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LIOUVILLE TYPE THEOREMS
FOR THE p-HARMONIC FUNCTIONS

ON CERTAIN MANIFOLDS

JINGYI CHEN AND YUE WANG

We show that for a certain range of p > n, the Dirichlet problem at in-
finity is unsolvable for the p-Laplace equation for any nonconstant con-
tinuous boundary data on an n-dimensional Cartan–Hadamard manifold
constructed from a complete noncompact shrinking gradient Ricci soliton.
Using the steady gradient Ricci soliton, we find an incomplete Riemann-
ian metric on R2 with positive Gauss curvature such that every positive p-
harmonic function must be constant for p ≥ 4.

1. Introduction

In this article, we study two questions about the p-Laplace equation on Riemannian
manifolds. The first one is the solvability of the Dirichlet problem at infinity on
a negatively curved complete noncompact manifold, and the second one is the
Liouville property for positive solutions on R2 equipped with an incomplete metric
with positive Gauss curvature. In both cases, the n-dimensional manifold M under
consideration is equipped with a Riemannian metric e2 f/(p−n)g where (M, g, f ) is
a complete gradient Ricci soliton which is shrinking for the first case and steady
for the second case.

On a Riemannian manifold, for a constant p > 1, a function v in W 1,p
loc ∩ L∞loc is

p-harmonic if it is a weak solution to the p-Laplacian equation

(1-1) div(|∇v|p−2
∇v)= 0.

It is known that p-harmonic functions are in C1,α (see [Tolksdorf 1984] and the
references therein).
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The behavior of harmonic and, more generally, p-harmonic functions depends
on the sign of the curvature of the manifold in an essential way. Therefore, we must
treat negatively curved and nonnegatively curved manifolds separately.

A Cartan–Hadamard manifold is a complete simply connected Riemannian
manifold with nonpositive sectional curvature everywhere. It is well-known that a
Cartan–Hadamard manifold M can be compactified by attaching a sphere M(∞)
at infinity. In the cone topology, the compactification is homeomorphic to a closed
Euclidean n-ball [Eberlein and O’Neill 1973]. The Dirichlet problem at infinity
for p-harmonic functions is to solve the p-Laplace equation (1-1) on M such that
v agrees with a given continuous function ϕ on M(∞). For p = 2, the Dirichlet
problem at infinity for harmonic functions is solvable if there are suitable lower and
upper bounds for the sectional curvature [Anderson 1983; Anderson and Schoen
1985; Choi 1984; Hsu 2003; Sullivan 1983]. Ancona [1994] constructed an example
showing that the Dirichlet problem is unsolvable if only a negative constant upper
bound is imposed. For p ∈ (1,∞), the Dirichlet problem at infinity is solvable
under similar curvature assumptions like those in the case p = 2; in particular, it is
solvable if the sectional curvature is bounded by

(1-2) −r2α−4−ε
≤ K ≤−α(α−1)

r2

near M(∞) where ε > 0 and α > 1, where r is the distance to a fixed point, and
for p ∈ (1, 1+ (n− 1)α) [Holopainen 2002; Holopainen and Vähäkangas 2007;
Pansu 1989].

Our first result is to show the unsolvability of the Dirichlet problem at infinity
on certain Cartan–Hadamard manifolds constructed from shrinking gradient Ricci
solitons, for a certain range of p > n. In particular, the unsolvability holds for
the shrinking Gaussian soliton (Rn, dx2, |x |2/4) for every p > n. It is interesting
to observe that the sectional curvature of the complete negatively curved metric
e|x |

2/(2(p−n))dx2 is not bounded above by −α(α− 1)/r2, for any constant α > 1, at
certain sections for sufficiently large r (see remark on page 319). This indicates
the upper bound in (1-2) is sharp in some sense for the solvability of the Dirichlet
problem at infinity.

