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ON THE UNIFORM SQUEEZING PROPERTY
OF BOUNDED CONVEX DOMAINS IN Cn

KANG-TAE KIM AND LIYOU ZHANG

We prove that the bounded convex domains and the C2-smoothly bounded
strongly pseudoconvex domains in Cn admit the uniform squeezing prop-
erty. Moreover, we prove by the scaling method that the squeezing function
approaches 1 near the strongly pseudoconvex boundary points.

1. Introduction

The notion of holomorphic homogeneous regular, or equivalently, uniformly squeez-
ing for complex manifolds has been introduced in [Liu et al. 2004; 2005] and
[Yeung 2009], respectively. This concept is essential for the estimation of several
invariant metrics. See the above cited papers for details.

Let� be a complex manifold of dimension n. The squeezing function σ� :�→R

of � is defined in [Deng et al. 2012] as follows. For each p ∈�, let

F(p, �) := { f :�→ Bn
: f is 1-1 holomorphic, f (p)= 0},

where

• Bn(p; r)= {z ∈ Cn
: ‖z− p‖< r}, and

• Bn
= Bn(0; 1)= Bn((0, . . . , 0); 1).

Then define

σ�(p)= sup{r : Bn(0; r)⊂ f (�) for some f ∈ F(p, �)}.

Furthermore, the squeezing constant σ̂� for � is defined by

σ̂� := inf
p∈�

σ�(p).

Definition ([Liu et al. 2004; 2005; Yeung 2009]). A complex manifold � is called
holomorphic homogeneous regular (HHR), or equivalently uniformly squeezing, if
σ̂� > 0.
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Notice that the HHR property is preserved by biholomorphisms. The squeezing
function and squeezing constants are also biholomorphic invariants [Deng et al.
2012].

These concepts have been developed for the study of completeness and other
geometric properties such as the metric equivalence of the invariant metrics, in-
cluding the Carathéodory, Kobayashi–Royden, Teichmüller, Bergman, and Kähler–
Einstein metrics. It is obvious that the examples of HHR manifolds include bounded
homogeneous domains. In case the manifold is biholomorphic to a bounded domain
and the holomorphic automorphism orbits accumulate at every boundary point,
such as in the case of the Bers embedding of the Teichmüller space, again the HHR
property holds. A somewhat less obvious example are the bounded strongly convex
domains (as the majority of them do not possess any holomorphic automorphisms
except the identity map), proved by S.-K. Yeung [2009]. But there, some of the
most standard examples, such as the bounded convex domains and the bounded
strongly pseudoconvex domains, were left untouched.

Indeed, the starting point of this article is to show:

Theorem 1.1. All bounded convex domains in Cn (n ≥ 1) are HHR.

Note that we do not assume any additional conditions such as boundary smooth-
ness or “finite type” in the sense of D’Angelo in the above theorem. Nevertheless,
the concept of squeezing function σ� defined above plays an important role, and
moreover, it appeals to us that further investigations of this function would be
worthwhile. One immediate observation is that if σ�(p)= 1 for some p ∈�, then
� is biholomorphic to the unit open ball. In light of studies on the asymptotic
behavior of several invariant metrics of strongly pseudoconvex domains, perhaps it
is natural to ask, for a bounded strongly pseudoconvex domain � in Cn , whether
lim�3q→p σ�(q)= 1 holds for every boundary point p ∈ ∂�.

It was proved in [Deng et al. 2015] that the HHR property holds for all bounded
strongly pseudoconvex domains, using an improvement of the method in [Fridman
and Ma 1995]. In the present paper, by using a different approach — the scaling
method — we will prove:

Theorem 1.2. If � is a bounded domain in Cn with a C2 strongly convex boundary,
then lim�3q→p σ�(q)= 1 for every p ∈ ∂�.

Actually, we have a more general conclusion in Theorem 3.1, which implies
Theorem 1.2. The question posed above follows quickly from Theorem 3.1 and the
following remarkable theorem of Diederich, Fornaess, and Wold [2014].

Theorem 1.3 [Diederich et al. 2014, Theorem 1.1]. Let � ⊂ Cn be a bounded
domain which is locally convexifiable and has finite type 2k near a point p ∈ ∂�.
Assume further that ∂� is C∞-smooth near p, and that� has a Stein neighborhood
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basis. Then there exists a holomorphic embedding f :�→ Bn
k , where

Bn
k = {z ∈ C2

: |zn|
2
+ |z′|2k < 1},

such that f (p)= (0, . . . , 0, 1) and {z ∈� : f (z) ∈ ∂Bn
k } = {p}.

