)≤ 0 for (x, y) ∈ ∂� and hence, by the maximum
principle for elliptic operators, τ(x, y)≤ 0 for (x, y) ∈�. With the aid of (3-7) we
arrive at the estimate

(3-10) %(x, y)≤ %̂(x, y)≤ a = (1+ b2) · max
(ξ,η)∈∂�

φ(ξ, η), (x, y) ∈�.

This shows the right-hand side of the statement (3-5) above. �

Remark. For embedded surfaces of constant mean curvature, J. Serrin [1969]
established a maximum-estimate by the bounding contour; there the reflection
method of A. D. Alexandroff was employed. Our method above is based on a
foliation of H-surfaces with variable mean curvature.

Already at the beginning of the last century, A. Korn and C. H. Müntz solved the
boundary value problem of the minimal surface equation for contours deviating only
a little from planar curves. From §§ 413–415 of J. C. C. Nitsche’s treatise [1975] we
learn that Plateau’s problem for parametric minimal surfaces with positive second
variation is stable with respect to small perturbations of the bounding contour.
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The approximate solutions are obtained by solving a peculiar nonlinear elliptic
PDE which is accessible to Banach’s fixed point theorem within the Hölder space
C2+α(B) (compare [Dierkes et al. 2010a, §5.6, Proposition 1]). We have used this
method in Proposition 1.8 of [Sauvigny 2012b, Chapter 13], in order to establish the
stability of the nonparametric H-surface equation under small perturbations with
respect to the C2+α-norm of the boundary data. Since the logarithmic H-surface
equation (2-24) has a similar structure, we can prove the stability for our Dirichlet
problem P(�, φ, H) under homothetic transformations — near the identity — of
the boundary values.

Lemma 3.1 (perturbation result). Let�⊂R2 denote a convex C2+α-Jordan domain
with 0< α < 1, such that the logarithmic mean curvature

D = D(x, y, z) ∈ C1+α(�×R,R)

satisfies the monotonicity condition. For the associate mean curvature H due to
(2-13) on the cone C(�) and the positive boundary distribution φ : ∂�→ (0,+∞)
of class C2+α, the problem P(�, φ, H) possesses a solution. Then the Dirichlet
problem P(�, λφ, H) is solvable for all parameters 1− ε ≤ λ≤ 1+ ε, where the
quantity ε > 0 is sufficiently small.

Proof. (1) Instead of the PDE (2-17) we use the equivalent equation (2-24) and
start with a solution σ = σ(x, y)∈C2+α(�) of this logarithmic H-surface equation.
Then we consider the perturbation

(3-11) σ(x, y)+ t + τ(x, y), (x, y) ∈�,

with a parameter −ε ≤ t ≤ ε and a function τ in the Banach space

B := {τ = τ(x, y) ∈ C2+α(�) | τ(x, y)= 0 for all (x, y) ∈ ∂�}.

We insert (3-11) into (2-24) and observe that our perturbed function (3-11) satisfies
the logarithmic H-surface equation (2-24) if and only if the function τ ∈ B fulfills
the PDE

(3-12)
(
(σy + τy)

2
· (x2
+ y2
+ 1)+ 2y(σy + τy)+ 1

)
(σxx + τxx)

−2
(
(σx+τx)(σy+τy)·(x2

+y2
+1)+[y(σx+τx)+x(σy+τy)]

)
(σxy+τxy)

+
(
(σx + τx)

2
· (x2
+ y2
+ 1)+ 2x(σx + τx)+ 1

)
(σyy + τyy)

− |(∇σ +∇τ)|(x,y)|
2

= 2D(x, y, σ + t + τ)
(
1+ (1+ x2)(σx + τx)

2
+ (1+ y2)(σy + τy)

2

+ 2xy(σx + τx)(σy + τy)+ 2x(σx + τx)+ 2y(σy + τy)
)3/2

,

for (x, y) ∈�.
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(2) On the left-hand side of (3-12) we collect all those terms, where the factors of
the set

F := {τx , τy, τxx , τxy, τyy}

appear in the same order, to the following differential operators: the terms of order 0
result in the expression

(3-13) 2D(x, y, σ )
(
1+ (1+ x2)σ 2

x + (1+ y2)σ 2
y + 2xyσxσy + 2xσx + 2yσy

)3/2
,

since σ solves the PDE (2-24). Then we collect all terms of order 1 to the linear
elliptic differential operator

(3-14) L0τ :=
(
σ 2

y · (x
2
+ y2
+ 1)+ 2yσy + 1

)
τxx

− 2
(
σxσy · (x2

+ y2
+ 1)+ [yσx + xσy]

)
τxy

+
(
σ 2

x · (x
2
+ y2
+ 1)+ 2xσx + 1

)
τyy(x, y)

+ a(x, y)τx + b(x, y)τy

with coefficients a(x, y), b(x, y) of the class Cα(�) depending on the solution σ .
The remaining terms of order 2 and 3 are assembled to the nonlinear operator
Q=Q(τ ) : B→ Cα(�). On the ball Bδ := {τ = τ(x, y) ∈ B | ‖τ‖C2+α(�) ≤ δ} of
radius δ > 0 the estimates

(3-15)
‖Q(τ )‖Cα(�) ≤ L1(δ)‖τ‖C2+α(�) for all τ ∈ Bδ,

‖Q(τ̃ )−Q(τ̂ )‖Cα(�) ≤ L2(δ)‖τ̃ − τ̂‖C2+α(�) for all τ̃ , τ̂ ∈ Bδ

hold true. Here as well as in (3-18), (3-19), (3-26) below, the constants L j (δ) > 0
satisfy limδ→0+ L j (δ)= 0 for j = 1, 2, 3, 4. When we respect that all terms in Q are
either quadratic or cubic in F and control their Hölder-norms, we immediately see
the assertions (3-15) above, where the upper inequality implies that the operator Q
is superlinear.

Now the equation (3-12) appears in the equivalent form

(3-16) L0τ +Q(τ )
= 2D(x, y, σ + t + τ)

(
1+ (1+ x2)(σx + τx)

2
+ (1+ y2)(σy + τy)

2

+ 2xy(σx + τx)(σy + τy)+ 2x(σx + τx)+ 2y(σy + τy)
)3/2

− 2D(x, y, σ )
(
1+ (1+ x2)σ 2

x + (1+ y2)σ 2
y

+ 2xyσxσy + 2xσx + 2yσy
)3/2

.

(3) We introduce the nonlinear operator

(3-17) N (τ ) :=
(
1+ (1+ x2)(σx + τx)

2
+ (1+ y2)(σy + τy)

2

+2xy(σx + τx)(σy + τy)+ 2x(σx + τx)+ 2y(σy + τy)
)3/2

,
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for τ ∈ B, where the power 3/2 is larger than 1. Therefore, we obtain the estimate

(3-18) ‖N (τ̃ )−N (τ̂ )‖Cα(�) ≤ L3(δ)‖τ̃ − τ̂‖C2+α(�) for all τ̃ , τ̂ ∈ Bδ.

