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EXHAUSTING CURVE COMPLEXES BY FINITE RIGID SETS

JAVIER ARAMAYONA AND CHRISTOPHER J. LEININGER

Let S be a connected orientable surface of finite topological type. We prove
that there is an exhaustion of the curve complex C(S) by a sequence of finite
rigid sets.

1. Introduction

The curve complex C(S) of a surface S is a simplicial complex whose k-simplices
correspond to sets of k + 1 distinct isotopy classes of essential simple closed
curves on S with pairwise disjoint representatives. The extended mapping class
group Mod±(S) of S acts on C(S) by simplicial automorphisms, and a well-known
theorem due to Ivanov [1997], Korkmaz [1999] and Luo [2000] asserts that C(S)
is simplicially rigid for S 6= S1,2. More concretely, the natural homomorphism

Mod±(S)→ Aut(C(S))

is surjective unless S = S1,2; in the case S = S1,2 there is an automorphism of
C(S) that sends a separating curve on S to a nonseparating one and thus cannot be
induced by an element of Mod±(S) (see [Luo 2000]).

In [Aramayona and Leininger 2013], henceforth abbreviated [AL], we extended
this picture and showed that curve complexes are finitely rigid. Specifically, for
S 6= S1,2 we identified a finite subcomplex X(S)⊂C(S) with the property that every
locally injective map X(S)→ C(S) is the restriction of an element of Mod±(S);
in the case of S1,2 a similar statement can be made, this time using the group
Aut(C(S)) instead of Mod±(S). We refer to such a subset X(S) as a rigid set.

The rigid sets constructed in [AL] enjoy some curious properties. For instance,
if S = S0,n is a sphere with n punctures then X(S) is homeomorphic to an (n− 4)-
dimensional sphere. Since C(S) has dimension n−4, it follows that X(S) represents
a nontrivial element of Hn−4(C(S),Z) which, by a result of Harer [1986], is the
only nontrivial homology group of C(S). In fact, Broaddus [2012] and Birman,
Broaddus and Menasco [Birman et al. 2015] have recently proved that X(S) is a
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generator of Hn−4(C(S),Z) when viewed as a Mod±(S)-module; in the case when
S has genus ≥ 2 and at least one puncture, they prove that X(S) contains a generator
for the homology of C(S).

The rigid sets identified in [AL] all have diameter 2 in C(S), and a natural
question is whether there exist finite rigid sets in C(S) of arbitrarily large diameter;
see Question 1 of that work. In this paper we prove that, in fact, there exists an
exhaustion of C(S) by finite rigid sets:

Theorem 1.1. Let S 6= S1,2 be a connected orientable surface of finite topological
type. There exists a sequence X1 ⊂ X2 ⊂ · · · ⊂ C(S) such that

(1) Xi is a finite rigid set for all i ≥ 1,

(2) Xi has trivial pointwise stabilizer in Mod±(S), for all i ≥ 1, and

(3)
⋃

i≥1 Xi = C(S).

Remarks. (i) A similar statement can be made for S= S1,2, by replacing Mod±(S)
by Aut(C(S)) in the definition of rigid set above.

(ii) We stress that Theorem 1.1 above does not follow from the main result in [AL].
Indeed, a subset of C(S) containing a rigid set need not itself be rigid; compare
with Proposition 3.2 below.

(iii) The combination of a recent theorem of J. Hernández (as yet unpublished) and
the main result in [AL] gives an alternate proof of Theorem 1.1 in the case when S
has genus ≥ 3; compare with the remark on page 262 below.

As a consequence of Theorem 1.1 we will obtain a “finitistic” proof of the
aforementioned result of [Ivanov 1997; Korkmaz 1999; Luo 2000] on the simplicial
rigidity of the curve complex. In fact, we will deduce the following stronger form
due to Shackleton [2007].

Corollary 1.2. Let S 6= S1,2 be a connected orientable surface of finite topological
type. If φ : C(S)→ C(S) is a locally injective simplicial map, then there exists
h ∈Mod±(S) such that h = φ.

The first author and Souto [2013] proved that if X⊂C(S) is a rigid set satisfying
some extra conditions, then every (weakly) injective homomorphism from the right-
angled Artin group A(X) into Mod±(S) is obtained, up to conjugation, by taking
powers of roots of Dehn twists in the vertices of X. Since the finite rigid sets Xi of
Theorem 1.1 all satisfy the conditions of [Aramayona and Souto 2013], we obtain
the following result; here, Tγ denotes the Dehn twist about γ .

Corollary 1.3. Let S 6= S1,2 be a connected orientable surface of finite topological
type, and consider the sequence X1 ⊂ X2 ⊂ · · · ⊂ C(S) of finite rigid sets given by
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Theorem 1.1. If ρi : A(Xi )→Mod±(S) is an injective homomorphism, then there
exist functions a, b : C(0)(S)→ Z \ {0} and fi ∈Mod±(S) such that

ρi (γ
a(γ ))= fi T b(γ )

γ f −1
i ,

for every vertex γ of Xi .

We remark that Kim and Koberda [2013] have previously shown the existence
of injective homomorphisms A(Yi )→Mod±(S) for sequences Y1 ⊂ Y2 ⊂ · · · of
subsets of C(S). Such homomorphisms may in fact be obtained by sending a
generator of A(Yi ) to a sufficiently high power of a Dehn multitwist, see [Kim and
Koberda 2015].

Plan of the paper. In Section 2 we recall some necessary definitions and basic
results from our previous paper [AL]. Section 3 deals with the problem of enlarging
a rigid set in such a way that it remains rigid. As was the case in [AL], the techniques
used in the proof of our main result differ depending on the genus of S. As a result,
we prove Theorem 1.1 for surfaces of genus g= 0, g ≥ 2 and g= 1 in Sections 4, 5
and 6, respectively.

2. Definitions

Let S = Sg,n be an orientable surface of genus g with n punctures and/or marked
points. We define the complexity of S as ξ(S)= 3g− 3+ n. We say that a simple
closed curve on S is essential if it does not bound a disk or a once-punctured disk
on S. An essential subsurface of S is a properly embedded subsurface N ⊂ S for
which each boundary component is an essential curve in S.

The curve complex C(S) of S is a simplicial complex whose k-simplices cor-
respond to sets of k + 1 isotopy classes of essential simple closed curves on S
with pairwise disjoint representatives. In order to simplify the notation, a set of
isotopy classes of simple closed curves will be confused with its representative
curves, the corresponding vertices of C(S), and the subcomplex of C(S) spanned
by the vertices. We also assume that representatives of isotopy classes of curves and
subsurfaces intersect minimally (that is, transversely and in the minimal number of
components), and denote by i(α, β) their intersection number.

If ξ(S)> 1, then C(S) is a connected complex of dimension ξ(S)−1. If ξ(S)≤ 0
and S 6= S1,0, then C(S) is empty. If ξ(S)= 1 or S = S1,0, then C(S) is a countable
set of vertices; in order to obtain a connected complex, we modify the definition of
C(S) by declaring α, β ∈ C(0)(S) to be adjacent in C(S) whenever i(α, β) = 1 if
S = S1,1 or S = S1,0, and whenever i(α, β)= 2 if S = S0,4. Furthermore, we add
triangles to make C(S) into a flag complex. In all three cases, the complex C(S) so
obtained is isomorphic to the well-known Farey complex.

