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LEFSCHETZ PENCILS AND FINITELY PRESENTED GROUPS

RYOMA KOBAYASHI AND NAOYUKI MONDEN

From the works of Gompf and Donaldson, it is known that every finitely
presented group can be realized as the fundamental group of the total space
of a Lefschetz pencil. We give an alternative proof of this fact by providing
the monodromy explicitly. In the proof, we give an alternative construction
of the monodromy of Gurtas’ fibration and a lift of that to the mapping class
group of a surface with two boundary components.

1. Introduction

There exist Lefschetz pencils (fibrations over S2 with (−1)-sections) whose total
spaces have a prescribed fundamental group. This follows as a corollary of the results
of Gompf [1995], who showed that every finitely presented group is realized as the
fundamental group of some closed symplectic 4-manifold, and of Donaldson [1999],
who showed that every closed symplectic 4-manifold admits a Lefschetz pencil.
Note that since we obtain a Lefschetz fibration with (−1)-sections by blowing up the
base locus of a Lefschetz pencil, and blowing up has no effect on the fundamental
groups of 4-manifolds, the above claim for Lefschetz fibrations with (−1)-sections
follows. Conversely, a 4-manifold admitting a Lefschetz pencil (fibration with fiber
genus greater than one) is symplectic (cf. [Gompf and Stipsicz 1999]).

Let 6b
g be a compact oriented surface of genus g with b boundary components

δ1, . . . , δb, and let Modb
g be the mapping class group of 6b

g . We denote by tc the
right-handed Dehn twist along a simple closed curve c in 6b

g . Then a relation∏b
j=1 tδ j =

∏m
i=1 tvi provides a genus-g Lefschetz pencil/fibration with b base

points/(−1)-sections. Conversely, given any Lefschetz pencil (fibration with (−1)-
sections), we obtain such a relation. However, the relations corresponding to the
above Lefschetz pencils/fibrations constructed based on the results of [Gompf 1995]
and [Donaldson 1999] are implicit. Our purpose is to provide the relation of such a
genus-g Lefschetz pencil explicitly, so this gives an alternative proof of the above
corollary using mapping class group arguments. To state our main result, we need
to introduce some notation.
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Definition 1.1. Let 0=〈x1, x2, . . . , xn |r1, r2, . . . , rk〉 be a finitely presented group
with n generators and k relations. For w ∈ 0, we define l(w), called the syllable
length of w, to be

l(w)=min{s | w = xm1
i1

xm2
i2
· · · xms

is
for 1≤ i j ≤ n and m j ∈ Z}.

Define l =max{l(ri ) | 1≤ i ≤ k}. If k = 0, we define l = 1 (note that l depends on
the presentation and that our definition of l differs from that of [Korkmaz 2009]).
We always assume that the relators ri are cyclically reduced.

In Section 5A, we give a relation tδ1 tδ2 = W g
2 (1, ψk) in Mod2

g using certain
substitution techniques, where W g

2 (1, ψk) is a product of right-handed Dehn twists.
Our main result is the following:

Theorem 1.2. If k ≥ 1 (resp. k = 0), then, for g ≥ 4(n + l − 1)+ k (resp. g ≥
4n+ 2), there exists a genus-g Lefschetz pencil/fibration with two base points/(−1)-
sections on a closed symplectic 4-manifold X such that tδ1 tδ2 = W g

2 (1, ψk) is the
corresponding relation and π1(X) is isomorphic to 0.

Theorem 1.2 gives an upper bound for the minimum g, denoted by gP(0), for
which there exists a genus-g Lefschetz pencil on X such that π1(X) is isomorphic
to 0. We describe it in Section 8. To give a better upper bound on gP(0), we
construct a lift of Gurtas’ positive relator (see [Gurtas 2004]), denoted by θ2, to
Mod2

g in Section 6 by combining a lift of a hyperelliptic involution and the relation
given in [Korkmaz 2009] to Mod2

g. On the other hand, Gurtas showed that the
positive word θ2 given in [Gurtas 2004] is a positive relator by checking the images
of certain cycles on 6g under θ . In this sense, our construction of the monodromy
of Gurtas’ fibration is different from that in [Gurtas 2004].

Here, we explain why we focus on Lefschetz fibrations with (−1)-sections. A
section of a Lefschetz fibration over S2 plays important roles in the total space.
The existence of a section σ of a Lefschetz fibration f : X→ S2 with a fiber F is
required to compute the fundamental group of X and to decide whether X is spin or
not (see [Gompf and Stipsicz 1999; Stipsicz 2001b]). In addition, the complement
of a regular neighborhood of F ∪ σ is a Stein filling of its boundary equipped with
the induced tight contact structure (see [Akbulut and Ozbagci 2002; Etnyre and
Honda 2002; Loi and Piergallini 2001]). Especially, a (−1)-section is important in
Lefschetz fibrations in the following senses.

(i) Blowing up of the base locus of a Lefschetz pencil yields a Lefschetz fibration
with (−1)-sections. Conversely, we can obtain a Lefschetz pencil by blowing
down of (−1)-sections of a Lefschetz fibration.

(ii) From given Lefschetz fibrations, we can construct a new Lefschetz fibration by
fiber summing them. If a Lefschetz fibration admits a (−1)-section, it cannot
be decomposed as any nontrivial fiber sum (see [Stipsicz 2001a; Smith 2001]).
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For these reasons, we can regard Lefschetz fibrations with (−1)-sections as “funda-
mental” and “prime” ones.