Thus we receive the superlinear operator

(3-19)
R(τ ) :=N (τ )−N (0), τ ∈ B,

satisfying ‖R(τ )‖Cα(�) ≤ L3(δ)‖τ‖C2+α(�), τ ∈ Bδ.

Now we rewrite (3-16) into the equivalent form

(3-20) L0τ +Q(τ )= 2D(x, y, σ + t + τ)N (τ )− 2D(x, y, σ )N (0)

= 2D(x, y, σ + t + τ)(N (0)+R(τ ))− 2D(x, y, σ )N (0)

= 2(D(x, y, σ + t + τ)− D(x, y, σ ))N (0)

+ 2D(x, y, σ + t + τ)R(τ ).

(4) Let us determine

(3-21) D(x, y, σ (x, y)+ t + τ(x, y))− D(x, y, σ (x, y))

=

∫ 1

0

d
ds D(x, y, s[τ(x, y)+ t] + σ(x, y)) ds = c0(x, y)[τ(x, y)+ t],

for (x, y) ∈�, with the nonnegative function

c0(x, y) :=
∫ 1

0
Dz(x, y, s[τ(x, y)+ t] + σ(x, y)) ds,

due to the monotonicity condition. We insert (3-21) into the PDE (3-20) and arrive at

(3-22) L0τ +Q(τ )= 2c0(x, y)[τ(x, y)+ t]N (0)+ 2D(x, y, σ + t + τ)R(τ ).

Introducing the coefficient function c(x, y) := −2c0(x, y)N (0) ≤ 0, (x, y) ∈ �,
and the linear elliptic operator Lτ := L0τ + c(x, y)τ , τ ∈ B, we obtain the PDE

(3-23) Lτ = 2tc0(x, y)N (0)−Q(τ )+ 2D(x, y, σ + t + τ)R(τ )=:Mt(τ )

with the nonlinear operator Mt : B→ Cα(�) on the right-hand side.
For each θ > 0, we can find quantities δ = δ(θ) > 0 and ε = ε(θ) > 0 such that

(3-24) ‖Mt(τ )‖Cα(�) ≤ θ
−1δ for all τ ∈ Bδ and all − ε ≤ t ≤+ε.

This follows from the structure of the operator Mt in (3-23), since the operators Q
and R are superlinear as in (3-15) and (3-19) and the expression

sup
τ∈Bδ,t∈[−1,+1]

‖D(x, y, σ + t + τ)‖Cα(�)

is finite, due to the regularity of D on the convex domain �.
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Furthermore, with δ = δ(θ) > 0 and ε = ε(θ) > 0 we realize the estimate

(3-25) ‖Mt(τ̃ )−Mt(τ̂ )‖Cα(�) ≤
1

2θ
‖τ̃ − τ̂‖C2+α(�)

for all τ̃ , τ̂ ∈ Bδ and − ε ≤ t ≤+ε.

Here the structure of the operator Mt in (3-23) is combined with the inequalities
(3-15), (3-18) and the following estimate, which is based on the regularity of D in
the convex domain �:

(3-26) ‖D( · , · , σ + t + τ̃ )− D( · , · , σ + t + τ̂ )‖Cα(�) ≤ L4(δ)‖τ̃ − τ̂‖C2+α(�)

for all τ̃ , τ̂ ∈ Bδ and t ∈ [−1,+1].

(5) Due to Theorem 5.2 in [Sauvigny 2012b, Chapter 9], the linear elliptic operator
L : B→ Cα(�) satisfies the Schauder estimate

(3-27) ‖τ‖C2+α(�) ≤ θ‖Lτ‖Cα(�) for all τ ∈ B,

where θ > 0 represents the Schauder constant. Consequently, L possesses an inverse
L−1 bounded with respect to the respective Hölder norms. With δ = δ(θ) the set
L(Bδ) contains a ball of radius θ−1δ within the Banach space Cα(�). When we
remember (3-24) with ε=ε(θ), we can transform (3-23) into the fixed point equation

(3-28) τ = L−1
◦Mt(τ ), with τ ∈ Bδ for all − ε ≤ t ≤+ε.

The nonlinear operator L−1
◦Mt : Bδ→ Bδ yields a contraction

(3-29) ‖L−1
◦Mt(τ̃ )−L−1

◦Mt(τ̂ )‖C2+α(�) ≤
1
2‖τ̃ − τ̂‖C2+α(�)

for all τ̃ , τ̂ ∈ Bδ and − ε ≤ t ≤+ε

due to (3-25) and (3-27). Banach’s fixed point theorem furnishes a unique solution
τ ∈ Bδ of the equation (3-28) for all −ε ≤ t ≤+ε. �

With the aid of the uniformization method, we shall estimate the area of the
solutions for our Dirichlet problem. Let � ⊂ R2 denote a C2+α-Jordan domain
with the positive boundary distribution φ : ∂�→ (0,+∞) of the class C2+α. We
define the Jordan contour

0(φ) := {(xφ(x, y), yφ(x, y), φ(x, y)) ∈ R3
| (x, y) ∈ ∂�}

and the area M(φ) > 0 of the conical surface

S(φ) := {(λxφ(x, y), λyφ(x, y), λφ(x, y)) ∈ R3
| (x, y) ∈ ∂�, λ ∈ (0, 1)}.

With the logarithmic mean curvature (2-12) let us define the mean curvature H
due to (2-13) on the cone C(�). We consider a solution %= %(x, y) ∈ P(�, φ, H).
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The associate surface (2-3) possesses the area A(%) and the volume V (%) of the
conical domain

G(%) := {(λx%(x, y), λy%(x, y), λ%(x, y)) ∈ R3
| (x, y) ∈�, λ ∈ (0, 1)}.

This H-surface has the minimal mean curvature

(3-30) m(%) := inf
(x,y)∈�

H(x%(x, y), y%(x, y), %(x, y)) ∈ R.

Lemma 3.2 (area estimate). We can estimate the area A(%) of a solution % for the
Dirichlet problem P(�, φ, H) in

A(%)≤−3m(%)V (%)+M(φ)

by the minimal mean curvature m(%) as well as the volume V (%) of the conical do-
main G(%) for the solution, and by the area M(φ) of the given conical surface S(φ).

Proof. Let us introduce conformal parameters into the surface (2-3). Then we obtain
a parametric H-surface X (u, v)= (x(u, v), y(u, v), z(u, v)) : B→R3

∈C2+α(B)
which is regular on the closure of the unit disc B := {(u, v) ∈ R2

| u2
+ v2 < 1} in

the differential-geometric sense. More precisely, we have the following conditions:

(3-31) 1X (u, v)= 2H(X (u, v))Xu ∧ Xv, |Xu|
2
= |Xv|2 > 0,

Xu · Xv = 0, X · Xu ∧ Xv > 0 on B.