We recall some definitions and results from [AL] that we will need later.
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Definition 2.1 (detectable intersection). Let S be a surface and Y ⊂ C(S) a sub-
complex. If α, β ∈ Y are curves with i(α, β) 6= 0, then we say that their intersection
is Y -detectable (or simply detectable if Y is understood) if there are two pants
decompositions Pα, Pβ ⊂ Y such that

(1) α ∈ Pα, β ∈ Pβ and Pα −α = Pβ −β.

We note that if α, β have detectable intersection, then they must fill a ξ = 1
(essential) subsurface, which we denote N (α∪β)⊂ S. For notational purposes, we
call P = Pα −α = Pβ −β a pants decomposition of S− N (α ∪β), even though it
includes the boundary components of N (α∪β). The following lemma is Lemma 2.3
in [AL].

Lemma 2.2. Let Y ⊂ C(S) be a subcomplex, and α, β ∈ Y intersecting curves with
Y-detectable intersection. If φ : Y→C(S) is a locally injective simplicial map, then
φ(α), φ(β) have φ(Y )-detectable intersection, and hence fill a ξ = 1 subsurface.

Farey neighbors. A large part of our arguments will rely on being able to recognize
when two curves are Farey neighbors, which we now define.

Definition 2.3 (Farey neighbors). Let α and β be curves on S which fill a ξ = 1
subsurface N ⊂ S. We say α and β are Farey neighbors if they are adjacent in C(N ).

The following result is a useful tool for recognizing Farey neighbors, and is a
rephrasing of Lemma 2.4 in [AL] (see also the comment immediately after it):

Lemma 2.4. Suppose α1, α2, α3, α4 are curves on S such that

(1) α2, α3 together fill a ξ = 1 subsurface N ⊂ S,

(2) i(αi , α j )= 0⇔ |i − j |> 1 for all i 6= j , and

(3) α1 and α4 have nonzero intersection number with exactly one component of ∂N.

Then α2 and α3 are Farey neighbors.

3. Enlarging rigid sets

In this section we discuss the problem of enlarging rigid sets of the curve complex.
We recall the definition of rigid set from [AL].

Definition 3.1 (rigid set). Suppose S 6= S1,2. We say that Y ⊂ C(S) is rigid if for
every locally injective simplicial map φ : Y →C(S) there exists h ∈Mod±(S) with
h|Y = φ, unique up to the pointwise stabilizer of Y in Mod±(S).

Remark. The definition above may seem somewhat different from the one used in
[AL], where we used the group Aut(C(S)) instead of Mod±(S). Nevertheless, in
light of the results of Ivanov [1997], Korkmaz [1999] and Luo [2000] mentioned
in the introduction, the two definitions are essentially the same as S 6= S1,2. For
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S = S1,2, however, we will use the group Aut(C(S)) instead of Mod±(S), due to
the existence of nongeometric automorphisms of C(S).

The main step in the proof of Theorem 1.1 is to enlarge the rigid sets constructed
in [AL] in a way that the sets we obtain remain rigid. As we mentioned in the
introduction, while one might be tempted to guess that a set that contains a rigid
set is necessarily rigid, this is far from true, as the next result shows.

Proposition 3.2. Let S = S0,n , with n ≥ 5, and X the finite rigid set identified in
[AL] (defined in Section 4). For every curve α ∈C(S)\X, the set X∪{α} is not rigid.

Proof. Let Sα be the smallest subsurface of S containing all the curves in X which
are disjoint from α. Observe that since X is rigid, it is also filling and therefore Sα is
a proper subsurface of S. Let S′α be the connected component of S\ Sα that contains
α; from the construction in [AL], every component of ∂S′α which is essential in S
is an element of X. We claim that there exists f ∈Mod(S) with the following two
properties:

(1) The restriction of f to Sα is the identity map.

(2) For every β ∈ X with i(α, β) 6= 0, we have i( f (α), β) 6= 0.

In order to construct such an f , one can for instance consider an element h∈Mod(S)
that is pseudo-Anosov on S′α and the identity on Sα; any sufficiently high power of
h will satisfy the two conditions above.

At this point, define a map φ : X∪ {α} → C(S) by φ(β)= β for all β 6= α, and
φ(α) = f (α). By construction, the map φ is locally injective and simplicial, but
cannot be the restriction of an element of Mod±(S). �

While Proposition 3.2 serves to highlight the obstacles for enlarging a rigid set
to a set that is also rigid, we now explain two procedures for doing so. First, we
recall the following definition from [AL].

Definition 3.3. Let A be a set of curves in S.

(1) A is almost filling (in S) if the set

B = {β ∈ C(0)(S) \ A | i(α, β)= 0 ∀α ∈ A}

is finite. In this case, we call B the set of curves determined by A.

(2) If A is almost filling (in S), and B = {β} is a single curve, then we say that β
is uniquely determined by A.

An immediate consequence of the definition is the following.

Lemma 3.4. Let Y be a rigid set of curves, and A ⊂ Y an almost filling set in S. If
β is uniquely determined by A, then Y ∪ {β} is rigid.
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Proof. Given any locally injective simplicial map φ : Y ∪ {β} → C(S), we let
f ∈Mod±(C(S)) be such that f |Y = φ. Then f (β) is the unique curve determined
by f (A)= φ(A). On the other hand, φ(β) is connected by an edge to every vertex
in φ(A), since φ is simplicial. Since φ is injective on the star of β, it is injective
on β ∪ A, and so φ(β) /∈ A. It follows that φ(β) is the curve uniquely determined
by φ(A), and hence f (β)= φ(β). �

In particular, this gives rise to one method for enlarging a rigid set which we
formalize as follows. Given a subset Y ⊂ C(S), define

Y ′ = Y ∪ {β | β is uniquely determined by some almost filling set A ⊂ Y }.

From this we recursively define Y = Y 0 and Y r
= (Y r−1)′ for all r > 0. Observe

that, as an immediate consequence of Lemma 3.4, we obtain:

Proposition 3.5. If Y ⊂ C(S) is a rigid set, then so is Y r for all r ≥ 0.

Remark. J. Hernández has recently proved that for every surface S of genus ≥ 3,
there exists an explicit finite subcomplex Y ⊂ C(S) such that⋃

r≥0

Y r
= C(S).

As a corollary of this result, and using the main result in [AL], he provides an
alternate proof of Theorem 1.1; compare with remark (iii) on page 258 above.

Next, we give a sufficient condition for the union of two rigid sets to be rigid.
Before doing so, we need the following definition.

Definition 3.6 (weakly rigid set). We say that a set Y ⊂ C(S) is weakly rigid if,
whenever h, h′ ∈Mod±(S) satisfy h|Y = h′|Y , then h = h′.

Alternatively, Y is weakly rigid if the pointwise stabilizer in Mod±(S) is trivial.
Note that if Y is a weakly rigid set, then so is every set containing Y .

Lemma 3.7. Let Y1, Y2 ⊂C(S) be rigid sets. If Y1∩Y2 is weakly rigid then Y1∪Y2

is rigid.