Note that we can express Gompf’s result in terms of Lefschetz fibrations over S2.
The article [Amorós et al. 2000] gave a construction of Lefschetz fibrations whose
total spaces have a given fundamental group without using Donaldson’s result.
However, their monodromies are implicit. The explicit monodromies of such
fibrations were given by Korkmaz [2009]. Akhmedov and Ozbagci [2013] gave a
new construction of such fibrations, and the first author [Kobayashi 2015] improved
the result of [Korkmaz 2009]. For technical reasons, the fibrations in [Korkmaz
2009; Akhmedov and Ozbagci 2013; Kobayashi 2015] have no (−1)-sections (see
Section 8), so we would like to emphasize that our result is different from the above
four results.

Here is an outline of this paper. In Section 2, we fix notation. In Section 3,
we introduce a substitution technique and the relation constructed by Korkmaz.
Section 4 reviews some standard facts on Lefschetz fibrations and pencils. In
Section 5, we prove the main results. In Section 6, we give an alternative construction
of the monodromy of Gurtas’ fibration and provide a lift of that to the mapping class
group of a surface with two boundary components. In Section 7, we introduce the
construction of a loop which is needed for the proof of Theorem 1.2. In Section 8,
we give an upper bound of gP(0) and some remarks.

2. Notation

Let 6g be the closed oriented surface of genus g standardly embedded in 3-space
as shown in Figure 1. We use the symbols a1, b1, . . . , ag, bg to denote the standard
generators of the fundamental group π1(6g) of 6g. For a and b in π1(6g), the
notation ab means that we first apply a then b.

Let c0, c1, c2, . . . , cg, a0, ag+1, a′0, a′g+1 be the simple loops in 6g depicted in
Figure 1. Note that in π1(6g), up to conjugation,

(1) ci = b−1
i · · · b

−1
1 (a1b1a−1

1 ) · · · (ai bi a−1
i ) for each 1≤ i ≤ g;

z
y

x

a0 a1 a2 a3 ag−1 ag
ag+1

a′0
a′g+1

b1 b2 b3 bg−1 bg

c0 c1 c2 c3 cg−1 cg

Figure 1. Generators a j , b j of the fundamental group and loops c j , a′0, a′g+1.
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as well as

c0 = cg = 1,(2)

a0 = ag+1 = a′0 = a′g+1 = 1.(3)

Then the fundamental group π1(6g) has the presentation

π1(6g)= 〈a1, b1, . . . , ag, bg | cg〉.

Let B0, B1, B2, . . . , Bg, a′1, . . . , a′g be the simple closed curves in 6g shown in
Figure 2. Suppose that g = 2r . Then it is easy to check that, up to conjugation, the
following equalities hold in π1(6g):

B2k−1 = akbkbk+1 · · · bg+1−kcg+1−kag+1−k for 1≤ k ≤ r ;(4)

B2k = akbk+1bk+2 · · · bg−kcg−kag+1−k for 0≤ k ≤ r ;(5)

a′k+1 = ckak+1 for 0≤ k ≤ g− 1.(6)

If g = 2r + 1, then B2k−1 satisfies the equality (4) for 1≤ k ≤ r + 1.
Let A1, . . . , A2g+1 be the simple closed curves on 6g shown in Figure 3. It is

easily seen that, up to conjugation, the following equalities hold in π1(6g):

A2k = bk for 1≤ k ≤ g;(7)

A2k+1 = aka−1
k+1 for 0≤ k ≤ g.(8)

Moreover, when we denote by D0, D1, D2, . . . , D2h1 and Eh1 the simple closed
curves on 6g indicated in Figure 3, it is immediate that, up to conjugation, the

cr Bg B2 B1 B0 ag+1

a′1 a′2 a′r a′r+1 a′g a′g+1

ar+1 Bg B2 B1 B0 ag+1

a′1 a′2 a′r+1 a′g a′g+1

Figure 2. The curves B0, B1, B2, . . . , Bg, a′1, . . . , a′g.
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2h1
a2h1+1

A4h1+2 A4h1+4
ag+1

D1 D2 D2h1 A4h1+3 A4h1+5 a′g+1
a′2h1+1

2h1
a2h1+1

A4h1+2 A4h1+4
ag+1

A1
A2

D0 Eh1 A4h1+3 A4h1+5 a′g+1
a′2h1+1

Figure 3. The curves A1, A2, . . . , A2g+1, D0, D1, . . . , D2h1 and Eh1 .

following equalities hold in π1(6g):

D0 = b1b2 · · · b2h1a−1
2h1+1;(9)

D2k−1 = akbkbk+1 · · · b2h1+1−kc2h1+1−ka2h1+1−ka−1
2h1+1 for 1≤ k ≤ h1;(10)

D2k = akbk+1bk+2 · · · b2h1−kc2h1−ka2h1+1−ka−1
2h1+1 for 1≤ k ≤ h1;(11)

Eh1 = ch1a2h1+1.(12)

Note that we can modify 6g and D0, D1, D2, . . . , D2h1, Eh1 by isotopy as in
Figure 4.

Throughout this paper, we use the same symbol for a loop and its homotopy
class. Similarly, we use the same symbol for a diffeomorphism and its isotopy class,
or a simple closed curve and its isotopy class. A simple loop and a simple closed
curve will even be denoted by the same symbol. It will cause no confusion as it
will be clear from the context which one we mean.

