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EXTENDING SMOOTH CYCLIC GROUP ACTIONS ON THE
POINCARÉ HOMOLOGY SPHERE

NIMA ANVARI

Let X0 denote a compact, simply connected, smooth 4-manifold with bound-
ary the Poincaré homology 3-sphere 6(2, 3, 5) and with even negative definite
E8 intersection form. We obtain constraints on the rotation data if a free
Z/p-action on 6(2, 3, 5) extends to a smooth, homologically trivial action on
X0 with isolated fixed points, for any odd prime p ≥ 7. The approach is to
study the equivariant Yang–Mills instanton-one moduli space for cylindrical-
end 4-manifolds. As an application we show that a smooth, homologically
trivial Z/7-action on #8 S2×S2 with isolated fixed points does not equivariantly
split along a free action on 6(2, 3, 5).

1. Introduction

It is well known that the Poincaré homology 3-sphere 6(2, 3, 5) can be realized as
the boundary of a smooth, compact, simply connected 4-manifold X0 obtained by
plumbing disk bundles over 2-spheres along the E8 graph. Let π denote a cyclic
group of prime order p ≥ 7; then the Poincaré homology sphere admits a free
π -action contained in the circle action that gives it the structure of a Seifert fibered
manifold. In this paper, we obtain constraints for this action to extend smoothly and
homologically trivially to X0 with isolated fixed points. An action is homologically
trivial if it induces the identity on integral homology H2(X0,Z) and in this case
the action necessarily has fixed sets in the interior of X0.

When studying symmetries of 4-manifolds, typically there are known linear
actions and one would like to understand how closely a general smooth group
action resembles the linear models. In our case, the linear actions are obtained
by plumbing equivariantly; in fact, the circle action on 6(2, 3, 5) extends to X0.
These actions, however, always contain a fixed 2-sphere, namely the central node
in the E8 graph. We ask if there can be any smooth extension with only isolated
fixed points. We have local tangential representations at each fixed point described
by rotation numbers, a pair (a, b) of nonzero integers modulo p, well-defined up
to order and simultaneous change of sign. For a fixed generator t of π , the local
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representation is given by t · (z1, z2)= (taz1, tbz2). The constraints are in the form
of congruence relations satisfied by the rotation numbers.

Theorem A. Let X0 denote a compact, simply connected smooth 4-manifold with
boundary 6(2, 3, 5) and negative definite intersection form E8. For any prime
p > 5, if a free Z/p-action on 6(2, 3, 5) extends to a smooth, homologically trivial
action on X0, then the rotation data of the isolated fixed points are (a, b) such that
a+ b ≡±1 (mod p) or a+ b ≡±7 (mod p).

Remark 1.1. Note the action is automatically homologically trivial for p> 7, since
the π-action on X0 gives rise to an integral representation on H2(X0;Z) and a
decomposition (see [Curtis and Reiner 1962, p. 508; Edmonds 1989, p. 111])

H2(X0;Z)= Z[π ]r ⊕Zt
⊕Z[ζp]

c

as Z[π ]-modules with multiplicities r, t, c ≥ 0 and b2(X0) = r p + t + (p − 1)c.
When p > b2(X0)+ 1 we must have r, c = 0 and t = b2(X0). When p = 7 the
action need not be homologically trivial (see [Quebbemann 1981, Example 3.10,
p. 168]), as the splitting H2(X0;Z) = Z[π ] ⊕ Z may occur (c must be even by
[Edmonds 1989, Proposition 2.4(i)]; see also the algebraic result in [Hambleton and
Riehm 1978, Proposition 10(c)]). For homologically trivial actions, the fixed set
Xπ

0 consists of isolated points and 2-spheres, and the Lefschetz fixed point formula
gives the Euler characteristic χ(Xπ

0 )= 9.

The necessary conditions for a smooth extension from Theorem A can be checked
against the Atiyah–Patodi–Singer G-signature formula for manifolds with boundary;
see [Atiyah et al. 1975b]. This leads to the following rigidity result.

Theorem B. Let X0 denote a compact, simply connected, smooth 4-manifold with
boundary 6(2, 3, 5) and negative definite E8 intersection form. A free Z/7-action
on 6(2, 3, 5) does not extend to a smooth, homologically trivial action on X0 with
fixed set consisting of only isolated fixed points.

As a consequence, we have the following corollary regarding equivariant embed-
ding of the Poincaré homology sphere in #8S2

× S2.

Corollary C. The 4-manifold X= #8S2
× S2, with a smooth, homologically trivial

Z/7-action with only isolated fixed points, does not contain an equivariant embed-
ding of 6(2, 3, 5) with a free action.

