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FOR LIE SUPERGROUPS

KARL-HERMANN NEEB AND HADI SALMASIAN

For every finite dimensional Lie supergroup (G,g), we define a C∗-algebra
A := A(G,g) and show that there exists a canonical bijective correspon-
dence between unitary representations of (G,g) and nondegenerate ∗-repre-
sentations of A. The proof of existence of such a correspondence relies on
a subtle characterization of smoothing operators of unitary representations
previously studied by Neeb, Salmasian, and Zellner.

For a broad class of Lie supergroups, which includes nilpotent as well
as classical simple ones, we prove that the associated C∗-algebra is CCR.
In particular, we obtain the uniqueness of direct integral decomposition for
unitary representations of these Lie supergroups.

1. Introduction

Unitary representations of Lie supergroups play an important role in the mathe-
matical theory of supersymmetric quantum mechanics. One distinguished example
of the role of these unitary representations is the classification of free relativistic
superparticles (see [Ferrara et al. 1981] and [Salam and Strathdee 1974]), where a
super analogue of the little group method of Mackey and Wigner is used.

Although the super version of the Mackey–Wigner method was used in the
physics literature as early as the 1970s, the problem of mathematical validity of this
method in the context of supergroups was not addressed until less than a decade
ago. This was done in [Carmeli et al. 2006], where the authors remedy this issue
by laying the mathematically rigorous foundations of the analytic theory of unitary
representations of Lie supergroups, using the equivalence of categories between the
category of Lie supergroups and the category of Harish-Chandra pairs [Deligne
and Morgan 1999, Section 3.8; Kostant 1977, Section 3.2]. The Harish-Chandra
pair description of Lie supergroups will be explained in Definition 2.1 below.
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The groundwork laid in [Carmeli et al. 2006] has spawned research on the
harmonic analysis of Lie supergroups. In particular, in [Salmasian 2010] the
irreducible unitary representations of a nilpotent Lie supergroup are classified
using an extension of Kirillov’s orbit method (see also [Neeb and Salmasian 2011,
Section 8]). For Lie supergroups corresponding to basic classical Lie superalgebras
[Musson 2012, Definition 1.14], the irreducible unitary representations are indeed
highest weight modules [Neeb and Salmasian 2011, Section 7], and therefore they
are completely classified by the work done in [Jakobsen 1994].

The goal of this paper is to systematically study disintegration of arbitrary unitary
representations of Lie supergroups into direct integrals of irreducible representations.
To this end, for every finite dimensional Lie supergroup (G, g) we construct a
C∗-algebra A :=A(G, g) whose nondegenerate ∗-representations are in bijective
correspondence with unitary representations of (G, g). The C∗-algebra A is obtained
as the completion of a crossed product ∗-algebra A◦ that is associated to the action
of G by left translation on the convolution algebra of test functions. Here, indeed, it
will be more convenient to replace G by a slightly larger group Gε

∼=G×{1, ε}, as the
action of the extra element ε will automatically keep track of the Z2-grading of the
representation space. Starting from a unitary representation (π, ρπ ,H ) of (G, g),
we obtain a representation of A by first extending (π, ρπ ,H ) canonically to A◦,
and then uniquely to a nondegenerate ∗-representation (π̂,H ) of A by continuity.
Nevertheless, the construction of a representation of (G, g) from a representation
(π̂,H ) of A is more subtle, because the standard method of extending (π̂,H )

to the multiplier algebra M(A) does not work. Indeed, the Lie superalgebra g

does not act on A by multipliers. To circumvent this issue, we use the extension
of (π̂,H ) to the multiplier algebra M(A◦), and use the fact that G and g act on A◦

through M(A◦). To complete the construction of the unitary representation of (G, g),
we need to show that the action of g is indeed defined on H ∞. To this end, we
prove that π̂(A◦)H =H ∞, where H ∞ denotes the space of smooth vectors of the
action of G on H . The proof of the latter statement requires the Dixmier–Malliavin
theorem [1978] and a subtle result from [Neeb et al. 2015, Theorem 2.11] on the
characterization of smoothing operators of unitary representations, that is, operators
A :H →H which map H into H ∞.

By the standard machinery of C∗-algebras [Dixmier 1974], statements on the
existence and uniqueness of disintegration of nondegenerate ∗-representations of A
can be transformed to similar statements on direct integral decompositions of unitary
representations of (G, g). To obtain uniqueness of disintegration, it suffices to know
that A is CCR, that is, the image of every irreducible ∗-representation of A lies in
the algebra of compact operators. (Such C∗-algebras are sometimes called liminal.)
We prove that A is CCR for a broad class of Lie supergroups, which includes
nilpotent Lie supergroups as well as those which correspond to classical simple Lie
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superalgebras (see [Musson 2012, Section 1.3]). Therefore, for the aforementioned
classes of Lie supergroups, one obtains uniqueness of disintegration of unitary
representations.

This article is organized as follows. Section 2 is devoted to definitions and basic
properties of unitary representations that will be used in the rest of the paper. In
Section 3 we define the crossed product ∗-algebra A◦. In Section 4 we construct
the C∗-algebra A := A(G, g) as the completion of the crossed product algebra
A◦. In Section 5 we prove that under the G-action on A, orbit maps of elements
of A◦ are smooth. In Section 6 we describe the canonical bijective correspondence
between unitary representations of the Lie supergroup (G, g) and the (ungraded)
nondegenerate ∗-representations of A. Finally, in Section 7 we give our liminality
results for C∗-algebras of a broad class of Lie supergroups, including the nilpotent
and classical simple ones.

2. Basic definitions

We begin with a rapid review of Lie supergroups (from the Harish-Chandra pair
viewpoint) and their unitary representations. For a more elaborate reference, see
[Carmeli et al. 2006].