3. Mapping class groups

3A. Substitution techniques. Let 6b
g be a compact oriented surface of genus

g with b boundary components. The mapping class group of 6b
g , which we

denote by Modb
g, is the group of isotopy classes of orientation preserving self-

diffeomorphisms of 6b
g . We assume that diffeomorphisms and isotopies fix the

points of the boundary. To simplify notation, we write 6g =6
0
g and Modg =Mod0

g.
For φ1 and φ2 in Modb

g, the notation φ1φ2 means that we first apply φ2 then φ1

(Our notation differs from that of [Korkmaz 2009].) Let tc be the Dehn twist about
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D0 D1

D2
D2h1

Eh1

a2h1+1

a′2h1+1

A4h1+2 A4h1+4

A4h1+3 A4h1+5

ag+1

a′g+1

Figure 4. Modified surface 6g and modified curves
D0, D1, . . . , D2h1 and Eh1 .

a simple closed curve c in 6b
g . Note that tφ(c) = φtcφ−1 for an element φ in Modb

g
and tctd = td tc if c is disjoint from d .

Definition 3.1. A word % := tc1 tc2 · · · tcn in Modg is called a positive relator if %
satisfies % = 1.

We introduce a primary technique to construct new products of right-handed
Dehn twists in Modb

g from old ones.

Definition 3.2. Let φ be an element in Modb
g. Write

W = tc1 tc2 · · · tck , W φ
= tφ(c1)tφ(c2) · · · tφ(ck), V = td1 td2 · · · tdl .

If the relation V =W holds in Modb
g and φ(di )= di for all i , then by tφ(c)=φtcφ−1

we obtain the relation
V =W φ.

in Modb
g. Let % be a product of right-handed Dehn twists which includes V as a

subword:
% :=U1 · V ·U2,

where U1 and U2 are products of right-handed Dehn twists. Then we get a new
product ς(φ) of right-handed Dehn twists

ς(φ) :=U1 ·W φ
·U2,

and ς(φ) is said to be obtained by applying a W φ-substitution of V to %.
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Remark 3.3. Fuller introduced the above operation for φ = id. Auroux [2006b;
2006a] introduced the operation to obtain ς(φ) from ς(id), called a “partial conju-
gation” by φ. In a previous paper, we call the operation in Definition 3.2 a “twisted
substitution”. As B. Ozbagci and R. I. Baykur kindly pointed out to us, the twisted
substitution is a combination of these two operations.

3B. The word W g
2 . In this section, we introduce a word W g

2 in Mod2
g. We denote

by 62
g the surface of genus g with two boundary components obtained from 6g by

removing two disjoint open disks bounded by ag+1 and a′g+1 (cf. Figure 1 and 2),
so ag+1 and a′g+1 are the boundary curves of 62

g . Set

W g
2 :=

{
(tB0 tB1 tB2 · · · tBg tcr )

2 if g = 2r ,(
tB0 tB1 tB2 · · · tBg t2

ar+1
t2
a′r+1

)2 if g = 2r + 1.

Korkmaz [2009] gave the following relation:

Lemma 3.4 [Korkmaz 2009]. We have tag+1 ta′g+1
=W g

2 in Mod2
g.

Although Korkmaz does not prove Lemma 3.4, we can prove it by applying
the same argument as in Section 2 of [Korkmaz 2001]. In Section 6A, we give a
very short outline of the proof. Since the simple closed curves ag+1 and a′g+1 are
null-homotopic in 6g, it follows that tag+1 = ta′g+1

= 1 in Modg. Therefore, the word
W g

2 in Modg is a positive relator. This positive relator for g = 2 was discovered
by Matsumoto [1996], and its generalization was constructed independently by
Cadavid [1998] and Korkmaz [2001].

4. Lefschetz pencils and fibrations

We recall the definition and basic properties of Lefschetz pencils and fibrations.
More details can be found in [Gompf and Stipsicz 1999].

Definition 4.1. Let X be a closed, connected, oriented smooth 4-manifold, and let
B = {b1, . . . , bm} and C = {p1, . . . , pn} be finite, disjoint subsets of X .

Let f : X \ B→ S2 be a smooth map satisfying the following three conditions:

(a) For each bi ∈ B, called the base point, there are orientation-preserving complex
coordinate charts on which f is of the form f (z1, z2)= z1/z2.

(b) C is the set of critical points of f , and for each pi and f (pi ), there are complex
local coordinate charts agreeing with the orientations of X and S2 on which f
is of the form f (z1, z2)= z1z2.

(c) For q ∈ S2
− f (C), the set f −1(q)∪ B ⊂ X is diffeomorphic to 6g.

Then f is called a genus-g Lefschetz pencil if B is a nonempty set, and f is called
a genus-g Lefschetz fibration if B is the empty set.
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The set B is called the base locus, and for each q ∈ S2, the set f (q)−1
∪ B is

called the fiber of f . We assume that f is injective on C and that f is relatively
minimal (i.e., no fiber contains a sphere with self-intersection number −1). A fiber
containing a critical point is called a singular fiber. Each singular fiber is obtained
by collapsing a simple closed curve, called the vanishing cycle, in the regular fiber
to a point.

Once we fix an identification of 6g with the fiber over a base point of S2
− f (C),

we can characterize the Lefschetz fibration f : X → S2 by its monodromy rep-
resentation π1(S2

− f (C)) → Modg. Note that in this paper, this map is an
antihomomorphism. Let γ1, . . . , γn be an ordered system of generating loops for
π1(S2

− f (C)), such that each γi encircles only f (pi ) and γ1γ2 · · · γn is homo-
topically trivial. Thus, since the monodromy of the fibration along each of the
loops γi is a right-handed Dehn twist along the corresponding vanishing cycle, the
monodromy of f comprises a positive relator

tvn · · · tv2 tv1 = 1 ∈Modg,

where the vi are the corresponding vanishing cycles of the singular fibers. Con-
versely, for any positive relator % ∈Modg, we can construct a genus-g Lefschetz
fibration over S2 whose monodromy is %. Therefore, we denote a genus-g Lefschetz
fibration associated to a positive relator % in Modg by f% : X%→ S2.