With the aid of triple products ( · , · , · ) we calculate

(3-32) 2H(X)(X, Xu, Xv)= X ·1X = (X · Xu)u + (X · Xv)v − |∇X |2 on B

and obtain

(3-33) 1
2 |∇X |2 =−H(X)(X, Xu, Xv)+ 1

2{(X · Xu)u + (X · Xv)v} on B.

Let us denote the exterior normal to the unit disc by ν : ∂B→ S1. Furthermore,
we use the arc length σ and the line element dσ on ∂B. Then we integrate (3-33)
as follows:

(3-34) A(%)= 1
2

∫∫
B
|∇X |2 du dv

=

∫∫
B
−H(X)(X, Xu, Xv) du dv+ 1

2

∫
∂B
(X · Xν) dσ.

We use the positive orientation of the conformal parameters as well as the minimal
mean curvature (3-30) in order to estimate the two-dimensional integral on the right-
hand side. Denoting by N (u, v) the unit normal, the conformal parametrization
yields the identity

Xσ ∧ N = Xν on ∂B,
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which we use in (3-34) for the one-dimensional integral. Thus we obtain

(3-35) A(%)≤−m(%)
∫∫

B
(X, Xu, Xv) du dv+ 1

2

∫
∂B
(X, Xσ , N ) dσ

≤−m(%)
∫∫

B
(X, Xu, Xv) du dv+ 1

2

∫
∂B
|X ∧ Xσ | dσ

=−m(%)
∫∫

B
(X, Xu, Xv) du dv+M(φ).

Then we apply the Gaussian integral theorem to the conical domain G(%) and the
vector field

W (x, y, z) := (x, y, z), (x, y, z) ∈ G(%),

which is tangential on the conical boundary S(φ)= ∂G(%)∩ ∂C(�). Therefore, we
receive the expression

(3-36)
∫∫

B
(X, Xu, Xv) du dv =

∫∫∫
G(%)

div W (x, y, z) dx dy dz = 3V (%).

We insert (3-36) into (3-35) and obtain with

(3-37) A(%)≤−3m(%)V (%)+M(φ)

the final estimate. �

Remark. Originally, R. Finn [1954] established a priori estimates of the area for
graphs of minimal surface type. E. Heinz [1971] proved such an estimate for graphs
of prescribed mean curvature. Here we refer our readers to Proposition 1.2 in
[Sauvigny 2012b, Chapter 13].

4. Some results on Radó’s minimal surface equation

In this section, we consider the special case H ≡ 0≡ D. With the aid of Plateau’s
problem, we can solve Dirichlet’s problem for the PDE (2-17) with vanishing right-
hand side. This has already been proposed by Radó [1932] (compare [Nitsche 1975,
§402]). However, we shall apply alternative methods from my dissertation [Sauvigny
1982] and book with Dierkes and Hildebrandt [Dierkes et al. 2010a, §§5.1–5.3],
in order to realize that the central projection is one-to-one. The n-dimensional
situation has been studied by E. Tausch [1981] using nonparametric methods.

By variational methods we establish the following theorem.

Theorem 4.1 (solution of P(�, φ, 0)). Let �⊂ R2 denote a convex C2+α-Jordan
domain and let φ : ∂�→ (0,+∞) denote a positive C2+α-boundary distribution
with 0 < α < 1. Then the Dirichlet problem P(�, φ, 0) possesses exactly one
solution %(x, y), (x, y) ∈�.
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Proof. (1) We solve Plateau’s problem for the regular C2+α-Jordan contour

0 := {(xφ(x, y), yφ(x, y), φ(x, y)) ∈ R3
| (x, y) ∈ ∂�}

with a parametric minimal surface X (u, v)= (x(u, v), y(u, v), z(u, v)) : B→ R3.
This surface is defined on the closure of the unit disc B := {(u, v)∈R2

| u2
+v2< 1}

and satisfies the Laplace equation

1X (u, v)= 0, (u, v) ∈ B.

Its isothermal first fundamental form

ds2
= X2

u du2
+ 2Xu · Xv du dv+ X2

v dv2
= E(u, v)(du2

+ dv2), (u, v) ∈ B,

might only degenerate at isolated branch points of X , and its unit normal N (u, v),
(u, v) ∈ B, exists within the class C2(B)∩C1(B) subject to the Schwarzian differ-
ential equation

(4-1) 1N (u, v)− 2E(u, v)K (u, v)N (u, v)= 0, (u, v) ∈ B.

Here K (u, v) ≤ 0 denotes the Gaussian curvature of the metric ds2 at regular
points (u, v). The differential equation (4-1) can be found in Hilfssatz 1 and Satz 1
of [Sauvigny 1982] (see [Dierkes et al. 2010a, §5.1, Theorem 1] as well). The
necessary investigations on the regularity and branch points of H-surfaces are
contained in Chapter 2 of the treatise [Dierkes et al. 2010b] by Dierkes, Hildebrandt,
and A. Tromba.

(2) The minimal surface X (B) lies in the convex hull of its bounding contour 0,
where the latter is situated on the boundary of the convex cone C(�), outside its
vertex. This implies the inclusions

(4-2) X (B)⊂ C(�) and X (∂B)⊂ ∂C(�) \ {(0, 0, 0)}.

The arguments from [Sauvigny 1982, §2] show that the minimal surface approaches
the bounding cone ∂C(�) transversally and does not possess boundary branch
points. When we consider the auxiliary function

θ(u, v) := N (u, v) · X (u, v), (u, v) ∈ B,

we obtain the boundary condition

(4-3) θ(u, v) > 0, (u, v) ∈ ∂B.

With the aid of (4-1), we derive the PDE for our auxiliary function

(4-4) 1θ(u, v)

= (1N (u, v)) · X (u, v)+ 2∇N (u, v) · ∇X (u, v)+ N (u, v) · (1X (u, v))

= X (u, v) ·1N (u, v)− N (u, v) ·1X (u, v)= 2E(u, v)K (u, v)θ(u, v),
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for (u, v) ∈ B. Before we have fixed three points on the contour 0, such that the
boundary representation is positive-oriented with respect to the projection plane E .

(3) Now the metric ds2 is stable in the following sense:

(4-5)
∫∫

B
|∇ψ(u, v)|2 du dv

≥−2
∫∫

B
E(u, v)K (u, v)ψ(u, v)2 du dv for all ψ ∈ C1

0(B).

This stability condition has been established in [Sauvigny 1982, §3] by the area-
minimizing property for the solutions of Plateau’s problem. Due to Hilfssatz 6 of
[Sauvigny 1982] (compare [Dierkes et al. 2010a, §5.3, Proposition 1]), we obtain

(4-6) θ(u, v) > 0, (u, v) ∈ B.

On the basis of the property (4-6), we can exclude interior branch points for our
minimal surface by a winding number argument. Therefore, the surface

X : B→ C(�)

represents a minimal embedding, with one-to-one central projection onto the plane E ,
which bounds the contour0. Thus we have solved the Dirichlet problem P(�, φ, 0).