Proof. Let φ : Y1∪Y2→C(S) be a locally injective simplicial map. Since Yi is rigid
and has trivial pointwise stabilizer in Mod±(S) (because Y1∩Y2 does), there exists
a unique hi ∈Mod±(S) such that hi |Yi = φ|Yi . Finally, since Y1∩Y2 is weakly rigid
we have h1 = h2 = h. Therefore h|Y1∪Y2 = φ, and the result follows. �

We now proceed to describe our second method for enlarging a rigid set. We
start with some definitions and notation. We write Tα for the Dehn twist along a
curve α. Recall that the half-twist Hα about a curve α is defined if and only if the
curve cuts off a pair of pants containing two punctures of S. Furthermore, there is
exactly one half-twist about α if in addition S is not a four-holed sphere.
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Definition 3.8. Farey neighbors α and β are twistable if either

(1) N (α ∪β) is a one-holed torus, or

(2) N (α ∪β) is a four-holed sphere and Hα, Hβ are both defined and unique.

In this situation we define fα = Tα and fβ = Tβ in the first case and fα = Hα and
fβ = Hβ in the second. We call fα, fβ the twisting pair for α, β.

In case (1) we call α and β toroidal and in case (2) we call them spherical.

We note that whether twistable Farey neighbors α and β are toroidal or spherical
can be distinguished

(i) by i(α, β) (whether it is 1 or 2),

(ii) by the homeomorphism types of α and β (whether they are nonseparating
curves or they cut off a pair of pants), or

(iii) by the homeomorphism type of N (α ∪β) (whether it is a one-holed torus or a
four-holed sphere).

The following well-known fact describes the common feature of these two situations.

Proposition 3.9. Suppose α, β are twistable Farey neighbors and that fα, fβ is
their twisting pair. Then

fα(β)= f −1
β (α) and f −1

α (β)= fβ(α),

and these are the unique common Farey neighbors of both α and β.

Sets of twistable Farey neighbors which interact with each other frequently occur
in our rigid sets. We distinguish one particular type of such sets in the following
definition.

Definition 3.10. Suppose Y is a rigid subset of C(S) and A = {α1, . . . , αk} ⊂ Y .
We say that A is a closed string of Farey neighbors in Y provided the following
conditions are satisfied, counting indices modulo k:

(1) The curves αi , αi+1 are twistable Farey neighbors with twisting pair fαi , fαi+1 .

(2) i(αi , αi+1) 6= 0 is Y-detectable.

(3) i(αi , α j )= 0 if i − j 6= ±1 modulo k.

(4) αi , αi+1, αi+2, αi+3 satisfy the hypothesis of Lemma 2.4.

Given a closed string of twistable Farey neighbors A ⊂ Y , we define

YA = Y ∪ { f ±1
αi
(α j )}

k
i, j=1.

Remark. Two comments are in order:
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(1) There is a priori some ambiguity in the notation as fαi can be defined as part
of the twisting pair for αi , αi+1 as well as for αi−1, αi . However, if αi is part
of two pairs of different twistable Farey neighbors in Y , then they must both
be toroidal or both spherical as this is determined by the homeomorphism type
of αi . Consequently, the mapping class fαi is independent of what twistable
pair it is included in.

(2) Given condition (3) of Definition 3.10, the set YA has a more descriptive
definition. Namely,

YA = Y ∪ { f ±1
αi
(α j ) | i − j =±1 modulo k}.

See Figure 1 for an example of a closed string of twistable Farey neighbors and
two of their images under the twisting pair.

The situation in the next proposition arises in multiple settings, and provides a
way to extend a rigid set to a larger set which is nearly rigid.

Proposition 3.11. Let Y be a rigid subset of C(S) and A = {α1, . . . , αk} ⊂ Y a
closed string of twistable Farey neighbors in Y . Then, counting indices modulo k:

(1) f ±1
αi
(αi+1)= f ∓1

αi+1
(αi ) are the unique common Farey neighbors of αi and αi+1.

(2) i( f ±1
αi
(α j ), α j ′) 6= 0 for all i and all

( j, j ′) ∈ {(i + 1, i), (i + 1, i + 1), (i − 1, i), (i − 1, i − 1)}.

Furthermore, these intersections are YA-detectable.

α1

α2α3

α4

α5

Figure 1. The set Y = A = {α1, . . . , α5} is the rigid set X(S0,5)

identified in [Luo 2000] and [AL], and is a closed string of twistable
Farey neighbors. The red curves in the picture are fα1(α2), fα2(α1),
for the twistable pair α1, α2. The automorphism group of YA

that fixes Y pointwise is generated by an orientation-reversing
involution σ : S0,5→ S0,5 that fixes αi and interchanges fαi and
fαi+1 , for all i (mod 5).
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(3) For any locally injective simplicial map φ : YA→ C(S),

φ( fαi (αi+1))= φ( f −1
αi+1

(αi )) and φ( f −1
αi
(αi+1))= φ( fαi+1(αi ))

are the unique Farey neighbors of φ(αi ) and φ(αi+1).

Proof. Conclusion (1) follows immediately from Definition 3.10 part (1) and
Proposition 3.9.

Next we prove conclusion (2). Fix ( j, j ′) as in the proposition. Then since
i(αi , α j ) 6= 0, it follows that fαi (α j ) nontrivially intersects both αi and α j . Since
α j ′ is one of these latter two curves, the first statement follows. By part (2) of
Definition 3.10, i(αi , α j ) 6= 0 is Y-detectable. Let Pαi , Pα j ⊂ Y be pants de-
compositions containing αi and α j , respectively, as in Definition 2.1, and set
P = Pαi − αi = Pα j − α j . Then since fαi is supported in N (αi ∪ α j ) which is
contained in the complement of P , we can define two more pants decompositions

P f ±1
αi (α j )

= P ∪ f ±1
αi
(α j )⊂ YA.

Together with Pαi and Pα j these are sufficient to detect all the intersections claimed.
In all cases, P ⊂ Y is the pants decomposition of the complement of N (αi ∪α j ),
as required.

For conclusion (3), we explain why φ( fαi (αi+1)) and φ(αi ) are Farey neighbors.
The other three cases are similar. For this, we consider the set

{φ( fαi (αi−1)), φ(αi )= φ( fαi (αi )), φ( fαi (αi+1)), φ(αi+2)= φ( fαi (αi+2))}.

The equalities here follow from the disjointness property (3) of Definition 3.10 since
a Dehn twist or half-twist has no effect on a curve that is disjoint from the curve
supporting the twist. The goal is to prove that all three conditions of Lemma 2.4
are satisfied.

By part (2) of the proposition and Lemma 2.2 it follows that any two consecutive
curves in this set have φ(YA)-detectable intersections and fill a ξ = 1 subsurface.
Therefore condition (1) of Lemma 2.4 is satisfied for this set of curves. Since
αi−1, αi , αi+1, αi+2 satisfy condition (2) of Lemma 2.4 and the given set is the
image of these under the simplicial map φ ◦ fαi , these curves also satisfy condition
(2) of Lemma 2.4.

Finally, we wish to verify that condition (3) of Lemma 2.4 is satisfied. Since Y
is rigid, there exists f ∈Mod±1(S) inducing φ|Y . We also note that

N = N (αi ∪αi+1)= N (αi ∪ fαi (αi+1))

has only one boundary component — all other holes of this subsurface (if any) must
be punctures of S. Since the pants decomposition of the complement of N is

P = Pαi −αi = Pαi+1 −αi+1 = P fαi (αi+1)− fαi (αi+1)
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and is contained in Y , we see that φ(P) = f (P). Because this is used in the
φ(YA)-detection of both i(φ(αi ), φ(αi+1)) 6= 0 and i(φ(αi ), φ( fαi (αi+1))) 6= 0, we
have

f (N )= N ( f (αi )∪ f (αi+1))= N (φ(αi )∪φ(αi+1))= N (φ(αi )∪φ( fαi (αi+1))).