Throughout this paper, Z/2Z := {0̄, 1̄} denotes the field with two elements. If
V = V0̄ ⊕ V1̄ is a Z/2Z-graded vector space, then the parity of a homogeneous
element x ∈ V is denoted by |x | ∈ Z/2Z.

Definition 2.1. A Lie supergroup is an ordered pair (G, g) with the following
properties.

(i) G is a Lie group.

(ii) g= g0̄⊕ g1̄ is a Lie superalgebra over R.

(iii) g0̄ is the Lie algebra of G.

(iv) There exists a group homomorphism Ad : G → Aut(g), defining a smooth
action G× g→ g, such that

Ad(g)x = dcg(1)(x) and dAdy(1)(x)= [x, y]

for every x ∈ g0̄, y ∈ g, and g ∈ G, where the map cg : G→ G is defined by
cg(g′) := gg′g−1 and Ady : G→ g is defined by Ady(g) := Ad(g)y.

We assume that dim g<∞ and that the component group G/G◦ is finite. The
Lie supergroup (G, g) is called connected if G is a connected Lie group.

Remark 2.2. Here we should clarify that the condition given in Definition 2.1(iv)
is identical to the ones given in our previous papers [Neeb and Salmasian 2013b,
Definition 4.6.3(iv)] and [Neeb and Salmasian 2013a, Definition 7.1(iv)]. More
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precisely, in those two papers we tacitly assume that Ad is an extension of the
adjoint action of G on g0̄.

Let (π,H ) be a unitary representation of a Lie group G. For x ∈ Lie(G) and
v ∈H , we set

dπ(x)v := lim
t→0

1
t
(π(et x)v− v),

whenever the limit exists. Here et x
:= exp(t x) denotes the exponential map of G.

Definition 2.3. Let (G, g) be a Lie supergroup. A unitary representation of (G, g)
is a triple (π, ρπ ,H ) which satisfies the following properties.

(i) H has a Z/2Z-grading, that is, H =H0̄⊕H1̄, and (π,H ) is a smooth unitary
representation of G such that π(g) preserves the Z/2Z-grading of H for every
g ∈ G.

(ii) ρπ : g→ EndC(H
∞) is a representation of the Lie superalgebra g, where

H ∞
= H ∞

0̄
⊕H ∞

1̄
is the subspace consisting of all v ∈ H for which the

orbit map G→H , g 7→ π(g)v is smooth.

(iii) ρπ (x)= dπ(x)|H ∞ for every x ∈ g0̄.

(iv) For every x ∈ g1̄, the operator e−π i/4ρπ (x) is symmetric. That is,

−iρπ (x)⊆ ρπ (x)∗.

(v) π(g)ρπ (x)π(g)−1
= ρπ (Ad(g)x) for every g ∈ G and every x ∈ g1̄.

Remark 2.4. By [Neeb and Salmasian 2013a, Proposition 6.13], the condition
given in Definition 2.3(v) follows from the weaker condition that, for every element
of the component group G/G◦, there exists a coset representative g ∈ G such that

π(g)ρπ (x)π(g−1)= ρπ (Ad(g)x) for every x ∈ g.

Remark 2.5. As in [Neeb and Salmasian 2013b, Definition 6.7.1], a unitary rep-
resentation (π, ρπ ,H ) is called cyclic if there exists a vector v ∈H ∞

0̄
such that

π(G)ρπ (U(gC))v spans a dense subspace of H , where gC := g⊗R C and where
U(gC) denotes the universal enveloping algebra of gC. A standard Zorn lemma
argument shows that every unitary representation can be written as a direct sum
of representations which are cyclic up to parity change. Furthermore, in [Neeb
and Salmasian 2013b, Theorem 6.7.5] a Gelfand–Naimark–Segal construction is
given which results in a correspondence between cyclic unitary representations and
positive definite superfunctions of (G, g).

Let (π, ρπ ,H ) be a unitary representation of (G, g). We equip the space H ∞

with the Fréchet topology induced by the seminorms v 7→ ‖dπ(D)v‖, for all
D ∈ U(g0̄). This topology makes H ∞ a Fréchet space.
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Proposition 2.6. For every x ∈ g, the map ρπ (x) :H ∞
→H ∞ is continuous.

Proof. Continuity for x ∈ g0̄ is standard, and therefore we will assume that x ∈ g1̄.
We need to prove that, for every x1, . . . , x` ∈ g0̄, for D := x1 · · · x` ∈U(g0̄), the map

(1) H ∞
→ R, v 7→ ‖dπ(D)ρπ (x)v‖

is continuous at 0 ∈H ∞. First assume that `= 0, so that D = 1 ∈ U(g0̄). In this
case, continuity of (1) follows from the inequality

‖ρπ (x)v‖2 = |〈v, ρπ (x)2v〉| ≤ 1
2‖v‖ · ‖dπ([x, x])v‖

and the definition of the topology of H ∞. To prove continuity of (1) for `≥ 1, we
use the relation

x1 · · · x`x = xx1 · · · x`+
∑̀
i=1

x1 · · · xi−1[xi , x]xi+1 · · · x`

and induction on `. �

Definition 2.7. A multiplier of an associative algebra A is a pair (λ, ρ) of linear
maps A→A which satisfy the relations

λ(ab)= λ(a)b, ρ(ab)= aρ(b), and aλ(b)= ρ(a)b

for every a, b ∈A.

If A is a ∗-algebra, then the multipliers of A form a ∗-algebra, denoted by M(A),
with multiplication and involution defined by

(2) (λ, ρ)(λ′, ρ ′) := (λλ′, ρ ′ρ) and (λ, ρ)∗ := (ρ∗, λ∗),

where λ∗(a) := λ(a∗)∗ and ρ∗(a)= ρ(a∗)∗.

