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VOLUMES OF MONTESINOS LINKS

KATHLEEN FINLINSON AND JESSICA S. PURCELL

We show that the volume of any Montesinos link can be bounded above
and below in terms of the combinatorics of its diagram. This was known
for Montesinos links with at most two tangles and those with at least five
tangles. We complete the result for the remaining cases.

1. Introduction

W. Thurston [1982] proved that if K is a nontorus, nonsatellite knot, then its
complement S3

\ K admits a complete hyperbolic metric. This metric is unique up
to isometry by the Mostow–Prasad rigidity theorem [Mostow 1968; Prasad 1973].
Therefore, the hyperbolic volume of a knot complement is a knot invariant. This
paper studies the hyperbolic volume of Montesinos links.

Montesinos links are built out of rational tangles, whose definition and properties
we review below. It is known that any Montesinos link made up of just one or two
rational tangles is a 2-bridge link, and therefore it admits an alternating diagram.
Volumes of alternating links can be bounded below due to work of Lackenby [2004].
On the other hand, Futer, Kalfagianni, and Purcell found lower volume bounds for
Montesinos links with at least three positive tangles [Futer et al. 2013, Theorems 8.6
and 9.1]; by taking the mirror image, this also gives lower bounds on Montesinos
links with at least three negative tangles. Together, this gives lower volume bounds
on all Montesinos links with five or more tangles. However, until now, volume
bounds for Montesinos links with three or four tangles were unknown.

In this paper, we finish the case of Montesinos links with three or four tangles.
We give a lower bound on the volume of any such link in terms of properties
of a diagram, which can easily be read off the diagram of the Montesinos link.
Specifically, we show volume is bounded in terms of the Euler characteristic of a
graph obtained from the diagram. This graph is the reduced A- or B-state graph G′σ
(see Definition 3.2). Our main result is the following.
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Theorem 1.1. Let K be a hyperbolic Montesinos link with a reduced, admissible
diagram with at least three tangles. Then

vol(S3
\ K )≥ v8(χ−(G

′

σ )− 1).

Here v8 ≈ 3.6638 is the hyperbolic volume of a regular ideal octahedron, and G′σ
is the reduced state graph of D(K ) corresponding to either the all-A or the all-B
state, depending on whether the diagram of K admits two or more positive tangles,
or two or more negative tangles, respectively.

Every Montesinos link admits a reduced, admissible diagram (see Definitions 2.5
and 2.6, respectively). The notation χ−( · ) denotes the negative Euler characteristic,
defined to be

χ−(Y )=
∑

max{−χ(Yi ), 0},

where the sum is over the components Y1, . . . , Yn of Y .
While Theorem 1.1 gives explicit diagrammatical bounds on volume, in many

cases, we may estimate χ−(G′σ ) in terms of the twist number t (K ) of the diagram,
which is even easier to read off of the diagram. The following theorem generalizes
[Futer et al. 2013, Theorem 9.12].

Theorem 1.2. Let K be a Montesinos link that admits a reduced, admissible di-
agram with at least two positive tangles and at least two negative tangles, and
suppose further that K is not the (2,−2, 2,−2) pretzel link. Then K is hyperbolic,
and

1
4v8(t (K )− #K − 8)≤ vol(S3

\ K )≤ 2v8 t (K ),

where v8 ≈ 3.6638 is the hyperbolic volume of a regular ideal octahedron, t (K ) is
the twist number of the diagram, and #K is the number of link components of K .

Outline of proof of Theorem 1.1. The proof applies results from [Futer et al. 2013],
but we will restate them for self-containedness. In that paper, using the guts
machinery of Agol, Storm, and Thurston [Agol et al. 2007], it is shown that
volumes of many links, including hyperbolic Montesinos links with at least two
positive or two negative tangles, can be bounded below by identifying complex
essential product disks (EPDs) in the link complement (see Definition 3.18). In
particular, Theorem 9.3 of [Futer et al. 2013] states that for diagrams of links
satisfying particular hypotheses, which include the Montesinos links of this paper,
we have the estimate

(1) vol(S3
\ K )≥ v8(χ−(G

′

A)−‖Ec‖),

where ‖Ec‖ is the number of complex essential product disks.
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In this paper, we show that for a Montesinos link with three or four tangles, the
existence of a complex EPD leads to restrictions on the diagram. These restrictions,
in turn, imply that at most one complex EPD may exist. This implies Theorem 1.1.

Organization. In Section 2, we review the definitions of rational tangles and Mon-
tesinos links. We will need to work with particular diagrams of these links, and we
prove such diagrams exist and are prime. In Section 3, we recall the definition of A-
adequacy and techniques from [Futer et al. 2013] that can be applied to A-adequate
links to give a polyhedron whose combinatorial description is determined by the
diagram. We review these results and apply them to the Montesinos links of interest.
Section 4 contains the main technical results in the paper. Given a polyhedron for a
Montesinos link, we search for complex EPDs that lie in the polyhedron. These
are found by analyzing the combinatorics of the diagram and working through
several cases. Finally, in Section 5, we put the results together to give the proofs of
Theorems 1.1 and 1.2.

2. Tangles and Montesinos links

In this section, we recall the definitions of rational tangles and Montesinos links,
and various properties of their diagrams that we will use in the sequel. Throughout,
if K is a link in S3, then D(K )= D is the corresponding link diagram in the plane
of projection, and we will assume that D is connected.

Rational tangles. A rational tangle is obtained by drawing two arcs of rational
slope on the surface of a pillowcase, and then pushing the interiors into the 3-ball
bounded by the pillowcase. Rational tangles have been studied in many contexts;
see, for example, [Murasugi 1996]. We record here some well-known facts.

A rational number can be described by a continued fraction:

p
q
= [an, an−1, . . . , a1] = an +

1

an−1+
1

. . . +
1
a1

.

A continued fraction [an, . . . , a1] defines a rational tangle as follows. Label the
four points on the pillowcase NW, NE, SW, and SE. If n is even, connect these
points by attaching two arcs c1 and c2 connecting NE to SE and NW to SW as
in Figure 1(a). Perform a homeomorphism of B3 that rotates the points NW and
NE |a1| times, twisting the two arcs to create a vertical band of crossings. The
crossings will be positive or negative depending on the direction of twist, which
is determined by the sign of a1. In Figure 1(b), three positive crossings have been
added. After twisting, relabel the points NW, NE, SW, and SE in their original
orientation. Now perform a homeomorphism of B3 to rotate NE and SE |a2| times,
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NW NE

SW SE

NW NE

SW SE

NW NE

SW SE

NW NE

SW SE

(a) (b) (c) (d)

Figure 1. Building a rational tangle from the continued fraction [4,−1,−2, 3].

adding positive or negative crossings in a horizontal band with sign corresponding
to a2. Repeating this process for each ai , we obtain a rational tangle.

If n is odd, start by using two arcs to connect NW to NE and SW to SE. In
this case we add a horizontal band of crossings first, and then continue as before,
alternating between horizontal and vertical bands for each ai .

Any rational tangle may be built by this process. As a convention, we require
that an always corresponds to a horizontal band of crossings. Thus if we build a
rational tangle ending with a vertical band, as in Figure 1(b), we insert a 0 into the
corresponding continued fraction, representing a horizontal band of 0 crossings.
For example, the continued fraction corresponding to the tangle in Figure 1(b) is
[0, 3]. This convention ensures that any continued fraction completely specifies
a single rational tangle. The tangle shown in Figure 1(a) has continued fraction
expansion∞= [0, 0] = 0+ 1

0 .

Proposition 2.1 [Conway 1970]. Equivalence classes of rational tangles are in
one-to-one correspondence with the set Q∪∞. In particular, tangles T (an, . . . , a1)

and T (bm, . . . , b1) are equivalent if and only if the continued fractions [an, . . . , a1]

and [bm, . . . , b1] are equal.

Using Proposition 2.1, we can put all our tangles into nice form. In particular, if
a rational tangle corresponds to a positive rational number, then we can ensure its
continued fraction expansion consists only of nonnegative integers. Similarly, if the
tangle corresponds to a negative rational number, we can ensure the continued frac-
tion expansion consists of nonpositive numbers. Thus in this paper, positive tangles
have only positive crossings, and negative tangles have only negative crossings. This
proves that we may divide all nontrivial rational tangles into two groups: positive
tangles and negative tangles. In either case, the tangle has an alternating diagram.

In addition, we may require for a continued fraction with n integers that ai 6= 0
for all i < n.

In the description of building rational tangles, we added vertical bands of cross-
ings by rotating the points NW and NE, inserting the vertical band on the north of
the tangle. Notice that we could have rotated SW and SE instead, adding a vertical
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Figure 2. Shown are general forms of admissible tangles, positive
on left, negative on right, for n even and an = 0. (For n odd, the
band of a1 crossings will be horizontal, a2 vertical, etc. The band
of an−1 crossings will be vertical in all cases.)

band of crossings on the south of the tangle. These two methods are equivalent
by a sequence of flypes. Likewise, we may add each horizontal band of crossings
either on the west side of the tangle (by rotating the points NW and SW), or on the
east side of the tangle (by rotating the points NE and SE). The following definition
ensures a consistent choice.

Definition 2.2. (a) If T is a positive tangle, then an alternating diagram for T is
admissible if all the vertical bands of crossings were added by rotating the
points NW and NE, and all the horizontal bands of crossings were added by
rotating the points NE and SE. See Figure 2, left.

(b) If T is a negative tangle, then an alternating diagram for T is admissible if all
the vertical bands of crossings were added by rotating the points NW and NE,
and all the horizontal bands of crossings were added by rotating the points
NW and SW. See Figure 2, right.

By a sequence of flypes, any nontrivial tangle has an admissible diagram.

Montesinos links. Recall that the numerator closure num(T ) of a tangle T is
formed by connecting NW to NE and SW to SE by simple arcs with no crossings.
The denominator closure denom(T ) is formed by connecting NW to SW and NE
to SE by simple arcs with no crossings.