Theorem 1.1. Suppose that (M, g, f ) is a simply connected n-dimensional com-
plete noncompact shrinking gradient Ricci soliton whose sectional curvatures are
bounded above by a constant K0 with 0< K0 < 1/(2(n− 1)). Then the Dirichlet
problem at infinity for the p-Laplace equation on (M, e2 f/(p−n)g) is unsolvable for
any nonconstant continuous boundary value ϕ and n < p < 1

K0
+ 2− n.

The proof relies on a Liouville type property (Proposition 2.1) for positive
solutions to the p-Laplace equation on (M, e−2 f/(n−p)g) for every p > 1, where
Cao and Zhou’s [2010] estimates on f and on the volume growth for gradient
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shrinking Ricci solitons are crucial as they imply that e− f is integrable on (M, g).
The advantage for considering the range p > n is that, under the conformal change
of metric, it yields a complete metric g̃ and it guarantees the negativity of the
curvature of g̃ under the curvature assumption K ≤ K0, while one does not have
such flexibility for p = 2.

However, the integration argument in the proof of Proposition 2.1 is no longer
valid for steady gradient Ricci solitons due to different behavior of f (typically
f tends to −∞ along a sequence of points xk that go to infinity [Munteanu and
Sesum 2013; Wu 2013]). Alternatively, a powerful way to prove Liouville type
theorems for positive harmonic functions on complete manifolds with nonnegative
Ricci curvature is via Yau’s gradient estimate [1975]. The p-harmonic version of
Yau’s estimate is established by Wang and Zhang [2011] (see [Sung and Wang
2014] for a sharp form of the estimate). For a positive p-harmonic function u in the
conformally changed metric g̃ = e−2 f/(n−p)g, we first derive a maximum principle
for |∇ log u| for steady (or shrinking) gradient Ricci solitons, via a Bochner type
formula. However, the required assumption on Ricci curvature for the gradient
estimates cannot hold globally for steady gradient Ricci solitons if dim M > 2
because it would imply that the scalar curvature of g possesses a positive constant
lower bound. But this is impossible as shown in [Munteanu and Sesum 2013; Wu
2013]. In dimension 2, we can combine the maximum principle (Proposition 3.3)
and the gradient estimate to prove a Liouville type result on the 2-plane with a
positively curved incomplete metric.

Theorem 1.2. Let (R2, g, f ) be Hamilton’s cigar soliton. Then there does not exist
any nonconstant positive p-harmonic function on (R2, g̃) for p ≥ 4.

Harmonic functions on the complete gradient Ricci solitons have been studied
by Munteanu and Sesum [2013] and Munteanu and Wang [2012] with applications
to the geometry and topology of the solitons. Moser [2007] observed an interesting
connection between the inverse mean curvature flow formulated as level sets in Rn

and 1-harmonic functions. Kotschwar and Ni [2009] generalize this to Riemannian
ambient manifolds. There is also recent work on gradient estimates for weighted
p-harmonic functions and the first p-eigenfunctions [Dung and Dat 2015].

2. The Dirichlet problem at infinity

In this section, the triple (M, g, f ) is assumed to be a complete noncompact
shrinking gradient Ricci soliton. We first establish the following Liouville property
for positive p-harmonic functions for p> 1 with no additional curvature assumption.

An n-dimensional Riemannian manifold (M, g) is a gradient Ricci soliton if

(2-1) Ric+∇∇ f + εg = 0
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for some smooth function f and ε =−1
2 , 0, 1

2 . Corresponding to the three values
of ε, the gradient Ricci soliton (M, g, f ) is shrinking, steady, or expanding [Chow
et al. 2006; Hamilton 1995].

Proposition 2.1. Let (M, g, f ) be a complete noncompact gradient shrinking
Ricci soliton. Then there is no nonconstant positive p-harmonic function on
(M, e−2 f/(n−p)g) for p > 1.

Proof. Since u is a p-harmonic function on (M, g̃) where g̃ = e−2 f/(n−p)g,

(2-2) divg̃
(
|∇̃w|

p−2
g̃ ∇̃w

)
= |∇̃w|

p
g̃

holds for w =−(p− 1) log u. For any smooth cut-off function φ ∈ C∞0 (M), in the
complete metric g, we require

φ = 1 on Bx0(ρ, g),
φ = 0 on M \ Bx0(2ρ, g),
0≤ φ ≤ 1 on M ,
|∇φ|2 ≤ C/ρ2 on M .