Remark 1.2. If 6(2, 3, 5) embeds smoothly in #8S2
× S2, it separates X into two

smooth, spin 4-manifolds with boundary, each with even intersection form. By
van der Blij’s lemma and the nontriviality of the Rokhlin invariant of 6(2, 3, 5),
each side must have signature divisible by 8 and since b2(X)= 16, each side must
have definite intersection form. The additivity of the signature shows that they must
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have opposite sign. So any embedding of 6(2, 3, 5) in #8S2
× S2 decomposes X

as X0 ∪6(2,3,5) X1 with intersection form Q X = E8⊕−E8.

In the next section we summarize the results of equivariant Yang–Mills moduli
spaces that are needed in the proof of Theorem A. In the equivariant setting, a crucial
technical component is provided by equivariant transversality results, as developed
by Hambleton and Lee [1992] and based on Bierstone’s theory of equivariant general
position [1977]. This provides a suitable perturbation theory that gives the moduli
spaces the structure of a Whitney stratified space.

2. The equivariant moduli space

Let X0 denote a smooth, compact, simply connected 4-manifold with negative
definite intersection form E8 whose boundary is the Poincaré homology sphere
∂X0 = 6(2, 3, 5). Suppose we have a cyclic group π = Z/p of odd prime order
acting smoothly on X0 which is both homologically trivial and free on the boundary.
Denote by (X, g) the cylindrical-end Riemannian manifold X = X0 ∪ End(X)
where End(X) is orientation preserving isometric to 6(2, 3, 5)×[0,∞), with g a
π-invariant metric which restricts to a product metric on end. Yang–Mills moduli
spaces for cylindrical-end 4-manifolds have been studied extensively; see [Taubes
1987; Morgan et al. 1994; Donaldson 2002]. We briefly sketch the main ideas here
and refer the reader to the sources for details.

Consider a principal SU(2) bundle P over X . By fixing a trivialization we obtain
bundle maps which cover the π -action on X . Let G(π)= {t̂ : P→ P | t ∈ π}; then
there exists an exact sequence

(2-1) 1→ G→ G(π)→ π→ 1

where G is the gauge group of P . The natural action of G(π) on the space of
connections A(P) is given by pullback; it is well-defined modulo gauge; and thus
the space B(P) = A/G of connections up to gauge transformations inherits an
action of G(π)/G = π .

Recall that the Yang–Mills energy functional acts on the space of connections
by

(2-2) YM(A)=−
1

8π2

∫
X

Tr(FA ∧∗FA)=
1

8π2

∫
X
|FA|

2
= ‖FA‖

2
L2,

where FA is the ad(P)-valued curvature 2-form of the connection, and ∗ is the
Hodge star operator associated to the Riemannian metric. The Hodge star-operator
on X extends to an involution on bundle valued 2-forms giving rise to a splitting
�2(ad P)=�2

+
(ad P)⊕�2

−
(ad P) into self-dual and anti-self-dual (ASD) 2-forms.

The L2-finite moduli spaces are anti-self-dual connections modulo gauge with finite
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Yang–Mills action:

(2-3) M(X, g)= {[A] ∈ B(P) | F+A = 0, ‖FA‖
2
L2 <∞}.

This space is π -invariant since π acts by isometries. It is a fundamental result that
g-ASD connections with finite Yang–Mills energy are asymptotic to flat connections
down the cylindrical-end; see [Donaldson 2002, p. 77]. Since flat connections are
π-invariant under the pullback action, this defines a π-equivariant boundary map
∂∞ :M(X, g)→R(6(2, 3, 5)) where R(6) denotes the representation variety of
flat SU(2)-connections modulo gauge. This gives a π-invariant partition of the
moduli space according to its limiting flat connection:

(2-4) M(X, g)=
⊔

α∈R(6)

M(X, α).

The energy of a g-ASD connection A is congruent modulo Z to the Chern–Simons
invariant of the limiting flat connection α and so the energy takes on a discrete
set of values determined by the Chern–Simons invariant and we get a further
π -invariant decomposition according to energy value M(X, α)=

⊔
`≥0 M`(X, α)

with `≡ CS(α) mod Z. The index of the δ-decay complex [Morgan et al. 1994]

(2-5) 0→�0
3,δ(X, ad P)

dA
−→�1

2,δ(X, ad P)
d+A
−→�2

1,δ,+(X, ad P)→ 0

gives the formal dimension of the moduli space

(2-6) dimM`(X, α)= 8`− 3
2(χ(X)+Sign(X))− 1

2(h
1
α + h0

α)+
1
2ρα(6),

where hi
α = dimR H i (6, adα) for i = 0, 1 and ρα(6) is the Atiyah–Patodi–Singer

rho invariant [Atiyah et al. 1975a]. The corresponding dimension formula for a
Floer-type moduli space on the cylinder is given by

(2-7) dimM`(6×R, α, β)= 8`− 1
2(hα + hβ)+ 1

2(ρβ(6)− ρα(6))

with hα = h1
α + h0

α, similarly for hβ , and `≡ CS(β)−CS(α) mod Z.
The moduli space of interest in this paper are ASD connections on X asymptotic

to the trivial product connection and with unit L2-norm. Since the intersection form
of X is negative definite, the formal dimension is dimM1(X, θ)= 5. This is the
π-equivariant instanton-one moduli space we study to extract information about
the original π -action on X .

