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ON THE HALF-SPACE THEOREM
FOR MINIMAL SURFACES IN HEISENBERG SPACE

TRISTAN ALEX

'We propose a simple proof of the vertical half-space theorem for Heisenberg
space.

1. Introduction

A half-space theorem states that the only properly immersed minimal surface which
is contained in a half-space is a parallel translate of the boundary of the half-space,
namely a plane. Hoffman and Meeks [1990] first proved it for R3. Tt fails in R”
or H" for n > 4.

In recent years, there has been increased interest in homogeneous 3-manifolds
(see [Abresch and Rosenberg 2004; Hauswirth et al. 2008]). The original proof of
Hoffman and Meeks also works in Heisenberg space Nil3 with respect to umbrel-
las, which are the exponential image of a horizontal tangent plane [Abresch and
Rosenberg 2005]. Daniel and Hauswirth [2009] extended the theorem to vertical
half-spaces of Heisenberg space, where vertical planes are defined as the inverse
image of a straight line in the base of the Riemannian fibration Nil3 — R

Vertical half-space theorem in Heisenberg space [Daniel and Hauswirth 2009].
Let S be a properly immersed minimal surface in Heisenberg space. If S lies to one
side of a vertical plane P, then S is a plane parallel to P.

Essential for the proof of half-space theorems is the existence of a family of
catenoids or generalized catenoids. Their existence is simple to establish in spaces
where they can be represented as ODE solutions. For instance, horizontal umbrellas
in Heisenberg space are invariant under rotations around the vertical axis, so they
lead to an ODE. However, the lack of rotations about horizontal axes means that the
existence of analogues of a horizontal catenoid amounts to establishing true PDE
solutions. Daniel and Hauswirth use a Weierstral3-type representation to reduce this
problem to a system of ODEs. Only after solving a period problem do they obtain
the desired family of surfaces.
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In the present paper we introduce a simpler approach: we take a coordinate model
of Heisenberg space and consider coordinate surfaces of revolution. Provided we
can choose a family of surfaces whose mean curvature normal points into the
half-space, the original maximum principle argument of Hoffman and Meeks will
prove the theorem. Our approach is based on an idea by Bergner [2010], who
generalized the classical half-space theorem to surfaces with negative Gaussian
curvature such that the principal curvatures satisfy an inequality, and Sa Earp and
Toubiana [1995], who consider special Weingarten surfaces with mean curvature
satisfying an inequality.

It is an open problem to prove a vertical half-space theorem for PSL;(R), where
it would apply to surfaces whose mean curvature is the so-called magic number
Hp = 1/2, namely the limiting value of the mean curvature of large spheres. Here,
it would state that surfaces with mean curvature Hy = 1/2 lying on the mean convex
side of a horocylinder can only be horocylinders, that is, the inverse image of a
horocycle of the fibration PSL,(R) — H2. Our strategy could also work there.
However, so far we have not been successful in establishing the desired family of
generalized catenoids with H < Hj.

2. The Euclidean half-space theorem

Euclidean half-space theorem [Hoffman and Meeks 1990]. A properly immersed
minimal surface S in R® lying in a half-space H is a plane parallel to P = 3 H.

Proof. By the standard maximum principle we can assume dist(S, P) = O but
SNP=a.

Let ¢, C R3\ H be a half catenoid with necksize r and 3%, C P. By the
properness of S, we can translate S by ¢ > 0 towards %, such that S intersects P
but stays disjoint to 06, for all r € (0, 1].

As r tends to 0, the family of catenoids ‘6, converges to P minus a point. We
claim that the set / of parameters for which %6, does not intersect S is open. Consider
a catenoid 6, that does not intersect S. For each r € (0, 1) there exists a compact
set K such that the distance between 6, and P is larger than 2¢ in the complement
of K. We may choose K in a way that this property holds for all r in a small
neighborhood of ry. This implies that the distance between S and all these €, is
larger than ¢ in the complement of K (see Figure 1).

However, within the compact set K, the distance between S and C,, is positive,
so for all r in a (possibly smaller) neighborhood of ry, this distance is still positive.

We conclude that in a small neighborhood of ry,

dist(€,, S) > min{dist(€, N K, SN K), dist(€, N K, SN K)} > 0,

thereby proving our claim.
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Figure 1. Proof of the Euclidean half-space theorem.

Therefore, the set of parameters for which €, and S do intersect is closed, so
there is a first catenoid 6,, touching § at a point p. Since the boundaries of all
€, with r € (0, 1] are disjoint from S, the touching point p is an interior point,
contradicting the maximum principle. O

3. Coordinate surfaces of revolution
We take the following coordinates:
Nil; := (R?, ds?), ds? = dx? +dy? + Qrxdy —dz)>  with > 0.
An orthonormal frame of the tangent space is given by

E{ =0, E2=3y+2‘[xaz, E3 =0,,
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and the Riemannian connection in these coordinates is determined by
VE1E2=_VE2E1 =TE3’ VE1E3=VE3E1 :_TE29

1
M Ve, E3 =V, Er) =TE], Vg, E; =0 in all other cases.

The Heisenberg space is a Riemannian fibration 77 : R* — R? with vanishing base
curvature. The bundle curvature of Nils is given by % (Vg E2—VE,E1,E3) =1
and for T = 0 we recover R>.