In particular, if ∂� is strongly pseudoconvex near p (i.e., k = 1), it is enough to
assume that ∂� is C2-smooth near p.

We mention here that the proof of Theorem 1.2 is of interest in its own right, and
also clarifies and simplifies some previously known theorems. These are mentioned
in the final section.

2. Bounded convex domains are HHR manifolds

The aim of this section is to establish Theorem 1.1 stated above. Not only does this
theorem cover the case left untreated in [Yeung 2009], but our method is different
(see also [Deng et al. 2012] on this matter). Our method uses a version of the
“scaling method in several complex variables” initiated by S. Pinchuk [1991]. In fact,
we use the version presented in [Kim 1992], modified for the purpose of studying
the asymptotic boundary behavior of holomorphic invariants.

Proof of Theorem 1.1. We proceed in 5 steps.

Step 1. Setup. Let � be a bounded convex domain in Cn . Suppose that � is not
HHR. Then there exists a sequence {q j } in � converging to a boundary point, say
q ∈ ∂�, such that

lim
j→∞

σ�(q j )= 0.

Needless to say, it suffices to show that such a sequence cannot exist.

Step 2. The j-th orthonormal frame. Let 〈 , 〉 represent the standard Hermitian
inner product of Cn , and let ‖v‖ =

√

〈v, v〉. For every q ∈ Cn and complex linear
subspace V of Cn , denote by

BV (q, r)= {p ∈ Cn
: p− q ∈ V and ‖p− q‖< r}.

Now let q ∈� and define the positive number λ(q, V ) by

λ(q, V )=max{r > 0 : BV (q, r)⊂�}.

This number is finite for each (q, V ), whenever dim V > 0, since � is Kobayashi
hyperbolic.

Fix the index j momentarily. Then we choose an orthonormal basis for Cn , with
respect to the standard Hermitian inner product 〈 , 〉. First consider

λ1
j := λ(q j ,Cn).
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There exists q1∗
j ∈ ∂� such that ‖q1∗

j − q j‖ = λ
1
j . Let

e1
j =

q1∗
j − q j

‖q1∗
j − q j‖

.

Then consider the complex span SpanC{e
1
j }, and let V 1 be its orthogonal complement

in Cn . Take
λ2

j := λ(q j , V 1)

and q2∗
j ∈ ∂� such that q2∗

j − q j ∈ V 1 and ‖q2∗
j − q j‖ = λ

2
j . Then let

e2
j :=

q2∗
j − q j

‖q2∗
j − q j‖

.

With e1
j , e2

j , . . . , e`∗j and λ1
j , λ

2
j , . . . , λ

`
j chosen, the next elements e`+1∗

j and
λ`+1

j are selected as follows. Denote by V ` the complex orthogonal complement of
SpanC{e

1
j , e2

j , . . . , e`j }. Then

λ`+1
j := λ(q j , V `)

and q`+1∗
j ∈ ∂� are such that q`+1∗

j − q j ∈ V ` and ‖q`+1∗
j − q j‖ = λ

`+1
j . Let

e`+1
j :=

q`+1∗
j − q j

‖q`+1∗
j − q j‖

.

By induction, this process yields an orthonormal set e1
j , . . . , en

j for Cn and the
positive numbers λ1

j , . . . , λ
n
j .

Step 3. Stretching complex linear maps. Let ê1, . . . , ên denote the standard or-
thonormal basis for Cn , i.e.,

ê1
= (1, 0, . . . , 0), ê2

= (0, 1, 0, . . . , 0), . . . , ên
= (0, . . . , 0, 1).

Define the stretching linear map L j : C
n
→ Cn by

L j (z)=
n∑

k=1

〈z− q j , ek
j 〉

λk
j

êk

for every z ∈ Cn . Note that for each j , L j maps � biholomorphically onto its
image.

Step 4. Supporting hyperplanes. Notice that

L j (q j )= 0= (0, . . . , 0), L j (q1∗
j )= ê1, . . . , L j (qn∗

j )= ên.

We shall consider the supporting hyperplanes, say 5k
j for k = 1, . . . , n, of L j (�)

at points L j (qk∗
j ) for k = 1, . . . , n, respectively.