Definition 4.2. For a Lefschetz fibration f : X→ S2, a map σ : S2
→ X is called

a k-section of f if f ◦ σ = idS2 and the self-intersection number of the homology
class [σ(S2)] in H2(X;Z) is equal to k.

When a Lefschetz fibration X → S2 admits a section, we can compute the
fundamental group of X as follows.

Lemma 4.3 (cf. [Gompf and Stipsicz 1999]). Let % be a positive relator given by
tvn · · · tv2 tv1 = 1 in Modg. Suppose that a genus-g Lefschetz fibration f% : X%→ S2

admits a section σ . Then the fundamental group π1(X%) is isomorphic to the
quotient of π1(6g) by the normal subgroup generated by v1, . . . , vn .

From the definitions of Lefschetz fibrations and pencils, blowing up all points of
B = {q1, . . . , qb} of a genus-g Lefschetz pencil yields a genus-g Lefschetz fibration
with b disjoint (−1)-sections. Let δ1, δ2, . . . , δb be b boundary curves of 6b

g . Then
a lift of a positive relator % in Modg, namely tvn · · · tv2 tv1 = 1, to Modb

g as

tv′n · · · tv′2 tv′1 = tδ1 tδ2 · · · tδb

shows the existence of b disjoint (−1)-sections of f%. Here, v′i is a simple closed
curve mapped to vi under 6b

g → 6g. Conversely, such a relation determines a
genus-g Lefschetz fibration with m disjoint (−1)-sections and a genus-g Lefschetz
pencil by blowing these sections down.
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5. Proof of Theorem 1.2

For a finitely presented group 0= 〈x1, x2, . . . , xn | r1, r2, . . . , rk〉 with n generators
and k relators, let l =max{l(ri ) | 1≤ i ≤ k}, where l(ri ) is the syllable length of ri .
In this section, we denote by h1 and h2 two integers satisfying h1 ≥ n+ l − 1 and
2(h2− 1)≥ k, respectively.

5A. Construction of a word W g
2 (1, ψi ). In this subsection, we construct a key

relation in Mod2
g.

Let us consider 62
g obtained from 6g by removing two disjoint open disks

surrounded by ag+1 and a′g+1 (see Section 2 and Figures 1–3). Write r =2h1+h2−1
and g = 2r or 2r + 1. For h2− 1≥ 1, we set

X = tA4h1+2 tA4h1+3 · · · tA2r ,

X = tA2r · · · tA4h1+3 tA4h1+2,

Y = (tD0 tD1 · · · tD2h1
)2.

Moreover, we define words V1 and V2 to be

V1 = tEh1
Xtar ta′r XtEh1

ta′r XYXta′r ,

V2 = tEh1
Xtar ta′r XtEh1

tA2r+1 XYXtA2r+1 .

Then we obtain the relations in the following proposition.

Proposition 5.1. We have tcr = V1 and tar+1 ta′r+1
= V2 in Mod2

g.

We postpone the proof of Proposition 5.1 until Section 6 (see Proposition 6.1).
Let h1 ≥ n+ l − 1 and 2(h2− 1)≥ k. The next proposition is needed to prove

Theorem 1.2.

Proposition 5.2. Let Fn be the subgroup of π1(6g) generated by the generators
a1, . . . , an , i.e., Fn is a free group of rank n. Let r1, . . . , rk be k elements in Fn

represented as words in a1, . . . , an . Let l = max1≤i≤k{l(ri )}, where l(ri ) is the
syllable length of ri . Then there are simple loops R1, . . . , Rk in 6g (see Figure 5)
with the property that, for 4h1+ 2≤ j ≤ 4h1+ 2h2− 2 and 1≤ i ≤ k,

(a) Ri is disjoint from A2h1+1, . . . , A4h1, c2h1+h2−1(= cr ).

(b) R1 intersects a2h1+h2−1 at one point and does not intersect A j for any j .

(c) Ri intersects A4h1+2h2−i at one point and intersects neither a2h1+h2−1 nor A j

for any j 6= 4h1+ 2h2− i and i ≥ 2.

(d) 8([Ri ])= ri , where [Ri ] ∈ π1(6g) is the homotopy class of the loop Ri , and
8 : π1(6g)→ π1(6n) is the map defined by 8(am)= am for 1 ≤ m ≤ n and
8(α)= 1 for α ∈ {an+1, . . . , ag, b1, . . . , bg}.
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an+l−1 2h1 a2h1+1
R2

a2h1+h2−1

R1

R3

ag+1

a′g+1

h1 h2− 1
c2h1+h2−1

Figure 5. Curves R1, . . . , Rk in 6g.

In Section 7, we prove Proposition 5.2 by constructing simple loops R1, . . . , Rk

explicitly. We also consider the loops R1, . . . , Rk as simple loops on 62
g by remov-

ing two disjoint open disks surrounded by ag+1, a′g+1 from 6g (see Figure 5).
For i = 0, 1, . . . , k, we define an element ψi in Mod2

g to be

ψ0 = tah1
tbh1+1 tbh1+2 · · · tb2h1

,

ψi = tRk+1−i tRk+2−i · · · tRkψ0,

where the Ri are the loops on 62
g described above. From Proposition 5.2, for each i ,

we see that ψi (cr ) = cr if g = 2r , while ψ1(ar+1) = ar+1 and ψ1(a′r+1) = a′r+1
if g = 2r + 1.