Given two rational tangles T1 and T2 with slopes q1 and q2, we form their sum
by connecting the NE and SE corners of T1 to the NW and SW corners of T2,
respectively, with two disjoint arcs. If q1 or q2 is an integer, then the sum T1+ T2

is also a rational tangle; this is called a trivial sum.
The cyclic sum of T1, . . . , Tr is the numerator closure of the sum T1+ · · ·+ Tr .
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T1
...T2 Tr

Figure 3. A Montesinos link with r tangles.

Definition 2.3. A Montesinos link is the cyclic sum of a finite ordered list of rational
tangles T1, . . . , Tr with corresponding slopes in Q. See Figure 3.

A Montesinos link is determined by the integer r and an r-tuple of slopes
q1, . . . , qr with qi ∈Q. Note that if qi is an integer, then it consists of a single band
of horizontal crossings, which can be subsumed into an adjacent rational tangle in
a sum. Thus we assume that qi /∈ Z to avoid trivial sums.

Theorem 2.4 [Bonahon and Siebenmann 2010, Theorem 12.8]. Let K be a Mon-
tesinos link obtained as the cyclic sum of r ≥ 3 rational tangles whose slopes are
q1, . . . , qr ∈Q\Z. Then K is determined up to isomorphism by the rational number∑r

i=1 qi and the vector ((q1 mod 1), . . . , (qr mod 1)), up to dihedral permutation.

Note that this theorem gives isomorphism up to dihedral permutation; however,
we will only use isomorphism up to cyclic permutation. By Theorem 2.4, given K
as the cyclic sum of T1, . . . , Tr , we can “combine” the integer parts of q1, . . . , qr .
The following definition makes use of this fact.

Definition 2.5. A diagram D(K ) is called a reduced Montesinos diagram if it is
the cyclic sum of the diagrams Ti , and for each i , the diagram of Ti has either all
positive or all negative crossings, and either

(1) all the slopes qi of tangles Ti have the same sign, or

(2) 0< |qi |< 1 for all i .

It is not hard to see that every Montesinos link with r ≥ 3 has a reduced diagram.
For example, if qi < 0 while q j > 1, one may add 1 to qi and subtract 1 from q j . By
Theorem 2.4, this does not change the link type. One may continue in this manner
until condition (1) of Definition 2.5 is satisfied.

We make one more definition.

Definition 2.6. A diagram D(K ) of the cyclic sum of T1, . . . , Tr is an admissible
Montesinos diagram if the diagram of Ti is an admissible tangle diagram for each i .

Since every tangle has an admissible diagram, every Montesinos link with r ≥ 3
has a reduced, admissible diagram.
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We will need to know that an admissible diagram of a Montesinos link is prime.
Recall that a diagram is prime if for any simple closed curve γ meeting the diagram
graph transversely in exactly two edges, the curve γ bounds a region of the projection
plane with no crossings.

Proposition 2.7. A reduced, admissible diagram of a Montesinos link with at least
two (nontrivial) tangles is prime.

We will prove Proposition 2.7 using two lemmas.

Lemma 2.8. If T is a reduced, admissible diagram of a rational tangle with at least
two crossings, then either T is a single vertical band of crossings and denom(T ) is
prime, or num(T ) is prime.

Proof. If T is a rational tangle with only a single vertical band of crossings, then the
denominator closure of T is a (2, q)-torus link, with q > 1 by assumption on the
number of crossings. Otherwise, the numerator closure of T will be an alternating
diagram of a 2-bridge link. By [Menasco 1984], in either case the diagram will be
prime. �

Lemma 2.9. Suppose T1 is a diagram of a connected nontrivial tangle such that
either num(T1) or denom(T1) is prime, and suppose that T2 is a reduced, admissible
diagram of a rational tangle with at least one crossing. Then num(T1+T2) is prime.

Proof. Let D be the diagram of num(T1+T2) and suppose that γ is a simple closed
curve meeting D exactly twice.

Case 1. The curve γ meets D outside of both tangles. Then since the diagram has
no crossings outside the two tangles, either γ bounds a portion of the diagram with
no crossings on one side, or γ encloses T1 on one side, T2 on the other. But in
the latter case, γ would have to meet D four times, contradicting the fact that it
meets D exactly twice.

Case 2. The curve γ meets D twice in the tangle T1. Then we may isotope γ to be
contained entirely in T1, that is, within the Conway sphere enclosing T1. Then γ
can be drawn into the numerator and denominator closures of T1. One of these
is prime; without loss of generality say num(T1) is prime (otherwise rotate the
diagram for the following argument). The curve γ must contain no crossings on
one side. If it contains no crossings in its interior, then there are no crossings in
the interior of γ in D, and we are done. So suppose γ contains no crossings on its
exterior in num(T1). Then the tangle must contain all its crossings on the interior
of γ . Moreover, exactly two strands of the tangle run to the exterior of γ , and four
strands must connect from the NW, NE, SE, and SW corners. See Figure 4. This is
impossible for a connected tangle.
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...... ...

Figure 4. If γ has no crossings to the exterior of num(T1), then T1

cannot have a connected diagram.

Case 3. The curve γ meets D twice in the tangle T2. If T2 has prime numerator or
denominator closure, then the same argument as in Case 2 applies, to guarantee
that γ bounds no crossings on one side. By Lemma 2.8, the only remaining case is
that T2 consists of a single crossing. But then if γ meets D exactly twice in a tangle
consisting of a single crossing, it cannot encircle that crossing, but must bound a
region of the diagram with no crossings to the interior.

Case 4. The curve γ intersects T1 exactly once. The tangle T1 is bounded by a
square meeting the diagram in four points, NW, NE, SE, and SW.

If γ exits T1 by running through adjacent sides of the square, then we may form
a new simple closed curve γ ′ meeting the diagram exactly twice by taking γ inside
the square, and taking portions of the two sides of the square meeting in one of the
corners (NW, NE, SE, or SW). This new curve γ ′ can be drawn into the diagrams
of num(T1) and denom(T1). Since once of these is prime, without loss of generality
num(T1), γ ′ bounds no crossings on one side in that diagram. If the interior, then
to the interior γ ′ bounds a single strand of the diagram, and we may slide γ ′ and γ
along this strand to remove the intersection of γ with T1. If γ ′ bounds no crossings
to the exterior, then since there are three knot strands to the exterior, emanating
from three of NW, NE, SE, SW, the tangle diagram is not connected. This is a
contradiction.

If γ exits T1 by running through the north and south sides of the square, then
consider the portion of γ inside T1, and form denom(T1). We may connect north
to south in denom(T1) by an arc that does not meet the diagram of denom(T1).
Connecting this to γ , we obtain a closed curve meeting the diagram of denom(T1)

exactly once. This is impossible. Note this argument did not need denom(T1) to be
prime. Symmetrically, if γ exits T1 by running through the east and west, then we
may form a closed curve meeting num(T1) exactly once, which is impossible. So
we may assume Case 4 does not happen.

Case 5. The curve γ intersects T2 exactly once. Again if T2 contains more than
one crossing, Lemma 2.8 and the argument of Case 4 will imply we can isotope γ
outside of T2. If T2 contains exactly one crossing, and γ meets T2 exactly once, then
it must meet T2 in one of the strands running from NE, NW, SW, SE to the center,
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and we may isotope it from that point of intersection to the corner without meeting
any crossings. Thus we may assume, after isotopy, that Case 5 does not happen.

Thus in all cases, γ bounds no crossings on one side. �

Proof of Proposition 2.7. The proof is by induction on the number of tangles
in the Montesinos link. If there are two tangles, then either the result holds by
Lemma 2.9, or both tangles consist of a single crossing. In that case, their sum is a
horizontal band of two crossings; hence the Montesinos link is a standard diagram
of a (2, 2)-torus link, which is prime.

Now suppose that any reduced, admissible diagram of a Montesinos link with k
tangles is prime, and consider a Montesinos link with k + 1 tangles. The first k
tangles to the right have a sum satisfying the hypotheses on T1 in Lemma 2.9, and
the (k+ 1)-st tangle satisfies the hypothesis on T2. So by that lemma, the diagram
of the Montesinos link is prime. �

Montesinos links of interest. Futer, Kalfagianni, and Purcell found a volume esti-
mate for Montesinos links with at least three positive or three negative tangles [Futer
et al. 2013]. A Montesinos link with only one or two tangles has an alternating
diagram; its volume is bounded by [Lackenby 2004]. Thus the only types of
Montesinos links whose volumes cannot be estimated by previous results are

(a) Montesinos links with two positive and one negative tangles,

(b) Montesinos links with one positive and two negative tangles,

(c) Montesinos links with two positive and two negative tangles.

Notice that the mirror image of a type (b) link is a type (a) link, and taking the
mirror will not change the volume of the link complement. Thus we will ignore
type (b) links in favor of type (a) links in our analysis. Notice also that there is only
one “arrangement” of a type (a) link, up to cyclic permutation. However, there are
two arrangements of type (c) links.

Definition 2.10. A ++− link is a Montesinos link which is the cyclic sum of
Ta, Tb, Tc, where Ta and Tb are positive tangles and Tc is a negative tangle. A
+−+− link is a Montesinos link which is the numerator closure of Ta+Tb+Tc+Td ,
where Ta and Tc are positive tangles and Tb and Td are negative tangles. A ++−−
link is a Montesinos link which is the numerator closure of Ta + Tb + Tc + Td ,
where Ta and Tb are positive tangles and Tc and Td are negative tangles.

Our goal is to find volume bounds for these types of Montesinos links. We take
Definition 2.10 as the definition not only of ++− and +−+− links, but also of
the tangles Ta , Tb, Tc, and Td . Notice that the definitions of Ta , Tb, and Tc change
depending on whether we are talking about ++−, +−+−, or ++−− links.
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Remark 2.11. In fact, we can actually consider only ++−− links or only +−+−
links, as follows. Since we are assuming the link is reduced, each of our tangles has
slope with absolute value at most 1, as in Definition 2.5(2). Thus in a ++−− link,
we may subtract 1 from the second slope and add 1 to the third. By Theorem 2.4,
the result will be equivalent to a +−+− link. So we only consider +−+− links.