Here Bx0(r, g) stands for the geodesic ball centered at x0 with radius r in the metric
g in M . Multiplying (2-2) by φ2, then integrating and applying Stokes’ theorem,
we have∫

M
|∇̃w|

p
g̃ φ

2 dµg̃ =−2
∫

M
φ|∇̃w|

p−2
g̃ ∇̃w∇̃φ dµg̃

≤ 2
(∫

M
φ2
|∇̃w|

p
g̃ dµg̃

)(p−1)/p(∫
M
φ2
|∇̃φ|

p
g̃ dµg̃

)1/p

by the Cauchy–Schwarz inequality (p > 1). Therefore, we have∫
M
φ2
|∇̃w|

p
g̃ dµg̃ ≤ 2p

∫
M
φ2
|∇̃φ|

p
g̃ dµg̃.

Converting back to the metric g, we are led to

(2-3)
∫

M
φ2
|∇w|pe− f dµg ≤ 2p

∫
M
φ2
|∇φ|pe− f dµg.

By Theorem 1.1 in [Cao and Zhou 2010], the potential function f for a shrinking
gradient Ricci soliton satisfies the pointwise estimate

(2-4) 1
4(r(x)− c)2 ≤ f (x)≤ 1

4(r(x)+ c)2

for x ∈ M \ Bx0(1, g), where r(x) is the distance from x to a fixed point x0 in M
and c is a positive constant.
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Therefore, by (2-3) and (2-4),∫
B(x0,ρ)

|∇w|pe−(r+c)2/4 dµg ≤

∫
M
φ2
|∇w|pe− f dµg

≤
2pCe−(ρ−c)2/4

ρ p

∫
Bx0 (2ρ,g)\Bx0 (ρ,g)

dµg

≤
2pCe−(ρ−c)2/4

ρ p ρn

where the last inequality follows from the volume growth estimate (Theorem 1.2 in
[Cao and Zhou 2010]) on shrinking gradient Ricci solitons:

Vol(Bx0(ρ, g))≤ Cρn

for sufficiently large ρ and uniform constant C . Now letting ρ→∞, we conclude
|∇w| ≡ 0 on M , so u is a constant. �

Next, we show that (M, g̃) can be turned into a negatively curved manifold under
suitable assumptions on p and the sectional curvature K of (M, g).

Proposition 2.2. Let (M, g, f ) be a simply connected n-dimensional complete
noncompact shrinking gradient Ricci soliton whose sectional curvature is bounded
above by a constant K0 with 0 < K0 < 1/(2(n− 1)). Then (M, e−2 f/(n−p)g) is a
Cartan–Hadamard manifold for n < p ≤ 1

K0
+ 2− n.

Proof. When p > n, the metric g̃ = e−2 f/(n−p)g is complete since

−
2 f (x)
n− p

=
2 f (x)
p−n

≥
(r−c)2

2(p−n)

by [Cao and Zhou 2010] and completeness of g.
We use the conventions in [Chow et al. 2006] for curvatures. The Riemann

curvature tensor is written as

R
(
∂

∂x i ,
∂

∂x j

)
∂

∂xk = Rl
i jk

∂

∂x l

Ri jkl =

〈
R
(
∂

∂x i ,
∂

∂x j

)
∂

∂xk ,
∂

∂x l

〉
and if ∂/∂x1, . . . , ∂/∂xn is orthonormal at x0 ∈ M , then the sectional curvature of
the plane Pi j spanned by ∂/∂x i , ∂/∂x j at x0 is

K (Pi j )= Ri j j i

and the Ricci curvature at x0 is

R jk =

n∑
i=1

Ri
i jk .
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Under the conformal change of metric g̃ = e2 f/(p−n)g, the sectional curvature at x0

becomes

K̃ (Pi j )=
g̃
(
R̃s

i j j
∂
∂x s ,

∂
∂x i

)
g̃i i g̃ j j − g̃2

i j
(2-5)