If g = 2r , then we can find two tcr in the word W g
2 . By Proposition 5.1, we can

apply V id
1 -substitution for one tcr and Vψi

1 -substitution for the other.
If g = 2r + 1, then since t2

ar+1
t2
a′r+1
= (tar+1 ta′r+1

)2, we can find four tar+1 tta′r+1
in

the word W g
2 . By Proposition 5.1, we can apply V id

2 -substitution for one tar+1 ta′r+1

and Vψi
2 -substitution for the other.

If we set

W g
2 (1, ψi ) := (tB0 tB1 tB2 · · · tBg V1)(tB0 tB1 tB2 · · · tBg Vψi

1 )

if g = 2r , and

W g
2 (1, ψi ) := (tB0 tB1 tB2 · · · tBg tar+1 ta′r+1

V2)(tB0 tB1 tB2 · · · tBg tar+1 ta′r+1
Vψi

2 )

if g = 2r + 1, then we get the next lemma.

Lemma 5.3. We have tag+1 ta′g+1
=W g

2 (1, ψi ) in Mod2
g.

Since tag+1 = 1 and ta′g+1
= 1 in Modg, the word W g

2 (1, ψi ) in Modg is a pos-
itive relator. Therefore, we obtain a genus-g Lefschetz fibration fW g

2 (1,ψi )
with

two disjoint (−1)-sections (and genus-g Lefschetz pencil with two base points
corresponding to W g

2 (1, ψi )). Then, we have the following results which we prove
in Section 5B and in Section 5C.
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Theorem 5.4. Suppose that k = 0. We denote by Fn a free group of rank n. If
g ≥ 2(2n+ 1), then we have

π1(XW g
2 (1,ψ0)

)∼= Fn.

Theorem 5.5. Suppose that k > 0. If g ≥ 4(n+ l − 1)+ k, then we have

π1(XW g
2 (1,ψk)

)∼= 0.

Combining Theorem 5.4 and 5.5, we obtain Theorem 1.2.

5B. Proof of Theorem 5.4. In this section, we prove Theorem 5.4. We begin with
a lemma.

Lemma 5.6. Let r = 2h1+ h2− 1. Let 〈S〉 be the normal closure of the elements
of the set S of simple closed curves on 6g defined by

S = {B0, B1, . . . , Bg, D0, D1, . . . , D2h1, Eh1, A4h1+2, . . . , A2r , ar , a′r }

if g = 2r , and by

S={B0,B1, . . . ,Bg, ar+1, a′r+1,D0,D1, . . . ,D2h1,Eh1, A4h1+2, . . . , A2r+1, ar , a′r }

if g=2r+1. Then π1(6g)/〈S〉 has a presentation with generators a1, b1, . . . , ag, bg

and with relations

ai ag+1−i = bi ag+1−i bg+1−i a−1
g+1−i = 1 for 1≤ i ≤ r ,

a2h1+k = b2h1+k = 1 for 1≤ k ≤ h2− 1,

a j a2h1+1− j = b j a2h1+1− j b2h1+1− j a−1
2h1+1− j = 1 for 1≤ j ≤ h1,

ch1 = 1

if g = 2r , and

ai ag+1−i = bi ag+1−i bg+1−i a−1
g+1−i = 1 for 1≤ i ≤ r ,

a2h1+k = b2h1+k = 1 for 1≤ k ≤ h2− 1,

a j a2h1+1− j = b j a2h1+1− j b2h1+1− j a−1
2h1+1− j = 1 for 1≤ j ≤ h1,

ar+1 = ch1 = 1

if g = 2r + 1.

Proof. Suppose that g = 2r . From the equalities (4) and (5) in Section 2, in
π1(6g)/〈S〉 we have

(13) ai ag+1−i = 1.
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This gives

1= B2i−1 = bi bi+1 · · · bg+1−i cg+1−i for 1≤ i ≤ r ,

1= B2i = bi+1bi+2 · · · bg−i cg−i for 1≤ i ≤ r

in π1(6g)/〈S〉. From these two equalities, we have bi c−1
g−i bg+1−i cg+1−i = 1 for

each 1≤ i ≤ r and

(14) cr = 1.

Note that cg+1−i = b−1
g+1−i cg−i (ag+1−i bg+1−i a−1

g+1−i ) from the equality (1). There-
fore, by bi c−1

g−i bg+1−i cg+1−i = 1, we obtain

(15) bkag+1−i bg+1−i a−1
g+1−i = 1.

From ar = 1, Al = 1 for 4h1 + 2 ≤ l ≤ 2r and the equalities (7) and (8), we
obtain

(16) a2h1+k = b2h1+k = 1

for 1≤ k ≤ h2− 1. From a′r = 1 and the equalities (6), (14), (1) and (16), we have

(17) cr−1 = c2h1 = 1.

By a2h1+1 = 1, c2h1 = 1 and the equalities (9), (10) and (11), an argument similar
to the proofs of the relations (13) and (15) gives

(18) a j a2h1+1− j = b j a2h1+1− j b2h1+1− j a−1
2h1+1− j = 1 and ch1 = 1

for 1≤ j ≤ 2h1.
From the equalities (13), (14), (15), (16), (17) and (18), we see that π1(6g)/〈S〉

has a presentation with generators a1, b1, . . . , ag, bg and with relations

ai ag+1−i = bi ag+1−i bg+1−i a−1
g+1−i = 1 for 1≤ i ≤ r ,

a2h1+k = b2h1+k = 1 for 1≤ k ≤ h2− 1,

a j a2h1+1− j = b j a2h1+1− j b2h1+1− j a−1
2h1+1− j = 1 for 1≤ j ≤ h1,

cg = cr = cr−1 = c2h1 = ch1 = 1.