�

Finally, we classify the entire solutions of Radó’s partial differential equation.

Theorem 4.2 (Bernstein-type result). Let %=%(x, y)∈C2(R2, (0,+∞)) represent
a positive solution of the minimal surface equation in central projection

(4-7)
(
%2

y · (x
2
+ y2
+ 1)+ 2%y%y + %

2)%xx

− 2
(
%x%y · (x2

+ y2
+ 1)+ %[y%x + x%y]

)
%xy

+
(
%2

x · (x
2
+ y2
+ 1)+ 2%x%x + %

2)%yy(x, y)− 2%|∇%(x, y)|2 = 0,

for (x, y) ∈ R2. Then it follows that %(x, y)= c for all (x, y) ∈ R2, with a positive
constant 0< c <∞.

Proof. (1) We define the complete minimal embedding

(4-8) X (x, y) := (x%(x, y), y%(x, y), %(x, y)), (x, y) ∈ R2,

in the Euclidean space R3. For an arbitrary radius 0 < R < +∞, we consider
the geodesic disc about the center X0 := X (0, 0) parametrized over the domain
(0, 0) ∈ DR ⊂ R2. Into this minimal disc X (x, y), (x, y) ∈ DR , we introduce
conformal parameters and obtain the parametric minimal surface X (u, v), (u, v)∈ B
with its unit normal N (u, v), (u, v) ∈ B.
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(2) The auxiliary function

θ(u, v) := N (u, v) · X (u, v), (u, v) ∈ B,

satisfies the conditions

(4-9)
1θ(u, v)− 2E(u, v)K (u, v)θ(u, v)= 0, (u, v) ∈ B,

θ(u, v) > 0, (u, v) ∈ B.

The arguments of Theorem 1 in [Dierkes et al. 2010a, §5.4] show that our minimal
surface X (u, v), (u, v) ∈ B, is stable in the sense of the inequality (4-5). This
property holds true for the discs of all radii 0< R <+∞ about X0.

(3) Theorem 3 in [Dierkes et al. 2010a, §5.5] shows that the surface (4-8) represents
a plane within the half-space z > 0. It follows that %(x, y)= c for all (x, y) ∈ R2,
with a positive constant 0< c <+∞. �

5. Large H-surfaces bounding extreme contours

We return to surfaces of prescribed mean curvature with compact support and solve
the associate Dirichlet problem on convex domains. We use the deformation method,
which is presented in [Sauvigny 2012b, Chapter 13, §1] for the nonparametric H-
surface equation.

Lemma 5.1 (nondegeneracy result). Suppose X (u, v) := (x(u, v), y(u, v), z(u, v)),
(u, v) ∈ B, is a parametric H-surface, with unit normal N (u, v), (u, v) ∈ B,
and suppose its prescribed mean curvature (2-12) in the class C1+α(�×R) with
(2-13) satisfies the monotonicity condition. Furthermore, let the auxiliary function
θ(u, v) := N (u, v) · X (u, v)≥ 0, (u, v)∈ B, possess a zero (u0, v0)∈ B within this
disc. Then the identity θ(u, v)≡ 0, (u, v) ∈ B, follows.

Proof. For our prescribed mean curvature H , we easily determine the equation

(5-1) ∇H(X) · X = r ·
d
dr

{
D(x, y, ln r)

r

}
= r ·

{
Dz(x, y, ln r)

r2 −
D(x, y, ln r)

r2

}
=

Dz(x, y, ln r)
r

−
D(x, y, ln r)

r
≥−

D(x, y, ln r)
r

=−H(ξ, η, ζ )=−H(X),

for all points X = (ξ, η, ζ )= (r x, r y, r)∈ C(�), (x, y)∈�, 0< r <+∞. With the
aid of Hilfssatz 1 and Satz 1 in [Sauvigny 1982] (see also [Dierkes et al. 2010a, §5.1,
Theorem 1]) and the estimate (5-1), we obtain the following differential inequality



500 FRIEDRICH SAUVIGNY

on the unit disc B for our auxiliary function:

(5-2) 1θ(u, v)
= (1N (u, v)) · X (u, v)+ 2∇N (u, v) · ∇X (u, v)+ N (u, v) · (1X (u, v))

= X (u, v) ·1N (u, v)− N (u, v) ·1X (u, v)

= X (u, v) ·1N (u, v)− 2E(u, v)H |X (u,v)

=−q(u, v)θ(u, v)− 2E(u, v)∇H |X (u,v) · X (u, v)− 2E(u, v)H |X (u,v)

≤−q(u, v)θ(u, v).

Here we have used the potential

(5-3) q(u, v) := 2
(
2E(u, v)H |2X (u,v)−E K (u, v)−E(u, v)∇H |X (u,v) ·N (u, v)

)
,

for (u, v)∈ B. Since a point (u0, v0)∈ B with θ(u0, v0)= 0 exists, the nonnegative
function θ solving (5-2) has to vanish in B identically, due to Hilfssatz 5 in [Sauvigny
1982]. �

By a nonlinear continuity method we prove the following theorem.

Theorem 5.1 (solution of P(�, φ, H∗)). On the convex C2+α-Jordan domain �
we prescribe the logarithmic mean curvature

D(x, y)= D∗(x, y) :�→ R ∈ C1+α
0 (�)

with compact support, subject to the inequalities

(5-4) D̂(x, y)≤ D(x, y)≤ 0 for all points (x, y) ∈�.

Denote by H∗ its homogeneous continuation onto the cone C(�) due to (2-13).
Then the Dirichlet problem P(�, φ, H∗) of the H∗-surface equation in central
projection possesses a solution % = %(x, y) ∈ C2+α(�) for all C2+α functions
φ : ∂�→ (0,+∞).

Proof. (1) We introduce the positive quantity

(5-5) r∗ := (1+ b2) · max
(ξ,η)∈∂�

φ(ξ, η).

Then we choose a weakly monotonically decreasing function χ=χ(z)∈C1(R,[0,1])
with the properties

(5-6) χ(z)= 1 for all z ∈ (−∞, ln r∗], χ(z)= 0 for all z ∈ [ln(r∗+1),+∞).

Thus we prescribe the logarithmic mean curvature

(5-7) D = D(x, y, z) := D∗(x, y) ·χ(z), (x, y, z) ∈�×R,
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on the cylinder �×R. Due to (2-13), we observe the associate mean curvature H
on the cone C(�) as follows:

(5-8)
H(ξ, η, ζ )=

D∗(x, y)
r

= H∗(ξ, η, ζ ), (ξ, η, ζ )= (r x, r y, r),

with (x, y) ∈�, 0< r ≤ r∗,

and

(5-9)
H(ξ, η, ζ )= 0, (ξ, η, ζ )= (r x, r y, r),

with (x, y) ∈�, r∗+ 1≤ r <+∞.