Notice that reduced diagrams for ++− and +−+− links do not satisfy part (1)
of Definition 2.5; therefore they must satisfy (2). This means that there are no
integer parts of slopes of each tangle. In other words, if Ta has slope [an, . . . , a1],
then we may assume that an = 0. Recall from page 66 that an corresponds to a
horizontal band of crossings; so an−1 corresponds to a vertical band of crossings,
as in Figure 2. Recall also that ai 6= 0 for i 6= n. Thus the tangles Ta , Tb, Tc, and Td

have the form of Figure 2, except possibly n even replaced with n odd, meaning
the vertical band of a1 crossings will be horizontal.

3. Estimating the guts

Our volume bounds use estimates developed by Futer, Kalfagianni, and Purcell
to bound volumes of semiadequate links [Futer et al. 2013]. We will see that the
++− and +−+− Montesinos links of interest are semiadequate, and so they fit
into this machinery. In this section, we recall the definition of semiadequate links
and review the relevant features of [Futer et al. 2013]. All the necessary details
from that paper are contained here. However, one may consult that paper or the
survey article [Futer et al. 2014] for additional information and for the proofs of
the results that we cite.

Semiadequate links. Given a link diagram D and a crossing x of D, we define a
new diagram by replacing the crossing x with a crossing-free resolution. There
are two ways to resolve a crossing, shown in Figure 5: the A-resolution or the
B-resolution.

Definition 3.1. A state σ is a choice of A- or B-resolution at each crossing of a
diagram D. Applying a state σ to a diagram D yields a collection of crossing-free
simple closed curves called state circles. If we attach an edge to the state circles at
each removed crossing, i.e., attach the dashed edge shown in Figure 5, we obtain
a trivalent graph Hσ . The edges coming from crossings, dashed in the figure, are
called segments.

Figure 5. Left to right: a crossing, its A-resolution, and its B-resolution.
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(a) (b) (c) (d)

Figure 6. (a) A ++− Montesinos link, (b) its graph HA, (c) the
state graph GA, (d) the reduced state graph G′A.

We are concerned mainly with the all-A state, which chooses the A-resolution
at each crossing. We will occasionally mention the all-B resolution as well. The
graph HA is obtained by applying the all-A state to D and including segments. For
an example, see Figure 6.

Definition 3.2. From HA we create the A-state graph GA by shrinking each state
circle to a single vertex. We obtain the reduced A-state graph G′A by removing
multiple edges between pairs of vertices in GA. An example is shown Figure 6.

The following two lemmas concern HA for admissible diagrams of Montesinos
links, and they follow immediately from the structure of admissible tangles, as in
Figure 2. Both lemmas are illustrated in Figure 7.

Lemma 3.3. Let T be a positive admissible tangle with corresponding continued
fraction [0, an−1, . . . , a2, a1]. Then for any Montesinos knot containing T , the
graph HA will have the following properties in a neighborhood of T .

(1) A portion of a state circle, call it S0, runs from NW to SW, and a portion of
another, call it Sn−1, runs from NE to SE.

(2) There are an−1 > 0 horizontal segments running from S0 to Sn−1 at the north
of the graph.

(3) For each ai with i ≡ n (mod 2), there exists a horizontal string of ai state
circles alternating with ai segments, with the segment on the far east having
one endpoint on Si+1, south of any other segments, and with the final state
circle on the far west denoted by Si−1.

(4) For each ai with i ≡ (n − 1) (mod 2), there are ai horizontal segments con-
necting S0 and Si . �

Lemma 3.4. Let T be a negative admissible tangle with corresponding continued
fraction [0, an−1, . . . , a2, a1]. Then for any Montesinos knot containing T , the
graph HA will have the following properties in a neighborhood of T .

(1) A portion of a state circle, call it Sn , runs from NW to NE, and a portion of
another, call it S0, runs from SW to SE.
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Sn−5
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(a) positive (b) negative

Figure 7. General form of HA in a neighborhood of an admissible
positive tangle and an admissible negative tangle.

(2) For each ai with i ≡ (n− 1) (mod 2), there exists a vertical string of ai state
circles alternating with ai segments, with the segment at the far north having
an endpoint on Si+1, to the east of all other segments on Si+1. The final state
circle at the far south is denoted by Si−1.

(3) For each ai with i ≡ n (mod 2), there exist ai vertical segments connecting S0

and Si . �

The following definition is due to Lickorish and Thistlethwaite.

Definition 3.5. A link diagram D(K ) is called A-adequate if GA has no 1-edge
loops, and B-adequate if GB has no 1-edge loops.

Theorem 3.6 [Lickorish and Thistlethwaite 1988]. Let D(K ) be a reduced Mon-
tesinos diagram with r > 0 positive tangles and s > 0 negative tangles. Then D(K )
is A-adequate if and only if r ≥ 2 and B-adequate if and only if s ≥ 2. Since
r + s ≥ 3 in a reduced diagram, D must be either A- or B-adequate.

Also note that if r = 0 or s = 0 then D(K ) is alternating, in which case it is both
A- and B-adequate. We will see shortly why adequacy is a desirable property.

From HA we may obtain a surface as follows. The state circles of HA bound
disjoint disks in the 3-ball below the projection plane. To these disks, attach a
half-twisted band corresponding to each crossing in the original diagram. This
forms a connected surface called the A-state surface, or simply SA.

Theorem 3.7 [Ozawa 2011]. Let D be a (connected) diagram of a link K . Then
the surface SA is essential in S3

\ K if and only if D is A-adequate.

Define the manifold with boundary MA = S3
\\SA, where S3

\\SA is defined to
be S3 with a regular neighborhood of SA removed.
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(a) (b) (c)

Figure 8. Building the upper polyhedron: (a) shade innermost
disks, (b) remove portions of state circle, (c) construct tentacles.

Definition 3.8. Let M = S3
\ N (K ), and define the parabolic locus of MA to be

P = ∂MA ∩ ∂M . The parabolic locus consists of annuli. These annuli consist of
the remnants of the knot diagram.

In [Futer et al. 2013], it was shown that MA can be cut into ideal polyhedra. We
will not describe the details of this cutting here, because we will not need those
details; we will concern ourselves only with the results. The cutting produces
finitely many polyhedra that lie below the projection plane, and a single polyhedron
above, which we call the upper polyhedron. In this paper, we only need to study
the upper polyhedron. It has a nice combinatorial description coming from the
graph HA, which we now recall.

To visualize the upper polyhedron, start with the state graph HA. Recall that HA

lies in the projection plane and is composed of state circles and segments. We call
a given state circle S innermost if S bounds a region in the projection plane which
does not contain any segments of HA. We shade each innermost disk, giving each
a different color. These will correspond to the distinct shaded faces of the upper
polyhedron. See Figure 8(a) for an example.

The faces extend from the innermost state circles as follows. Given a segment s
of HA, rotate HA so that s is vertical. There are two distinct ways to perform
this rotation; the procedure that follows is independent of that choice. Once s is
vertical, erase a small part of the graph immediately northeast of s and a small part
immediately southwest of s. Repeat this rotation and erasing for each segment in
the graph. See, for example, Figure 8(b).

Finally, draw the “tentacles”: Choose a segment s that meets one of the innermost
state circles. The innermost state circle bounds a shaded face. Rotate HA so that s
is vertical with the shaded face on the top. The small hole to the northeast of s
acts as a gate, allowing the shaded face to run through the hole, forming a tentacle.
The tentacle runs in a thin band along HA, adjacent to a segment and a state circle,
running south and then east. It terminates when it runs into a segment. However,
the tentacle may run past other segments on the opposite side of the state circle
without terminating. When this occurs, the tentacle spawns a new tentacle, running
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through the hole in HA adjacent to that segment. Each new tentacle also terminates
when it hits a segment, and also spawns other tentacles when it runs past a segment.
Continue until each tentacle has terminated. Now one shaded face is complete.
Repeat this process for each innermost disk. Figure 8(c) shows a completed example
of the upper polyhedron.

Definition 3.9. For a given shaded face, or a given tentacle of a shaded face, we
will say the face or tentacle originated in the innermost state circle of the same
color. The place where a tentacle terminates by running into a segment is called the
tail of the tentacle. The place where a tentacle runs adjacent to a segment is called
the head of the tentacle.

The upper polyhedron has faces that include the shaded faces, as well as white
faces corresponding to unshaded regions of the diagram. Edges run from head to
tail of tentacles, and separate white and shaded faces. Vertices are the remnants
of HA. In [Futer et al. 2013], it was proved that this process produces an ideal
polyhedron, with ideal vertices on the parabolic locus.

Lemma 3.10 (Futer, Kalfagianni, and Purcell [Futer et al. 2013, Theorem 3.13]).
Let D(K ) be an A-adequate link diagram. Then the polyhedron PA as described
above is a checkerboard colored ideal polyhedron with 4-valent vertices.

Here “checkerboard” means that white faces never share an edge, and neither
do colored faces. After erasing the small holes as in Figure 8(b), each connected
component of the remnants of HA is one ideal vertex of PA. Each such component
consists of segments and portions of state circle, with segments meeting two distinct
shaded faces on opposite sides, and portions of state circle meeting white faces at
the endpoints of the ideal vertices. This is why the vertices are 4-valent.

The careful reader may notice we have not discussed the nonprime arcs in the
polyhedral decomposition in [Futer et al. 2013]. This is because in Montesinos
links, nonprime arcs only occur between adjacent negative tangles; see [Futer et al.
2013, Lemma 8.7]. We focus on ++− and +−+− links, which have no adjacent
negative tangles. Thus these diagrams have no nonprime arcs.

We are now ready to discuss the upper polyhedron of the polyhedral decomposi-
tion of ++− and +−+− Montesinos links.

Lemma 3.11. Let K be a++−Montesinos link. Then K has a reduced, admissible
diagram D with upper polyhedron PA having the following properties.

(1) There is an innermost disk, denoted G, between the two positive tangles Ta

and Tb.

(2) There are an−1 > 0 segments running across Ta from west to east, with east
endpoints on G. Similarly, there are bn−1 > 0 segments running across Tb

from west to east, with their west endpoints on G.
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(3) If Ta contains no state circles in the interior, then all white faces in Ta are
bigons. Otherwise, there are an−1 bigons at the north of Ta , and a nonbigon
just below. The same holds for Tb.

(4) There is exactly one segment at the north of Tc. If Tc has only one state circle,
then all white faces below that state circle in Tc are bigons.