= e4 f/(n−p) R̃i j j i

= e4 f/(n−p)
· e2 f/(p−n)

(
Ri j j i −

fi i+ f j j

p−n
−
|∇ f |2− f 2

i − f 2
j

(p−n)2

)
= e2 f/(n−p)

(
K (Pi j )−

fi i+ f j j

p−n
−
|∇ f |2− f 2

i − f 2
j

(p−n)2

)
(see p. 27 in [Chow et al. 2006]). On the gradient shrinking Ricci soliton, we
therefore have

K̃ (Pi j )≤ e2 f/(n−p)
(

K (Pi j )+
Ri i+R j j−1

p−n

)
by using the defining equation for shrinking gradient Ricci solitons and dropping
the last term above that is nonpositive for i 6= j .

From the assumption on K0 and p > n, it follows that

K (Pi j )+
Ri i+R j j−1

p−n
= K (Pi j )+

∑
s 6=i K (Pis)+

∑
s 6= j K (Ps j )− 1

p− n

≤

(
1+ 2(n−1)

p−n

)
K0−

1
p−n

≤
1

p−n
((p+ n− 2)K0− 1).

Therefore, we conclude that the sectional curvature K̃ of (M, e2 f/(p−n)g) is non-
positive since p+ n− 2≤ 1

K0
. �

Proof of Theorem 1.1. Suppose there is a solution u to the Dirichlet problem at
infinity and u = ϕ on M(∞) for some nonconstant function ϕ ∈ C0(M(∞)). Then
u is continuous on M ∪ M(∞), hence it is bounded. Then u − infM u + 1 is a
positive solution to the p-Laplace equation on (M, g̃), therefore it must be constant
from Proposition 2.1. Thus, u is constant on M and ϕ must be constant on M(∞).
The contradiction concludes the proof. �

When Rn is viewed as a shrinking gradient Ricci soliton with f (x)= |x |2/4, we
can take K0 = 0 and obtain the following corollary.

Corollary 2.3. The Dirichlet problem at infinity for the p-Laplace equation is
unsolvable on (Rn, e|x |

2/(2(p−n))dx2) for every p > n.
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Remark. The sectional curvature of g̃ = e2|x |2/(4(p−n))dx2 can be computed from
(2-5):

K̃ (Pi j )(x)=−e−|x |
2/(2(p−n))

( 1
p−n

+
|x |2−(x i )2−(x j )2

4(p−n)2
)

where Pi j (x) is the plane spanned by {∂/∂x i , ∂/∂x j
} at x ∈ Rn . The Riemannian

distance from x to the origin is

r(x)=
∫
|x |

0
es2/(4(p−n)) ds.

If we take x = (0, . . . , 0, x i , 0, . . . , 0), then |x |2− (x i )2− (x j )2 = 0 and

lim
|x |→∞

−K̃ (Pi j (x))r2(x)= lim
|x |→∞

(∫
|x |

0 es2/(4(p−n)) ds
)2

(p− n)e|x |2/(2(p−n))

=
1

p−n

(
lim
|x |→∞

2(p−n)
|x |

)2
= 0

by l’Hôpital’s rule. This in particular shows that there does not exist a constant
α > 1 for which

K (x)≤−α(α−1)
r2(x)

for all sections at x for large r(x).

3. A Liouville theorem on R2

with an incomplete metric with positive curvature

In this section, we consider the p-Laplace equation weighted by a smooth func-
tion f on a manifold (M, g), which is equivalent to the p-Laplace equation on
(M, e−2 f/(n−p)g), and derive a Bochner formula for its solutions. Specialized to the
shrinking or steady gradient Ricci solitons, the Bochner formula yields a maximum
principle, and this is applied to Hamilton’s cigar soliton.