2.1. Uhlenbeck–Taubes compactification. Let us recall the compactness theorem
of Uhlenbeck [Lawson 1985; Freed and Uhlenbeck 1991; Donaldson and Kron-
heimer 1990] for the instanton moduli spaces. Intuitively, if we are given an
infinite sequence of uniformly bounded g-ASD connections without a convergent
subsequence, then there exists a gauge equivalent subsequence which has a weak
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limit, where the limiting ASD connection has a curvature density that accumulates
in integral amounts of the total energy around a finite number of points in X .
For a moduli space with one unit of total energy, there can be at most one point
where curvature becomes highly concentrated. Uhlenbeck compactness continues
to hold in the cylindrical-end setting. After passing to a subsequence we can find
a gauge equivalent sequence that converges on compact subsets, but since our
manifold is noncompact there is the possibility that curvature escapes down the
cylindrical-end. This corresponds to broken trajectories of flat connections for the
Chern–Simons flow and leads to convergence without loss of energy; see [Morgan
et al. 1994, 6.3.3; Donaldson 2002, 5.1]. Weak limits are defined as a tuple of
gauge equivalence class of L2-finite ASD connections [A] := ([A0], [A1], . . . , [θ ])

where [A0] ∈M`0(X, α0) and [Ai ] ∈M`i (6×R, αi−1, αi ), αi are flat connections
on 6 and have compatible boundary values ∂∞(Ai ) = ∂∞(Ai+1). The “ends” of
the moduli space M1(X, θ) are parametrized by products of the form

(2-8) M`0(X, α0)×M`1(6×R, α0, α1)× · · ·×M`k (6×R, αk−1, θ).

with
∑

i `i = 1.
We also have the analogue of the Taubes construction; see [Freed and Uhlenbeck

1991] for details and also [Buchdahl et al. 1990] for the equivariant case. Since X
is negative definite, this provides an equivariant collar neighborhood in the moduli
space and a partial compactification

(2-9) M1(X, θ)=M1(X, θ)∪ X × (0, λ0)

consisting of g-ASD connections with highly concentrated curvature. In particular,
the equivariant moduli space M1(X, θ) is nonempty when the fixed set Xπ is
nonempty. For connections [A] ∈ X × (0, λ0) Taubes also shows that H 2

A = 0
[Lawson 1985, Theorem 3.38, p. 81]; thus a neighborhood of the collar is a smooth
5-manifold and these connections are irreducible. The fixed set Xπ give rise to a
family of ASD connections which correspond to equivariant lifts of the π-action
on X to a π̃ = Z/2p-action on the principal SU(2)-bundle; see [Braam and Matić
1993]. We study the π-equivariant compactification of the fixed set M1(X, θ)π

which originates in the Taubes collar to obtain information about the fixed set Xπ.

2.2. Equivariant general position. In the nonequivariant setting, the argument in
Freed and Uhlenbeck [1991] can be adapted to show that for a Baire set of metrics g
which restrict to a product metric on the End(X), the moduli space M1(X, θ) is a
smooth 5-dimensional manifold. In the equivariant setting we have a theorem of
Cho [1991] on the existence of a Baire set of π -invariant metrics on X such that all
the components of the fixed set M1(X, θ)π are either empty or smooth manifolds.
This π-invariant version of Freed and Uhlenbeck is also valid on cylindrical end
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4-manifolds; see [Buchdahl et al. 1990]. Even though M1(X, θ)π is smooth if
nonempty, it may not have smooth π-invariant neighborhoods and in general the
surrounding moduli space may be highly singular. Another approach would be to
perturb the anti-self-duality equations at the chart level by passing to the Kuranishi
model

(2-10) φ : H 1
A → H 2

A

as in Donaldson [1983]. In the equivariant case, H 1
A and H 2

A are finite dimensional
real π -representation spaces and the obstruction to the existence of an equivariant
perturbation is

(2-11) [H 1
A ] − [H

2
A ] ∈ R+(π)

being an actual representation. Hambleton and Lee in [1992] applied the theory of
equivariant general position of Bierstone [1977] to equivariant moduli spaces. For
our setting, we use Wilson loop perturbations in free π -orbits of embedded circles
in X . The nonequivariant case is described in [Donaldson 1987, pp. 400–401]. The
perturbed section F+A + σ̂+(A) is now G(π)-equivariant and the perturbed moduli
space inherits a π -action as before.