Proof. Immediate from Lemmas 3.3 and 3.4 and the definition of PA. �

Lemma 3.12. Let K be a +−+−Montesinos link. Then K has a reduced, admis-
sible diagram D with upper polyhedron PA having the following properties.

(1) The tangle Tb is contained in a state circle, denoted G, lying between the two
positive tangles.

(2) There are an−1 > 0 segments running across Ta from west to east, with east
endpoints on G. Similarly, there are cn−1 segments running across Tc from
west to east, with west endpoints on G.

(3) If Ta has no state circles in the interior, then all white faces are bigons.
Otherwise, there are an−1 bigons at the north of Ta , and a nonbigon just below.
Similarly for Tc.

(4) There is exactly one segment at the north of Tb. If Tb has only one state circle,
then all white faces below that state circle in Tb are bigons. Similarly for Td .

Proof. Again immediate from Lemmas 3.3 and 3.4. �

Remark 3.13. In many of the figures below, for simplicity, we omit the step above
of erasing a small portion of the graph near each segment, and just draw the tentacles
without accurately portraying the ideal vertices of the diagram.

Essential product disks. By [Futer et al. 2013], the problem of bounding volumes
of A-adequate links can be reduced to the problem of finding essential product
disks in the upper polyhedron.

Definition 3.14. An essential product disk (EPD) in the upper polyhedron is a
properly embedded essential disk in PA whose boundary consists of two arcs in
two shaded faces, and two points where the boundary meets the parabolic locus.

We consider the boundary of an EPD, which we will draw into the diagram
of PA. Figure 9 depicts a portion of the diagram of PA with the boundary of an
EPD. Given an EPD E in PA, we generally pull ∂E into a normal square. A normal
square is a disk D in normal form, with ∂D intersecting PA in exactly four arcs.
We will only need the special kinds of normal squares described in the next lemma.

Lemma 3.15 [Futer et al. 2013, Lemma 6.1]. Let D be a diagram of a Montesinos
link with an EPD, E , embedded in the upper polyhedron. Then ∂E can be pulled
off the parabolic locus to give a normal square in PA such that
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Figure 9. A portion of the upper polyhedron containing an EPD,
showing the boundary before (left) and after (right) pulling into a
normal square.

(1) two opposite sides of the square run through shaded faces, which we color
green and gold, with endpoints of each side on distinct edges of PA;

(2) the other two edges of the square run through white faces, and cut off a single
vertex of the white face (these are the white sides of the normal square);

(3) the single vertex of the white face that is cut off by a white side of ∂E forms a
triangle, so that when moving clockwise the edges of the triangle are colored
gold, white, and green.

Given an EPD E in PA, two edges of the square run through shaded faces; we
may choose how we color these faces green and gold. Then by property (3) of
Lemma 3.15, we may force the triangles formed by the white faces to be oriented
accordingly. Notice that the orientation given in property (3) will force the white
edges to occur at tails of gold tentacles and heads of green. Figure 9, right, depicts
a normal square in PA oriented as in the above lemma.

Complex essential product disks. Recall that we are attempting to bound volumes
of Montesinos links. A bound on volume is given by Equation (1), originally from
[Futer et al. 2013, Theorem 9.3], which applies to reduced, admissible diagrams of
hyperbolic Montesinos links. The term ‖Ec‖ appears in this equation; we define it
in this section. We also determine further information about EPDs in PA and their
relationships to each other.

Definition 3.16. Let S be a surface in PA. A parabolic compression disk for S is
an embedded disk E in PA such that

(i) E ∩ S is a single arc in ∂E ;

(ii) the rest of ∂E is an arc in ∂PA that has endpoints disjoint from the parabolic
locus P and that intersects P in exactly one transverse arc;

(iii) E ∩ S is not parallel in S to an arc in ∂S that contains at most one component
of S ∩ P .
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Figure 10. A parabolic compression: arc of parabolic compression
disk (left) and two new EPDs (right).

Figure 10, left, shows a portion of a diagram of PA. The red line represents
the boundary of an EPD D. There is a parabolic compression disk E for D. The
dashed red line shows the arc as in part (ii) of the above definition.

Definition 3.17. If D is an EPD in PA with a parabolic compression disk E for D,
then surgering D along E will produce a pair of new EPDs, D′ and D′′. We say
that D and D′ ∪ D′′ are equivalent under parabolic compression.

Figure 10, right, shows the two new EPDs D′ and D′′ obtained from the disk D
in the left part of the figure. These new disks are equivalent to D under parabolic
compression.

Definition 3.18. An essential product disk D in PA is called

(1) simple if D is the boundary of a regular neighborhood of a white bigon face
of PA,

(2) semisimple if D is equivalent under parabolic compression to a union of simple
disks (but D is not simple),

(3) complex if D is neither simple nor semisimple.

We see that the EPDs in the right half of Figure 10 are simple and the EPD in
the left half is semisimple. The following lemma identifies semisimple EPDs more
generally, using a diagrammatic condition.

Lemma 3.19. Let D be an essential product disk in PA that is not simple. Then D
is semisimple if its boundary bounds a region in the projection plane that contains
only bigon white faces of PA.

Proof. Suppose D is an EPD in PA whose boundary contains only white bigon faces
on one side, say the inside. The boundary of D must run through two shaded faces
with two colors, say green and gold, and it switches between colors by running over
an ideal vertex v. Because there are only bigon white faces to the inside, the white
face adjacent to v must be a bigon. The bigon face must have edges also meeting
green and gold shaded faces. Thus there is an arc with endpoints on ∂D running
through the ideal vertex of the bigon opposite v. See Figure 11.
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Figure 11. An EPD bounding bigons to the interior, left, must
have ideal vertex adjacent to a bigon, middle, which allows us to
parabolically compress, right.

This arc defines a parabolic compression disk for D. Thus D is equivalent under
parabolic compression to two EPDs, one encircling the bigon, and one, D′, whose
boundary agrees with D except excludes this bigon. Now D′ is an EPD bounding
one fewer bigon in its interior. We may repeat the above process, compressing off
another bigon. There are finitely many bigons in this region, so we continue until
there is only one left. Then D is equivalent under parabolic compression to the
union of simple EPDs. �

Lemma 3.20 [Futer et al. 2013, Lemma 5.8]. There exists a set Es ∪Ec of essential
product disks in PA such that

(1) Es is the set of all simple disks in PA;

(2) Ec consists of complex disks, and further, Ec is minimal in the sense that no
disk in Ec is equivalent under parabolic compression to a subcollection of
Es ∪ Ec;

(3) Ec is also maximal in the sense that if any complex disks are added to Ec,
then Ec is no longer minimal.

We take Lemma 3.20 as a definition of the minimal set Ec. The number of EPDs
in Ec is denoted ‖Ec‖. This is the term we wish to bound in Equation (1). It is not
easy to tell directly from Definition 3.16, Definition 3.17, and Lemma 3.20 whether
a set of complex disks Ec is minimal. The following lemma provides an easier way
to characterize minimality.

Lemma 3.21. Let Es be the set of all simple EPDs in PA, and let E1 and E2 be
EPDs in PA. Then E2 is equivalent under parabolic compression to a subcollection
of Es ∪ E1 if ∂E1 and ∂E2 differ only by white bigons, i.e., one of the regions S
bounded by ∂E1 and one of the regions T bounded by ∂E2 are such that (S ∪ T ) \
(S ∩ T ) contains no nonbigon white faces.

Proof. Consider first the case that ∂E1 and ∂E2 do not intersect. If S and T are
disjoint, then both ∂E1 and ∂E2 bound disjoint regions containing only white bigon
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...

(a) (b) (c)

Figure 12. Region between disjoint ∂E1 and ∂E2 consists of bigons.

faces, so both E1 and E2 are semisimple. Thus E2 is equivalent under parabolic
compression to EPDs in Es alone; hence it is equivalent to a subcollection of Es∪E1.

If ∂E1 and ∂E2 do not intersect, but S and T are not disjoint, then (S∪T )\(S∩T )
is an annular region of the projection plane between ∂E1 and ∂E2, and no nonbigon
white faces lie in this region. This is shown in Figure 12(a).

Focus on the left-most vertex, on ∂E1. By Lemma 3.10, PA is checkerboard
colored; hence the face to the right of this vertex is a white face. Therefore,
either this face lies inside ∂E1 and ∂E2, and the two EPDs both meet this ideal
vertex, or the face to the right must be a bigon. If the face is a bigon, we find a
parabolic compression disk whose parabolic compression arc is the line running
from ∂E1 through the opposite vertex of the bigon. Therefore, ∂E1 is parabolically
compressible to a union of two EPDs, one of which is simple, as in Figure 12(b).
Replace E1 with the other EPD. Then we are in the same situation as before, only
with one fewer bigon between boundaries of the EPDs. Repeat, compressing off
bigons until there are no more. We obtain a finite chain of bigons, which must
connect with one of the other three vertices in the figure. In Figure 12(c), the chain
connects to the other vertex on ∂E1. However, this creates a contradiction, since a
curve following the arc of the boundary of E1 through the green, then running across
the tops of the bigons in the green, gives a simple closed curve that does not bound
a disk in the green face. This contradicts the fact that each shaded face of PA is
simply connected. Therefore the chain must connect with one of the vertices on ∂E2.
(Note this implies also that the faces that ∂E1 and ∂E2 meet must both be the same
color, gold and green, as we have illustrated in the figures.) The same process may
be repeated for the other two vertices. Then the faces between ∂E1 and ∂E2 consist
of strings of adjacent bigons; hence E1 is equivalent under parabolic compression
to a subset of Es ∪ E2.