3. The crossed product ∗-algebra A◦

Fix a Lie supergroup (G, g). Set Gε := G × {1, ε} such that ε2
= 1, and define

Ad(ε)x := (−1)|x |x for every homogeneous x ∈ g. We endow Gε with the product
topology. Clearly (Gε, g) is also a Lie supergroup. Let D(Gε) be the convolution al-
gebra of test functions (i.e., smooth compactly supported complex-valued functions)
on Gε. The convolution on D(Gε) is defined by

( f1 ? f2)(g′) :=
∫

Gε

f1(g) f2(g−1g′) dg,

where dg is the left-invariant Haar measure. The ∗-algebra structure is given by the
involution

f̆ (g) :=1(g)−1 f (g−1),



218 KARL-HERMANN NEEB AND HADI SALMASIAN

where g 7→1(g) is the modular function satisfying d(gg′)=1(g′) dg. From now
on, we set

Lg f (g′) := f (g−1g′) and Rx f (g) := lim
t→0

1
t
(Let x f (g)− f (g)),

for x ∈ g0̄, g, g′ ∈ Gε, f ∈ D(Gε), and t ∈ R.
Set gC := g ⊗R C. For every g ∈ Gε, let αg : U(gC) → U(gC) denote the

automorphism that is canonically induced by Ad(g) : g→ g. Our next goal is to
define a crossed product ∗-algebra A◦ =A◦(G, g). As a complex vector space,

A◦ := U(gC)⊗D(Gε).

We identify A◦ with a subspace of the vector space of U(gC)-valued functions
on Gε in the canonical way. Using this identification, we define a multiplication
and a complex conjugation on A◦ by the relations

(3) (D1⊗ f1)(D2⊗ f2)(g′) :=
∫

Gε

f1(g) f2(g−1g′)D1αg(D2) dg

and

(4) (D⊗ f )∗(g) :=1(g−1) f (g−1)αg(D†),

where the map x 7→ x† is the antilinear antiautomorphism of U(gC) uniquely
defined by

(5) x†
:=

{
−x if x ∈ g0̄,

−i x if x ∈ g1̄.

In particular,
(D1⊗ f1)(1⊗ f2)= D1⊗ ( f1 ? f2).

Every g ∈ Gε yields a multiplier (λg, ρg) of A◦ by setting

(6) λg(D⊗ f ) := αg(D)⊗Lg f and ρg(D⊗ f ) := D⊗1(g−1)Rg−1 f,

where Rg f (g′) := f (g′g). The algebra A◦ is not necessarily unital. Nevertheless,
we have the following lemma.

Lemma 3.1. Every a ∈ A◦ can be written as a finite sum a = a1b1+ · · · + ambm ,
where ak, bk ∈A◦ for 1≤ k ≤ m. In other words, A◦ =A◦A◦.

Proof. This follows from the more general result of [Alldridge 2014, Proposi-
tion 2.15], but we give a direct and simple argument. It is enough to prove the
statement for a = D ⊗ f ∈ A◦. By the Dixmier–Malliavin theorem [1978], we
can write f = f1 ? h1+ · · ·+ fm ? hm, where f1, . . . , fm, h1, . . . , hm ∈ D(Gε). It
follows that D⊗ f = (D⊗ f1)(1⊗ h1)+ · · ·+ (D⊗ fm)(1⊗ hm). �
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Every unitary representation (π, ρπ ,H ) of (G, g) extends to a unitary represen-
tation of (Gε, g) by setting π(ε)v= (−1)|v|v for every homogeneous v ∈H . From
now on, we assume that every unitary representation of (G, g) has been extended
to (Gε, g) as indicated above.

Fix a unitary representation (π, ρπ ,H ) of (G, g). Let D ⊗ f ∈ A◦, and as
usual set

π( f ) :=
∫

Gε

f (g)π(g) dg.

Note that ‖π( f )‖ ≤ ‖ f ‖L1 . By Gårding’s theorem we know that π( f )H ⊆H ∞,
so that the linear map

ρπ (D)π( f ) :H →H

is well-defined.

Proposition 3.2. Let D⊗ f ∈A◦. There exists a constant MD⊗ f > 0 such that

‖ρπ (D)π( f )‖ ≤ MD⊗ f

for every unitary representation (π, ρπ ,H ) of (G, g).

Proof. Note that π(g)π( f ) = π(Lg f ) for g ∈ Gε and f ∈ D(Gε) and that for
x ∈ g0̄ we have limt→0

∥∥1
t (Let x f − f )−Rx f

∥∥
L1 = 0. Thus, for every v ∈H , we

obtain that

(7) dπ(x)π( f )v = lim
t→0

1
t
(π(et x)π( f )v−π( f )v)

= lim
t→0

1
t
(π(Let x f )v−π( f )v)= π(Rx f )v.

By induction, from (7) it follows that

(8) dπ(D)π( f )v = π(RD f )v for D ∈ U(g0̄), f ∈ D(Gε), and v ∈H .

If x ∈ g1̄, then from (7) it also follows that

(9) ‖ρπ (x)π( f )v‖2 = 〈ρπ (x)π( f )v, ρπ (x)π( f )v〉

=
1
2 |〈ρ

π ([x, x])π( f )v, π( f )v〉|

≤
1
2‖ρ

π ([x, x])π( f )v‖ · ‖π( f )v‖

≤
1
2‖R[x,x] f ‖L1 · ‖ f ‖L1 · ‖v‖2.

Similarly, if x1, . . . , xd ∈ g1̄ for some d > 1, then

(10) ‖ρπ (x1) · · · ρ
π (xd)π( f )v‖2

= 〈ρπ (x1) · · · ρ
π (xd)π( f )v, ρπ (x1) · · · ρ

π (xd)π( f )v〉

≤
1
2‖ρ

π (x2) · · · ρ
π (xd)π( f )v‖ · ‖ρπ ([x1, x1])ρ

π (x2) · · · ρ
π (xd)π( f )v‖.
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Furthermore,

(11) ρπ ([x1, x1])ρ
π (x2) · · · ρ

π (xd)π( f )v

=

d∑
j=2

ρπ (x2) · · · ρ
π ([x1, x1], x j ]) · · · ρ

π (xd)π( f )v

+ ρπ (x2) · · · ρ
π (xd)π(R[x1,x1] f )v.