Let us consider a curve c(t) = (0, t, r(¢)) in Heisenberg space with a positive
function r and ¢ > 0. By rotating around the y-axis, we get an immersion

—r(t)sing
f:[to, 00) x [0,27) — Nils, (¢, ¢) — t
r(t) cos ¢

In order to apply the proof of Hoffman and Meeks, we will construct Euclidean
surfaces of revolution around the y-axis. With the Heisenberg space metric, these
rotations are not isometric, because the 4-dimensional isometry group of Nilz
contains only translations and rotations around the vertical axis. Therefore, the
mean curvature of such a surface will depend on the angle of rotation ¢. We will
need to find a surface with mean curvature vector pointing to the half-space to
arrive at the desired contradiction with the maximum principle.

The tangent space of M := f([tg, 00) x [0, 27)) is spanned by

vy =—r'(t)singE| + E»+ 2tr(t) sing +r'(t) cos ¢) E3,
vy =—r(t)cospE| —r(t)sinpEs,

so the inner normal of M is

N = %(Sin @E1+ (r'(t) +21r(t) sing cos ¢) Ey — cos (0E3),

where W = /14 (27r () sing cos ¢ + ' (1))2.
We will now compute the first and second fundamental forms of M. We easily
get

Gij = ds*(v;, vj)
_ [T @)*sin® o+ Qrr (1) sing+r' (1) cos ) +1  —2zr(t)?sin’ ¢
B —2tr(t)?sin® ¢ r(1)?

with determinant det G = r(¢)>W?.

The most tedious part of the calculation is the second fundamental form. We
have to compute

B,‘j = ds2(VUl. Vj, N)
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To start, (1) gives
Vo, Ei = (=27%r(t) sing — tr'(t) cos 9) E; — TE3,
Vo, Eas = 2t%r(t) sing + tr'(t) cos ) E; — tr' () sin  E3,
Vo Ez=tE| +1r'(t) singE,.
We calculate
Vyv1 = —r"(t) singpEy + 2tr'(t) sing +r" (1) cos 9) E3
—r'(t) sinpVy, E1 + Vy, Ex + Qtr(t) sing +r'(t) cos )V, E3
= (—r"(t) singp 4+ 47%r (¢) singp 4+ 277/ (t) cos ) E;
+ (472 (1) (1) sin® o 4 217 (1)% sin @ cos ) E,
+ Qtr/(t)sing +r"(t) cos p) E3,
and obtain the first entry of B as
Bi = %(—r”(r) +47%r()r' (1)? sin® ¢ + 873 r (1) (¢) sin’® p cos ¢
+47%r (1) sin® ¢ + 277/ (1) sin @ cos g + 472r (1)r' (1)* sin® g cos? ).
The other three entries arise similarly from
Vi, U1 = Vi, 02 = —(zr(t) sing + r'(t) cos ) E;
+ (zr () Q2tr @) sing cos g +r'(t) cos(29))) Ex
+ (tr(t)cos @ —r'(t) sin @) E3,
V2 =r(t)singpE; — 2‘1,’7'(1‘)2 singp cos pEy —r(t) cospE3.
They are
Bir =By = (tr(t)(4rr(t)r’(t) sin g cos’ ¢
+ 77 (t)? sin*(2p) + ' (1)* cos(29) — 1)),
By = —%(r(t)(tr(t) sin(2e) (tr (1) sine) +r' (1)) — 1)).

We obtain the mean curvature H for our coordinate surface of revolution:

1
W

Lemma 1. The mean curvature H = H(t, @) of f is given by
H:=1w(G'B)
_ GnBi1 =GBy — G Bio+ G By
2r (1)2W?
1+ ()2 —r@)r" () +41%r (1) sin* ¢ + 2tr (t)r' (t) sin ¢ cos ¢
- 2r (1) W3 '
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4. Half-space theorem in Heisenberg space

As expected, for T = 0, Lemma 1 recovers the mean curvature for surfaces of
revolution in Euclidean space. For T # 0, the two additional terms depending on ¢
in the nominator of H arise because the horizontal rotation is not an isometry of
Heisenberg space. Our goal is to exhibit a family of surfaces of revolution satisfying
H < 0 with respect to the normal N.
Consider the surface of revolution f. generated by the curve by
) re(t) := exp(% exp(ct))
with ¢ > ¢o := 412+ 27 + 1. We claim that this surface satisfies H < 0 for t > 0.
Indeed, the following estimate for the denominator of H holds:
2r(OW3H < 147.(1)% = re(0Or! (1) +47°r.(0)* + 2tre(0)rl (1)
=1+ r.(t)*(exp(ct) (2t — ¢) +41?)
<14r.)*@r>+21—c) <144t +21—c<0.

Since we consider a surface of revolution with an embedded meridian, the
embeddedness of M, := f.([ty, o0) X [0, 27r)) is obvious. Also, the boundary

oM, = {exp(%) - (sing, 0, cos @) : ¢ € [0, 271)}

is explicitly known.

It is also important to note that for each ¢ and any given ¢ > 0, there exists a
compact set such that the distance between M. and the plane {y = 0} is larger than
¢ in the complement of this compact set.

Let us summarize the result:

Lemma 2. The coordinate surface of revolution whose meridian is defined by (2)
satisfies, for ¢ > c,

(1) H <0 with respect to the normal N,

(2) for ¢ — o0, the surface M. converges uniformly to a subset of {y = 0} on
compact sets,

(3) M. is properly embedded, and
4) oM, = {exp(%) - (sing, 0, cos @) : ¢ € [0, 2n)}f0r all c.
Using the surfaces M., our proof of the Euclidean half-space theorem literally

applies to Heisenberg space.
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