THE UNIFORM SQUEEZING PROPERTY OF BOUNDED CONVEX DOMAINS IN Cn 345

Substep 4.1. The supporting hyperplane 51
j . As noted above, L j (q1∗

j )= ê1. Due
to the choice of q1∗

j , the supporting hyperplane of � at q1∗
j must also support the

sphere tangent to the boundary ∂�. Consequently the supporting hyperplane 51
j of

L j (�) must support a smooth surface (an ellipsoid) tangent to L j (∂�) at ê1. Thus,
the equation for this hyperplane 51

j is

Re(z1− 1)= 0

(independently of j , being perpendicular to ê1). We also note that

L j (�)⊂ {(z1, . . . , zn) ∈ Cn
: Re z1 < 1}.

Substep 4.2. The rest of the supporting hyperplanes 5k
j , for k ≥ 2. First consider

the case k = 2. Then the supporting hyperplane 52
j passes through L j (q2∗

j )= ê2.
Since the restriction of � to V 1 contains the sphere in V 1 tangent to the restriction
of ∂� at the point ê2, the supporting hyperplane 52

j restricted to L j (V 1) takes the
equation {(z2, . . . , zn) ∈ Cn

: Re(z2− 1)= 0}. Hence

52
j = {(z1, . . . , zn) ∈ Cn

: Re(a2,1
j z1+ a2,2

j (z2− 1))= 0}

for some
(
a2,1

j , a2,1
j

)
∈C2 with

∣∣a2,1
j

∣∣2+ ∣∣a2,2
j

∣∣2= 1 and a2,2
j > 0. We also have that

L j (�)⊂ {(z1, . . . , zn) ∈ Cn
: Re(a2,1

j z1+ a2,2
j (z2− 1)) < 0}.

For k ∈ {3, . . . , n}, one deduces inductively that the supporting hyperplane 5k
j

passes through the point êk , and that

5k
j = {(z1, . . . , zn) ∈ Cn

: Re(ak,1
j z1+ · · ·+ ak,k−1

j zk−1+ ak,k
j (zk − 1))= 0},

with ak,k
j > 0 and

∑k
`=1

∣∣ak,`
j

∣∣2 = 1. Also,

L j (�)⊂ {(z1, . . . , zn) ∈ Cn
: Re(ak,1

j z1+ · · ·+ ak,k−1
j zk−1+ ak,k

j (zk − 1)) < 0}.

Substep 4.3. Polygonal envelopes. We add this small substep for convenience. From
the discussion so far in this step, we have the j-th polygonal envelope (of L j (�))

6 j := {(z1, . . . , zn) ∈ Cn
:Re z1 < 1,

Re(a2,1
j z1+ a2,2

j (z2− 1)) < 0,

...

Re(an,1
j z1+ · · ·+ an,n−1

j zn−1+ an,n
j (zn − 1)) < 0}.

Step 5. Bounded realization. Notice that, for every k ∈ {1, . . . , n}, the disc

Dk
j := {z = (z1, . . . , zn) ∈ Cn

: ‖z− q j‖< λ
k
j and ∀` 6= k, 〈z− q j , e`j 〉 = 0}
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is contained in�. Hence, every L j (�) contains the discs Dk
:={ζ êk

:ζ ∈C, |ζ |<1}
for every k = 1, . . . , n. Since � is convex and L j is linear, L j (�) is also convex.
Therefore, the “unit acorn”

A := {(z1, . . . , zn) ∈ Cn
: |z1| + · · · + |zn|< 1}

is contained in L j (�). This restricts the unit normal vectors

nk
j := (a

k,1
j , . . . , ak,k

j , 0, . . . , 0) ∈ Cn

for every k = 2, . . . , n. Namely, there is a positive constant δ > 0 independent of j
and k such that ak,k

j ≥ δ for every j, k.
Now taking a subsequence (of q j ), we may assume that the sequence of unit

vectors {nk
j }
∞

j=1 converges for every k ∈ {2, . . . , n}. Let us write

lim
j→∞

nk
j = nk

= (ak,1, . . . , ak,k, 0, . . . , 0)

for each k = 1, 2, . . . , n.
Consider the maps

B j (z1, . . . , zn)= (ζ1, . . . , ζn)

defined by

ζ1 = z1, ζ2 = a2,1
j z1+ a2,2

j z2, . . . , ζn = an,1
j z1+ · · ·+ an,n

j zn.