Since Bierstone general position is an open-dense condition, a generic equivari-
ant perturbation of the ASD equations give the moduli spaces the structure of a
Whitney stratified space, with open manifold strata and equivariant cone bundle
neighborhoods; see [Bierstone 1977; Hambleton and Lee 1992] for details.

3. Proof of Theorem A

We begin with a lemma to determine the equivariant bundle structures. These are
described by weights ±λ of the isotropy representation π̃ → SU(2) over a fixed
point. Each of the fixed points pi ∈ Xπ lies at the Taubes collar X × (0, λ0) of the
moduli space and is one end of a π -fixed arc γi . We would like to show that none
of these arcs connect with each other in the irreducible component of the moduli
space M1(X, θ).

Lemma 3.1 [Hambleton and Lee 1995, Lemma 17]. If a fixed point has rotation
numbers (a, b) then the equivariant lift it generates in the moduli space has an
isotropy representation over the fiber of this point given by Z/2p-weights ±(b− a)
and over the other fixed points ±(a + b). Moreover, the γi represent distinct
equivariant bundle structures and are therefore disjoint in M∗

1(X, θ).

Proof. Since the Euler characteristic χ(Fix(X0, π)) = 9, we may suppose there
are at least three fixed points of the π-action pi , say with rotation numbers
(a1, b1), (a2, b2), (a3, b3). Suppose that γ connects p1 and p2; the normal bundle
information is propagated along this oriented arc and gives a canceling pair of
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rotation numbers (a2, b2)= (a1,−b1). We will use the presence of the third distinct
fixed point p3 to get a contradiction. Because the point p1 is fixed, there is a
π-invariant ball B(p1) with a linear action and an equivariant degree one map
f1 : X→ S4. We can pullback the equivariant bundle structure Q→ S4 via f1 and
get an equivariant bundle (X, f ∗1 Q) with Z/2p-weights ±(b1 − a1) over p1 and
±(a1+ b1) over the other fixed points [Fintushel and Lawson 1986]. Similarly, we
can do this with a map f2 about the point p2, this gives an equivariant bundle struc-
ture (X, f ∗2 Q′). Since these bundle structures are equivalent, the isotropy at p3 has
to agree and a comparison shows that either 2a1 ≡ 0 (mod p) or 2b1 ≡ 0 (mod p),
in either case we get a contradiction. �

The lemma shows that the fixed arcs γi generated by the fixed points in X must
have an end that is not a component of the Taubes collar and according to the
Uhlenbeck compactness results applicable here, these arcs must lead to energy or
charge splitting down the cylindrical end. We first rule out the case of a trivial
splitting:

Lemma 3.2. The one-dimensional fixed set generated by the fixed points in the
Taubes boundary X×(0, λ0) cannot split energy in the equivariant compactification
of M1(X, θ) by M0(X, θ)×M1(θ, θ).

Proof. The idea is that M0(X, θ) has zero energy, so it leaves behind a flat equi-
variant bundle which identifies the isotropy over the fibers of each fixed point.
Suppose that γ is a one-parameter family of π-fixed ASD connections generated
at the Taubes boundary from the fixed point with rotation numbers (a, b). Then
the corresponding equivariant lift has isotropy over the fiber of this fixed point
with weight ±(b− a) and ±(a+ b) over the other fixed points. In such an energy
splitting a flat equivariant bundle identifies the isotropy over all the points, so
a+b=±(b−a) and this forces either 2a≡ 0 (mod p) or 2b≡ 0 (mod p). Since p
is odd and (a, b) are rotation numbers for a fixed point we get a contradiction. �

A nontrivial charge splitting will involve the flat connections of 6(2, 3, 5),
which as representations α of the fundamental group into SU(2), are determined
by rotation numbers (`1, `2, `3) and for 6(2, 3, 5) there are only two irreducible
representations [Saveliev 2002]. We record in Table 1 the necessary values for
index calculations.

The energy in M(αi , θ) is given by −CS(6(2, 3, 5), αi ) mod Z ∈ (0, 1]; see
[Fintushel and Stern 1990, Saveliev 2002, p. 101]. In an energy splitting, the moduli
space has an end given by a local diffeomorphism

M`0(X, α0)×α0 M`1(α0, α1)×α1 · · · ×αk−1 M`k (αk−1, θ)→M1(X, θ),

where {αi }
k−1
i=1 are irreducible flat connections on 6(2, 3, 5); this then leads to a
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α (`1, `2, `3) µ(α) ρ(α)/2 −CS(α) ∈ (0, 1]

1 (1, 2, 2) 5 −97/30 49/120
2 (1, 2, 4) 1 −73/30 1/120

Table 1. For each flat connection α of 6(2, 3, 5) are listed values
for the Floer µ-index modulo 8, one-half the Atiyah–Patodi–Singer
ρ-invariant and minus the Chern–Simons invariant of the given
flat connection [Fintushel and Stern 1990]. The values for the
ρ-invariant can be computed using a flat SO(3)-cobordism to a
disjoint union of lens spaces; see [Saveliev 2002, p. 144].

dimension count

5= dimM`0(X, α0)+

k∑
i=1

dimM`i (αi−1, αi )

with αk = θ and, as the convergence is without loss of energy, we have the condition
k∑

i=0

`i = 1.