A Bochner type formula for the weighted p-Laplace equation. Let g be a Rie-
mannian metric on an n-dimensional manifold M , and let f be a smooth real-
valued function on M . Consider the equation

(3-1) div(|∇u|p−2
∇u)− |∇u|p−2

〈∇ f,∇u〉 = 0

on M . This equation has a variational structure; in fact, it is the Euler–Lagrange
equation of the weighted p-energy functional

E p, f (u)=
∫

M
|∇u|pe− f dµg.

We call (3-1) the f -weighted p-Laplacian equation on (M, g).
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Proposition 3.1. Under a conformal change g̃ = e−2 f/(n−p)g, u is a solution to
(3-1) on (M, g) if and only if u is a solution to the p-Laplace equation (1-1)
on (M, g̃).

Proof. We write ∇ for ∇g and ∇̃ for ∇g̃. For any ϕ ∈ C∞0 (M),∫
M
〈∇̃ϕ, |∇̃u|p−2

g̃ ∇̃u〉g̃ dµg̃

=

∫
M
|∇̃u|p−2

g̃ 〈∇̃ϕ, ∇̃u〉g̃ dµg̃

=

∫
M

(
e(p−2) f/(n−p)

|∇u|p−2
g

)
e2 f/(n−p)

〈∇ϕ,∇u〉g e−n f/(n−p) dµg

=

∫
M
〈∇ϕ, |∇u|p−2

g ∇u〉g e− f dµg.

This shows that any weak solution to (3-1) on (M, g) is also a weak solution to
(1-1) on (M, g̃) and vice versa. �

Suppose u(x, t) is a positive solution of (3-1). Define

w =−(p− 1) log u,

h = |∇w|2.

We consider the symmetric n× n matrix

A = id+ (p− 2)∇w⊗∇w
h

.

Note that A is well defined whenever h > 0 and is positive definite for p > 1.
Arising from the linearized operator of the nonlinear p-harmonic equations, this
matrix was first introduced in [Moser 2007] and was used in [Kotschwar and Ni
2009; Wang and Zhang 2011] to study positive p-harmonic functions.

For the f -weighted p-Laplace equation (3-1), the linearized operator is

L(ψ)= div
(
h

p
2−1 A(∇ψ)

)
− h

p
2−1
〈∇ f, A(∇ψ)〉− ph

p
2−1
〈∇w,∇ψ〉

for smooth functions ψ on M , and the following Bochner type formula holds.

Proposition 3.2. Let u be a positive smooth solution to (3-1) in an open subset U
in M and assume h > 0 on U. Then

(3-2) div
(
h

p
2−1 A(∇h)

)
− h

p
2−1
〈∇ f, A(∇h)〉− ph

p
2−1
〈∇w,∇h〉

=
( p

2−1
)
|∇h|2h

p
2−2
+2h

p
2−1(
|∇∇w|2+Ric(∇w,∇w)+∇∇ f (∇w,∇w)

)
.
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Proof. Using (3-1), we first observe

(3-3) div(|∇w|p−2
∇w)− |∇w|p

=−(p− 1)p−1 div
(
|∇u|p−2

∇u
u p−1

)
− (p− 1)p |∇u|p

u p

=−(p− 1)p−1 |∇u|p−2
〈∇ f,∇u〉

u p−1

= |∇w|p−2
〈∇ f,∇w〉.

Then we calculate directly

div
(
h

p
2−1 A(∇h)

)
=
( p

2 − 1
)
h

p
2−2
|∇h|2+ h

p
2−11h+

( p
2 − 2

)
(p− 2)h

p
2−3
〈∇w,∇h〉2

+ (p− 2)h
p
2−2
〈∇w,∇h〉1w+ (p− 2)h

p
2−2
〈∇〈∇w,∇h〉,∇w〉.

Using the standard Bochner type formula for h = |∇w|2, namely

1h = 2|∇∇w|2+ 2 Ric(∇w,∇w)+ 2〈∇1w,∇w〉,

we have

(3-4) div
(
h

p
2−1 A(∇h)

)
=
( p

2 − 1
)
h

p
2−2
|∇h|2+ 2h

p
2−1(
|∇∇w|2+Ric(∇w,∇w)+〈∇1w,∇w〉

)
+
( p

2 − 2
)
(p− 2)h

p
2−3
〈∇w,∇h〉2+ (p− 2)h

p
2−2
〈∇w,∇h〉1w

+ (p− 2)h
p
2−2
〈∇〈∇w,∇h〉,∇w〉.