By the Poincaré-Birkhoff-Witt theorem, it is enough to prove the statement of the
proposition when

D = y1 · · · y`′x1 · · · x`,

where x1, . . . , x` ∈ g0̄ and y1, . . . , y`′ ∈ g1̄. From (8), (9), (10), and (11), and by
induction on `′, it follows that ‖ρπ (D)π( f )‖ is bounded above by a constant which
is expressible in terms of the L1-norms of derivatives of f . �

Remark 3.3. The crossed product algebra A◦ is also considered in [Alldridge
2014] and [Alldridge et al. 2013]. Here we have introduced two new gadgets: the
involution x 7→ x†, and the extension by ε which we will use below to keep track
of the Z/2Z-grading of representations. The C∗-algebra A :=A(G, g), which will
be considered in Section 4, is closely related but not identical to the Fréchet algebra
|�|c(G) defined in [Alldridge 2014]. The reader should note that Lemma 4.1 and
the results of Section 6 are analogous to the results of Section 2 and, in particular,
Proposition 2.15 of that reference. However, our results cannot be obtained as
direct consequences of Alldridge’s, because a few technical issues arise that one
needs to circumvent. In order to address these technical issues, and for the reader’s
convenience, we provide detailed proofs.

4. The C∗-algebra A :=A(G,g)

For a given unitary representation (π, ρπ ,H ) of (G, g), we define the linear map
π̂ :A◦→ B(H ) by setting

(12) π̂(D⊗ f ) := ρπ (D)π( f ) for every D⊗ f ∈A◦,

and then extending π̂ to A◦ by linearity. Consider the seminorm on A◦ defined by

(13) ‖a‖ := sup
(π,ρπ ,H )

‖π̂(a)‖,

where the supremum is taken over all unitary equivalence classes of cyclic unitary
representations (π, ρπ ,H ) of (G, g). From Proposition 3.2 it follows that ‖a‖<∞.

Lemma 4.1. π̂ is a ∗-representation of A◦.

Proof. This is the analogue of [Alldridge 2014, Lemma 2.14]. First we prove
that π̂(ab) = π̂(a)π̂(b) for every a, b ∈ A◦. It is enough to assume that a =
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D1⊗ f1 and b = D2⊗ f2. Choose η1, . . . , ηr ∈ C∞(Gε) and E1, . . . , Er ∈ U(gC)

such that αg(D2) =
∑r

i=1ηi (g)Ei . Fix v ∈ H and set w := π( f2)v. Then w ∈
H ∞ and therefore the map Gε → H ∞, g 7→ π(g)w is smooth [Poulsen 1972,
Proposition 2.1]. Using Proposition 2.6 we obtain

π̂(a)π̂(b)v = ρπ (D1)

∫
Gε

f1(g)π(g)ρπ (D2)π( f2)v dg

= ρπ (D1)

r∑
i=1

ρπ (Ei )π(ηi f1)π( f2)v

= π̂

( r∑
i=1

D1 Ei ⊗ (ηi f1 ∗ f2)

)
v

= π̂(ab)v.

The equality π̂(a)∗ = π̂(a∗) can be verified by a similar calculation, using the
relation

〈ρπ (D⊗ f )v,w〉 = 〈ρπ (D)π( f )v,w〉 = 〈v, π( f̆ )ρπ (D†)w〉,

where f̆ (g)=1(g)−1 f (g−1). �

We are now ready to define A :=A(G,g). From Lemma 4.1 it follows that the map
a 7→ a∗ is an isometry of A◦ and that ‖aa∗‖ = ‖a‖2. Set A◦

−
:= {a ∈A◦ : ‖a‖ = 0}

and let A denote the completion of the quotient A◦/A◦
−

with respect to its induced
norm. It is straightforward to check that A is a C∗-algebra.

Lemma 4.2. Let f ∈ D(Gε) and D⊗ h ∈A◦. Then the map

γ f,D,h : Gε→A, g 7→ f (g)αg(D)⊗Lgh

is continuous and

(14)
∫

Gε

γ f,D,h(g) dg = (1⊗ f )(D⊗ h).

Proof. Choose E1, . . . , Er ∈ U(gC) and η1, . . . , ηr ∈ C∞(Gε) such that we have
αg(D)=

∑r
i=1ηi (g)Ei for every g∈Gε. Then γ f,D,h(g)=

∑r
i=1 Ei⊗ f (g)ηi (g)Lgh.

Next we prove that, for every 1 ≤ i ≤ r , the map Gε → A, g 7→ Ei ⊗ Lgh is
continuous. Since we can replace h by Lgh, it suffices to prove continuity at 1 ∈Gε.
To this end, we need to show that

lim
g→1

(
sup

(π,ρπ ,H )

‖ρπ (Ei )π(Lgh− h)‖
)
= 0.
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By an argument similar to the proof of Proposition 3.2, the latter statement can be
reduced to showing that limg→1 ‖RD(Lgh− h)‖L1 = 0 for every D ∈ U(g0̄). This
is straightforward.

Next we prove (14). From (3) it follows that

(15) (1⊗ f )(D⊗ h)(g′)=
r∑

i=1

∫
Gε

f (g)(Lgh)(g′)ηi (g)Ei dg

=

r∑
i=1

( f ηi ? h)(g′)Ei .