Consequently, this surface has only one boundary component, and so condition (3)
of Lemma 2.4 is satisfied. �

Proposition 3.12. If Y is a rigid subset of C(S) and A = {α1, . . . , αk} is a closed
string of twistable Farey neighbors in Y , then any locally injective simplicial map
φ : YA→ C(S) which is the identity on Y satisfies φ(YA)= YA. Furthermore, the
subgroup of the automorphism group of YA fixing Y pointwise has order at most 2. If
this subgroup is nontrivial, then it is generated by the involution σ : YA→ YA given
by σ( fαi (α j ))= f −1

αi
(α j ) for all i, j (or equivalently, for all i, j with i − j =±1

(modulo k)).

Proof. Since f ±1
αi
(αi+1) is the unique pair of common Farey neighbors of αi , αi+1,

and since φ(αi ) = αi , φ(αi+1) = αi+1, Proposition 3.11 implies that for every i
and j with i − j =±1 (modulo k), we have

{φ( fαi (α j )), φ( f −1
αi
(α j ))} = { fαi (α j ), f −1

αi
(α j )},

and so the first claim of the proposition follows.
Next we suppose φ is any automorphism of Y that restricts to the identity

on Y . We claim that if there is some i, j with i − j = ±1 (modulo k) so that
φ( fαi (α j ))= f −1

αi
(α j ), then this is true for every i, j with i − j =±1 (modulo k).

To this end, suppose that φ( fαi (αi+1)) = f −1
αi
(αi+1) for some index i (the case

φ( fαi (αi−1))= f −1
αi
(αi−1) is similar). Then note that

i( fαi (αi−1), fαi (αi+1))= 0= i( f −1
αi
(αi−1), f −1

αi
(αi+1))

while

i( fαi (αi−1), f −1
αi
(αi+1)) 6= 0 6= i( f −1

αi
(αi−1), fαi (αi+1)).

Since φ is simplicial and locally injective, we must have φ( fαi (αi−1))= f −1
αi
(αi−1)

and φ( f −1
αi
(αi−1))= fαi (αi−1). Consequently,

φ( fαi−1(αi ))= φ( f −1
αi
(αi−1))= fαi (αi−1)= f −1

αi−1
(αi ).

Repeating this argument again, it follows that φ( fαi (αi+1))= f −1
αi
(αi+1) for all i ,

as required. Thus, in this case, φ is given by σ as in the statement of the proposition.
If we are not in the situation of the previous paragraph, then it follows that φ is

the identity, completing the proof. �
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After this discussion we are in a position to explain how to obtain an exhaustion of
C(S) by finite rigid sets. Here, Mod(S) denotes the index 2 subgroup of Mod±(S)
consisting of those mapping classes that preserve orientation.

Proposition 3.13. Let Y ⊂ C(S) be a finite rigid set such that Mod(S) · Y = C(S).
Suppose there exists G ⊂ Y such that

(1) the set { fα | α ∈ G} generates Mod(S), and

(2) Y ∩ fα(Y ) is weakly rigid for all α ∈ G.

Then there exists a sequence Y = Y1 ⊂ Y2 ⊂ · · · ⊂ Yn ⊂ · · · such that Yi is a finite
rigid set, Yi has trivial pointwise stabilizer in Mod±(S) for all i , and⋃

i∈N

Yi = C(S).

Proof. First, the fact that Y is rigid implies that fα(Y ) is rigid for all α ∈ Y .
Therefore, the set Y2 := Y ∪ fG(Y ) is also rigid by assumption (2) and repeated
application of Lemma 3.7. We now define, for all n ≥ 2,

Yn+1 := Yn ∪ fG(Yn).

By induction, we see that Yn is rigid for all n and so the first claim follows. Next,
the pointwise stabilizer of Y in Mod±(S) is trivial because Y ∩ fα(Y ) is weakly
rigid. Therefore, Yn has trivial pointwise stabilizer in Mod±(S), as Y ⊂ Yn for all n.
Finally, since { fα | α ∈ G} generates Mod(S) and Mod(S) · Y = C(S), it follows
that ⋃

i∈N

Yi = C(S),

which completes the proof. �

We end this section by explaining how Theorem 1.1 implies that curve complexes
are simplicially rigid

Proof of Corollary 1.2. Let S 6= S1,2, and let φ : C(S) → C(S) be a locally
injective simplicial map. Let X1 ⊂ X2 ⊂ · · · be the exhaustion of C(S) provided
by Theorem 1.1. Since Xi is rigid and has trivial pointwise stabilizer in Mod±(S),
there exists a unique mapping class hi ∈Mod±(S) such that hi |Xi = φ|Xi . Finally,
Lemma 3.7 implies that hi = h j for all i, j , and thus the result follows. �

4. Punctured spheres

In this section we prove Theorem 1.1 for S = S0,n . If n ≤ 3 then C(S) is empty and
thus the result is trivially true. The case n= 4 is dealt with at the end of this section,
as it needs special treatment. Thus, from now on we assume that n ≥ 5. As in [AL]
we represent S as the double of an n-gon 1 with vertices removed, and define X as
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Figure 2. Octagon and arcs for S0,8.

the set of curves on S obtained by connecting every nonadjacent pair of sides of 1
by a straight line segment and then doubling; see Figure 2 for the case n = 8.

Note that the pointwise stabilizer of X in Mod±(S) has order two, and is generated
by an orientation-reversing involution i : S→ S that interchanges the two copies
of 1. The rigidity of the set X, which was established in [AL], may be rephrased
as follows:

Theorem 4.1 [AL]. For any locally injective simplicial map φ : X→ C(S), there
exists a unique h ∈Mod(S) such that h|X = φ, unique up to precomposing with i .

We are going to enlarge the set X in the fashion described in Section 3. We
number the sides of1 in a cyclic order, and denote by α j the curve defined by the arc
on 1 that connects the sides with labels j and j + 2 mod n. Let A = {α1, . . . , αn};
in the terminology of [AL], A is the set of chain curves of X. Observe that every
element of A bounds a disk containing exactly two punctures of S, and that if two
elements of A have nonzero intersection number then they are Farey neighbors
in X. Thus we see that A is a closed string of n twistable Farey neighbors, and
may consider the set XA from Definition 3.10. As a first step towards proving
Theorem 1.1 for S0,n , we show that XA is rigid. Since the pointwise stabilizer of
XA is trivial, this amounts to the following statement:

Theorem 4.2. For any locally injective simplicial map φ :XA→ C(S), there exists
a unique g ∈Mod±(S) such that g|XA = φ.