Then by the equalities (1), (16) and (18), we can delete from the above the relations
cg = cr = cr−1 = c2h1 = 1. This is our claim.

Suppose now that g = 2r + 1. Since ar+1 = a′r+1 = 1 and a′r+1 = cr ar+1, we
have cr = 1. A similar argument as in the case g = 2r shows that π1(6g)/〈S〉 has
the desired presentation. This completes the proof. �

We can now prove Theorem 5.4.
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Proof of Theorem 5.4. Let h1 ≥ n and h2− 1 ≥ 1. For simplicity of notation, we
write G instead of π1(XW g

2 (1,ψ0)
).

Suppose that g = 2(2h1+ h2− 1) and let r = 2h1+ h2− 1. Note that G has a
presentation with generators a1, b1, . . . , ag, bg and with relations

cg = 1,

Bi = 1 for 0≤ i ≤ g,

ar = a′r = Eh1 = 1,

D j = Ak = 1 for 0≤ j ≤ 2h1, 4h1+ 2≤ k ≤ 4h1+ 2h2− 2,

ψ0(ar )= ψ0(a′r )= ψ0(Eh1)= 1,

ψ0(D j )= ψ0(Ak)= 1 for 0≤ j ≤ 2h1, 4h1+ 2≤ k ≤ 4h1+ 2h2− 2.

It is easily seen that, up to conjugation, we have the equalities

ψ0(D0)= ah1 · · · an+2an+1 D0,

ψ0(D2l−1)= b−1
2h1−l+1ah1 · · · an+2an+1 D2l−1 for 1≤ l ≤ n,

ψ0(D2l)= b−1
2h1−l+1ah1 · · · an+2an+1 D2l for 1≤ l ≤ n

in π1(6g). Thus, by D0 =ψ0(D0)= D j =ψ0(D j )= 1 for 1≤ j ≤ 2h1, we obtain

b2h1−l+1 = 1 for 1≤ l ≤ n.

Similarly, we have the following equalities (up to conjugation) in π1(6g):

ψ0(D2l−1)= b−1
2h1−l+1ah1 · · · al+1al D2l−1 for n+ 1≤ l ≤ r − 1,

ψ0(D2l)= b−1
2h1−l+1ah1 · · · al+2al+1 D2l−1 for n+ 1≤ l ≤ r − 1,

ψ0(D2h1−1)= b−1
h1+1ah1 D2h1−1,

ψ0(D2h1)= b−1
h1+1 B2h1 .

By D j = 1 for 1≤ j ≤ 2h1 and ψ0(D2l−1)= ψ0(D2l)= 1 for n+ 1≤ l ≤ h1, we
obtain

al = 1 for n+ 1≤ l ≤ h1.

Moreover, by ψ0(D2l) = ψ0(D2l+1) = ψ0(D2h1) = 1 for n + 1 ≤ l ≤ h1 − 1, we
have

b2h1−l+1 = 1 for n+ 1≤ l ≤ h1.

Here, sinceψ0(ar )=ar ,ψ0(a′r )=a′r ,ψ0(Eh1)= Eh1 andψ0(Ak)= Ak in π1(6g)

for each 4h1 + 2 ≤ k ≤ 4h1 + 2h2 − 2, we can delete the relations ψ0(ar ) = 1,
ψ0(a′r )= 1, ψ0(Eh1)= 1 and ψ0(AK )= 1 from the above presentation of G.
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From the above arguments and Lemma 5.6, we see that G has a presentation
with generators a1, b1, . . . , ag, bg and with relations

ai ag+1−i = bi ag+1−i bg+1−i a−1
g+1−i for 1≤ i ≤ r ,

a2h1+k = b2h1+k = 1 for 1≤ k ≤ h2− 1,

a j a2h1+1− j = b j a2h1+1− j b2h1+1− j a−1
2h1+1− j = 1 for 1≤ j ≤ h1,

ch1 = 1,

an+1 = an+2 = · · · = ah1 = 1,

bh1 = bh1+1 = · · · = b2h1 = 1.

It is easily shown that this is a presentation of the free group of rank n with free
basis a1, . . . , an , that is, G is isomorphic to Fn .

The proof for g= 2r+1 is similar. This completes the proof of Theorem 5.4. �

5C. Proof of Theorem 5.5. We now prove Theorem 5.5. The proof is inspired by
[Korkmaz 2009] and that of Proposition 13 in [Akhmedov and Ozbagci 2013]. For
simplicity, we write G ′ instead of π1(XW g

2 (1,ψ1)
).

Proof of Theorem 5.5. Suppose that g = 2(2h1 + h2 − 1). Since R1 intersects
a2h1+h2−1 at one point and does not intersect A j for j = 4h1+2, . . . , 4h1+2h2−2,
and a2h1+h2−1 is disjoint from an+1, . . . , ah1, bh1+1, . . . , b2h1 and R2, . . . , Rk , we
see that in π1(6g), up to conjugation,

ψk(a2h1+h2−1)= tR1(a2h1+h2−1)= a2h1+h2−1 Rε1,

where ε is equal to 1 or −1. Since a2h1+h2−1 = 1 in G ′, we may replace the relator
ψk(a2h1+h2−1)= 1 by R1 = 1.