Rewrite (3-3) by using h = |∇w|2 as

(3-5) h
p
2−11w+

( p
2 − 1

)
h

p
2−2
〈∇h,∇w〉− h

p
2 = h

p
2−1
〈∇ f,∇w〉.

Taking the gradient of both sides of (3-5) and then taking the product with ∇w, we
are led to

(3-6)
( p

2 − 1
)( p

2 − 2
)
h

p
2−3
〈∇w,∇h〉2+

( p
2 − 1

)
h

p
2−2
〈∇〈∇w,∇h〉,∇w〉

+ h
p
2−1
〈∇1w,∇w〉+

( p
2 − 1

)
h

p
2−2
〈∇h,∇w〉1w− p

2 h
p
2−1
〈∇h,∇w〉

=
( p

2 − 1
)
h

p
2−2
〈∇ f,∇w〉〈∇h,∇w〉+ h

p
2−1
〈∇〈∇ f,∇w〉,∇w〉.

Adding (3-4) and twice (3-6) together and then simplifying, we have

(3-7) div
(
h

p
2−1 A(∇h)

)
− ph

p
2−1
〈∇h,∇w〉

=
( p

2 − 1
)
h

p
2−2
|∇h|2+ 2h

p
2−1
|∇∇w|2+ 2h

p
2−1 Ric(∇w,∇w)

+ (p− 2)h
p
2−2
〈∇ f,∇w〉〈∇h,∇w〉+ 2h

p
2−1
〈∇〈∇ f,∇w〉,∇w〉.
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We also have

(3-8) 2h
p
2−1
〈∇〈∇ f,∇w〉,∇w〉

= 2h
p
2−1(∇∇ f )(∇w,∇w)+ 2h

p
2−1(∇∇w)(∇ f,∇w)

= 2h
p
2−1(∇∇ f )(∇w,∇w)+ h

p
2−1
〈∇ f,∇|∇w|2〉

= 2h
p
2−1(∇∇ f )(∇w,∇w)+ h

p
2−1
〈∇ f,∇h〉.

Moreover,

h
p
2−1
〈∇ f, A(∇h)〉 = h

p
2−1
〈∇ f,∇h〉+ (p− 2)h

p
2−2
〈∇ f, (∇w⊗∇w)∇h〉(3-9)

= h
p
2−1
〈∇ f,∇h〉+ (p− 2)h

p
2−2
〈∇ f,∇w〉〈∇h,∇w〉.

Now, (3-7)− (3-9)+ (3-8) yields the desired result. �

A maximum principle. When the triple (M, g, f ) is either shrinking or steady,
Proposition 3.2 can be used to prove the following maximum principle.

Proposition 3.3. Let u be a positive smooth solution to (3-1) in a bounded con-
nected open subset U in M with smooth boundary ∂U , p > 1. Suppose (M, g, f )
is a shrinking or steady gradient Ricci soliton. Then |∇u|/u attains its maximum
on ∂U.

Proof. Let h = (p− 1)2|∇u|2/u2. Assume maxU h >max∂U h. Then there exists
x0 ∈U such that h(x0)=maxU h > 0. Since u ∈ C1,α and u > 0, h is continuous.
Let

V = {x ∈U : h(x)= h(x0)}.