The left-regular representation of Gε on L1(Gε) is strongly continuous, and its
integrated representation is given by convolution, that is,

∫
Gε

f (g)Lgh dg = f ? h
for every f, h ∈ L1(Gε). We can now finish the proof by an argument similar to
the one for [Alldridge 2014, (2.13)]. More precisely, we have

(16)
∫

Gε

γ f,D,h(g) dg =
r∑

i=1

Ei ⊗

∫
Gε

f (g)ηi (g)Lgh dg =
r∑

i=1

Ei ⊗ (( f ηi ) ? h).

Equality (14) now follows from (15) and (16). �

5. Multipliers of A and A◦

For every g ∈ Gε, let (λg, ρg) be the multiplier of A◦ that is defined in (6). It is
straightforward to verify that λg and ρg are isometries of A◦, and therefore the
multiplier (λg, ρg) extends uniquely to a multiplier of A. For every g ∈Gε, the map

(17) ηG(g) :A→A, a 7→ λg(a)

is an isometry and we have ηG(gg′)= ηG(g)ηG(g′).

Proposition 5.1. For every a ∈A◦, the map

G→A, g 7→ ηG(g)a

is smooth.

Proof. It suffices to prove that the orbit map of every D⊗ f ∈A◦ is smooth. Set

π̂u :=
⊕

(π,ρπ ,H )

π̂ and (πu,Hu) :=
⊕

(π,ρπ ,H )

(π,H ),

where the direct sums are over unitary equivalence classes of cyclic unitary repre-
sentations of (G, g). Then (πu,Hu) is a smooth unitary representation of Gε, and
the map π̂u :A◦→ B(Hu) is an isometry. Furthermore, π̂u(ηG(g)a)= πu(g)π̂u(a)
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for g ∈ Gε and a ∈A◦. Consequently, to complete the proof it suffices to show that,
for every a ∈A◦, the map

G→ B(Hu), g 7→ πu(g)π̂u(a)

is smooth. The latter statement is a consequence of [Neeb et al. 2015, Theorem 2.11].
Indeed, by the same theorem we need to verify that π̂u(a)H ⊆ H ∞. Without
loss of generality we can assume a = D⊗ f , and therefore π̂u(a)= ρπu (D)πu( f ).
From Gårding’s theorem and Definition 2.3(ii), we obtain π̂u(a)H ⊆H ∞. �

By [Fell and Doran 1988b, Propositions VIII.1.11 and VIII.1.18], every multiplier
of A is bounded and the multipliers of A form a unital Banach ∗-algebra M(A)
with multiplication and complex conjugation defined in (2) and the norm defined
by ‖(λ, ρ)‖ := max{‖λ‖, ‖ρ‖}. Furthermore, the multipliers (λg, ρg) for g ∈ Gε

are unitary, that is,

(18) (λg, ρg)(λg, ρg)
∗
= 1 ∈ M(A).

6. Nondegenerate ∗-representations of A

In this section we prove that the category of unitary representations of (G, g) is
isomorphic to the category of nondegenerate (in the sense of [Fell and Doran 1988a,
Definition V.1.7]) ∗-representations of the C∗-algebra A=A(G, g).

Proposition 6.1. Let (π, ρπ ,H ) be a unitary representation of a Lie supergroup
(G, g). Then the ∗-representation π̂ defined in Lemma 4.1 extends in a unique way
to a nondegenerate ∗-representation

π̂ :A→ B(H ).

Proof. From (13) and Remark 2.5 it follows that ‖π̂(a)‖≤‖a‖ for every a∈A◦. The
existence and uniqueness of the extension π̂ :A→ B(H ) now follows immediately.
Nondegeneracy of π̂ follows from the equality π̂(1⊗ f )= π( f ) for f ∈D(Gε). �

We now give a construction of a unitary representation of (G, g) from a non-
degenerate ∗-representation π̂ : A→ B(H ) of A. By [Fell and Doran 1988b,
Propositions VIII.1.11 and VIII.1.12], there exists a unique extension of π̂ to a
∗-representation π̂ : M(A)→ B(H ) of the multiplier algebra M(A) satisfying

(19) π̂((λ, ρ))π̂(a)= π̂(λ(a)) for (λ, ρ) ∈ M(A) and a ∈A.
Set

(20) π(g) := π̂((λg, ρg)) for every g ∈ Gε.

From (18) it follows that

π(g−1)= π̂((λg−1, ρg−1))= π̂((λg, ρg)
∗)= π̂((λg, ρg))

∗
= π(g)∗,
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that is, the operators π(g) are unitary. Furthermore, from (19) it follows that the
subspace H ◦

:= π̂(A◦)H is invariant under π(g) for every g ∈ Gε.

Lemma 6.2. For every v ∈H , the map Gε→H , g 7→ π(g)v is smooth if and
only if v ∈H ◦. In particular, (π,H ) is a smooth unitary representation of G.

Proof. The statement and proof are analogous to [Alldridge 2014, Proposition 2.15],
but there are subtle technical differences, and therefore we provide a detailed
argument. First we show that, for every v∈H ◦, the orbit map Gε→H , g 7→π(g)v
is smooth. Assume that v = π̂(a)w for a ∈A◦ and w ∈H . Then

π(g)v = π̂(ηG(g)a)w,

where ηG(g) : A→ A is defined in (17). Since the map A→ H , a 7→ π̂(a)w
is continuous and linear, Proposition 5.1 implies that the orbit map g 7→ π(g)v
is smooth.

Next we observe that H ◦ is a dense subspace of H , because A◦ is a dense
subspace of A. Therefore, the representation (π,H ) is smooth.

Finally, we prove that every smooth vector of (π,H ) belongs to H ◦. By the
Dixmier–Malliavin theorem, it is enough to show that

(21) π( f )= π̂(1⊗ f ) for every f ∈ D(Gε),

where π( f )v :=
∫

Gε
f (g)π(g)v dg for v ∈H . Since both sides of (21) are bounded

operators and H ◦ is dense in H , it is enough to prove that

π( f )π̂(D⊗ h)v = π̂((1⊗ f )(D⊗ h))v for D⊗ h ∈A◦ and v ∈H .