Then it follows that

B j ◦ L j (�)⊂ B j (6 j )

= {(ζ1, . . . , ζn) ∈ Cn
: Re ζ1 < 1,Re ζ2 < a2,2

j , . . . ,Re ζn < an,n
j }.

Now, for each j , we consider the Cayley transformation

8 j (z1, . . . , zn)=
( z1

2− z1
,

z2

2a2,2
j − z2

, . . . ,
zn

2an,n
j − zn

)
.

Then 8 j ◦ B j (6 j )⊂ Dn , where Dn denotes the unit polydisc in Cn centered at the
origin. Also, there exists a positive constant δ′ ∈ (0, δ) such that 8 j ◦ B j (6 j )⊂ Dn

contains the ball of radius δ′ centered at the origin 0.
Since 8 j ◦ B j ◦ L j (q j ) = (0, . . . , 0) for every j , we now conclude that the

squeezing function satisfies

σ�(q j )≥
δ′
√

n
.

This estimate, which holds for every sequence q j approaching the boundary, yields
the desired contradiction at last. Thus the proof is complete. �
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3. Boundary behavior of the squeezing function on strongly convex domains

Definition. Let � be a domain in Cn . A boundary point p ∈ ∂� is said to be
spherically extreme if

(1) the boundary ∂� is C2-smooth in an open neighborhood of p, and

(2) there exists a ball Bn(c(p); R) in Cn of some radius R, centered at some point
c(p) such that �⊂ Bn(c(p); R) and p ∈ ∂�∩ ∂Bn(c(p); R).

The main goal of this section is to establish the following theorem.

Theorem 3.1. If a domain � in Cn admits a spherically extreme boundary point p
in a neighborhood of which the boundary ∂� is C2-smooth, then

lim
�3q→p

σ�(q)= 1.

Since every boundary point of a C2 strongly convex bounded domain is spheri-
cally extreme, this theorem implies Theorem 1.2. The rest of this section is devoted
to the proof of Theorem 3.1.

Proof. The proof proceeds in seven steps.

Step 1. Sphere envelopes. Let � be a bounded domain in Cn with a boundary point
p ∈ ∂� such that

(i) ∂�∩Bn(p; r0) is C2-smooth for some r0 > 0, and

(ii) p is a spherically extreme boundary point of �.

Then there exist positive constants r1, r2, and R with r0 > r1 > r2 such that every
q ∈ �∩Bn(p; r2) admits points b(q) ∈ ∂�∩Bn(p; r1) and c(q) ∈ Cn satisfying
the conditions

(iii) ‖q − b(q)‖< ‖q − z‖ for any z ∈ ∂�−{b(q)}, and

(iv) ‖c(q)− b(q)‖ = R and �⊂ Bn(c(q); R).

p

b(q)
q

�

c(q)
c(p)

Figure 1. Sphere envelopes.
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See Figure 1. Notice that (iii) says that b(q) is the unique boundary point that
is the closest to q, and that the constant R in (iv) is independent of the choice
of q ∈ Bn(p; r2).

Step 2. Centering. In the following we shall use the familiar notation

(3-1)
z = (z1, . . . , zn), z′ = (z2, . . . , zn),

u = Re z1, v = Im z1.

For each q ∈�∩Bn(p; r2), choose a unitary transform Uq of Cn such that the map
Aq(z) :=Uq(z− b(q)), depicted in Figure 2, satisfies the following conditions:

(3-2) Aq(q)= (λq , 0, . . . , 0)

for some λq > 0, and

(3-3) Aq(�)⊂ Bn((R, 0, . . . , 0); R)= {z ∈ Cn
: |z1− R|2+‖z′‖2 < R2

}.

Then there exists a positive constant r3 < r2 such that

(3-4) z ∈ Aq(�)∩Bn(0; r3)

⇐⇒‖z‖< r3 and 2u > Hb(q)(z′)+Kb(q)(v, z′)+Rb(q)(v, z′),

where

• Hb(q) is a quadratic positive-definite Hermitian form such that there exists a
constant c0 > 0, independent of q, satisfying

(3-5) Hb(q)(z′)≥ c0‖z′‖2,

and

• there exists a constant C > 0, independent of q ∈ Bn(p; r3)∩�, such that

(3-6) |Kb(q)(v, z′)| ≤ C(|v|2+ |v|‖z′‖)

b(q)

p
q

�

Aq

Aq(b(q))=0

Aq(q)=(λq ,0′)

Aq(�)

Figure 2. The centering process.
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whenever z ∈ Bn(0; r3). Furthermore, we have

|Rb(q)(v, z′)| = o(|v|2+‖z′‖2).