Proof. Let φ : XA→ C(S) be a locally injective simplicial map. By Theorem 4.1,
there exists h ∈Mod±(S) such that h|X = φ|X, unique up to precomposing with the
involution i . Since i fixes every element of X, after precomposing φ with h−1 we
may assume that φ|X is the identity map. We have φ(XA)=XA by Proposition 3.12;
moreover, the automorphism group of XA fixing X pointwise has order two, gen-
erated by the involution σ : XA → XA that interchanges fαi (αi+1) and f −1

αi+1
(αi )

for all i . Since i |XA = σ , up to precomposing φ with i , we deduce that φ|XA is the
identity, as we wanted to prove. �
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We now prove Theorem 1.1 for spheres with punctures:

Proof of Theorem 1.1 for S = S0,n , n ≥ 5. Let XA be the set constructed above,
which is rigid and has trivial pointwise stabilizer in Mod±(S), by Theorem 4.2.
The set {Hα | α ∈ A} generates Mod(S); see, for instance, Corollary 4.15 of [Farb
and Margalit 2012]. In addition, XA ∩ Hα(XA) is weakly rigid for all α ∈ A, as it
contains A and Hαi (α j ) for any αi , α j disjoint from α. Finally, by inspection we
see Mod(S) ·XA = C(S). Therefore, we may apply Proposition 3.13 to the sets
Y =XA and G = A to obtain the desired sequence XA = Y1 ⊂ Y2 ⊂ · · · ⊂ Yn ⊂ · · ·

of finite rigid sets. �

Proof of Theorem 1.1 for S = S0,4. As mentioned in the introduction, in this case
C(S) is isomorphic to the Farey complex. It is easy to see, and is otherwise explicitly
stated in [AL], that any triangle in C(S) is rigid. From this, plus the fact that any
edge in C(S) is contained in exactly two triangles, it follows that any subcomplex of
C(S) that is homeomorphic to a disk is also rigid. Consider the dual graph of C(S)
(which is in fact a trivalent tree T ), equipped with the natural path metric. Let Y1

be a triangle in C(S), and define Yn to be the union of all triangles of C(S) whose
corresponding vertices in T are at distance at most n from the vertex corresponding
to Y1. Then the sequence (Yn)n∈N gives the desired exhaustion of C(S). �

5. Closed and punctured surfaces of genus g ≥ 2

In this section we consider the case of a surface S of genus g≥ 2 with n≥ 0 marked
points. First observe that if g = 2 and n = 0, then since C(S2,0) ∼= C(S0,6) [Luo
2000], the main theorem for S2,0 follows from the case S0,6, already proved in
Section 4. We therefore assume that n ≥ 1 if g = 2. Once we have recalled some
properties of X⊂ C(S) from [AL], we sketch the proof of Theorem 1.1 for closed
surfaces as it is simpler.

We let X⊂ C(S) denote the finite rigid set constructed in [AL]. The definition
of the set X is somewhat involved and we will not recall it in full detail. Instead,
we first note that X contains the set of chain curves

C= {α0
0, . . . , α

n
0 , α1, . . . , α2g+1}

depicted in Figure 3. For notational purposes we also write α0 = α
1
0 (or in case

n = 0, α0 = α
0
0). In addition to these curves, X contains every curve which occurs

as the boundary component of a subsurface of S filled by a subset A ⊂ C, provided
its union is connected in S and has one of the following forms:

(1) A = {αi
0, α

j
0 , αk} where 0≤ i ≤ j ≤ n and k = 1 or 2g+ 1.

(2) A = {αi
0, α

j
0 , αk, αk+1} where 0≤ i ≤ j ≤ n and k = 1 or 2g.
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(3) A = {αi | i ∈ I } where I ⊂ {0, . . . , 2g+ 1} is an interval (modulo 2g+ 2). If
n > 0 and A has an odd number of curves, then we additionally require that
the first and last numbers in the interval I be even.

See Figure 4 for some key examples.
The pointwise stabilizer of X in Mod±(S) is trivial. Thus the rigidity of the set

X, established in [AL], may be rephrased as follows.

Theorem 5.1 [AL]. Let S= Sg,n with g≥ 2 and n≥ 0 (and n≥ 1 if g= 2). For any
locally injective simplicial map φ : X→ C(S), there exists a unique h ∈Mod±(S)
such that h|X = φ.

Sketch of Theorem 1.1 for closed surfaces. Since the closed case avoids some of
the technicalities that arise in the general case, we sketch the proof here. We begin
by noting that in [AL] it is shown that X contains every curve which occurs as the
boundary component of a subsurface of S filled by a subset A ⊂ C, provided its
union is connected in S, without any further qualifications on the set A.

We enlarge X to X2
= (X′)′ and consider the set X2

∪TC(C). The set C is a closed
string of twistable Farey neighbors (that the nonzero intersections are X2-detectable
follows from their X-detectability proved in [AL]). By Proposition 3.12, this set
will be rigid if we can rule out the potential order two symmetry. It thus suffices
to show that one of the curves in TC(C) is already in X2. This is illustrated for
Tα2g (α2g−1) in Figure 8 (the pictures for a closed surface are obtained by ignoring
punctures and any curves which subsequently become trivial, and identifying pairs

α2g+1

α2g

α1

α2

α3

α2
0

α1
0

α0
0

Figure 3. Chain curves C on a genus 4 surface with 2 marked points.

β
ε1 2

σ 2 2

Figure 4. Examples of subsets of C (in blue), together with the
boundary components (in red) of the subsurface filled by them.
The red curves are in X.
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that become isotopic). Therefore, X2
∪TC(C) is indeed rigid. One can also find an

appropriate closed string of twistable Farey neighbors containing the curve β shown
in Figure 4 (see Lemma 5.5 below), and so it follows that X2

∪ TC(C)∪ Tβ(C) is
also rigid. Since Tα0, . . . , Tα2g+1, Tβ generate Mod(S) (see, e.g., [Farb and Margalit
2012]), Theorem 1.1 follows from Proposition 3.13.

The general case. It will be necessary to refer to some of the curves in X by name,
so we describe the naming convention briefly in those cases, along the lines of [AL].
We have already described the names of the elements of C. For 0 < i < j ≤ n
we let εi j be the boundary component of the subsurface N (α1 ∪ α

i−1
0 ∪ α

j
0 ) that

also bounds a ( j − i + 1)-punctured disk in S (containing the i-th through j-th
punctures). We call the curves εi j outer curves; see Figure 4. For 0< i ≤ j ≤ n,
we also consider the other boundary component of N (α1 ∪ α

i−1
0 ∪ α

j
0 ); this is a

separating curve dividing the surface into two (punctured) subsurfaces of genus 1
and g−1 respectively. We denote this curve σ i j . One more curve in X that we refer
to as β is shown in Figure 4, and is a component of the boundary of the subsurface
N (α2g−2 ∪α2g−1 ∪α2g).

The strategy for proving Theorem 1.1 for surfaces of genus g ≥ 2 is similar in
spirit to the one for punctured spheres, although considerably more involved. The
main idea is to produce successive rigid enlargements of the rigid set X identified
in [AL], until we are in a position to apply Proposition 3.13. We begin by replacing
X with X′, which is rigid by Proposition 3.5. For every 0< j ≤ n, let

A j = {σ
i j
| 0< i ≤ j} ∪ {σ j i

| j ≤ i ≤ n} ∪ {α1, α3, α4, α5, . . . , α2g+1}.

The set A j is almost filling and uniquely determines a curve denoted α j
1 ; see

Figure 5. The naming is suggestive, as all α j
1 are homotopic to α1 upon filling in

the punctures.
We can similarly find a subset A0 (shown in the left of Figure 6) which is almost

filling and uniquely determines a curve denoted α0
1 (shown on the right of Figure 6),

which bounds a disk enclosing every puncture of S. Consequently, α j
1 ∈ X

′ for all
j = 0, . . . , n.

α2
1

Figure 5. The surface on the left contains the set A2 which
uniquely determines α2

1 .
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α0
1

Figure 6. The curves A0 ⊂ X (left) and the curve α0
1 ∈ X

′ (right).