Let γ f,D,h be defined as in Lemma 4.2. From (20) and (19) it follows that, for every
v ∈H ,

π( f )π̂(D⊗ h)v =
∫

Gε

f (g)π(g)π̂(D⊗ h)v dg

=

∫
Gε

π̂(γ f,D,h(g))v dg = π̂
(∫

Gε

γ f,D,h(g) dg
)
v,

and from (14) it follows that π( f )π̂(D⊗ h)v = π̂((1⊗ f )(D⊗ h))v. �

Set
π◦(a) := π̂(a)|H ◦ for every a ∈A◦.

From Lemmas 3.1 and 6.2 it follows that (π◦,H ◦) is a nondegenerate ∗-repre-
sentation of A◦ in the sense defined in [Fell and Doran 1988a, Definition IV.3.17].
Therefore, by [Fell and Doran 1988b, Proposition VIII.1.9] there exists a unique
extension of π◦ to a ∗-representation π◦ : M(A◦)→ EndC(H

◦) satisfying

π◦((λ, ρ))π◦(a)= π◦(λ(a)) for (λ, ρ) ∈ M(A◦) and a ∈A◦.
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From the latter equality, Lemma 3.1, and (19), it follows that π◦((λg, ρg)) =

π(g)|H ◦ for every g ∈ Gε.
For every x ∈ g, let (λx , ρx) ∈ M(A◦) be the multiplier defined by

λx(D⊗ f ) := x D⊗ f and ρx(D⊗ f )(g) := f (g)Dαg(x) for g ∈ Gε.

It is straightforward to verify that (λx , ρx)
∗
= (λx†, ρx†) for every x ∈ g, where x†

is defined as in (5). For every x ∈ g, we define a linear map

(22) ρπ (x) :H ◦
→H ◦, v 7→ π◦((λx , ρx))v.

Since π(ε)2 = 1, we obtain a Z/2Z-grading H =H0̄⊕H1̄ by the ±1 eigenspaces
of π(ε), i.e.,

H0̄ := {v ∈H : π(ε)v = v} and H1̄ := {v ∈H : π(ε)v =−v}.

Since π(ε) leaves H ◦ invariant, the Z/2Z-grading of H induces a Z/2Z-grading
H ◦
=H ◦

0̄
⊕H ◦

1̄
on H ◦. We now prove the following proposition.

Proposition 6.3. (π, ρπ ,H ) is a unitary representation of (G, g).

Proof. Every g∈G commutes with ε, and therefore π(g) preserves the Z/2Z-grading
of H . If x ∈ g1̄, then (λx , ρx)

∗
= (ρ−i x , λ−i x) in M(A◦), and it follows that the

operator e−π i/4ρπ (x) is symmetric. For every x ∈ g and g ∈ Gε, we have

(λg, ρg)(λx , ρx)(λg−1, ρg−1)= (λAd(g)x , ρAd(g)x),

and consequently

(23) π(g)ρπ (x)π(g)−1
= ρπ (Ad(g)x).

In particular, from (23) for g = ε, it follows that ρπ (x) ∈ EndC(H
◦)0̄ for x ∈ g0̄

and ρπ (x) ∈ EndC(H
◦)1̄ for x ∈ g1̄. The relation ρπ ([x, y])= [ρπ (x), ρπ (y)] for

x, y ∈ g follows from the corresponding relation in the multiplier algebra M(A◦).
Finally, we prove that ρπ (x)= dπ(x)|H ◦ for every x ∈ g0̄. Fix a ∈A◦ and v ∈H ◦,
and set

φa,t :=
1
t
(π(et x)π◦(a)v−π◦(a)v)− ρπ (x)π◦(a)v ∈H .

Then φa,t = π
◦(at)v, where at :=

1
t (λet x (a)− a)− λx(a) ∈ A◦. To complete the

proof, we need to show that limt→0 ‖φa,t‖ = 0. But

‖φa,t‖ = ‖π
◦(at)v‖ = ‖π̂(at)v‖ ≤ ‖at‖ · ‖v‖,

and therefore it suffices to show that limt→0 ‖at‖ = 0. Without loss of generality
we can assume that a = D⊗ f . From the definition of the norm of A we obtain

‖at‖ = sup
(σ,ρσ ,K )

∥∥∥1
t
(σ (et x)ρσ (D)σ ( f )− ρσ (D)σ ( f ))− ρσ (x D)σ ( f )

∥∥∥,
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where the supremum is taken over all unitary equivalence classes of cyclic unitary
representations (σ, ρσ ,K ) of (G, g). Now fix a unitary representation (σ, ρσ ,K )

and a vector v ∈Hσ such that ‖v‖ = 1. By Taylor’s theorem,

σ(et x)ρσ (D)σ ( f )v

= ρσ (D)σ ( f )v+ tρσ (x D)σ ( f )v+ 1
2

∫ t

0
(t − s)σ (esx)ρσ (x2 D)σ ( f )v ds.

Proposition 3.2 implies that there exists a constant M>0, independent of (σ, ρσ,K ),
such that ‖ρσ (x2 D)σ ( f )‖ ≤ M . It follows that ‖at‖ ≤

1
2 M · |t |, and consequently

limt→0 ‖at‖ = 0. �

Recall that the morphisms in the two categories of unitary representations of
(G, g), and nondegenerate ∗-representations of A=A(G, g), are bounded linear
intertwining operators.

Theorem 6.4. The correspondences of Propositions 6.1 and 6.3 result in an isomor-
phism between the category of unitary representations of (G, g) and the category
of nondegenerate ∗-representations of A=A(G, g).