By the continuity of h, V is a closed subset of U and V does not intersect ∂U . In
fact, h is positive and hence smooth in a neighborhood of V . There exists a point
x1 ∈ V such that for some r0 the geodesic ball Bx1(r, g)⊂U is not contained in V
for any 0< r < r0, i.e., x1 is a boundary point of V . By the continuity of h again,
there is a geodesic ball Bx1(r1, g) in U on which h is positive. Observe that

RHS of (3-2)= p−2
2 |∇h|2h

p
2−2
+ 2h

p
2−1
|∇∇w|2+ 2h

p
2−1(Ric+∇∇ f )(∇w,∇w)

≥ 2h
p
2−1(Ric+∇∇ f )(∇w,∇w)

=

{
2h

p
2−1
|∇w|2 ≥ 0 if (M, g, f ) is a shrinking soliton,

0 if (M, g, f ) is a steady soliton,

where for the first inequality, we argue as

4h|∇∇w|2+ (p− 2)|∇h|2 ≥ 4|∇w|2|∇∇w|2− |∇|∇w|2|2

= 4|∇w|2(|∇∇w|2− |∇|∇w||2)

≥ 0
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by Kato’s inequality and p ≥ 1. Then it follows that the linear differential operator
L satisfies L(h) ≥ 0 on U . Next, since A is positive definite and symmetric on
Bx1(r1, g), so is h

p
2−1 A; therefore, L is uniformly elliptic on Bx1(r1, g). By Hopf’s

strong maximum principle (see Theorem 3.5 in [Gilbarg and Trudinger 1998]), h
must be a constant on Bx1(r1, g) since it attains its maximum at the interior point x1.
But this contradicts the maximality of V as Bx1(r1, g) contains points not in V . �

Gradient estimates. Let us first recall the following gradient estimate:

Theorem 3.4 [Wang and Zhang 2011]. Let (Mn, g) be a complete Riemannian
manifold with Ric ≥ −(n− 1)κ for some positive constant κ . Assume that v is a
positive p-harmonic function on the geodesic ball Bx0(R, g)⊂ M. Then

|∇v|

v
≤ C(p, n)

( 1
R
+
√
κ
)

on Bx0

( R
2 , g

)
for some constant C(p, n).

We now prove a gradient estimate for the f -weighted p-Laplacian equation.

Proposition 3.5. Let (Mn, g, f ) be a complete gradient Ricci soliton with

(3-10)
(2− p

n− p

)
Ric≥−(n− 1)κe−2 f/(n−p)g

−
2εg

n− p
−

Sg
n− p

− (d f ⊗ d f − |∇ f |2g) n−2
(n− p)2

,

where S is the scalar curvature of (M, g). Assume that u is a positive solution of
equation (3-1). Then there exists a constant C(p, n) such that

|∇u(x)|
u(x)

≤ C(p, n)
( 1

R
+
√
κ
)

e− f (x)/(n−p)

for x ∈ Bx0

( R
2 , e−2 f/(n−p)g

)
.

Proof. For a smooth function f , let∇ f be the gradient,1 f the Laplacian, and∇∇ f
the Hessian with respect to g. For the conformal change of metrics g̃= e−2 f/(n−p)g,
the Ricci tensors of g̃ and g are related by

(3-11) R̃ic= Ric−(n− 2)
(
−
∇∇ f
n− p

−
d f ⊗d f
(n− p)2

)
+

(
−
1 f

n− p
−

n−2
(n− p)2

|∇ f |2
)

g

(see [Anderson and Schoen 1985, p. 59]).
From the gradient Ricci soliton equation (2-1), the scalar curvature S of M

satisfies the two equations

S+1 f − nε = 0,(3-12)

S+ |∇ f |2+ ε f = 0(3-13)

(see [Besse 1987]).
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Putting (2-1) and (3-12) into (3-11), we have

R̃ic= Ric+(n− 2)
(
−Ric−εg

n− p
+

d f ⊗d f
(n− p)2

)
+

( S+nε
n− p

−
n−2
(n− p)2

|∇ f |2
)

g

=
2− p
n− p

Ric+ 2εg
n− p

+
Sg

n− p
+ (d f ⊗ d f − |∇ f |2g) n−2

(n− p)2
.

Therefore, the curvature assumption in Proposition 3.5 implies

R̃ic≥−(n− 1)κ.