Let c be an element of the set of the vanishing cycles of fW g
2 (1,ψk)

. If R1 is disjoint
from ψk−1(c), then we have ψk(c) = tR1(ψk−1(c)) = ψk−1(c). If R1 intersects
ψk−1(c) at t points, then it is easily seen that there are elements x1, . . . , xt+1 in
π1(6g) such that ψk−1(c)= x1x2 · · · xt+1 and that

tR1(ψk−1(c))= x1 Rζ1
1 x2 Rζ2

1 · · · xt Rζt
1 xt+1

(up to conjugacy), where each ζs is equal to 1 or −1. From R1 = 1, we obtain
ψk(c) = tR1(ψk−1(c)) = ψk−1(c) in G ′. Therefore, we may replace the relator
ψk(c)= 1 by ψk−1(c)= 1.

By repeating this argument for each i = k − 1, . . . , 1, we see that we may
replace the relators ψk(A4h1+2h2−(k+1−i)) = 1 and ψk(c) = 1 by Rk+1−i = 1 and
ψ0(c)= 1, respectively. In particular, since for each j = 4h1+2, . . . , 4h1+2h2−2,
a2h1+h2−1 = 1 and A j = 1 in G ′ and a2h1+h2−1 = ψ0(a2h1+h2−1) and A j = ψ0(A j )

in π1(6g) (up to conjugation), we can delete the relators ψk(a2h1+h2−1) = 1 and
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ψk(A j ) = 1. Therefore, from the proof of Theorem 5.4, we see that G ′ has a
presentation with generators a1, b1, . . . , ag, bg and with relations

ai ag+1−i = bi ag+1−i bg+1−i a−1
g+1−i for 1≤ i ≤ r ,

a2h1+k = b2h1+k = 1 for 1≤ k ≤ h2− 1,

a j a2h1+1− j = b j a2h1+1− j b2h1+1− j a−1
2h1+1− j = 1 for 1≤ j ≤ h1,

ch1 = 1,

an+1 = an+2 = · · · = ah1 = 1,

bh1 = bh1+1 = · · · = b2h1 = 1,

R1 = R2 = · · · = Rk = 1.

We note that the element [Ri ] ∈π1(6g) is contained in the subgroup generated by
a1, b1, . . . , ah1, bh1 and a2h1+1, b2h1+1, . . . , a2h1+h2−1, b2h1+h2−1. Since from this
presentation, we see that as = 1 for s = n+ 1, . . . , h1, 2h1+ 1, . . . , 2h1+ h2− 1
and b j = 1 for j = 1, . . . , h1, 2h1+1, . . . , 2h1+h2−1, we get a word representing
the element ri by Proposition 5.2. Therefore, G ′ is isomorphic to 0.

A similar argument works for g = 2(2h1 + h2 − 1)+ 1. Since fW g
2 (1,ψk)

has
at least two disjoint (−1)-sections, by blowing down one of them we obtain the
required genus-g Lefschetz pencil. This completes the proof of Theorem 5.5 and
therefore, as discussed in Section 5A, also of Theorem 1.2. �

6. Construction of a lift of Gurtas’ positive relator

In this section, we prove Proposition 5.1 and give a lift to Mod2
g of the positive

relator in Modg given by Gurtas [2004].

6A. Outline of the proof of Lemma 3.4. We now give an outline of the proof of
Lemma 3.4, which is needed to prove Proposition 5.1.

Outline of the proof of Lemma 3.4. We define 10 =10 = 1. Moreover, for each
k = 1, . . . , 2g+ 1, we define 1k and 1k to be the words

1k = tA1 tA2 · · · tAk and 1k = tAk · · · tA2 tA1 .

For each k = 0, 1, . . . , g, the words βk and β are defined by

βk =1k12g+1−k1
−1
2g−k1

−1
k and β =1g+1

g .

Then by applying the argument from Section 2 of [Korkmaz 2001] with σi (which
is the standard generator of the braid group B2g+2 on 2g+ 2 strings) replaced by
tAi , we have the relation

(19) β0β1β2 · · ·βgβ
2
=12g+112g · · ·131211.
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It is easy to check that 1k12g−k(A2g+1−k)= Bk . This gives

tBk = (1k12g−k)tA2g+1−k (1k12g−k)
−1
=1k12g+1−k1

−1
2g−k1

−1
k = βk .

Therefore, from the relation (19), we have

tB0 tB1 tB2 · · · tBg (1g)
2g+2
=12g+112g · · ·131211.

Using the chain relations 12g+2
g = tcr when g = 2r and 1g+1

g = tar+1 ta′r+1
when

g = 2r + 1, we have

(20) 12g+112g · · ·131211 =

{
tB0 tB1 tB2 · · · tBg tcr for g = 2r ,

tB0 tB1 tB2 · · · tBg tar+1 ta′r+1
for g = 2r + 1.