Now suppose ∂E1 and ∂E2 intersect. In this case the region (S ∪ T ) \ (S ∩ T )
consists of one or more connected components. Take one of these connected
components, say H . Then ∂H consists of an arc of ∂E1 and an arc of ∂E2, with
two intersections of ∂E1 and ∂E2. Suppose these intersections both take place in
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(a) (b) (c)

Figure 13. When ∂E1 and ∂E2 are not disjoint.

the green face. Since the green face is simply connected, we can push E1 and E2

to remove both of these intersections.
Thus we assume that the intersections of ∂E1 and ∂E2 occur in two different

faces, green and gold as in Figure 13(a). Here the black lines represent edges of PA.
As before, by Lemma 3.10, the boundary of an EPD can only move from one
colored face to another at an ideal vertex of PA. Suppose H is the region in the
middle of this figure, so there are no nonbigon white faces in this region. The face
just to the right of the vertex at the left of the figure is a white face, which must
be a bigon, as in Figure 13(b). Also shown is a compression arc corresponding to
a parabolic compression disk for E1. Therefore E1 is equivalent under parabolic
compression to two new EPDs, one of which is simple. Then we can repeat this
process, compressing off simple EPDs in a chain until the chain connects to the
other vertex of PA (Figure 13(c)). Thus in this region, E1 is equivalent under
parabolic compression to a subset of Es ∪ E2. Repeat the above arguments for
each connected component of H. We either push the intersections off, or compress
bigons off of E1 until E1 is equivalent to a subset of Es ∪ E2. �

Using Lemma 3.21 we may more easily find a minimal set Ec and therefore
calculate ‖Ec‖. For certain Montesinos links, ‖Ec‖ is already known.

Theorem 3.22 (Futer, Kalfagianni, and Purcell [Futer et al. 2013, Proposition 8.16]).
Let D(K ) be a reduced, admissible, nonalternating Montesinos diagram with at
least three positive tangles. Then ‖Ec‖ = 0.

Finding complex EPDs. We now want to bound ‖Ec‖ for classes of Montesinos
links that do not fit under the umbrella of Theorem 3.22. We will do so directly
by finding a minimal spanning set of complex EPDs in PA. The following results
show how we might begin to look for complex EPDs.

Lemma 3.23. Let D(K ) be a reduced, admissible, A-adequate, nonalternating
Montesinos diagram. Let E be a complex EPD in PA. Then either
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I

...

Figure 14. A negative tangle with slope −1≤ q ≤− 1
2 .

(1) ∂E runs through a negative tangle Ni of slope −1≤ q ≤− 1
2 , along segments

of HA that connect a single state circle, I , to the north and south sides of the
tangle, as in Figure 14, or

(2) there are exactly two positive tangles P1 and P2, and ∂E runs along segments
of HA that run through P1 and P2 from east to west.

Proof. By [Futer et al. 2013, Corollary 6.6], ∂E runs over tentacles adjacent to
segments of a 2-edge loop in G′A. Further, Lemma 8.14 of that paper gives three
possible forms of 2-edge loops in G A. The first form of loop from that lemma
corresponds to crossings in a single twist region, in which the all-A resolution
is the short resolution. By [Futer et al. 2013, Lemma 5.17], we may remove all
bigons in the short resolution of a twist region without changing ‖Ec‖. Therefore
we may ignore such loops. For a 2-edge loop of the second form, [Futer et al. 2013,
Lemma 8.15] gives that ∂E must run through I . (Notice that the first paragraph in
the proof of that lemma, proving this fact, does not use the hypothesis that D(K )
has at least three positive tangles.) Finally, a 2-edge loop of the third form runs
over exactly two positive tangles. �

Notice Lemma 3.23 also applies to an EPD that has been pulled into a normal
square. This is because we can pull an EPD E into a normal square without changing
the segments that ∂E runs along.

Definition 3.24. A type (1) EPD is an EPD in PA described by Lemma 3.23(1);
similarly for a type (2) EPD.

By Lemma 3.23, every complex EPD in a Montesinos link must be either type (1)
or type (2). This is not true for EPDs in general. Note also that an EPD may be
both types (1) and (2).

The following lemma gives further information about type (1) EPDs and follows
from the proof of [Futer et al. 2013, Proposition 8.16].

Lemma 3.25. Let K be a ++− or a +−+− Montesinos link, and let E be a
type (1) complex EPD in PA as in Lemma 3.23, with the innermost disk I colored
green, and E pulled into a normal square as in Lemma 3.15. Then the arcs of ∂E
running over a white face may occur only in the following places:
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(a) North (b) South (c) North (d) South

Figure 15. Type (1N) and (1S) and type (2N) and (2S) white edges.

...

I

... ...

I

(a) North (b) South

Figure 16. Type (3N) and (3S) white edges.

(1) On the innermost disk I , either at the tail of a tentacle running to I from the
north or from the south, as in Figures 15(a) and 15(b).

(2) At the head of a tentacle running out of the negative block containing I , if ∂E
runs from I to an adjacent positive tangle, as in Figures 15(c) and 15(d).

(3) On the next adjacent negative block, if ∂E runs downstream from I to an
adjacent positive tangle, then across a segment spanning the positive tangle
east to west, and then downstream across the outer state circle of the next
negative block. See Figure 16. This situation cannot occur for ++− links.

We will call these white arcs of types (1N), (1S), (2N), (2S), (3N), and (3S).
Lemma 3.25 requires that I be colored green. However, recall that given an EPD,
we may choose how to label faces green and gold. Hence classifying all type (1)
EPDs will involve considering only the combinations resulting from the lemma.

Proof. See [Futer et al. 2013, Proposition 8.16]. In that proof, there are five types
of arcs in white faces. However, types (4) and (5) require nonprime arcs, and we do
not have any nonprime arcs in our diagrams. Notice that for a type (3) arc, we must
have a string of tangles −+− moving either east or west, where the first negative
tangle is the one containing I . This string of tangles cannot occur in a Montesinos
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link with two positive tangles and one negative tangle. Thus ++− links may only
have types (1) and (2) white edges. �

We will often obtain information about a complex EPD E by the following
argument. Suppose E is pulled into a normal square with ∂E running through a
given white face, cutting off a triangle. For any given white side, the two shaded
faces met by ∂E can originate only at a few locations, which can be determined
by considering the forms of the polyhedra as in Lemmas 3.11 and 3.12, and the
A-resolutions of the tangles. By considering locations where the faces originate,
we can identify ∂E . The following lemma is also useful.

Lemma 3.26 (Two-face argument). Let E be a normal square such that ∂E meets
shaded faces F1 and F2 at one arc in a white face W1, and meets shaded faces F1

and F3 in another arc in a white face W2. Then F2 = F3. Moreover, up to isotopy
there is a unique embedded arc from W1 to W2 running through F2 = F3, and ∂E
must follow this arc.

Proof. The fact that F2 = F3 is obvious, since a normal square only runs through
two shaded faces. The fact that there is a unique arc from W1 to W2 in F2 follows
from the fact that shaded faces are simply connected. �

4. Bounds on essential product disks

The main results of this section are Propositions 4.3 and 4.6, which bound ‖Ec‖

for ++− and +−+− Montesinos links, respectively. We prove these by looking
first for complex EPDs that are of type (1), then for those that are not of type (1),
which must necessarily be type (2).

The ++− case.

Lemma 4.1. Let K be a ++− link with reduced, admissible diagram D(K ). Then
there are only two type (1) complex EPDs in PA, one with white faces of type (1N)
and (1S) as shown in Figure 17(b), and the other with white faces of type (2N)
and (1S) as shown in Figure 19(c).

Proof. Let E be a type (1) complex EPD in PA. Pull E into a normal square with
two white edges as in Lemma 3.15. Lemma 3.25 tells us all the possible locations
for white edges of ∂E . These possibilities are labeled (1N), (1S), (2N), and (2S).
We must have one white edge north and one south. Therefore we must check only
the following four combinations.

White edges (1N), (1S). By the notation (1N), (1S), we mean that our two white
edges are described by type (1N) and type (1S) in Lemma 3.25. In this case, our EPD
must have a portion as in Figure 17(a). By the two-face argument (Lemma 3.26),
the faces to the north and south, colored gold and magenta, must agree. Therefore,
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Figure 17. An EPD with white edges of type (1N) and (1S).

they must originate in the same innermost disk. We now consider where these faces
might originate.

The face from the south, labeled magenta, must run around the bottom of the
diagram on the inside, and therefore originate in the positive tangle Ta , or in the
state circle G between Ta and Tb if Ta contains no state circles. The face from the
north, labeled gold, runs from Tb, and therefore originates in G. Thus both originate
in G and Ta contains no state circles. This is shown in Figure 17(b). Here ∂E may
bound white faces that are not bigons on both sides, where indicated by an asterisk
in the figure. Thus this may be a complex EPD.

White edges (1N), (2S). The boundary of an EPD with white edges of type (1N)
and (2S) will be as in Figure 18(a), with the EPD following a green tentacle wrapped
around the south of the diagram on the outside. A white edge of type (2S) requires
that Tc has only one state circle, so that there are no nonbigons in Tc.

Now, the gold tentacle meeting I from the north originates in G. The gold
tentacle meeting the green on the far west of the diagram will originate in Ta or
in G; since the gold only has one innermost disk from which it originates, this
must be G. From G, the gold face reaches the type (1N) white edge by running
across Tb; but it may reach the (2S) white edge by running across either Ta or Tb.
Therefore there are two possible EPDs, shown in Figures 18(b) and 18(c). In each
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Figure 18. Semisimple EPDs with white edges of type (1N) and (2S).
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Figure 19. EPDs with white edges of type (2N) and (1S).

of these figures the only places where nonbigons may occur in the diagram are
indicated by an asterisk. Note each of the EPDs bounds only bigons on one side,
so they are both semisimple.

White edges (2N), (1S). A normal square with white edges (2N) and (1S) will have
a diagram as in Figure 19(a). The gold face to the south wraps around the bottom of
the diagram and originates in Ta or in G. The magenta face to the west, inside Tb,
must either originate in Tb, or in G, or it is the same tentacle as the gold to the south.

Suppose first that the magenta face to the west is the same tentacle as the gold
to the south of Tc. Then as shown in Figure 19(b), the EPD follows this tentacle
from gold to the south to the tip of the face to the west, and the EPD is semisimple,
encircling only bigons of Tc.

So suppose these are not the same tentacle. Since they lie in the same face, by
Lemma 3.26, both must originate in G, as in Figure 19(c). Thus Ta has only bigon
faces, but Tb and Tc might have nonbigon faces. The location of nonbigon faces
is indicated by asterisks. Note that this may give a complex EPD.