In particular, the choice of r3 can allow us the estimate

|Rb(q)(v, z′)| ≤ c0
2
(|v|2+‖z′‖2).

Notice that
lim

�3q→p
b(q)= p, lim

�3q→p
Hb(q)(z′)= Hp(z′),

and
lim

�3q→p
Aq = I (the identity map).

The latter limit and an inductive construction yield that for each integer m > 2 there
exists a strictly increasing integer-valued function k(m) such that

(3-7) Bn(0; r3/(2k(m))
)
⊂ Aq

(
Bn(p; r3/k(m))

)
⊂ Bn(0; r3/m)

whenever q ∈ Bn
(

p; r3/(2k(m))
)
.

Step 3. The Cayley transform. The Cayley transform considered here is the map

(3-8) κ(z) :=
(1−z1

1+z1
,

√
2z2

1+z1
, . . . ,

√
2zn

1+z1

)
,

well-defined except at points of Z = {z ∈ Cn
: z1 =−1}. Notice that this transform

maps the open unit ball Bn(0; 1) biholomorphically onto the Siegel half-space

(3-9) S0 := {z ∈ Cn
: 2 Re z1 > ‖z′‖2}.

Moreover, κ ◦ κ = 1 and consequently, κ(S0)= Bn(0; 1). Notice also that, for
1= (1, 0, . . .) and−1= (−1, 0, . . .), we have κ(1)= (0, . . . , 0), κ((0, . . . , 0))= 1,
κ(−1)=∞, and κ(∞)=−1.

Step 4. Stretching. Let q ∈ �∩Bn
(

p; r3/(2k(m))
)
. If we let m tend to infinity,

then of course Aq(q)= (λq , 0, . . . , 0) approaches Aq(b(q))= (0, . . . , 0), and so
λq approaches zero. For simplicity, we write λ= λq , suppressing the q but keeping
in mind that λ is still dependent upon q . Note that

(3-10) Aq(B
n(c(q); R))= {z ∈ Cn

: 2R ·Re z1 > ‖z‖2}.

Define the stretching map 3λ : Cn
→ Cn , first introduced in [Pinchuk 1991], by

(3-11) 3λ(z) :=
( z1
λ
,

z2
√
λ
, . . . ,

zn
√
λ

)
.
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Recall (3-6). The stretching map transforms Aq(�)∩Bn(0; r3/3) to the domain
3λ
(

Aq(�)∩Bn(0; r3/3)
)

so that

(3-12) z ∈3λ ◦ Aq(�)∩Bn
(

0; r3
√
λk(3)

)
⇐⇒‖z‖< r3

√
λk(3)

and

2u > Hb(q)(z′)+
1
λ

Kb(q)
(
λv,
√
λz′

)
+

1
λ
Rb(q)

(
λv,
√
λz′

)
.

On the other hand, notice that∥∥∥1
λ

Kb(q)
(
λv,
√
λz′

)∥∥∥≤ C
√
λ
(√
λ|v|2+ |v|‖z′‖

)
and that ∥∥∥1

λ
Rb(q)

(
λv,
√
λz′

)∥∥∥≤ 1
λ

o
((
|λv|2+‖

√
λz′‖2

))
=

1
λ

o(λ)

on Bn(0; ρ) for any fixed constant ρ > 0. Notice that both terms approach zero as
λ tends to zero. Thus, these terms can become sufficiently small if we limit q to
being contained in Bn

(
p; r3/(2k(m))

)
for some sufficiently large m.

Step 5. Set-convergence. This step is in part heuristic; the heuristics appearing in
this step, especially those which concern set convergences, are not used in the proof,
strictly speaking. We include this step because they seem to help us to grasp the
logical structure of the proof. On the other hand, the constructions in (3-13)–(3-15)
shall be used in the remainder of the proof, especially in Step 7.

The main role of the stretching map 3λ, as λ↘ 0, is to rescale the domains
successively, letting them converge to the set limits.