The dimensions modulo 8 can be determined [Floer 1988] by the formulas

(3-1)
dimM(α, β)≡ µ(α)−µ(β)− dim Stab(β) (mod 8),

dimM(X, α)≡−µ(α)− 3 (mod 8),

where µ is the Floer index and µ(θ)=−3. Imposing the energy condition allows
one to determine the exact geometric dimensions. Since there are only 2 irreducible
flat connections on 6(2, 3, 5) denoted by α1 = (1, 2, 2) and α2 = (1, 2, 4), we have
only the possibilities listed in Table 2.

Let 6(b = 0; (a1, b1), (a2, b2), (a3, b3)) be the Seifert invariants 6(a1, a2, a3)

and π = Z/p act as the standard action on 6(a1, a2, a3). Then the orbit space
Q =6/π is a rational homology sphere with Seifert invariants Q(b = 0; (ai , βi )),
where βi = pbi . We will need the formula for the Chern–Simons invariant of
reducible flat connections on Q. Note that if we take the p-fold cover we get the
trivial product connection on 6(a1, a2, a3) and, as Chern–Simons invariants are
multiplicative under finite covers, we expect an expression of the form

CS(Q, ρ(k))≡ n
p mod Z

for some integer n, where ρ : π1(Q)→ U (1) is a reducible flat connection. The
fundamental group of Q has presentation

π1(Q)= 〈x1, x2, x3, h | h central, xai
i hβi = 1, x1x2x3 = 1〉
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charge-splitting dimension energy

A M(X, α1)×M(α1, α2)×M(α2, θ) 0+ 4+ 1 71/120+ 2/5+ 1/120
B M(X, α1)×M(α1, θ) 0+ 5 71/120+ 49/120
C M(X, α2)×M(α2, θ) 4+ 1 119/120+ 1/120
D M(X, θ)×M(θ, θ) 0+ 5 0+ 1

Table 2. All possible energy splitting in the compactification of
M1(X, θ). Note that the total energy in each case is 1.

with abelianization Z/p generated by the regular fiber h. A reducible representation
sends h 7→ e2π ik/p for some integer k and xi 7→ 1.

Theorem 3.3. The Chern–Simons invariant satisfies CS(Q, ρ(k))≡ n0k
p (mod Z),

where n0 is an integer such that n0a1a2a3 ≡ k (mod p).

Proof. This congruence is obtained from Auckly’s formula [1994] using a represen-
tation ρ(n0, n1, n2, n3) :π1(Q)→U (1), where n0 satisfies a1a2a3 ·n0≡ k (mod p)
and ni = 0 for i 6= 0. The Seifert invariants satisfy

(3-2)
∑

i

βi

ai
=

p
a1a2a3

and the formula for the Chern–Simons invariant of the corresponding flat connection
is given in [Auckly 1994, p. 234]1 as

CS(Q, ρ)≡
3∑

j=1

ρj n
2
j + nj (n0+ c/2+

∑3
i=1 ni/ai )/(b+

∑
i βi/ai )

a j

+
(n0+ c/2)(n0+ c/2+

∑
i ni/ai )

b+
∑

i βi/ai
(mod Z)

with c = 0 and such that ρj satisfies ajσj − βjρj = 1 for some integers σj . This
simplifies to n0k/p mod Z. �

The Chern–Simons invariants for the irreducible flat connections on Q can be
computed by using an SO(3) flat cobordism to a disjoint union of lens spaces as
with 6(a1, a2, a3), but also again from [Auckly 1994, p. 232]. We now investigate
whether any of the charge splittings given in Table 2 contain π -fixed ASD connec-
tions. It follows immediately from Lemma 3.2 that case D is ruled out. We now
rule out the possibility of a 1-dimensional fixed set in the equivariant moduli space
(M1(X, θ), π) splitting in case A of Table 2.

1Note that Auckly [1994] and Kirk–Klassen [1990] use opposite orientations on the Seifert fibered
manifolds than the one used in this paper. As a result the Chern–Simons invariant differs by a sign.
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Lemma 3.4. The moduli space M`(α1, α2) does not support π -fixed ASD connec-
tions with energy `= 2/5 for any odd prime p ≥ 7.