β+A

β−A
A

A′

Figure 7. The sets A = {α1, . . . , α5} ⊂ C and A′ ⊂ X (left) and
the curves β±A ∈ X

′ determined by A∪ A′ (right).

Punctured surface promotion. One issue that arises only in the case n > 0 is that
for intervals I ⊂ {0, . . . , 2g + 1} (modulo 2g + 2) of odd length, the boundary
curves of the neighborhood of the subsurface filled by A = {αi | i ∈ I } are only
contained in X when I starts and ends with even indexed curves. Passing to the set
X′ allows us to easily enlarge further to a set which rectifies this problem.

Specifically, we define X1 to be the union of X′ together with boundary compo-
nents of subsurfaces filled by sets A= {αi , αi+1, . . . , α j } where 0< i ≤ j ≤ 2g−1
and i, j are both odd. See Figure 7 for examples. Let Bo be the set of all curves
defined by such sets A.

Before we proceed, we describe this set in more detail. Cutting S open along
α1∪α3∪· · ·∪α2g−1∪α2g+1 we obtain two components2+o and2−o . These are each
spheres with holes: 2+o is the sphere in “front” in Figure 3, which is a (g+ n+ 1)-
holed sphere containing the n punctures of S, while 2−o is the (g+1)-holed sphere
in the “back” in Figure 3. For every A={αi , αi+1, . . . , α j } where 0< i < j ≤ 2g−1
and i, j are both odd, the boundary of the subsurface filled by A has exactly two
components β±A with β+A ⊂2

+
o and β−A ⊂2

−
o (possibly peripheral in2±o depending

on A). Furthermore, for every such set A, there is a “complementary” set A′ ⊂ X

such that A∪ A′ is almost filling, and such that {β±A } is the set determined by A∪ A′.
See Figure 7.

Lemma 5.2. For all g ≥ 2 and n ≥ 1, the set X1 is rigid and has trivial pointwise
stabilizer in Mod±(Sg,n).

Proof. First, X1 has trivial pointwise stabilizer since X does. Given any locally
injective simplicial map φ : X1→ C(S), there exists a unique h ∈Mod±(S) such
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that φ = h|X′ , by Theorem 5.1 and Proposition 3.5. Composing with the inverse
of h if necessary, we can assume φ is the identity on X′. So we need only show
that φ(γ ) = γ for all γ ∈ X1−X′. With respect to the notation above, any such
curve is β±A for A= {αi , αi+1, . . . , α j }, where 0< i ≤ j ≤ 2g−1 and i, j are both
odd. Since A∪ A′ is almost filling, φ({β±A })= {β

±

A }. Now, for A= {α1, α2, α3}, we
have i(β+A , α

1
0) 6= 0 and i(β−A , α

1
0)= 0; here, α1

0 is the curve depicted in Figure 6.
Therefore φ(β+A ) = β

+

A , as φ is locally injective and simplicial. Finally, an easy
connectivity argument involving the set of curves {β±A }A yields the desired result. �

Half the proof and the case of one or fewer punctures. We now enlarge the set
X1 ⊂ C(S) from Lemma 5.2 to X2

1 = (X
′

1)
′
⊂ C(S). According to Proposition 3.5,

X2
1 is rigid, and since the pointwise stabilizer of X is trivial, so is the pointwise

stabilizer of X2
1. We will need the following lemma; see Figure 3 for the labeling

of the curves.

Lemma 5.3. For any g≥2 and n≥0 (with n≥1 if g=2), we have Tα2g (α2g−1)∈X
2
1.

Proof. This requires a series of pictures, slightly different for the case g ≥ 3 and
for g = 2.

Case 1: g ≥ 3. We refer the reader to Figure 8; although we have only drawn the
figures for g = 3 and n = 2, it is straightforward to extend them to all g ≥ 3 and
n ≥ 0. The upper left figure shows an almost filling set of curves contained in X1,
determining uniquely the curve on the upper right figure, which is thus in X′1. This
curve is then used to produce an almost filling set, depicted on the lower left hand
figure, that uniquely determines Tα2g (α2g−1), shown on the right. Thus we see that
Tα2g (α2g−1) ∈ X

2
1, as claimed.

Figure 8. Illustrating Tα2g (α2g−1) in X2
1, when g = 3. The almost

filling set on the left (blue) uniquely determines the curve in the
right figure (red).
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Figure 9. Illustrating Tα2g (α2g−1) in X2
1, when g = 2 and n ≥ 1.

The almost filling set on the left (blue) uniquely determines the
curve in the right figure (red).

Case 2: g = 2 and n ≥ 1. In this case a different set of pictures is required; see
Figure 9. The upper left hand figure shows an almost filling set of curves that is
contained in X1 and uniquely determines the curve shown on the upper right. This
curve is then used to produce an almost filling set, depicted in the middle left picture,
which is contained in X′1 and uniquely determines the curve in the middle right
figure. We now make use of this new curve to produce an almost filling set (lower
left) that is contained in X2

1 and uniquely determines Tα2g (α2g−1) (lower right). �

We claim that the set X2
1 ∪ TC(C) is rigid. More concretely:

Lemma 5.4. Let φ :X2
1∪TC(C)→C(S) be a locally injective simplicial map. Then

there exists a unique h ∈Mod±(S) such that h|X2
1∪TC(C) = φ.

Proof. Let φ :X2
1∪TC(C) be a locally injective simplicial map. Since X2

1 is rigid and
its pointwise stabilizer in Mod±(S) is trivial, there exists a unique h ∈Mod±(S)
such that h|X2

1
= φ|X2

1
. Precomposing φ with h−1, we may assume that in fact φ|X2

1
is the identity map.

For i = 0, . . . , n, Ci = {α
i
0, α1, . . . , α2g+1} is a closed string of twistable Farey

neighbors in X2
1 (the fact that the nonzero intersection numbers between these curves
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is X-detectable, hence X2
1-detectable, is shown in the proofs of Theorem 5.1 and

6.1 in [AL]). Consider the set X2
1∪ TCi (Ci ), and observe that, in the terminology of

Definition 3.10, it equals YA for Y = X2
1 and A = Ci . By Proposition 3.12,

φ(X2
1 ∪ TCi (Ci ))= X2

1 ∪ TCi (Ci );

moreover, the automorphism group of X2
1 ∪ TCi (Ci ) fixing X2

1 pointwise has order
at most two. But, by Lemma 5.3, Tα2g (α2g−1) ∈X

2
1 and thus this group is trivial. In

other words, we have shown that the set X2
1 ∪ TCi (Ci ) is rigid.

Now, X2
1 ∪ TC0(C0)∪ TC1(C1) is also rigid by Lemma 3.7, since

(X2
1 ∪ TC0(C0))∩ (X

2
1 ∪ TC1(C1))

is weakly rigid as it contains X2
1. Since TC(C) =

⋃n
i=0 TCi (Ci ), we may repeat

essentially this same argument n− 1 more times to conclude X2
1 ∪ TC(C) is rigid,

as required. �

Next, we provide a further enlargement of our rigid set. Let β be the curve
depicted in Figure 4, which is one of the boundary components of the surface
N (α2g−2 ∪α2g−1 ∪α2g). We claim:

Lemma 5.5. The set X2
1 ∪ TC(C)∪ Tβ(C) is rigid.