(2) For the parameters 1 ≤ λ < +∞ let us consider the Dirichlet problems
P(�, λφ, H) with the mean curvature H being prescribed. These H-surfaces
with one-to-one central projection bound the contours

(5-10) 0λ := {(xλφ(x, y), yλφ(x, y), λφ(x, y)) ∈ R3
| (x, y) ∈ ∂�}

situated on the boundary of our cone. On account of (5-9) we can choose a parameter
1< λ∗ <+∞ large enough that the mean curvature H vanishes within the convex
hull of the contour 0λ∗ . Therefore, we can solve the Dirichlet problem P(�, λ∗φ, H)
with the aid of Theorem 4.1.

(3) Now the set

(5-11) 3 := {λ ∈ [1, λ∗] | P(�, λφ, H) possesses a solution}

is open, since the solutions are stable with respect to small homothetic perturbations
of the bounding contour due to Lemma 3.1. Here we use that the logarithmic mean
curvature from (5-6) and (5-7) satisfies the monotonicity condition in Definition 3.2.
Moreover, the set 3 is closed since the property of one-to-one central projection
remains valid in the limit. This follows from Lemma 5.1 which requires the mono-
tonicity condition again. Since the cone is convex and the mean curvature vanishes
near the boundary, the surfaces approach the conical boundary ∂C(�) transversally.

(4) In order to establish the compactness of our solutions, we need a joint bound on
the area of the surfaces. Here we use the area estimate from Lemma 3.2 as follows:
on account of Theorem 3.2 we obtain a bound from below for the mean curvature
of our surfaces. Furthermore, this Theorem 3.2 yields a uniform estimate for the
volumes appearing in Lemma 3.2.

With the aid of the Courant–Lebesgue lemma and the geometric maximum princi-
ple in a local version, we can easily derive a modulus of continuity for our parametric
solutions in order to establish the equicontinuity of our functions on the closed
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disc B. In this context, we use at each point (ξ0, η0, ζ0)= (r0x0, r0 y0, r0) ∈ C(�),
with (x0, y0) ∈� and r0 > 0, the conical ε-neighborhood

(5-12) Uε(ξ0, η0, ζ0)

:=
{
(r x, r y, r) ∈ R3

| (x, y) ∈� with (x − x0)
2
+ (y− y0)

2
≤ ε2 and

r ∈ R with (1− ε)r0 ≤ r ≤ (1+ ε)r0µ(x0, y0, ε)/(1+ x2
+ y2)

}
,

where we need the function

µ(x0, y0, ε) := sup{1+ x2
+ y2
| (x, y) ∈� with (x − x0)

2
+ (y− y0)

2 < ε2
}.

The parametric representation X (u, v), (u, v) ∈ B, of a solution % = %(x, y),
(x, y) ∈ �, for our Dirichlet problem under condition (5-4) is subject to the
inclusion principle

X (∂2)⊂Uε(ξ0, η0, ζ0) ⇒ X (2)⊂Uε(ξ0, η0, ζ0) for all domains 2⊂�,

where we use the proof of Theorem 3.2. Then we can adapt the proof of Theo-
rem 2(iii) in [Dierkes et al. 2010a, §7.1] and especially Lemma 4 to obtain the
desired equicontinuity. Alternatively, we can modify the proofs of Satz 5 and
Hilfssatz 10 in [Sauvigny 1982] by using the inclusion principle above.

(5) Now we combine from [Sauvigny 2012b, Chapter 12] the gradient estimate
Theorem 2.6 by Heinz and the inner C1+α-estimate Theorem 2.7 for the H-surface
system (3-31), which both require a smallness condition, with the modulus of
continuity as in proof of Theorem 5.4(2). Thus we obtain an inner C1+α-estimate
for our solutions, which implies an interior C2+α-estimate via Theorem 4.4 in
[Sauvigny 2012b, Chapter 9].

Therefore, we can extract a uniformly convergent subsequence on B which
converges in C2+α

loc (B)∩C0(B) to a solution of Plateau’s problem. We invoke the
boundary regularity result proved by Heinz [1970] and Hildebrandt (see [Dierkes
et al. 2010b, §2.3, Theorem 2]). Thus our limit surface belongs to the Banach space
C2+α(B).

Alternatively, we could control the convergence within the Banach space C2+α(B)
with the aid of [Dierkes et al. 2010b, §2.1, Proposition 2 and Lemma 7; §2.2,
Theorem 2], together with Theorems 4.6 and 5.2 from [Sauvigny 2012b, Chapter 9].

(6) Since our set 3 is nonempty, we obtain the identity 3 = [1, λ∗]. Therefore,
the problem P(�, φ, H) possesses a solution. Finally, we use Theorem 3.2 and
remember (5-5). Consequently, the solution of P(�, φ, H) lies within the conical
section described in (5-8), where the curvatures H and H∗ coincide. Thus we have
found a solution of the Dirichlet problem P(�, φ, H∗). �
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Definition 5.1. To each Jordan domain �⊂ R2 and positive boundary distribution
φ : ∂�→ (0,+∞) ∈ C0(∂�,R) we associate the Jordan contour

(5-13) 0 = 0(�, φ) := {(xφ(x, y), yφ(x, y), φ(x, y)) ∈ R3
| (x, y) ∈ ∂�}

with one-to-one central projection onto the curve ∂�. We name 0 an extreme
contour if each point X0 = (ξ0, η0, ζ0) ∈ 0 admits a real number a = a(X0) > 0
such that

(5-14) 0 ⊂ K(a) and X0 ∈ 0 ∩ ∂K(a).

Here we use the balls of support

(5-15) K(a) := {(ξ, η, ζ ) ∈ R3
| ξ 2
+ η2
+ (ζ − a/2)2 ≤ a2/4}

of radius a/2> 0 about the center (0, 0, a/2).

Theorem 5.2 (large embedded solutions for Plateau’s problem). We have a function
φ = φ(x, y) : ∂�→ (0,+∞) ∈ C2+α, on the boundary of a convex C2+α-Jordan
domain � ⊂ R2, such that 0 = 0(�, φ) represents an extreme contour. Further-
more, let us prescribe with D = D(x, y) : �→ R ∈ C1+α(�) the logarithmic
mean curvature subject to the restriction (5-4) and denote by H its homogeneous
continuation onto the cone C(�) due to (2-13). Then we can solve the Dirichlet
problem P(�, φ, H) by a function % = %(x, y) ∈ C2+α(�).

Proof. (1) Approximate D=D(x, y) by functions Dk
=Dk(x, y):�→R∈C1+α

0 (�)

for k = 1, 2, . . . within Cα
loc(�) which are dominated as follows:

(5-16) D(x, y)≤ Dk(x, y)≤ 0, (x, y) ∈�, for all k ∈ N.