Proof. If there exists a π -fixed ASD connection with energy `= 2/5 in Mπ
` (α1, α2)

then it corresponds to an equivariant lift of the π-action to the principal bundle
which leaves that connection invariant. Since a π -invariant connection descends to
an SO(3) connection on the cylinder Q×R where Q =6(2, 3, 5)/π is a rational
homology 3-sphere, the moduli space in the quotient must be nonempty. Let α′1 and
α′2 denote the irreducible limiting flat connections on Q ×R. The connection in
the quotient has energy or Pontryagin charge 4`/p = 8/5p, however, a nonempty
moduli space must have energy that is congruent modulo 4Z (see [Saveliev 2002,
Remark 5.6, p. 102]) to the difference of the SO(3) Chern–Simons invariants
CS(Q, α′2)−CS(Q, α′1). It follows from Auckly’s formula that this difference has
the form n/30 for some integer n. But

n
30
6≡

8
5p

mod 4Z

since the former has denominator at most 30 and for the latter p ≥ 7. It must be
that the moduli space Mπ

` (α1, α2) is empty. �

It remains to investigate the cases M`(αi , θ). The next proposition is more
general and gives a necessary condition for 6(a1, a2, a3)×R with an irreducible
flat limit at −∞ and the trivial connection θ at +∞ to admit π -invariant ASD con-
nections: the numerator in the energy must be a square integer. Since every reducible
flat SU(2) connection on Q sends h to exp(2π ik/p) in U (1)⊂ SU(2), the integer k
is referred to as the holonomy number of the flat connection. The SO(3) holonomy
number is obtained by applying the adjoint representation ad : SU(2)→ SO(3).

Proposition 3.5. Suppose a principal SU(2) bundle over 6(a1, a2, a3)×R admits
π -invariant ASD connections with energy

`≡
e2

4a1a2a3
∈ (0, 1]

asymptotic to an irreducible flat connection α at −∞ and the trivial connection
at+∞. Then this connection descends to an SO(3) ASD connection on the quotient
Q×R with energy 4`/p which limits to an irreducible connection still denoted by α
at −∞ and a flat U (1)-reducible connection β at +∞ which has SO(3) holonomy
number ±e (mod p).

Proof. Since an invariant connection descends to an SO(3) ASD connection, the
moduli space in the quotient is nonempty; this again gives the relation between the
SO(3) Chern–Simons invariants

(3-3) CS(Q, β)−CS(Q, α)≡ 4`
p ≡

e2

pa1a2a3
mod 4Z



CYCLIC GROUP ACTIONS ON THE POINCARÉ HOMOLOGY SPHERE 19

But the Chern–Simons invariant of the reducible connection is given by

CS(Q, β(k))≡ n0k
p

for some integer n0 such that n0(a1a2a3) ≡ k (mod p) and where k is the SO(3)
holonomy number of the representation β(k). On the other hand,

CS(Q, α)≡ m
a1a2a3

for some integer m. Taking the difference gives the relation

(3-4) n0k(a1a2a3)−mp
p(a1a2a3)

≡
e2

p(a1a2a3)
mod 4Z.

This implies that the numerators are congruent modulo 4p(a1a2a3)Z and

(3-5) k2
≡ e2 (mod p).

Since Z/p has no zero divisors completes the proof. �

Proof of Theorem A. Suppose there exists a smooth extension to X0 with isolated
fixed points. If a fixed point of the π -action on X0 has rotation numbers (a, b), where
a, b are nonzero integers well-defined modulo p, then there is an equivariant lift
corresponding to the 1-parameter family of π -fixed ASD connections in Mπ

1 (X, θ)
that it generates at the Taubes boundary. This is a π̃ -action on the principal SU(2)
bundle and has isotropy representation over the fixed point with weights ±(b− a)
and action on

P|End(X) =6(2, 3, 5)×[0,∞)×SU(2)

is given by

(3-6) t̃ · (x, s,U )= (t x, s, φ(t̃)U ),

where s ∈R, U ∈ SU(2), and φ is the isotropy representation π̃→ SU(2) at∞ with
weights±(a+b). We can mod out by the involution to get the π -equivariant adjoint
SO(3)-bundle over 6(2, 3, 5)×R with action given by the adjoint representation
sending t to Diag(1, ta+b) with Z/p= 〈t〉. In the limit at +∞ on 6(2, 3, 5)×R the
trivial product connection descends to a flat reducible connection on Q whose SO(3)
holonomy representation is isomorphic to the adjoint isotropy representation adφ.
Since this holonomy is either ±1 and ±7 (mod p) this completes the proof. �

The equivariant plumbing actions predict the existence of nonempty Floer type
moduli spaces with fractional Yang–Mills energy; these dimensions can be computed
by an index calculation using [Atiyah et al. 1975a]:

(3-7) dimM4`/p(Q×R, α, β)= 8`
p −

1
2

(
hα + hβ

)
+

1
2

(
ρβ(Q)− ρα(Q)

)
.
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Since α is irreducible and β is reducible, hα = 0 and hβ = 1. The rho invariants for
reducible flat connections are determined using [Kwasik and Lawson 1993, p. 40]:

(3-8) ρβ(Q)(l)=−
2
p

p−1∑
k=1

sin2 πkl
p +

2
30p

p−1∑
k=1

csc2 πk
p sin2 πkl

p

+

3∑
i=1

2
pai

p−1∑
m1=0

ai−1∑
m2=1

cot πm2
ai

cot
(
πm1

p −
πm2bi

ai

)
sin2 πm1l

p ,

where l is the rotation number for the holonomy representation of β in SO(3). For
irreducible flat connections α, the rho invariants can be calculated by an SO(3)-flat
cobordism to a union of lens spaces L(ai , pbi ) using the mapping cylinder for the
Seifert fibration of Q [Yu 1991], as in the case of 6(a1, a2, a3) [Saveliev 2002,
p. 144]. In this way, the linear equivariant plumbing actions imply that the moduli
space M`(Q×R, α2, β) for `= 1/120 is nonempty with

(3-9) dimM`(Q×R, α2, β)=
8
p

( 1
120

)
−

1
2 +

1
2

(
ρβ(Q)(1)− ρα2(Q)

)
= 1.

If we now imagine a nonlinear smooth π-extension to X0, we do not know if
M`(Q×R, α1, β) for `= 49/120 is nonempty but we have the following formal
dimension:

(3-10) dimM`(Q×R, α1, β)=
8
p

( 49
120

)
−

1
2 +

1
2

(
ρβ(Q)(7)− ρα1(Q)

)
= 1.

We summarize this in the following theorem. The irreducible flat connections
α1 and α2 on 6(2, 3, 5) descend to irreducible flat connections on the quotient
6(2, 3, 5)/π , which we still denote by αi .

Theorem 3.6. Let Q denote the rational homology sphere quotient 6(2, 3, 5)/π
and let ` = 49/120. When the holonomy representation of the flat connection β
is ±7 (mod p), the formal dimension of the moduli space M4`/p(Q×R, α1, β) of
SO(3)-ASD connections on the cylinder Q ×R with energy 4`/p that limit to α1

at −∞ and to a reducible connection β at +∞ is 1. Similarly, when ` = 1/120
and the holonomy representation of the flat connection β is ±1 (mod p), the formal
dimension of M4`/p(Q×R, α2, β) is 1.

We have obtained congruence relations that give constraints on the rotation data
for the fixed points of a smooth extension. The next natural step is to check these
constraints against the G-signature formula and we do this in the next section.

4. G-signature for 4-manifolds with boundary

For smooth, closed, orientable 4-manifolds X , recall that the Hodge star operator
induces an involution τ on the space of complexified sections of forms �∗ =
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k C∞(3k T X ⊗ C), splitting it into ±1 eigenspaces �+ ⊕�−. The signature

operator D+= d+d∗ restricted to�+ is an elliptic operator D+ :�+→�− whose
index is the signature Sign(X)= b+2 − b−2 of the nondegenerate quadratic form on
H 2(X;R). When a finite group G acts by orientation preserving isometries on X ,
the cotangent bundle, as an equivariant bundle over X , has an action that commutes
with the Hodge star operator. So we obtain a G-invariant elliptic operator D+

whose G-index is a complex virtual representation IndG(D+)= H+−H− ∈ R(G).
The associated character, or Lefschetz number,

Sign(X, g)= Tr(g|H2
+
)−Tr(g|H2

−
)

is the g-signature. Note that when the action of G is homologically trivial, the
g-signature coincides with the usual signature.

The g-signature can be computed from the fixed set by the Atiyah–Singer fixed
point index theorem [1968]. Consider the case when G is a finite cyclic group of
odd prime order p with generator t = e2π i/p and let Tpi X = C2(ai , bi ) be the local
tangential representation over the fixed points pi for a homologically trivial action.
Then

(4-1) Sign(X)=
∑

i

(
tai + 1
tai − 1

)(
tbi + 1
tbi − 1

)
− 4

∑
j

αj tcj

(tcj − 1)2

where, for each j , αj is the self-intersection of the fixed 2-sphere and cj is the
rotation number on its normal bundle.

Consider the situation where X0 denotes a compact, simply connected, smooth
4-manifold with boundary ∂X0 =6 an integral homology 3-sphere. If a free action
on 6 by Z/p = 〈t〉 extends to a locally linear, homologically trivial action on X0

(not necessarily free), then the G-signature theorem for manifolds with boundary is
given in Atiyah–Patodi–Singer [Atiyah et al. 1975b, p. 413]:

(4-2) Sign(X0, t)= L(X0, t)− ηt(0)

where L(X0, t) is the collection of terms occurring in the closed manifold case and
ηt(0) is the equivariant eta invariant of 6 or the G-signature defect. This invariant
depends only on the 3-manifold 6 and not on how the action extends to X0 nor
on which 4-manifold it equivariantly bounds. To see this, suppose the action on
6 extends to another 4-manifold X1. Then consider the G-signature theorem on
X0 ∪6 −X1 to see that the signature defect terms are equal.