For instance, if one considers

3λ(Aq(�)∩Bn(0; r3)),

then one can see that 3λ(Bn(0; r3)) contains Bn
(
0; r3/

√
λ
)
, a very large ball

which exhausts Cn as λ approaches zero. In the meantime, within that large ball,
3λ(Aq(�)) is restricted only by the inequality

2u > Hb(q)(z′)+ K̃λ(v, z′),

where K̃λ = o(λ) is small enough to be negligible. One can imagine that indeed
the “limit domain” of this procedure should be

(3-13) �̂ := {z ∈ Cn
: 2u > Hp(z′)}.

Here, of course, Hp(z′) is the quadratic positive-definite Hermitian form which
appears in the defining inequality of � about the boundary point p (understood as
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the origin):
2 Re z1 > Hp(z′)+ o(| Im z1| + ‖z′‖2).

Notice that
κ(�̂)= {z ∈ Cn

: |z1|
2
+ Hp(z′) < 1},

and hence there is a C-linear isomorphism

(3-14) L : Cn
→ Cn

that maps κ(�̂) biholomorphically onto the unit ball Bn(0; 1) with L(1)= 1.
Before moving on to the next step we remark that, since � ⊂ Bn(c(q); R)

whenever q ∈ Bn(p; r2),

Aq(�)⊂ Aq(B
n(c(q); R))= Bn((R, 0, . . . , 0); R).

This in turn implies that

3λ ◦ Aq(�)⊂3λ
(
Bn((R, 0, . . . , 0); R)

)
(3-15)

⊂ E := {z ∈ Cn
: 2R ·Re z1 > ‖z′‖2}.

The last inclusion follows by (3-10).

Step 6. Auxiliary domains. Let δ > 0 be given. Consider the domains

Gδ := {z ∈ Cn
: 2u >−δ|v| + (1− δ)Hb(q)(z′)},(3-16)

Fδ := {z ∈ Cn
: 2u > δ|v| + (1+ δ)Hb(q)(z′)}, and(3-17)

Hq := {z ∈ Cn
: 2u > Hb(q)(z′)},(3-18)

in addition to �̂ and E introduced in (3-13) and (3-15).

Gδ
Fδ

Aq(�)

(1, 0, . . . , 0)
0

Figure 3. Auxiliary domains Gδ and Fδ.
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b(q)

p
q

�

Aq

0

Rez1 = 0

(λq ,0,...,0)
λ= λq

Aq(�)

3λ

�̂

Aq(�)

3λ◦Aq(�)
(1,0,...,0)

G

G(�)

G(q)= 0
L

κ(�̂) κ

κ◦3λ◦Aq (q)

= (0,...,0)

Figure 4. G(�)= L ◦ κ ◦3λ ◦ Aq(�) for q ∼ p.

A straightforward computation checks that the image κ(Gδ) of Gδ via the Cayley
transform κ introduced earlier is

(3-19) κ(Gδ)=
{
z ∈ Cn

: |z1|
2
−
δ

2
|z1− z̄1| + (1− δ)Hb(q)(z′) < 1

}
.

Hence, there exists δ0 > 0 such that, for every δ with 0< δ < δ0, κ(Gδ) is a bounded
domain. Notice also that this domain is arbitrarily close to the domain κ(Hb(q)) as
δ0 becomes arbitrarily small. It follows therefore that, for every ε > 0, there exists
δ0 > 0 such that

(3-20) L ◦ κ(Gδ)⊂ Bn(0; 1+ ε)

whenever 0< δ < δ0. Moreover, observe that the stretching map 3λ preserves all
such domains as

Fδ, Gδ, Hq , �̂, and E .

Let us now define the expression

(3-21) G(z) := L ◦ κ ◦3λ ◦ Aq(z)

for z ∈ Cn
− (3λ ◦ Aq)

−1(Z). (The set Z is defined in (3-8). Notice that this
expression G depends upon q ∈ Bn(0; r2); see Figure 3 for an illustration.) In
particular, this G maps� onto its image G(�) biholomorphically. See also Figure 4.

Step 7. Proof of Theorem 3.1. Our final goal is to establish the following claim.

Claim. For any ε with 0< ε < 1/2, there exists an integer m > 0 such that

(3-22) Bn(0; 1− ε)⊂ G(�)⊂ Bn(0; 1+ ε)

whenever q ∈�∩Bn
(

p; r3/(2k(m))
)
.
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Since G(q)= 0, this implies that the squeezing function σ� satisfies

σ�(q)≥
1−ε
1+ε

.