Proof. Step 1. First we verify that the correspondences of Propositions 6.1 and 6.3
are mutual inverses. Let (π, ρπ ,H ) be a unitary representation of (G, g). Let π̂
be the ∗-representation of A constructed by Proposition 6.1, and let (π, ρπ ,H )

be the unitary representation of (G, g) constructed from π̂ by Proposition 6.3. For
D⊗ f ∈A◦ and g ∈ Gε,

π(g)π̂(D⊗ f )= π̂(λg(D⊗ f ))= π̂(αg(D)⊗Lg f )

= ρπ (αg(D))π(Lg f )= π(g)ρπ (D)π( f )= π(g)π̂(D⊗ f ).

Since π(g) and π(g) are bounded operators and π̂ is nondegenerate, we obtain
π(g)= π(g) for g ∈ Gε. Let H ∞ denote the space of smooth vectors of (π,H ).
For x ∈ g, D⊗ f ∈A◦, and w ∈H ,

(24) ρπ (x)π̂(D⊗ f )w = π̂(x D⊗ f )w = ρπ (x D)π( f )w

= ρπ (x)ρπ (D)π( f )w = ρπ (x)π̂(D⊗ f )w.

By the Dixmier–Malliavin theorem, H ∞
= π̂(A◦)H . Therefore, (24) implies that

ρπ (x)= ρπ (x) for every x ∈ g.
Conversely, let π̂:A→B(H ) be a nondegenerate ∗-representation. Let (π,ρπ,H )

be the unitary representation of (G, g) corresponding to π̂ by Proposition 6.3,
and let π̂ ′ : A→ B(H ) be the ∗-representation corresponding to (π, ρπ ,H ) by
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Proposition 6.1. For D1⊗ h1 ∈A◦ and w ∈H , we obtain by Lemma 4.2 that

(25) π( f )π̂(D1⊗ h1)w =

∫
Gε

f (g)π(g)π̂(D1⊗ h1)w dg

=

∫
Gε

π̂(γ f,D1,h1(g))w dg

= π̂

(∫
Gε

γ f,D1,h1
(g) dg

)
w

= π̂((1⊗ f )(D1⊗ h1))w.

Now set a := D1⊗ h1. From (25) it follows that, for every D⊗ f ∈A◦,

π̂ ′(D⊗ f )π̂(a)w = ρπ (D)π( f )π̂(a)w

= ρπ (D)π̂((1⊗ f )a)w = π̂(D⊗ f )π̂(a)w.

Nondegeneracy of π̂ and boundedness of the operators π̂ ′(D⊗ f ) and π̂(D⊗ f )
imply that π̂ ′(D⊗ f )= π̂(D⊗ f ). Since A◦ is dense in A, the equality π̂ ′(a)= π̂(a)
holds for every a ∈A.

Step 2. To complete the proof, we need to show that the correspondences of
Propositions 6.1 and 6.3 are compatible with morphisms in the two categories.
Suppose that (π, ρπ ,H ) and (σ, ρσ ,K ) are two unitary representations of (G, g),
and let π̂ :A→ B(H ) and σ̂ :A→ B(K ) be the ∗-representations of A constructed
from (π, ρπ ,H ) and (σ, ρσ ,K ) by Proposition 6.1. If T :H →K is a (G, g)-
intertwining operator, then it is easy to verify that T commutes with the action
of A◦ on H and K , and therefore, by a continuity argument, T commutes with
the action of A on H and K as well.

Conversely, assume that T :H →K commutes with the actions of A on H

and K . First note that, for every a ∈A and every (λ, ρ) ∈ M(A),

T π̂((λ, ρ))π̂(a)= T π̂(λ(a))= σ̂ (λ(a))T = σ̂ ((λ, ρ))σ̂ (a)T = σ̂ ((λ, ρ))T π̂(a).

Since π̂(A)H is a dense subspace of H , it follows that

T π̂((λ, ρ))= σ̂ ((λ, ρ))T for every (λ, ρ) ∈ M(A).

Setting (λ, ρ) := (λg, ρg) in the last relation, we obtain

(26) Tπ(g)= σ(g)T for every g ∈ Gε,

and in particular T H ∞
⊆K ∞. From (26) for g = ε, it follows that T preserves

the Z/2Z-grading of H . Now for (λ, ρ) ∈ M(A◦), a ∈ A◦, and v ∈H ∞, using



228 KARL-HERMANN NEEB AND HADI SALMASIAN

Lemma 6.2 we obtain that

Tπ◦(λ, ρ)π◦(a)v = Tπ◦(λ(a))v = σ ◦(λ(a))T v

= σ ◦(λ, ρ)σ ◦(a)T v = σ ◦(λ, ρ)Tπ◦(a)v.

Thus Lemmas 6.2 and 3.1 imply that Tπ◦(λ, ρ)w=σ ◦(λ, ρ)Tw for everyw∈H ∞.
Setting (λ, ρ) := (λx , ρx) for x ∈ g, we obtain Tρπ (x)= ρσ (x)T . Therefore, T is
a (G, g)-intertwining map from (π, ρπ ,H ) to (σ, ρσ ,K ). �

7. Unique direct integral decompositions

For a unitary representation (π, ρπ ,H ) of a Lie supergroup (G, g), it is desirable
to have a decomposition as a direct integral of irreducible unitary representations.
From Theorem 6.4 it follows that the problem of existence and uniqueness of such a
direct integral decomposition can be reduced to the same problem for the associated
C∗-algebra A=A(G, g).

In this section we prove that existence and uniqueness of direct integral decom-
positions hold for two general classes of Lie supergroups, which include nilpotent
and basic classical Lie supergroups.

Recall that a C∗-algebra A is called CCR if π̂(A)⊆ K (H ) for every irreducible
∗-representation π̂ :A→ B(H ), where K (H )⊆ B(H ) denotes the subspace of
compact operators. It is well known that, for C∗-algebras which are CCR, existence
and uniqueness of direct integral decompositions hold.