Therefore, these functions Dk are subject to the restrictions (5-4), and the conver-
gence in � is compactly uniform. Then we denote by H k their continuation onto
the cone C(�) due to (2-13). With the aid of Theorem 5.1 we solve the Dirichlet
problems P(�, φ, H k) by the functions %k

= %k(x, y) ∈ C2+α(�) for all k ∈ N.

(2) We choose the solution %̃(x, y), (x, y) ∈ �, of the problem P(�, φ, 0) in
Theorem 4.1 as a lower barrier function. Now we observe that 0 represents an
extreme contour. For each (x0, y0) ∈ ∂� with the associate point

X0 := (x0φ(x0, y0), y0φ(x0, y0), φ(x0, y0)) ∈ 0

we can find a real number a = a(x0, y0) > 0 such that the ball K(a) from (5-15)
satisfies the conditions (5-14). Together with the solution

%̂(x, y) := a(1+ x2
+ y2)

−1
, (x, y) ∈�,
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from Theorem 2.1 as an upper barrier function, we obtain the estimates

(5-17) %̃(x, y)≤ %k(x, y)≤ %̂(x, y) for all (x, y) ∈� and all k ∈ N

via the method of proof in Theorem 3.2.

(3) The parametric representations of these solutions yield H k-surfaces X k(u, v) of
equibounded mean curvature and belonging to C2+α(B). Now we use the arguments
in parts (4) and (5) of the proof for Theorem 5.1 and establish the equicontinuity of
{X k
}k=1,2,3,... on the closed disc by the inclusion principle. With the aid of [Dierkes

et al. 2010b, §2.2, Theorem 2 and §2.3, Theorem 2] we see that these functions
converge to a function X ∈ C1+α(B, T ) in isothermal parameters which is situated
in the spherical solid

(5-18) T := {Y = (r x, r y, r) ∈ R3
| (x, y) ∈�, %̃(x, y)≤ r ≤ %̂(x, y)}.

At the point X0 ∈ ∂T the surfaces associated with the lower and upper barrier
functions form an angle ω = ω(x0, y0) ∈ (0, π).

The inclusion X (B) ⊂ T and the representation X (u0, v0) = X0 ∈ ∂T with
(u0, v0) ∈ ∂B imply that the point (u0, v0) does not constitute a branch point of X .
Otherwise the local expansion there would imply that the surface X protrudes
from T — an evident contradiction.

Furthermore, the inclusion X (B) ⊂ C(�) holds true. If X (u0, v0) = X0 ∈ ∂T
were true for a point (u0, v0) ∈ B, the local expansion of X would force the surface
to protrude from T — which is impossible. Since the boundary point X0 can be
chosen arbitrarily on 0, the inclusion above and the exclusion of branch points
on ∂B is established.

For the local expansions, we refer our readers to Theorem 2 and Corollary 2 in
[Dierkes et al. 2010b, §3.1] and to the original paper by Heinz [1970].

(4) The functions X k(u, v) ∈ C2+α(B) satisfy the nonlinear elliptic systems

(5-19) 1X k(u, v)= 2H k(X k(u, v))X k
u ∧ X k

v on B for k = 1, 2, . . . .

Since the mean curvatures H k
= H k(ξ, η, ζ ) : C(�)→ R converge compactly

uniformly in the open cone C(�) and the surfaces X k
= X k(u, v) : B → C(�)

converge due to (3) uniformly on B to the continuous function X : B→ C(�) with
the property X (B)⊂ C(�), we see the limit relation

(5-20) lim
k→∞

H k(X k(u, v))= H(X (u, v)) for all (u, v) ∈ B.

Since the relation (5-20) occurs within Cα
loc(B) and a modulus of continuity in

(3) has been established, we can use the arguments from part (5) in the proof of
Theorem 5.1. Consequently, the functions X k converge within the space C2+α

loc (B)
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to the H-surface
X = X (u, v) ∈ C2+α(B)∩C0(B)

bounding the regular C2+α-contour 0.

(5) We invoke Theorem 2 in [Dierkes et al. 2010b, §2.3] again and see that
X = X (u, v) ∈ C2+α(B). Furthermore, Lemma 5.1 guarantees that our limit
surface satisfies

(5-21) X (u, v) · N (u, v) > 0, (u, v) ∈ B,

where we use the inclusion X (B) ⊂ T at the boundary. By a winding number
argument, we can easily exclude the interior branch points, and the H-surface
X : B→R3 is a differential-geometrically regular surface. Finally, the nonparametric
representation of this surface % = %(x, y) ∈ C2+α(�) solves the Dirichlet problem
P(�, φ, H). �

Remark. For arbitrary a > 0, let us consider a regular C2+α-Jordan contour on
the boundary of the ball K(a) with a one-to-one and convex central projection
onto the plane E . Due to Theorem 5.2 above, we can construct for all nonpositive
curvatures H greater or equal to the mean curvature of the upper hemisphere an
H-surface bounding the contour 0 with one-to-one projection onto E . Since these
surfaces include the large spherical caps, we receive large embedded solutions of
Plateau’s problem. We have to distinguish our considerations from the investigations
of H. Brézis and M. Coron [1984] or independently of M. Struwe [1985]. For
constant H they construct two solutions of Rellich’s H-surface system by variational
methods and obtain two not necessarily immersed H-surfaces which solve Plateau’s
problem for the same contour.

6. The Dirichlet problem P(�b, φ, H) on discs

In this section we concentrate on circular cones C(�b) associated with the discs

�b := {(x, y) ∈ R2
| x2
+ y2 < b2

}

of radius 0< b <+∞ about the origin. One can easily prove the following lemma.

Lemma 6.1 (boundary curvature). For arbitrary radii 0< b<+∞ we parametrize
the circular cones ∂C(�b) by

(6-1) Y = Y (r, t) := (rb cos t, rb sin t, r), 0< r <+∞, 0≤ t < 2π.

Their mean curvature with respect to the interior normal is given by

(6-2) Hb(r, t)=
1

2rb
√

1+ b2
, 0< r <+∞, 0≤ t < 2π.
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Theorem 6.1 (solution of P(�b, φ, H)). On the closed disc�b of radius 0<b<∞,
let us prescribe the logarithmic mean curvature D(x, y) ∈ C1+α(�b) subject to the
inequalities (5-4) and the estimate

(6-3) −
1

2b
√

1+ b2
< D(x, y)≤ 0 for all points (x, y) ∈ ∂�b.

We denote by H its homogeneous continuation onto the circular cone C(�b) due to
(2-13). Then the Dirichlet problem P(�b, φ, H) possesses a solution

% = %(x, y) ∈ C2+α(�b)∩C0(�b)

for all continuous boundary distributions φ : ∂�b→ (0,+∞).

Proof. (1) As in the proof of Theorem 5.2, let us approximate D = D(x, y) by the
functions

Dk
= Dk(x, y) :�b→ R ∈ C1+α

0 (�b) for k = 1, 2, . . .

within Cα
loc(�b), dominated due to (5-16) when we replace the domain � with �b.