White edges (2N), (2S). The (2N) and (2S) white edges give a diagram as in
Figure 20(a). Note the gold and magenta faces must actually be the same face. We
determine where gold and magenta tentacles may originate. This case is somewhat
more complicated than the previous three. The magenta may originate in Tb or
in G, or the magenta tentacle may agree with the tentacle running around the south
of the diagram, and therefore originate at the furthest southwest state circle of Ta ,
or in G if Ta has no state circles. The gold may originate in G and run east to wrap
around the north of the diagram, may originate in G and run west across a single
segment in Ta , or may originate in Ta . Putting this information together, noting
that gold and magenta originate in the same place (Lemma 3.26), we find that the
face either originates in G, or in the far southwest state circle in Ta .

If the face originates in G there are four different possible diagrams, depending
on whether gold or magenta run east or west, shown in Figures 20(b)–(e). If the
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Figure 20. EPDs with white edges of type (2N), (2S).

face originates in Ta the diagram is as in Figure 20(f). Note that all of the EPDs
pictured bound only bigons on one side, and therefore are semisimple.

This concludes the search for type (1) complex EPDs in PA. The complex EPDs
are depicted in Figures 17(b) and 19(c). �

Lemma 4.2. Let K be a ++− link with reduced, admissible diagram D(K ). Then
the only possible complex EPDs in PA which are not of type (1) are those shown in
Figures 23(c) and 23(d).

Proof. Let E be a complex EPD in PA that is not type (1); then E must be type (2).
Therefore, ∂E runs along segments across both Ta and Tb. Each such segment
has an endpoint on the innermost disk G. Since we may choose how to label the
colors an EPD runs through, we choose to color the face bounded by G gold. By
Lemma 3.15, we may pull E into a normal square with white sides at tails of the
gold tentacles, and heads of the green.

For convenience, call the segment on the west α and the one on the east β. A
priori, ∂E may run along either the north or south sides of these segments. However,
by labeling G gold, we may restrict to the case that ∂E runs along the south of α
and the north of β. This is because white sides occur at tails of gold and heads of
green. There are no heads of any tentacles adjacent G, except those which run from
innermost disk G itself, which are gold, so there can be no white sides adjacent G.
Thus ∂E must run away from G through gold tentacles, which run south of α and
north of β.
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Figure 21. ∂E runs through a gold face across the south of α;
shown are possible locations of white sides.

Tentacles running along the south side of α and the north side of β both originate
in G. To find ∂E , we must look for a white side downstream from both α and β,
and these must occur at a tail of a gold tentacle.

We have three possibilities for the location of the white side downstream from α:

(α1) The tentacle on the south side of α terminates in Ta . In this case the white
side lies in Ta , and meets the head of a green tentacle coming from a tentacle
originating in the far southeast of Tc. See Figure 21(α1).

(α2) The tentacle runs out of Ta , across the entire south of the diagram, and ∂E
follows it to where it terminates in Tb. The white side lies in Tb, and meets a
green tentacle originating in the far northwest of Tc. See Figure 21(α2).

(α3) The tentacle runs across the south of the diagram, meeting the head of a new
gold tentacle in Tc, and ∂E runs into Tc. Such a tentacle must terminate on
a state circle in Tc, and so the white side is in Tc, meeting a green tentacle
in Tc originating at the state circle on which the gold tentacle terminates. See
Figure 21(α3).

Similarly, there are three possibilities for the white side downstream from β:

(β1) The tentacle across the north of β terminates in Tb, and the white side lies in Tb.
It meets a green tentacle originating at the state circle in the far northwest
of Tc. See Figure 22(β1).

(β2) The tentacle across the north of β runs all the way around the north of the
diagram, terminating in Ta , and ∂E follows this tentacle to Ta . The white side
lies in Ta , and meets a green face with head on the tentacle running across
the bottom of the diagram, originating in the far southeast state circle of Tc.
See Figure 22(β2).

(β3) The tentacle across the north of β runs around the north of the diagram, but ∂E
follows a new tentacle into Tc. This tentacle terminates on a state circle in Tc,
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Figure 22. ∂E runs through a gold face across the north of β;
shown are possible locations of white edges and origins of the
green tentacles they meet.

and the white side must be in Tc, connecting to a green face that originates in
this state circle. See Figure 22(β3).

The above give nine possible combinations, which we reduce. Note that in order
for (α1) to combine with (β1) or (β3), there can only be one state circle in Tc

and ∂E must run over it. This means E is a type (1) EPD, contradicting assumption.
An identical argument rules out (α2) combined with (β2), and (α3) combined with
either (β1) or (β3).

We work through the remaining combinations. First, (α1) and (β2), shown in
Figure 23(a), gives rise to a semisimple EPD. Similarly, (α3) and (β2), shown in
Figure 23(b), gives a semisimple EPD. The combination (α2) combined with (β1)
may give a complex EPD, as does (α2) combined with (β3). These are shown in
Figures 23(c) and 23(d). �

Proposition 4.3. Let K be a ++− link with reduced, admissible diagram D(K ).
Then ‖Ec‖ ≤ 1, where ‖Ec‖ is the number of complex EPDs required to span PA.

Proof. To obtain the desired result, we need to show that if E and E ′ are two
complex EPDs in PA, then E ′ is equivalent under parabolic compression to a subset
of E ∪ Es .
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Figure 23. Possibilities for ∂E running over the south of α and
the north of β.
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Figure 24. All complex EPDs in PA for a ++− link.

In Lemmas 4.1 and 4.2, we found all possible complex EPDs in PA. They are
shown in Figures 17(b), 19(c), 23(c), and 23(d), which we reproduce for convenience
in Figure 24. Denote the four complex EPDs by E1, E2, E3, and E4, as illustrated.
We compare these pairwise.

First consider E1 and E2. Note both EPDs run over the southernmost segment
of Ta . In Tb, E1 runs over the northernmost segment, and E2 runs over a segment
besides the northernmost one that still spans Tb. Note they both run from the
segment spanning Tb to the north of Tc, and so there are only bigons in Tb between
them. In Tc, then run from north to south, and either one may run down any
segments connecting the state circle I to the state circle on the south side of Tc.
From there, both run along the inside south face, back to the southernmost segment
of Ta . Thus there are only bigons in Tc and in Tb between the two EPDs. Therefore
by Lemma 3.21, E1 and E2 are equivalent under parabolic compression.

The analysis of other pairs is similar. For E1 and E3, the two EPDs differ by
only bigons in Tb, and bigons in Tc, including the bigon on the far west side of Tc.
Similarly for E1 and E4. The pair E2 and E3 differ only by bigons in Tb and in Tc,
as do E2 and E4. Finally, E3 and E4 differ only by bigons in Tb. So in all cases,
Lemma 3.21 implies that the EPDs are equivalent under parabolic compression. �

The +−+− case.

Lemma 4.4. Let K be a +−+− link with reduced, admissible diagram D(K ).
Then a type (1) complex EPD in PA is equivalent to one with white edges of
type (1N) and (1S), shown in Figure 25(b), or of type (2N) and (1S), shown in
Figure 28(c), or of type (3N) and (2S), shown in Figure 32(b).

Proof. For E a type (1) complex EPD in PA, we pull E into a normal square with two
white edges (Lemma 3.15). Since E is type (1), ∂E runs through a negative tangle
from north to south. We may assume, after possibly taking a cyclic permutation,
that ∂E runs through Td . Lemma 3.25 tells us all the possible locations for white
edges of ∂E . These possibilities are labeled (1N), (1S), (2N), (2S), (3N), and (3S).
Since ∂E runs over the segment to the north and a segment to the south of the state
circle I in Td , there are nine combinations to check.
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Figure 25. For+−+− link, edges of type (1N) and (1S); possible
complex EPD shown in (b).

White edges (1N), (1S). By the notation (1N), (1S), we mean that our two white
edges are described by type (1N) and type (1S) in Lemma 3.25. Our EPD must
have white edges as in Figure 25(a). By Lemma 3.26, the gold and magenta faces
shown must agree. The magenta tentacle has its head on the tentacle that wraps all
the way around the bottom of the diagram. This tentacle either originates in the far
southwest state circle of Ta , or if Ta has no state circles, from the far northwest state
circle of Tb. The gold tentacle has its head on the tentacle that wraps around the
inside of the top of the diagram; it must run over a segment connecting east to west
of Tc, and originates in the far southwest state circle of Tb. For these originating
state circles to be the same, there must be only one state circle in Tb, and gold and
magenta must originate there. Thus there are no state circles in Ta . This results in
the diagram pictured in Figure 25(b). This diagram may contain nonbigon white
faces where indicated by an asterisk, so this EPD may be complex.

White edges (1N), (2S). In this case, ∂E must run over faces of PA that look like
Figure 26(a). Since a white edge is of type (2S), we only have one state circle
in Td . The gold tentacle in this figure has its head on the tentacle running across
the inside-top of the diagram; this originates in the furthest southeast state circle
of Tb. By Lemma 3.26, the magenta tentacle must originate from the same state
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Figure 26. White edges of type (1N) and (2S).
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Figure 27. White edges of type (1N) and (3S).

circle. However, the magenta tentacle either originates in Ta , or runs through Ta and
originates in the northwest of Tb, or runs across the inside-top of the diagram and
originates in the southeast of Tb. Originating in Ta is impossible, but the other two
options are both valid, provided in the case the face originates in the northwest of Tb

there is only one state circle in Tb. These two valid options result in Figures 26(b)
and 26(c), respectively. Note the EPD in Figure 26(c) bounds a single bigon on
the outside, and so is simple. In Figure 26(b), nonbigons can only occur where
indicated by an asterisk. This EPD is semisimple.

White edges (1N), (3S). White edges of type (1N) and (3S) produce a diagram as in
Figure 27. Because a white edge is of type (3S), Td must have only one state circle.
In this case, both gold tentacles originate in the southeast corner of the tentacle Tb,
as shown, and only one diagram is possible. White faces that are not bigons may
occur only where indicated by an asterisk. Notice that the outside of ∂E in this
case bounds only bigons, so the EPD is semisimple.

White edges (2N), (1S). A normal square with white edges of type (2N) and (1S)
will have a diagram as in Figure 28(a). The gold tentacle has its head on the
tentacle wrapping all along the inside-bottom of the diagram. Thus the gold face
originates in the far southwest state circle in Ta , or if Ta has no state circles, in the
far northwest state circle of Tb. The magenta tentacle either originates in Tc, or
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Figure 28. White edges of type (2N) and (1S).
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runs from east to west in Tc and originates in the southeast corner of Tb, or it might
be the same tentacle that runs across the inside-bottom of the diagram.