Proof. Let φ :X2
1∪TC(C)∪Tβ(C)→C(S) be a locally injective simplicial map. By

Lemma 5.4, X2
1∪TC(C) is rigid and thus, up to precomposing φ with an element of

Mod±(S), we may assume that φ|X2
1∪TC(C) is the identity. The set

A = {α2g, α2g−1, α2g−2, β, α2g+1} ⊂ X2
1

is a closed string of twistable Farey neighbors in X2
1 (again, detectability of

the nonzero intersection numbers is shown in [AL]). Therefore, we may apply
Proposition 3.12 to X = X2

1 ∪ TC(C) and A to deduce that φ(XA) = XA; observe
that XA =X2

1∪ TC(C)∪ Tβ(C). Moreover, the automorphism group of XA fixing X

pointwise is trivial, by Lemma 5.4, and thus the result follows. �

Proof of Theorem 1.1 for g ≥ 2 and n ≤ 1. Let Y =X2
1∪TC(C)∪Tβ(C). When S is

closed or has one puncture, the Dehn twists about chain curves and the Dehn twist
about the curve β generate Mod(S); see, for example, Corollary 4.15 of [Farb and
Margalit 2012]. For γ ∈ C∪ {β}, the set

Tγ (Y )∩ (Y )

contains C, together with Tα(α′) for any α, α′ ∈ C which are disjoint from γ . In
particular, this set is weakly rigid. By inspection, the Mod(S)-orbit of Y is all
of C(S), and so by Proposition 3.13, this set suffices to prove the theorem. �
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Multiple punctures. When Sg,n has n ≥ 2 (and g ≥ 2), the twists in the curves C
and {β} do not generate the entire mapping class group. In this case, one needs to
add the set of half-twists about the outer curves εi (i+1) bounding twice-punctured
disks; see again Corollary 4.15 of [Farb and Margalit 2012]. Because of this, and in
light of Proposition 3.13, when n≥ 2 we would like to enlarge our rigid set from the
previous subsection by adding half-twists of chain curves about outer curves εi (i+1).
In fact, denoting this set of outer curves by OP = {ε

i (i+1)
}

n−1
i=1 we shall show that

these curves are already in X2
1. Specifically, we prove:

Lemma 5.6. We have HOP (C)⊂ X2
1.

Proof. If α ∈ C and ε j ( j+1)
∈ OP , then we must show that Hε j ( j+1)(α) ∈ X2

1 for
each j = 1, . . . , n−1. This is clear if i(α, ε j ( j+1))= 0, since then Hε j ( j+1)(α)= α.
The intersection number is nonzero only when α = α j

0 , so it suffices to consider
only this case.

To prove Hε j ( j+1)(α
j
0 ) ∈X

2
1, we need only exhibit the almost filling sets from X′1

uniquely determining this curve. This in turn requires an almost filling set from X1.
As before, we provide the necessary curves in a sequence of two figures. First,
the almost filling set on the left of Figure 10 is contained in X′, and hence in X1

(compare with Figure 5), and uniquely determines the curve γ1 depicted on the
right of the same figure. Therefore, γ1 ∈ X

′

1. Figure 11 is then an almost filling
set in X′1, and uniquely determines the curve on the right of the same figure. This
curve is Hε j ( j+1)(α

j
0 ), and so completes the proof. �

We are finally in a position to prove Theorem 1.1 for surfaces of genus g ≥ 2
and n ≥ 2.

Figure 10. Determining the curve γ1.

Figure 11. Determining the curve Hεi (i+1)(αi
0).
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Proof of Theorem 1.1 for S = Sg,n , g ≥ 2, n ≥ 2.. The set Y = X2
1 ∪ TC(C)∪ Tβ(C)

is rigid by Lemma 5.6, and has trivial pointwise stabilizer in Mod±(S) since X does.
Moreover, Mod(S)·Y =C(S) by inspection. Consider the subset G = C∪ {β} ∪OP ;
as mentioned before, the (half-)twists about elements of G generate Mod(S). In addi-
tion, for every α∈G, Y∩ fα(Y ) is weakly rigid. Thus we can apply Proposition 3.13
to Y and G, hence obtaining the desired exhaustion of C(S). �

6. Tori

In this section we will prove Theorem 1.1 for S = S1,n , for n ≥ 0. First, if n ≤ 1
then C(S) is isomorphic to the Farey complex, and thus the result follows as in
the case of S0,4; see Section 4. For n = 2, Theorem 1.1 is not true as stated due
to the existence of nongeometric automorphisms of C(S), as mentioned in the
introduction. However, in light of the isomorphism C(S0,5)∼= C(S1,2) [Luo 2000],
the same statement holds after replacing the group Mod±(S) by Aut(C(S)) in the
definition of rigid set, by the results of Section 4.

Therefore, from now on we assume n ≥ 3. In [AL], we constructed a finite rigid
set X described as follows. View S1,n as a unit square with n punctures along the
horizontal midline and the sides identified. The set X contains a subset C⊂ X of
n+ 1 chain curves

C= {α1, . . . , αn} ∪ {β}

where α1, . . . , αn are distinct curves which appear as vertical lines in the square and
β is the curve which appears as a horizontal line; see Figure 12. We assume that
the indices on the αi are ordered cyclically around the torus, and that the punctures
are labeled so that the i-th puncture lies between αi and αi+1. The boundaries of
the subsurfaces filled by connected unions of these chain curves form a collection

Figure 12. Chain curves on the left, and some examples of outer
curves on the right, in S1,5.
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of curves, denoted O which we refer to as outer curves. Then

X= C∪O.

This set has a nontrivial pointwise stabilizer in Mod±(S1,n), which can be realized
as the (descent to S1,n of the) horizontal reflection of the square through the midline
containing the punctures. Denoting this involution r : S1,n→ S1,n , we summarize
the result of [AL] in the following theorem.

Theorem 6.1 [AL]. For any locally injective simplicial map φ :X→ C(S1,n) there
exists h ∈Mod±(S1,n) such that h|X=φ. Moreover, h is unique up to precomposing
with r .

The strategy of proof is again similar to that of previous sections, although the
technicalities are different, and boils down to producing an enlargement of the set
X so that Proposition 3.13 can be applied.

We begin by enlarging the set X as follows. We let δi be the curve coming from
the vertical line through the i-th puncture in the square. For every 1 ≤ i ≤ n, let
β+i be the curve obtained from β by pushing it up over the i-th puncture. More
precisely, we consider the point-pushing homeomorphism fi : S1,n → S1,n that
pushes the i-th puncture up and around δi , and then let β+i = fi (β). We similarly
define β−i = f −1

i (β), and set β±i (i+1) = f ±1
i+1 f ±1

i (β), where the subscripts are taken
modulo n. See Figure 13.

Let

X1 = X∪ {β±i | 1≤ i ≤ n} ∪ {β±i (i+1) | 1≤ i ≤ n}

with indices in the last set taken modulo n. We first prove that this set is rigid;
since the pointwise stabilizer of X1 in Mod±(S1,n) is trivial, this amounts to the
following proposition.

Figure 13. Curves β−2 , β+3 , and β+4 5 on S1,5.
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Proposition 6.2. For any locally injective simplicial map φ : X1→ C(S1,n), there
exists a unique h ∈Mod±(S1,n) so that h|X1 = φ.