We denote by H k their continuation onto the circular cone C(�b) due to (2-13)
and approximate the continuous boundary distribution φ : ∂�b→ (0,+∞) ∈ C0

uniformly by the sequence φk
: ∂�b→ (0,+∞) ∈ C2+α for k = 1, 2, . . . .

With the aid of Theorem 5.1, we solve the Dirichlet problems P(�b, φ
k, H k)

by the functions %k
= %k(x, y) ∈ C2+α(�b) for all k ∈ N. In the parametric

form we receive H k-surfaces X k(u, v) ∈ C2+α(B) bounding the Jordan contours
0k
:= 0(�b, φk) from (5-13). By an area estimate as in part (4) of the proof of

Theorem 5.1, we select a subsequence of {X k(u, v)}k=1,2,... which is uniformly
convergent on B to the limit

X = X (u, v) ∈ C0(B, C(�b)).

(2) Let us take a point (x, y)= (b cos t, b sin t)∈∂�b with an appropriate 0≤ t<2π
and a number r > 0, such that we obtain the boundary point (r x, r y, r) ∈ ∂C(�b)

of the cone. We use the balls

Kδ(r x, r y, r) := {(ξ, η, ζ ) ∈ R3
| (ξ − r x)2+ (η− r y)2+ (ζ − r)2 < δ2

}

about this point of radius δ = δ(r x, r y, r) > 0, which we shall choose sufficiently
small. Now we need circular cylinders of curvature h > 0 which are generated as
images of the standard cylinder

(6-4) Sh := {(ξ, η, ζ ) ∈ R3
| ξ 2
+ η2 < 1/4h2

}

of curvature h under an appropriate rotation and translation.
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At the point (r x, r y, r)we use as the cylinder of support Sh(r x, r y, r) the circular
cylinder of curvature

(6-5) h :=
1
2r

(
1

2b
√

1+ b2
− D(x, y)

)
∈

(
−

1
r

D(x, y), Hb(r, t)
)

with the properties

(6-6)
C(�b)∩ Kδ(r x, r y, r)⊂ Sh(r x, r y, r)∩ Kδ(r x, r y, r),

∂C(�b)∩ ∂Sh(r x, r y, r)∩ Kδ(r x, r y, r)= L(x,y) ∩ Kδ(r x, r y, r).

Here we have to apply our Lemma 6.1 from above. For the prescribed mean
curvature, the estimate

(6-7) |H(ξ, η, ζ )| ≤ h at all points (ξ, η, ζ ) ∈ C(�b)∩ Kδ(r x, r y, r)

holds true.

(3) The limit surface X (u, v) from (1) cannot touch the cone ∂C(�b) at an in-
terior point. If this happened, we could find a point (u0, v0) ∈ B such that
X (u0, v0)= (r x, r y, r) holds true for a boundary point (r x, r y, r) ∈ ∂C(�b) con-
sidered in (2) above. Now we use Hildebrandt’s geometric maximum principle for
H-surfaces in circular cylinders, presented in Hilfssatz 3 in [Sauvigny 1982] or
Proposition 1.6 in [Sauvigny 2012b, Chapter 13].

Transforming the setting into the standard cylinder (6-4) by rotation and trans-
lation, we show in (4) that the continuous auxiliary function

(6-8)
9(u, v) := x(u, v)2+ y(u, v)2, (u, v) ∈ B,

with (u− u0)
2
+ (v− v0)

2 < ε2,

is subharmonic in the sense of mean values, where ε > 0 is sufficiently small. Due to
Theorem 2.9 in [Sauvigny 2012a, Chapter 5], the function 9 is subject to the maxi-
mum principle. Therefore, the surface X would locally coincide with the bounding
cylinder and protrude from C(�b), which is impossible. Consequently, we have

(6-9) X (B)⊂ C(�b).

(4) Now we prove that the function 9 is subharmonic: for k= 1, 2, . . . we consider
the approximate auxiliary functions

(6-10)
9k(u, v) := xk(u, v)2+ yk(u, v)2, (u, v) ∈ B,

with (u− u0)
2
+ (v− v0)

2 < ε2,

associated with the solutions X k
∈C2+α(B, C(�b)) of the H-surface system (5-19).

Since their mean curvatures H k are equally bounded as in (6-7) due to (5-16), these
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functions satisfy

(6-11) 19k(u, v)≥ 0, (u, v) ∈ B, with (u− u0)
2
+ (v− v0)

2 < ε2,

by Hildebrandt’s maximum principle cited above. The functions X k and 9k con-
verge uniformly, and consequently the subharmonic property (6-11) for 9k — in
the mean-value sense — is transferred to the limit function 9.

(5) As we have seen in part (4) of the proof of Theorem 5.2, the inclusion (6-9)
implies that the convergence of our sequence X k(u, v) ∈ C2+α(B), k = 1, 2, . . . ,
occurs in the space C2+α

loc (B)∩C0(B) to the limit surface

(6-12) X = X (u, v) ∈ C2+α(B)∩C0(B).

Lemma 5.1 guarantees that our surface satisfies

(6-13) X (u, v) · N (u, v) > 0, (u, v) ∈ B.

Therefore, the surface X has a one-to-one central projection onto the plane E and
possesses the nonparametric representation

(6-14) % = %(x, y) ∈ C2+α(�b)∩C0(�b)

solving the Dirichlet problem P(�b, φ, H). �

Acknowledgements

I cordially thank Professor Dr. Dr.h.c. Robert Finn (Stanford University) for his
interest in my investigations. I am also very grateful to Privatdozent Dr. Ruben Jakob
(Eberhard Karls Universität Tübingen) for many valuable suggestions. His detailed
comments rendered my paper more readable and the proofs of Lemma 3.1 and
Theorems 5.1 and 5.2 more rigorous. Finally I would like to thank the production
editor Silvio Levy and his staff for their excellent work.

References

[Brézis and Coron 1984] H. Brézis and J.-M. Coron, “Multiple solutions of H -systems and Rellich’s
conjecture”, Comm. Pure Appl. Math. 37:2 (1984), 149–187. MR 85i:53010 Zbl 0537.49022

[Dierkes et al. 2010a] U. Dierkes, S. Hildebrandt, and F. Sauvigny, Minimal surfaces, 2nd ed.,
Grundlehren der Mathematischen Wissenschaften 339, Springer, Heidelberg, 2010. MR 2012b:49002
Zbl 1213.53002

[Dierkes et al. 2010b] U. Dierkes, S. Hildebrandt, and A. J. Tromba, Regularity of minimal sur-
faces, 2nd ed., Grundlehren der Mathematischen Wissenschaften 340, Springer, Heidelberg, 2010.
MR 2012b:49003 Zbl 1213.53003