If the magenta tentacle is the tentacle that runs across the inside-bottom of the
diagram, then we can close up ∂E in such a way that it encircles only bigons in Td ,
as in Figure 28(b). Because the gold face is simply connected, this is the only way
to connect ∂E up to homotopy, and so E is semisimple in this case.

Since gold and magenta must originate in the same state circle, the only remaining
possibility is that both originate in Tb, so Ta contains no state circles, and in Tb, the
northwest and southeast state circles agree, so Tb has only one state circle. The
result is shown in Figure 28(c). Nonbigons may be present where indicated by an
asterisk; the EPD may be complex.

White edges (2N), (2S). A normal square with white edges of type (2N) and (2S)
has a diagram as in Figure 29(a). Notice that type (2S) forces Td to have only one
state circle. The magenta tentacle from (2S) either

• originates in Ta , or

• runs across Ta and originates in the northwest of Tb, or

• comes from the tentacle running across the inside north of the diagram, and
therefore originates in the southeast of Tb.

The gold tentacle from (2N) either

• originates in Tc, or
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Figure 29. White edges of type (2N) and (2S).
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• runs across Tc and originates in the southeast of Tb, or

• comes from the tentacle running across the inside south of the diagram, and
therefore originates in the south of Ta , or

• if Ta has no state circles, comes from the tentacle running across the inside
south of the diagram and originates in the northwest of Tb.

Since magenta and gold originate in the same place, (2N) cannot originate in Tc,
but there are five possibilities remaining, as follows. First, gold originates in Ta;
this is shown in Figure 29(b). Note it is semisimple. Second, gold originates in Tb,
the tentacle from (2N) runs around the inside south of the diagram, and the tentacle
from (2S) originates in the northwest of Tb; this is shown in Figure 29(c), and
again it is semisimple. Third, gold originates in Tb, the tentacle from (2N) runs
around the inside south of the diagram, and the tentacle from (2S) runs around
the inside north of the diagram, as in Figure 29(d). Note this is also semisimple.
Fourth, gold originates in Tb, the tentacle from (2N) runs west to east across Tc,
and the tentacle from (2S) runs east to west across Ta , as in Figure 29(e), which is
semisimple. Finally fifth, gold originates in Tb, the tentacle from (2N) runs west
to east across Tc, and the tentacle from (2S) runs across the inside north of the
diagram, as in Figure 29(f). Again this is semisimple, bounding only bigons to the
outside.

White edges (2N), (3S). White edges (2N) and (3S) give the diagram in Figure 30(a).
Since we have a (3S) white edge, there can be only one state circle in Td . The
magenta tentacle originates in the southeast state circle in Tb. Therefore, the gold
tentacle must also originate in Tb. This can happen one of two ways: either the
gold tentacle runs west to east across Tc, originating in the southeast of Tb, or the
gold tentacle runs all across the inside south of the diagram, across a tentacle of Ta

(which must have no state circles), and originates in the northeast of Tb (which
must have exactly one state circle). These two options are shown in Figures 30(b)
and 30(c). Note both bound only bigons to one side; hence both are semisimple.
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Figure 30. White edges of type (2N) and (3S).
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Figure 31. White edges of type (3N) and (1S).
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Figure 32. White edges of type (3N) and (2S).

White edges (3N), (1S). The diagram appears as in Figure 31(a). Note that a
type (3N) white edge requires that Tc has no state circles. The magenta tentacle
originates in Tb; hence the gold also must originate in Tb. This means Ta has no
state circles, and the gold tentacle runs across Ta , originating in the northwest
of Tb. Then the magenta originates in the same circle, and the diagram is as in
Figure 31(b). Note this gives a semisimple EPD.

White edges (3N), (2S). In this case, the diagram is as shown in Figure 32(a). Note
that (3N) implies that Tc has no state circles, and (2S) implies that Td has only one
state circle. The magenta tentacle originates in Tb. The gold face must also originate
in Tb. This is possible if either the gold tentacle runs across Ta and originates in
the northwest of Tb, or the gold tentacle runs across the inside north of the diagram
and originates in the southeast of Tb. The two options are shown in Figures 32(b)
and 32(c). In the first case, we obtain an EPD that may be complex. In the second
case, the EPD is semisimple.

White edges (3N), (3S). The case of type (3N) and (3S) is shown in Figure 33. The
gold faces meeting the green tentacles must both originate in Tb, at the southeast
corner. Hence the EPD is as shown; it is semisimple.
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Figure 33. White edges of type (3N) and (3S).

This concludes the search for type (1) complex EPDs in PA. The complex EPDs
found are in Figures 25(b), 28(c), and 32(b). �

Lemma 4.5. Let K be a +−+− link with reduced, admissible diagram D(K ).
Then there are no complex EPDs in PA which are not type (1).

Proof. Let E be a complex EPD in PA that is not type (1); then E must be type (2).
That is, ∂E runs along segments across both Ta and Tc. For convenience, let’s call
these two segments α and β. Now, ∂E may run along either the north or south
sides of these segments. Therefore we have four possibilities, listed below. By
Lemma 3.15, we may pull E into a normal square with white edges at tails of the
gold tentacles.

Case αN, βN. We interpret the notation αN, βN to mean that ∂E runs along the
north side of α and the north side of β. The tentacle running along the north side
of α originates in the southeast state circle in Td . The tentacle running along the
north side of β originates in the southeast state circle in Tb. These two cannot agree;
hence one is green and one is gold. Say the tentacle running along α is green and
the one along β is gold.

After running west to east along the north of α, ∂E must meet a white face at the
head of a green tentacle. The only option is that there is a white face at the north
of Tb. Similarly, after running west to east along the north of β, ∂E must meet a
white face at the tail of gold. There are three options. First, if there is only one
state circle in Td , then the tentacle along the west side of Td will be green, and ∂E
could meet the head of a green tentacle on the east side of Tc. This is shown in
Figure 34(a); note the result is type (1), contrary to assumption. Second, again if
there is only one state circle in Td , then ∂E could run across the north of Td , into a
tentacle in Td , to the head of a green tentacle in Td . This is shown in Figure 34(b).
Note this is again type (1), contradicting assumption. Finally, ∂E could follow a
gold tentacle all across the inside north of the diagram, meeting the head of a green
tentacle in Ta . This is shown in Figure 34(c); note the result is a simple EPD.
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Figure 34. ∂E runs along the north of α, north of β.
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Figure 35. ∂E runs along the north of α, south of β.

Case αN, βS. Again, the tentacle running over α to the north originates in the
southeast state circle of Td ; color this face green. The tentacle running over β to
the south originates in the northwest state circle of Td . Suppose first that these
state circles of Td are not the same; so we color the face running over β to the
south gold. Now, as in the previous case ∂E must run east out of α to a white
edge, which must be at a head of green. There is only one possible head of green,
at the north of Tb, as before. However, at this white edge ∂E runs into the face
originating in the southeast of Tb; we color this face magenta. Then ∂E runs
through the green, magenta, and gold faces, which are all distinct. This contradicts
Lemma 3.26.

Therefore, it must be that the northwest and southeast state circles of Td are
the same, and this face is green. Note that ∂E runs from β to a white face, at
the head of a green tentacle. The only way to meet the head of a green tentacle
running west across β is if Tc has no state circles, β is the far south segment in Tc,
and ∂E runs around the outside south of Tb to meet a white face just inside Tc.
Then ∂E must be as shown in Figure 35. This is a type (1) EPD, contrary to
assumption.

Case αS, βN. The tentacle running over the south of α originates in the northwest
state circle in Tb. The tentacle running over the north of β originates in the southeast



VOLUMES OF MONTESINOS LINKS 99

of Tb. If these two state circles are the same, then between α and β, ∂E must run
over Tb from north to south, and E is of type (1); contradiction.

So assume the northwest and southeast state circles of Tb are distinct. Color
the northwest state circle gold, and the southeast one green. After ∂E runs
east to west along the gold face to the south of α, it must meet a white face
at the tail of a gold tentacle. There are three ways this can happen, but we
claim that all lead to a face originating in Td and hence give rise to a distinct
color. First, the gold tentacle to the south of α can terminate in Ta . In this
case ∂E meets a white face in Ta and jumps to the tentacle running around the
outside south of the diagram. This face originates in the southeast of Td . So
suppose, second, the gold tentacle south of α runs all along the inside south
of the diagram, and ∂E follows it to where it terminates, in Tc. Then it jumps
to a green tentacle originating in the northwest of Td . So finally, suppose the
gold tentacle south of α runs along the inside south of the diagram, but ∂E fol-
lows a new gold tentacle from the south of Td into Td . Then this tentacle has
its tail on a state circle in Td , which must be where the green face originates.
All three options require the green face to originate in Td and in Tb, which is
impossible.

Case αS, βS. As in the previous case, the tentacle on the south of α originates
in the north of Tb. The tentacle on the south of β originates in the north of Td .
Color the tentacle south of α gold, and the one south of β green. Note that ∂E ,
after running east to west along β, must run to a white edge at the head of a
green tentacle. The only way this is possible is if Tc contains no state circles,
and β is the segment at the far south of Tc. The white face must occur at the
south of Tb, jumping from the head of a green tentacle to the tail of a gold
tentacle. This gold tentacle originates in a state circle in Tb. This state circle
must agree with the origin of the gold tentacle at the south of α. In order to form
an EPD that is not of type (1), ∂E must run over the far west side of Tb, as in
Figure 36(a).
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Figure 36. ∂E runs along the south of α, south of β.
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Now after ∂E runs east to west along the south of α, it must run to the tail of
a gold tentacle and the head of a green. Just as in the previous case, there are three
possibilities: the gold tentacle terminates in Ta , the gold tentacle runs all along the
inside south of the diagram and terminates in Tc and ∂E follows it to Tc, or the
gold tentacle runs along the inside south of the diagram, but ∂E follows a new gold
tentacle into Td . The first and last cases can only happen if there is just one state
circle in Td and ∂E runs from the south to the north of Td , contradicting the fact
that E is not type (1). The middle case is shown in Figure 36(b). Note it results
in an EPD bounding a bigon, so it is not complex. �

Proposition 4.6. Let K be a +−+− link with reduced, admissible diagram D(K ).
Then ‖Ec‖ ≤ 1, where ‖Ec‖ is the number of complex EPDs required to span PA.