The proof of this proposition will require a repeated application of Lemma 2.4,
and as such, we must verify that certain quadruples of curves satisfy the hypotheses
of that lemma. We will need to refer to the outer curves by name. To this end, note
that since any outer curve surrounds a set of (cyclically) consecutive punctures, we
can determine an outer curve by specifying the first and last puncture surrounded.
Consequently, we let εi j denote the outer curve surrounding all punctures from
the i-th to the j-th, with all indices taken modulo n. Observe that since the set of
punctures is cyclically ordered, we do not need to assume that i < j in the definition
of εi j . We will need the following lemma.

Lemma 6.3. For each 1≤ i ≤ n, consider the following four quadruples of curves
in X1, with indices taken modulo n:

• β±(i−1) i , ε
(i+1) i , β±i , ε

(i−1) i ,

• β±i (i+1), ε
i (i−1), β±i , ε

i (i+1).

Each of these satisfies the hypothesis of Lemma 2.4. Furthermore, the nonzero
intersections are all X1-detectable. Consequently, ε(i+1) i and εi (i−1) are the unique
Farey neighbors of β−i and β+i .

Proof. The fact that the four quadruples of curves each satisfy the hypothesis of
Lemma 2.4 is clear by inspection. See the left side of Figure 14 for the case

β−(i−1) i , ε
(i+1) i , β−i , ε

(i−1) i .

The four-holed sphere N filled by the Farey neighbors ε(i+1) i , β±i and εi (i−1), β±i
has holes corresponding to the i-th puncture and the curves β and ε(i+1) (i−1); see the
right side of Figure 14. Only ε(i+1) (i−1) intersects β±(i−1) i , β

±

i (i+1), ε
(i−1) i , εi (i+1)

nontrivially, as required for Lemma 2.4.

Figure 14. The curves β−2 3, ε
4 3, β−3 , ε

2 3 on the left. The four-
holed sphere filled by ε4 3 and β±3 on the right.
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Figure 15. We use {β, β−2 3, ε
4 5, ε4 1

} to detect i(β−3 , ε
2 3) 6= 0.

To see that all the intersections are X1-detectable, we need only exhibit the
necessary curves in X1 determining a pants decomposition of S−N . See Figure 15
for the curves necessary to detect i(β−i , ε

(i−1) i ) 6= 0. We leave the other cases to
the reader. �

We are now in a position to prove Proposition 6.2.

Proof of Proposition 6.2. Let φ : X1→ C(S1,n) be a locally injective simplicial
map. By Theorem 6.1, there exists f ∈Mod±(S1,n) such that f |X = φ|X, unique
up to precomposing with r . In fact, after precomposing φ with f −1 we may as well
assume that φ|X is the identity.

According to Lemma 6.3, for all i , φ(ε(i+1) i )= ε(i+1) i and φ(εi (i−1))= εi (i−1)

are the unique Farey neighbors of φ(β−i ) and φ(β+i ) (with indices taken modulo n).
Consequently, φ({β±i }) = {β

±

i } for all i . Notice that i(β+i , β
−

j ) = 0 for all i, j ,
while i(β+i , β

+

j ) = i(β−i , β
−

j ) = 2 for all i, j . It follows that if φ(β−i ) = β
+

i for
some i , then this is true for all i . Composing with r if necessary, we deduce that
φ(β±i )= β

±

i for all i . All that remains is to see that φ(β±i (i+1))= β
±

i (i+1) for all i .
To prove this we need only show that

β±i (i+1) ∈ (X∪ {β
±

j | 1≤ j ≤ n})′,

and then we can apply Proposition 3.5. First note that if n = 3, then β±i (i+1) = β
∓

i+2,
so there is nothing to prove in this case. In general, one readily checks that β+i (i+1)
is uniquely determined by the almost filling set

{β, β−1 , β
−

2 , . . . , β
−

n } \ {β
−

i , β
−

i+1}.

This completes the proof. �

Let OP = {ε
i (i+1)
}

n
i=1, counting indices modulo n. For n ≥ 5, this is a closed

string of twistable Farey neighbors in X1, and we could appeal to Proposition 3.12
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to add the half-twists about curves in OP in this case. However, we can provide a
single argument for all n ≥ 3.

Lemma 6.4. For all ε, ε′ ∈ OP , H±1
ε (ε′) ∈ X′. Consequently, H±1

ε (X′1) ∪X
′

1 is
rigid.

Proof. We start with the proof of the first statement. If i(ε, ε′) = 0, then there
is nothing to prove. Otherwise, up to a homeomorphism we may assume that
ε = εi (i+1) and ε′ = ε(i+1) (i+2). Then we note that Hεi (i+1)(ε(i+1) (i+2)) is the curve
uniquely determined by the almost filling set of curves

{β+i+1} ∪ {α1, . . . , αn} \ {αi+1, αi+2},

completing the proof of the first statement.
For the second statement, we note that Hεi (i+1)(X′1)∩X

′

1 contains the weakly rigid
set OP ∪ {β

+

i+2}, for example. Therefore, since X1 is rigid by Proposition 6.2, so is
X′1 by Proposition 3.5, and hence by Lemma 3.7 it follows that Hεi (i+1)(X′1)∪X

′

1 is
rigid, as required. A similar argument proves the statement for H−1

εi (i+1) . �

We also need to consider Dehn twists in αi and β. To deal with these, we
first define X2 = X′1 ∪ HOP (X

′

1), where HOP (X
′

1) is the union of H±1
ε (X′1) over

all ε ∈OP . By Lemma 6.4, X2 is rigid.

Lemma 6.5. For all i = 1, . . . , n, we have T±1
αi
(β)= T∓1

β (αi ) ∈ X
2
1 ⊂ X2

2. Conse-
quently, T±1

αi
(X2

2)∪X
2
2 and T±1

β (X2
2)∪X

2
2 are rigid.

Proof. As in previous arguments, we exhibit a series of pictures that will yield the
desired result; see Figure 16. It is straightforward to modify such pictures to treat
the case of an arbitrary n ≥ 3. The top left picture shows an almost filling set in
X1 that uniquely determines a curve in X′1 on the top right. Then the lower left is
an almost filling set in X′1 that uniquely determines the curve in (X′1)

′
= X2

1. This
curve is precisely Tβ(αi )= T−1

αi
(β). Similarly, Tαi (β)= T−1

β (αi ) ∈ X
2
1.

Finally, we easily observe that X2
2 ∩ Tαi (X

2
2) is weakly rigid, as it contains

C∪ Hε(i−1) i (αi−1), which is weakly rigid. Appealing to Lemma 3.7, it follows that
X2

2 ∪ Tαi (X
2
2) is rigid. The other cases follow similarly. �

Finally, we prove our main result for surfaces of genus 1.

Proof of Theorem 1.1 for S = S1,n . Since X2 is rigid, by Propositions 3.5, the set
Y = X2

2 is rigid. Moreover, Mod(S1,n) · Y = C(S1,n), by inspection. A generating
set for Mod(S1,n) is given by the Dehn twists fα about the elements α ∈ C and the
half-twists fε about the elements ε ∈ A = {εi (i+1)

} (see Section 4.4 of [Farb and
Margalit 2012], for instance). Let G = C∪ A and note that, for each α ∈ G, the set
Y ∪ fαY is rigid. Therefore, we may apply Proposition 3.13 to obtain the desired
exhaustion of C(S1,n) by finite rigid sets. �
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Figure 16. Illustrating Tβ(α2) ∈ X
2
2 on S1,5.
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