By Proposition 3.1, we know that u is also a positive solution to (1-1) for the
metric g̃, hence by Theorem 3.4 we have

|∇u|g̃
u
≤ C(p, n)

( 1
R
+
√
κ
)

on Bx0

( R
2 , g̃

)
. This is equivalent to

|∇u(x)|
u(x)

≤ C(p, n)
( 1

R
+
√
κ
)

e− f (x)/(n−p)

for x ∈ Bx0

( R
2 , g̃

)
. �

A Liouville type theorem for the p-Laplace equation in dimension 2. For a steady
gradient Ricci soliton, the condition (3-10) on the Ricci curvature in Proposition 3.5
cannot hold globally when n ≥ 3 because it would imply, by taking the trace, that
the scalar curvature is bounded below by a positive constant, which is impossible.
However, the condition (3-10) is satisfied when n = 2 for p ≥ 4 or 1 < p < 2
because

Ric= 1
2 Sg ≥ 1

p−2 Sg,

since S ≥ 0 for any steady gradient Ricci soliton [Chen 2009] and κ = 0.
Note that Hamilton’s cigar soliton is the unique 2-dimensional nonflat complete

noncompact steady gradient Ricci soliton. The cigar soliton is R2 equipped with
the complete metric

g = dx2
+dy2

1+x2+y2

(see [Chow et al. 2006]) and the potential function

f (x, y)=− log(1+ x2
+ y2).

The conformally altered metric is

g̃ = e2 log(1+x2
+y2)/(2−p)g = (1+ x2

+ y2)p/(2−p)(dx2
+ dy2).
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In particular, g̃ is complete if 1< p < 2 and incomplete if p > 2. However, to use
the gradient estimate in proving a Liouville type result, we will need p ≥ 4. It is
straightforward to compute the Gauss curvature of g̃:

K̃ =−1
2
(1+ r2)p/(p−2)

(
∂2

rr +
1
r
∂r

)
log(1+ r2)−p/(p−2)

=
2p

p−2
(1+ r2)(p/(p−2))−2

=
2p

p−2
(1+ r2)−(p−4)/(p−2)

which is positive and tends to 0 as r→∞ if p > 4. When p = 4, the incomplete
metric (1+ x2

+ y2)−2(dx2
+ dy2) has constant curvature K̃ = 4.

Theorem 3.6. Let (R2, g, f ) be Hamilton’s cigar soliton. Then there does not exist
any nonconstant positive p-harmonic function on (R2, g̃) for p ≥ 4.

Proof. Let u be a positive solution to (3-1). For any point x0 ∈ M , the maximum
principle (Proposition 3.3) asserts

|∇u(x0)|

u(x0)
≤ max

x∈∂B0(R,g)

|∇u(x)|
u(x)

=
|∇u(xR)|

u(xR)

for some xR ∈∂B0(R, g)where x0∈ B0(R, g) and r(x0, 0)< R. From the discussion
above, when n= 2 and p≥ 4, the Ricci curvature condition (3-10) in Proposition 3.5
is satisfied. The diameter of (R2, g̃) is

2R0 = 2
∫
∞

0

dr
(1+r2)p/(2(p−2)) <∞.

It is clear that r(xR, 0)→∞ if and only if r̃(xR, 0)→ R0, where r̃ denotes the
distance function for the metric g̃. Let

rR =

∫
∞

R

dr
(1+r2)p/(2(p−2)) .

It follows from Proposition 3.5, applied on the ball BxR (rR, g̃), that

|∇u(xR)|

u(xR)
≤ C(n, p)

(rxR

2

)−1
e−2 log(1+|xR |

2)/(p−2)

= 2C(n, p)
(∫

∞

R

dr
(1+r2)p/(2(p−2)) (1+ R2)2/(p−2)

)−1

≤ 2C(n, p)
(
(1+ R2)2/(p−2)

∫
∞

R

dr
r p/(p−2)

)−1

= 2C(n, p)
( p−2

2
(1+ R2)2/(p−2)R−2/(p−2)

)−1
.
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Since p > 2, letting R→ 0 we conclude |∇u(x0)| = 0, hence u is constant as x0 is
arbitrary. �
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