[Finn 1954] R. Finn, “On equations of minimal surface type”, Ann. of Math. (2) 60 (1954), 397–416.
MR 16,592b Zbl 0058.32501

http://dx.doi.org/10.1002/cpa.3160370202
http://dx.doi.org/10.1002/cpa.3160370202
http://msp.org/idx/mr/85i:53010
http://msp.org/idx/zbl/0537.49022
http://dx.doi.org/10.1007/978-3-642-11698-8
http://msp.org/idx/mr/2012b:49002
http://msp.org/idx/zbl/1213.53002
http://dx.doi.org/10.1007/978-3-642-11700-8
http://dx.doi.org/10.1007/978-3-642-11700-8
http://msp.org/idx/mr/2012b:49003
http://msp.org/idx/zbl/1213.53003
http://dx.doi.org/10.2307/1969841
http://msp.org/idx/mr/16,592b
http://msp.org/idx/zbl/0058.32501


H -SURFACES WITH ONE-TO-ONE CENTRAL PROJECTION 509

[Heinz 1970] E. Heinz, “Über das Randverhalten quasilinearer elliptischer Systeme mit isothermen
Parametern”, Math. Z. 113 (1970), 99–105. MR 41 #7288 Zbl 0176.41004

[Heinz 1971] E. Heinz, “Interior gradient estimates for surface z = f (x, y) with prescribed mean
curvature”, J. Differential Geometry 5:1–2 (1971), 149–157. MR 44 #7125 Zbl 0212.44001

[Nitsche 1975] J. C. C. Nitsche, Vorlesungen über Minimalflächen, Grundlehren der mathematischen
Wissenschaften 199, Springer, Berlin, 1975. MR 56 #6533 Zbl 0319.53003

[Radó 1932] T. Radó, “Contributions to the theory of minimal surfaces”, Acta Sci. Math. (Szeged)
6:1 (1932), 1–20. Zbl 0005.17901

[Sauvigny 1982] F. Sauvigny, “Flächen vorgeschriebener mittlerer Krümmung mit eineindeutiger
Projektion auf eine Ebene”, Math. Z. 180:1 (1982), 41–67. MR 83j:53004 Zbl 0465.53003

[Sauvigny 2012a] F. Sauvigny, Partial differential equations, 1: Foundations and integral representa-
tions, 2nd ed., Springer, Berlin, 2012. MR 2007c:35001 Zbl 1246.35001

[Sauvigny 2012b] F. Sauvigny, Partial differential equations, 2: Functional analytic methods, 2nd
ed., Springer, London, 2012. MR 2012m:35001 Zbl 1246.35002

[Serrin 1969] J. Serrin, “On surfaces of constant mean curvature which span a given space curve”,
Math. Z. 112 (1969), 77–88. MR 40 #3447 Zbl 0182.24001

[Struwe 1985] M. Struwe, “Large H -surfaces via the mountain-pass-lemma”, Math. Ann. 270:3
(1985), 441–459. MR 86d:58024 Zbl 0582.58010

[Tausch 1981] E. Tausch, “The n-dimensional least area problem for boundaries on a convex cone”,
Arch. Rational Mech. Anal. 75:4 (1981), 407–416. MR 82e:53014 Zbl 0477.53006

Received August 6, 2015. Revised August 11, 2015.

FRIEDRICH SAUVIGNY

MATHEMATISCHES INSTITUT

BRANDENBURGISCHE TECHNISCHE UNIVERSITÄT COTTBUS - SENFTENBERG

PLATZ DER DEUTSCHEN EINHEIT 1
D-03046 COTTBUS

GERMANY

sauvigny@b-tu.de

http://www.digizeitschriften.de/index.php?id=resolveppn&PID=GDZPPN002405687
http://www.digizeitschriften.de/index.php?id=resolveppn&PID=GDZPPN002405687
http://msp.org/idx/mr/41:7288
http://msp.org/idx/zbl/0176.41004
http://projecteuclid.org/euclid.jdg/1214429784
http://projecteuclid.org/euclid.jdg/1214429784
http://msp.org/idx/mr/44:7125
http://msp.org/idx/zbl/0212.44001
http://dx.doi.org/10.1007/978-3-642-65619-4
http://msp.org/idx/mr/56:6533
http://msp.org/idx/zbl/0319.53003
http://acta.fyx.hu/acta/showCustomerArticle.action?id=5353&dataObjectType=article
http://msp.org/idx/zbl/0005.17901
http://www.digizeitschriften.de/index.php?id=resolveppn&PID=GDZPPN002426307
http://www.digizeitschriften.de/index.php?id=resolveppn&PID=GDZPPN002426307
http://msp.org/idx/mr/83j:53004
http://msp.org/idx/zbl/0465.53003
http://dx.doi.org/10.1007/978-1-4471-2981-3
http://dx.doi.org/10.1007/978-1-4471-2981-3
http://msp.org/idx/mr/2007c:35001
http://msp.org/idx/zbl/1246.35001
http://dx.doi.org/10.1007/978-1-4471-2984-4
http://msp.org/idx/mr/2012m:35001
http://msp.org/idx/zbl/1246.35002
http://www.digizeitschriften.de/index.php?id=resolveppn&PID=GDZPPN002405261
http://msp.org/idx/mr/40:3447
http://msp.org/idx/zbl/0182.24001
http://www.digizeitschriften.de/dms/resolveppn/?PID=PPN235181684_0270|log41
http://msp.org/idx/mr/86d:58024
http://msp.org/idx/zbl/0582.58010
http://dx.doi.org/10.1007/BF00256386
http://msp.org/idx/mr/82e:53014
http://msp.org/idx/zbl/0477.53006
mailto:sauvigny@b-tu.de


PACIFIC JOURNAL OF MATHEMATICS
msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2016 is US $440/year for the electronic version, and $600/year for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2016 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:balmer@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:blasius@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:yang@math.princeton.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 281 No. 2 April 2016

257The Eisenstein elements of modular symbols for level product of two
distinct odd primes

DEBARGHA BANERJEE and SRILAKSHMI KRISHNAMOORTHY

287Primitively generated Hall algebras
ARKADY BERENSTEIN and JACOB GREENSTEIN

333Generalized splines on arbitrary graphs
SIMCHA GILBERT, JULIANNA TYMOCZKO and SHIRA VIEL

365Good traces for not necessarily simple dimension groups
DAVID HANDELMAN

421On Fourier coefficients of certain residual representations of
symplectic groups

DIHUA JIANG and BAIYING LIU

467On the existence of central fans of capillary surfaces
AMMAR KHANFER

481Surfaces of prescribed mean curvature H(x, y, z) with one-to-one
central projection onto a plane

FRIEDRICH SAUVIGNY

Pacific
JournalofM

athem
atics

2016
Vol.281,N

o.2


	1. Introduction
	2. The H``-surface equation in central projection
	3. Uniqueness of Dirichlet's problem and estimates
	4. Some results on Radó's minimal surface equation
	5. Large H``-surfaces bounding extreme contours
	6. The Dirichlet problem P(b,,H) on discs
	Acknowledgements
	References
	
	