Notice that this completes the proof of Theorem 3.1. Therefore it remains only to
prove the claim.

Proof. Start with Bn(0; 1− ε). Notice first, by the definition of Fδ, that for every
δ > 0 there exists m1 > 0 such that

Fδ ∩Bn(0; r2/m)⊂ Aq(�)∩Bn(0; r2/m)

for any m > m1.
Also,

κ−1
◦ L−1(Bn(0; 1− ε))b κ−1

◦ L−1(Bn(0; 1))= �̂.

As discussed in (3-4)–(3-7), L ◦κ(Hq) is sufficiently close to L ◦κ(�̂), which is the
unit ball, whenever q ∈ Bn

(
p; r3/(2k(m))

)
and m is sufficiently large. Therefore

there exists an integer m2 > m1 such that (L ◦ κ)−1(Bn(0; 1− ε))bHq whenever
q ∈ Bn(p; r3/m2).

As in (3-19), a direct computation yields

(3-23) κ(Fδ)=
{
z ∈ Cn

: |z1|
2
+

1
2δ|z1− z̄1| + (1+ δ)Hb(q)(z′) < 1

}
.

Now, consider the set L ◦ κ ◦3λ(Fδ) for each δ > 0. (Recall that 3λ(Fδ) = Fδ
as remarked in the line below (3-20).) These domains increase monotonically as
δ↘ 0 (since the Fδ’s do) in such a way that the union

⋃
0<δ<δ0

L ◦κ ◦(Fδ) becomes
arbitrarily close to Bn(0; 1) for m sufficiently large. Consequently there exists a
constant δ > 0 such that Bn(0; 1− ε)b L ◦ κ ◦ (Fδ). Moreover there is an integer
m3 > m2 such that

(3-24) 3−1
λ

(
κ−1
◦ L−1(Bn(0; 1− ε)

)
⊂ Bn(0; r3/k(m1)),

as 3−1
λ scales down the compact subsets (for λ < r3/m2 sufficiently small) to a

small set near the origin. Hence, we have

3−1
λ

(
κ−1
◦ L−1(Bn(0; 1− ε))

)
⊂ Fδ ∩Bn(0; r3/k(m1))⊂�.

Consequently, as long as q ∈ Bn
(

p; r3/(2k(m3))
)
,

(3-25) Bn(0; 1− ε)⊂ L ◦ κ ◦3λ
(
Fδ ∩Bn(0; r3/k(m1))

)
⊂ L ◦ κ ◦3λ(Aq(�))

= G(�).
See Figure 5.
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b(q)

p �

Aq

Fδ 3λ

G

L

κ
Fδ

Figure 5. Bn(0; 1− ε)⊂ G(�).

Now we show that G(�)⊂ Bn(0; 1+ ε). Consider

�′ :=�−Bn(p; r2).

Notice that there exists an integer `� 1 such that

(3-26) Aq(�
′)⊂ Aq(�)−Bn(0; r2/`)⊂ E −Bn(0; r2/`).

Now, there is an integer m4>m3 such that, if m>m4 and q ∈Bn
(

p; r3/(2k(m))
)
,

then
3λ(E −Bn(0; r2/k))⊂

{
z ∈ E : Re z1 >

r2
r3
·

m4
`

}
.

This implies that there exists m4 such that

G(�′)⊂ L ◦ κ
({

z ∈ E : Re z1 >
r2
r3
·

m4
`

})
⊂ Bn(−1; ρ(m4))

for some ρ(m) which approaches zero as m tends to infinity; a direct computation
with the Cayley transform and the choice of L (see (3-14)) verify this immediately.
Therefore, choosing m4 sufficiently large, we arrive at

(3-27) G(�′)⊂ Bn(−1; ε),

as in Figure 6. For the ε given above, there exists δ such that

(3-28) L ◦ κ(Gδ)⊂ Bn(0; 1+ ε).

Fix this δ, and recall how the auxiliary domain Gδ was defined in (3-16). Given any
δ > 0, according to (3-4)–(3-6), there exists ρ > 0 such that

Aq(�)∩Bn(0; ρ)⊂ Gδ.
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Aq

3λ

G

L

κ

Figure 6. G(�′)⊂ Bn(−1; ε).