Proof. Again to obtain the desired result, we need to show that if E and E ′ are
two complex EPDs in PA, then E ′ is equivalent under parabolic compression to a
subset of E ∪ Es .

In Lemmas 4.4 and 4.5, we found all possible complex EPDs in PA. These are
all type (1), and appear in Figures 25(b), 28(c), and 32(b), which we reproduce
in Figure 37 for convenience, calling the EPDs E1, E2, and E3. We compare the
complex EPDs pairwise.

Consider first the pair E1 and E2. Both run over the same segments of Ta and Tb.
In Tc, E1 runs over the northernmost segment while E2 runs over a different, parallel
segment. However, both then run to the northernmost segment of Td , and then to
the south of Td , where they meet again. Thus these two EPDs differ only by a
collection of bigons in Tc and possibly a collection of bigons in Td . By Lemma 3.21,
the two EPDs are equivalent under parabolic compression.

If E1 and E3 both appear in PA, then note that the asterisks in both figures will
be replaced by bigons, and again the two EPDs differ only by bigons. Finally, E2

and E3 also differ only by bigons (in fact, E2 is a cyclic permutation of E3).
Lemma 3.21 implies the EPDs are equivalent under parabolic compression. �
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...

E1 E2 E3

Figure 37. Complex EPDs in PA for a +−+− link.
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5. Proofs of main results

To complete the proofs of the main theorems, we will use the following result.

Theorem 5.1 [Futer et al. 2013, Theorem 5.14]. Let D = D(K ) be a prime
A-adequate diagram of a hyperbolic link K . Then

vol(S3
\ K )≥ v8(χ−(G

′

A)−‖Ec‖),

where χ−( · ) is the negative Euler characteristic, G′A is the reduced A-state graph,
and ‖Ec‖ is the number of essential product disks required to span the upper
polyhedron of the knot complement.

Proof of Theorem 1.1. Let K be a hyperbolic Montesinos link with reduced,
admissible diagram. We will use Theorem 5.1 to bound vol(S3

\K ). The hypotheses
of the theorem are that K is prime and that D is A-adequate. The diagram D is prime
by Proposition 2.7. By Theorem 3.6, the diagram is either A- or B-adequate. If not
A-adequate, then it must be B-adequate, and so the mirror image is A-adequate.
Taking the mirror image does not change the volume of the knot complement, so
we may assume that the diagram is A-adequate.

Now we may use Theorem 5.1. Notice that we obtain the desired volume bound
if we show ‖Ec‖ ≤ 1. We divide into several simple cases.

Case 1. Suppose K has either all positive or all negative tangles. Then the diagram
is alternating, so ‖Ec‖ = 0 (see [Lackenby 2004]).

Case 2. Suppose K has three tangles, with slopes not all the same sign. If K is a
++− link, then by Proposition 4.3, ‖Ec‖ ≤ 1, so the desired volume bound holds.
If K is a +−− tangle, then apply that proposition to the mirror image. These are
the only links in this case, up to cyclic permutation.

Case 3. Suppose K has four tangles, with slopes not all the same sign. Up to cyclic
permutation, there are four ways the positive and negative tangles can be arranged:

(1) +−+−: By Proposition 4.6, ‖Ec‖ ≤ 1. Thus the desired volume bound holds.

(2) ++−−: As explained in Remark 2.11, this link is equivalent to a link of
type +−+−, and so ‖Ec‖ ≤ 1.

(3) +++− or +−−−: By Theorem 3.22, ‖Ec‖ = 0 for such a link or its mirror
image.

Case 4. Suppose K has five or more tangles. Then K must have at least three
positive or at least three negative tangles. Thus Theorem 3.22 applies to K or its
mirror image. �

We now turn our attention to the proof of Theorem 1.2. This theorem generalizes
[Futer et al. 2013, Theorem 9.12], which requires at least three positive and at least
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three negative tangles. Much of the proof of that result goes through in the setting
of fewer positive and negative tangles.

Lemma 5.2. Let K be a Montesinos link that admits a reduced, admissible dia-
gram D with at least two positive and at least two negative tangles. Let G′A and G′B
be the reduced all-A and all-B graphs associated to D. Then

−χ(G′A)−χ(G
′

B)≥ t (K )− Q1/2(K )− 2,

where Q1/2(K ) is the number of rational tangles whose slope has absolute value
|q| ∈

[ 1
2 , 1

)
.

Proof. We follow the proof of [Futer et al. 2013, Lemma 9.10]. Since D has at least
two positive and at least two negative tangles, D is both A- and B-adequate. Let vA

be the number of vertices in GA, eA the number of edges in GA, and e′A the number
of edges in G′A; and similarly for vB , eB , and e′B . Then we have −χ(GA)= vA−eA

and −χ(G′A)= vA− e′A, and likewise for −χ(GB) and −χ(G′A).
Now construct the Turaev surface T for D, as in [Dasbach et al. 2008, Section 4].

The diagram D will be alternating on T , and the graphs GA and GB embed in T as
graphs of the alternating projection and are dual to one another, and so the number
of regions in the complement of GA on T is equal to vB . Because K is a cyclic
sum of alternating tangles, T is a torus, just as in [Futer et al. 2013, Lemma 9.10].
Thus we have

vA− eA+ vB = χ(T )= 0.

Now consider the number of edges of GA that are discarded when we pass to G′A.
By [Futer et al. 2013, Lemma 8.14], edges may be lost in three ways:

(1) If r is a twist region with c(r) > 1 crossings such that the A-resolution of r
gives c(r) parallel segments, then c(r)− 1 of these edges will be discarded
when we pass to G′A.

(2) If Ni is a negative tangle with slope q ∈
(
−1,−1

2

]
, then one edge of GA will

be lost from the 2-edge loop spanning Ni from north to south.

(3) If there are exactly two positive tangles P1 and P2, then one edge of GA will
be lost from the 2-edge loop that runs across P1 and P2 from east to west.

The same holds for GB , with A and B switched and positive and negative tangles
switched. Combining this information, we obtain

(eA− e′A)+ (eB − e′B)≤
∑
{c(r)− 1}+ #

{
i : |qi | ∈

[ 1
2 , 1

)}
+ 2

= c(D)− t (D)+ Q1/2(D)+ 2,

where the sum is over all twist regions r .



VOLUMES OF MONTESINOS LINKS 103

Since the edges of GB are in one-to-one correspondence with the crossings of D,
we have

−χ(G′A)−χ(G
′

B)= e′A+ e′B − vA− vB

= (e′A+ e′B − eA− eB)+ eB + (eA− vA− vB)

≥ (−c(D)+ t (D)− Q1/2(D)− 2)+ c(D)+ 0

= t (D)− Q1/2(D)− 2. �

Lemma 5.3. Let D be a reduced, admissible Montesinos diagram with at least two
positive tangles and at least two negative tangles. Then

Q1/2 ≤
1
2(t (D)+ #K ),

where #K denotes the number of link components of K .

Proof. Again we follow the proof of [Futer et al. 2013, Lemma 9.11]. The number
Q1/2(K ) is equal to the number of tangles with slope q satisfying |q| ∈

( 1
2 , 1

)
plus

the number of tangles with slope q satisfying |q| = 1
2 .

A tangle Ri of slope |qi | ∈
( 1

2 , 1
)

has at least two twist regions, t (Ri )≥ 2. Thus
1
2 t (Ri )≥ 1 for such a tangle.

A tangle of slope |q| = 1
2 has only one twist region. It can be replaced by a

tangle of slope∞ without changing the number of link components of the diagram,
but such a replacement gives a diagram with a “break” in it. Thus if n is the number
of tangles of slope |q| = 1

2 , then n ≤ #K . Hence we have

Q1/2(D)=
∑

{Ri tangle:|qi |∈(1/2,1)}

1+
∑

{R j tangle:|q j |=1/2}

1

≤

∑
{Ri :|qi |∈(1/2,1)}

1
2 t (Ri )+

∑
{R j :|q j |=1/2}

1
2(t (R j )+ 1)

≤
1
2(t (D)+ #K ) �

Proof of Theorem 1.2. If K admits a reduced, admissible diagram with at least two
positive tangles, then by work of Bonahon and Siebenmann [2010], the complement
of K must be hyperbolic, unless K is the (2,−2, 2,−2) pretzel link (see also [Futer
and Guéritaud 2009, Section 3.3]). We exclude this pretzel link.

For the lower bound in the theorem, by Lemmas 5.2 and 5.3, we have

−χ(G′A)−χ(G
′

B)≥
1
2(t (D)− #K − 4).

By Theorem 3.7, SA and SB are both essential in S3
\ A. Then a theorem of

Agol, Storm, and Thurston [Agol et al. 2007, Theorem 9.1] applied to SA and SB
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implies that

vol(S3
\ K )≥ 1

2v8(χ− guts(S3
\\SA)+χ− guts(S3

\\SB)).

By [Futer et al. 2013, Theorem 5.14], guts(S3
\\SA)= χ−(G

′

A)−‖Ec‖; similarly
for guts(S3

\\SB). By Theorem 5.1, along with Propositions 4.3 and 4.6, we may
assume that ‖Ec‖≤ 1 (possibly after a mutation of the diagram in the ++−− case),
for both the A and B cases. Thus

vol(S3
\ K )≥ 1

2v8(χ−(G
′

A)+χ−(G
′

B))−
1
2v8(‖Ec‖A+‖Ec‖B)

≥
1
4v8(t (D)− #K − 4)− 1

2v8(2)

≥
1
4v8(t (D)− #K − 8).

As for the upper bound on volume, this goes straight through as in the proof of
[Futer et al. 2013, Theorem 9.12] without change. That is, augment the Montesinos
link by drilling out a link component B encircling two strands at the east of the
tangle. The result is hyperbolic, and a belted sum of tangles as in [Adams 1985].
The estimates on volume follow. �
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