When the boundary ∂X0 is a Seifert fibered homology sphere — thought of
as a link of a complex surface singularity — it has a canonical negative definite
resolution X̃0 obtained by plumbing disk bundles over 2-spheres. Let (ãi , b̃i ) denote
the rotation numbers by equivariant plumbing [Fintushel 1977, p. 152] along the
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E8 graph. They are given by

{(−4, 5), (−3, 4), (−2, 3), (−2, 3), (−1, 2), (−1, 2), (−1, 2)}.

The central node in the plumbing graph is a fixed 2-sphere with self-intersection
number −2, and the rotation on the normal fiber is congruent to 1 (mod p). This
gives the following formula for the equivariant eta invariant:

ηt(0)=
7∑

i=1

(
t ãi + 1
t ãi − 1

)(
t b̃i + 1

t b̃i − 1

)
+

8t
(t − 1)2

+ 8.

Proof of Theorem B. Suppose a free Z/7-action on 6(2, 3, 5) extends to a smooth
homologically trivial action on X0 with fixed set consisting of only isolated fixed
points with rotation data {(ai , bi )}

9
i=1. By Theorem A these rotation numbers must

satisfy the congruence relations ai + bi ≡±1 or 0 (mod 7). There are three types
of rotation numbers that satisfy the first constraint: (1, 5), (2, 4), (3, 3) and three
types that satisfy the second constraint:(1, 6), (2, 5), (3, 4). By the G-signature
theorem, the rotation numbers must satisfy

(4-3) −8=
9∑

i=1

(
tai + 1
tai − 1

)(
tbi + 1
tbi − 1

)
− ηt(0),

where ηt(0) is determined from the equivariant plumbing action. One may check
this formula directly for all possible rotation data of the types listed above. There
will be 2002 independent G-signature checks since repetition of rotation numbers is
allowed. This number may be significantly cut down in the following way. In (4-3)
we can sum over nonidentity roots of unity to obtain

(4-4) −8(p− 1)=
9∑

i=1

def(p; ai , bi )−
∑
t p
=1

t 6=1

ηt i ,

where

def(p; a, b)=−
p−1∑
k=1

cot πak
p cot πbk

p

are the G-signature defects. The second term above can easily be computed from
the formula for ηt above and gives

∑
t p=1, t 6=1 ηt i = 6. The defect terms for the

rotation data that satisfy the first constraint can also be computed for p = 7 and
we have def(7; 1, 5) = 2 = − def(7; 2, 4), def(7; 3, 3) = −10. Similarly for the
second constraint, all the defect terms sum to 10. If ni are the number of rotation
numbers of the types listed above respectively, we have the following system of
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linear Diophantine equations

−21= n1− n2− 5n3+ 5(n4+ n5+ n6)(4-5)

9= n1+ n2+ n3+ n4+ n5+ n6.(4-6)

The second equation holds since there must be 9 isolated fixed points for a ho-
mologically trivial extension. Note that not all rotation numbers can satisfy the
second constraint ai + bi ≡ 0 (mod p), since the left-hand side of (4-5) would not
be divisible by 5. So there must be rotation numbers of the first type. There are 12
solutions (n1, n2, n3, n4, n5, n6) to this system in total, which may be enumerated
as follows:

(0, 1, 6, 0, 0, 2), (0, 1, 6, 0, 1, 1), (0, 1, 6, 0, 2, 0), (0, 1, 6, 1, 0, 1),

(0, 1, 6, 1, 1, 0), (0, 1, 6, 2, 0, 0), (0, 6, 3, 0, 0, 0), (1, 2, 5, 0, 0, 1),

(1, 2, 5, 0, 1, 0), (1, 2, 5, 1, 0, 0), (2, 3, 4, 0, 0, 0), (4, 0, 5, 0, 0, 0).

One can check that none of these candidates satisfies the G-signature formula in
(4-3). This concludes the proof since we have shown that there are no solutions to
the G-signature formula that satisfy the constraints for a smooth, homologically
trivial extension. �

Proof of Corollary C. Suppose that (X, π) is a smooth, homologically trivial
π -action on X = #8S2

× S2 with fixed set consisting of isolated fixed points. If
6(2, 3, 5) with a free π -action smoothly and equivariantly embeds in (X, π), we ob-
tain a π -equivariant decomposition X = X0∪6(2,3,5)X1 with intersection forms±E8

on each side by Remark 1.2. If X0 is not simply connected then, by van Kampen’s
theorem, there are no nontrivial representations π1(X0)→ SU (2) whose restriction
to 6(2, 3, 5) are trivial. In particular, no additional flat connections appear in the
charge splitting case D and the corollary follows from Theorems A and B. �
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