A unitary representation (π,H ) of a Lie group G is called completely continuous
if π( f ) ∈ K (H ) for every f ∈ D(G).

Theorem 7.1. Let (G, g) be a Lie supergroup such that, for every irreducible
unitary representation (π, ρπ ,H ) of (G, g), the unitary representation (π,H )

of G is completely continuous. Then the C∗-algebra A=A(G, g) is CCR.

Proof. Let π̂ :A→ B(H ) be an irreducible ∗-representation of A. Since K (H )

is a closed ideal of B(H ) and ‖π̂(a)‖ ≤ ‖a‖ for every a ∈ A, it suffices to
prove that π̂(D ⊗ f ) ∈ K (H ) for every D ⊗ f ∈ A◦. Let (π, ρπ ,H ) be the
unitary representation of (G, g) that corresponds to π̂ . Theorem 6.4 implies that
(π, ρπ ,H ) is irreducible. The Dixmier–Malliavin theorem implies that there exist
f1, · · · , fr , h1, . . . , hr ∈ D(Gε) such that f =

∑r
i=1 fi ? hi . Thus

π̂(D⊗ f )=
r∑

i=1

π̂(D⊗ fi )π̂(1⊗ hi )=

r∑
i=1

π̂(D⊗ fi )π(hi ).

From the assumption of the theorem it follows that π(hi ) ∈ K (H ) for 1≤ i ≤ r .
Consequently, π̂(D⊗ f ) ∈ K (H ). �
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As in [Salmasian 2010], a Lie supergroup (G, g) is called nilpotent if g is a
nilpotent Lie superalgebra.

Theorem 7.2. Let (G, g) be a connected nilpotent Lie supergroup. Then the C∗-
algebra A=A(G, g) is CCR.

Proof. From [Salmasian 2010, Corollary 6.1.1] it follows that the restriction of
every irreducible unitary representation (π, ρπ ,H ) of (G, g) to G is a direct sum
of finitely many irreducible unitary representations. Since every nilpotent Lie group
is CCR [Fell 1962], the unitary representation (π,H ) is completely continuous.
Therefore, Theorem 7.1 applies. �

Recall from [Neeb and Salmasian 2011] that a Lie supergroup (G, g) is called
?-reduced if for every nonzero x ∈g there exists a unitary representation (π, ρπ ,H )

of (G, g) such that ρπ (x) 6= 0.

Theorem 7.3. Let (G, g) be a connected Lie supergroup which is ?-reduced and
satisfies g0̄ = [g1̄, g1̄]. Then the C∗-algebra A=A(G, g) is CCR.

Proof. We show that the hypotheses of Theorem 7.1 are satisfied.

Step 1. From [Neeb and Salmasian 2011, Theorem 7.3.2] it follows that there
exists a compactly embedded (in the sense of [Neeb 2000, Definition VII.1.1])
Cartan subalgebra t⊆ g0̄ and a positive system 1+ = {α1, . . . , αr } of t-roots of g,
such that the space H t of t-finite smooth vectors in H is a dense subspace of
H . Furthermore, H t is an irreducible g-module which is a direct sum of t-weight
spaces with weights of the form

(27) λ−

r∑
i=1

niαi , where ni ∈ N∪ {0} for every 1≤ i ≤ r.

Since U(g) is a finitely generated U(g0̄)-module, the irreducible (hence cyclic)
U(g)-module H t is a finitely generated U(g0̄)-module. Since U(g0̄) is a Noetherian
ring [Dixmier 1974, Corollary 2.3.8], H t is a Noetherian U(g0̄)-module.

Step 2. We prove that (π,H ) is a direct sum of finitely many irreducible unitary
representations of G. Assume the contrary. Then we can write H =

⊕
∞

`=1H`

such that each H` is a G-invariant closed subspace of H . From the inclusion⊕
∞

i=1H
t
` ⊆ H t it follows that as a U(g0̄)-module, H t is not Noetherian. This

contradicts Step 1.

Step 3. From (27) and Step 2 it follows that (π,H ) is a direct sum of finitely
many irreducible highest weight (in the sense of [Neeb 2000, Definition X.2.9])
unitary representations of G. From [Neeb 2000, Theorem X.4.10] it follows that
every irreducible highest weight unitary representation of G is CCR. Thus (π,H )

is also a CCR unitary representation of G. �



230 KARL-HERMANN NEEB AND HADI SALMASIAN

Remark 7.4. Here it would be helpful to the reader to make a correction to [Neeb
and Salmasian 2011, Theorem 7.3.2]. The proof of the theorem uses the bijective
correspondence between G-invariant closed subspaces of H and g0̄-invariant sub-
spaces of analytic vectors in H . Such a bijection holds only when G is connected.
Therefore, connectedness of G should be added in the statement of the theorem. It
is plausible to expect that Theorem 7.3 holds when G has finitely many connected
components.

Remark 7.5. Let (G, g) be a connected Lie supergroup such that g is a real form
of a classical simple Lie superalgebra (see [Musson 2012, Section 1.3]). That is, we
assume that g⊗R C is isomorphic to one of the Lie superalgebras of type sl(m|n)
for m > n ≥ 0, psl(m|m) for m ≥ 1, osp(m|2n) for m, n ≥ 0, D(2, 1;α) for
α 6= 0,−1, p(n) for n ≥ 1, q(n) for n ≥ 1, G(3), or F(4). Assume that (G, g)
has nontrivial unitary representations. (A complete list of these Lie supergroups
can be obtained from [Neeb and Salmasian 2011, Theorem 6.2.1].) It is then
straightforward to verify that (G, g) satisfies the hypotheses of Theorem 7.3, and
therefore the C∗-algebra A=A(G, g) is CCR.
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