Aq

3λ

G

L

κ

Figure 7. G(�)⊂ Bn(0; 1+ ε).

On the other hand, we can go back to (3-26) and require that r2/` < ρ/2. Then we
have

(3-29) Aq(�)∩Bn(0; 2r2/`)⊂ Gδ.

Since there exists an integer m5 > 0 such that Aq(B
n(p; r2/`))⊂Bn(0; 2r2/`), we

have that

G(�−�′)⊂ L ◦ κ ◦3λ
(

Aq(�)∩Bn(0; 2r2/`)
)
.

This implies

(3-30) G(�−�′)⊂ L ◦ κ ◦3λ
(

Aq(�)∩Bn(0; 2r2/`)
)

⊂ L ◦ κ ◦3λ(Gδ) by (3-29)

⊂ L ◦ κ(Gδ) by the sentence following (3-20)

⊂ Bn(0; 1+ ε).
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By (3-27) and (3-30), as in Figure 7 we have that

G(�)⊂ Bn(0; 1+ ε).

This completes the proof of the claim, and therefore of Theorem 3.1. �

4. Remarks

In this final section we present several remarks.

On the spherically extreme points. Pertaining to the question in the introduction,
one of the naturally arising questions would be whether one may re-embed (the
closure of) the bounded strongly pseudoconvex domain so that the preselected
boundary point becomes spherically extreme. This question was answered affirma-
tively in by Diederich, Fornaess, and Wold in [Diederich et al. 2014]. Owing to
this new result, Theorem 3.1 now implies the following.

Theorem 4.1. If � is a bounded domain in Cn with a C2-smooth strongly pseudo-
convex boundary, then lim�3z→∂� σ�(z)= 1.

On the other hand, a more ambitious goal may be to re-embed the domain using
the automorphisms of Cn to achieve the same result. But this cannot work, as shown
by the following counterexample.

Example. Consider the domain U which is the open 1/10-tubular neighborhood
of the circle S := {(ei t , 0) ∈ C2

: t ∈ R}. This domain is strongly pseudoconvex.
Let p = (9/10, 0). Clearly p ∈ ∂U . If there were ψ ∈Aut(C2) which makes ψ(p)
spherically extreme for ψ(U ), then consider the analytic disc 6 := ψ(1) where
1 := {(z, 0) : |z| ≤ 1}). Since 1 crosses ∂U transversally at ψ(p), 6 crosses the
sphere envelope at ψ(p) and extends to the exterior of the sphere. On the other
hand, the boundary of 6 remains inside ψ(U ) and hence inside the sphere. Now
let the sphere expand radially from its center, stopping at the radius beyond which
it cannot intersect the holomorphic disc 6. Then the sphere is tangent to a point
to 6 at an interior point, keeping the whole disc inside the sphere. The maximum
principle now implies that 6 should be entirely on the sphere. But the boundary of
6 is strictly inside the sphere, which is a contradiction. This implies that p cannot
be made spherically extreme via any re-embedding by an automorphism of Cn .

Acknowledgement: This example was obtained after a valuable discussion between
Kim and Josip Globevnik. Kim would like to express his thanks to Josip Globevnik
for pointing out such a possibility.

On the exhaustion theorem by Fridman–Ma. The main theorem by Buma Frid-
man and Daowei Ma [1995] obtained the conclusion of Theorem 3.1 in the special
case � 3 q→ p transversely to the boundary ∂�. However, that is not sufficient
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to prove Theorem 3.1; it is indeed necessary to consider all possible sequences
approaching the boundary. Fridman and Ma [1995] did not need to consider the
point sequences approaching the boundary tangentially, as their interest was only on
the holomorphic exhaustion of the ball by the biholomorphic images of a bounded
strongly pseudoconvex domain. On the other hand, our proof of Theorem 3.1 gives
a proof to their theorem as well; we only need to use (1+ ε)−1G(z) instead of G.
(Recall that G depends upon q. Letting q converge to p and ε tend to zero, one
gets a sequence of maps that exhausts the unit ball holomorphically.)

Plane domain cases. For domains in C, several theorems have been obtained by
F. Deng, Q. Guan, and L. Zhang [Deng et al. 2012]. Theorem 3.1 obviously includes
many of those results, as every boundary point of a plain domain with C2-smooth
boundary is spherically extreme.
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