If we prove that tag+1 ta′g+1
= (12g+112g · · ·131211)

2 in Mod2
g, the assertion

follows. Note that the chain relation 12g+2
2g+1 = tag+1 ta′g+1

, and tAk1m =1m tAk−1 if
1< k ≤ m (see [Korkmaz 2001, Lemma 2.1(a)]), hold in Mod2

g. Then we have

1
2g+2
2g+1 =12g+112gtA2g+112g+11

2g−1
2g+1

=12g+112g12g+1tA2g1
2g−1
2g+1

=12g+112g12g−1(tA2g tA2g+1)tA2g1
2g−1
2g+1

=12g+112g12g−112g+1(tA2g−1 tA2g )tA2g−11
2g−2
2g+1

=12g+112g12g−112g−2(tA2g−1 tA2g tA2g+1)(tA2g−1 tA2g )tA2g−11
2g−2
2g+1

·
·
·

=12g+112g · · ·11(tA2 tA3 · · · tA2g+1)(tA2 tA3 · · · tA2g ) · · · (tA2 tA3)tA212g+1

=12g+112g · · ·1112g+112g · · ·11,

and the proof is complete. �

6B. Proof of Proposition 5.1. In this section, we prove Proposition 6.1 instead
of Proposition 5.1. Note that if we set g = r in the notation of Proposition 6.1
and consider an embedding 62

r ↪→ 62
g (resp. 61

r ↪→ 62
g) mapping (ar+1, a′r+1)

(resp. ar+1) in Proposition 6.1 to (ar+1, a′r+1) (resp. cr ) in Proposition 5.1, then we
get Proposition 5.1. Therefore, it is sufficient to prove Proposition 6.1.

Proposition 6.1. Let 62
g (resp. 61

g) be the compact oriented surface of genus g
with two boundary components (resp. one boundary component) obtained from 6g

by removing two disjoint open disks (resp. one open disk). Let ag+1, a′g+1 = cgag+1

(resp. ag+1) be the boundary curves of 62
g (resp. the boundary curve of 61

g). Then
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the relations

tag+1 ta′g+1
= tEh1

tA4h1+2 · · · tA2g tag ta′g tA2g · · · tA4h1+2 tEh1
(21)

· tA2g+1 tA2g · · · tA4h1+2 · (tD0 tD1 · · · tD2h1
)2 · tA4h1+2 · · · tA2g tA2g+1,

tag+1 = tEh1
tA4h1+2 · · · tA2g tag ta′g tA2g · · · tA4h1+2 tEh1

(22)

· ta′g tA2g · · · tA4h1+2 · (tD0 tD1 · · · tD2h1
)2 · tA4h1+2 · · · tA2g ta′g

hold in Mod2
g and Mod1

g, respectively.

In order to prove Proposition 6.1, we prepare Lemma 6.2 and Proposition 6.3.

Lemma 6.2. Suppose that g = 2r . In the notation of Lemma 3.4, let c′r be the
separating simple closed curve defined by ag+1(br+1 · · · bg)a′g+1(br+1 · · · bg)

−1cr

(cf. Figure 6(a)). We modify 62
g and B0, . . . , Bg, cr , c′r by isotopy as shown in

Figure 6(b) and (c). Then in Mod2
g, the following relation holds:

tag+1 ta′g+1
= tcr tc′r (tB0 tB1 · · · tBg )

2.

Proof. It is easily seen that for each i = 1, . . . , g, we have

12g+1 · · ·1211(Ai )= A2g+2−i .

This gives the relation

12g+1 · · ·1211tAi = tA2g+i12g+1 · · ·1211

for each i = 1, . . . , 2r . Therefore, we have

12g+1 · · ·1211(1g)
−(2g+2)

= (tAg+2 · · · tA2g+1)
−(2g+2)12g+1 · · ·1211.

B2 B1 B0

crBg

a2g+1

c′r
a′2g+1

a2g+1B2 B1 B0

crBg a′2g+1
c′r

a′2g+1a2g+1
B2 B1 B0

cr Bg c′r

A1
A2 Ar

Ar+1 Ar+2
cr

a2g+1

c′r
a′2g+1

(a)

a2g+1

A1
A2 Ar

Ar+1 Ar+2
cr a′2g+1

c′r
(b)

a′2g+1 a2g+1

A1
A2 Ar

Ar+1 Ar+2
cr c′r

(c)

Figure 6. Modified surface 62
g and curves B0, . . . , Bg, cr , c′r .
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Since

tB0 tB1 tB2 · · · tBg (1g)
2g+2
=12g+1 · · ·1211 (= tB0 tB1 tB2 · · · tBg tcr )

from the proof of Lemma 3.4, we have

(tAg+2 · · · tA2g+1)
2g+2tB0 tB1 tB2 · · · tBg =12g+1 · · ·1211

(= tB0 tB1 tB2 · · · tBg tcr ).

By the chain relation, we obtain tc′r = (tAg+2 · · · tA2g+1)
2g+2. Therefore,

tag+1 ta′g+1
= tc′r tB0 tB1 · · · tBg · tB0 tB1 · · · tBg tcr

follows by Lemma 3.4. By conjugation by tcr , we have

tag+1 ta′g+1
= tcr tc′r (tB0 tB1 · · · tBg )

2. �

Proposition 6.3 was shown by Hamada [≥ 2016] based on the argument of
[Tanaka 2012]. Its statement concerns a′0, a null-homotopic simple closed curve in
6g defined by a′0 = c0a0.

Proposition 6.3 [Hamada ≥ 2016]. Let 64
g be the compact oriented surface of

genus g with four boundary components obtained from6g by removing four disjoint
open disks surrounded by a0, a′0, ag+1 and a′g+1. Then the following relation in
Mod4

g holds:

ta0 ta′0 tag+1 ta′g+1
= tA2g+1 · · · tA2 ta1 ta′1 tA2 · · · tA2g+1 · tA1 · · · tA2g tag ta′g tA2g · · · tA1 .

Proof. The proof is by induction on the genus.
Suppose that g = 1. The four-holed torus relation,

ta0 ta′0 ta2 ta′2 = (tA1 tA3 tA2 ta1 ta′1 tA2)
2,

was constructed by Korkmaz and Ozbagci [2008, Section 3.4]. Since a0, a′0, a2, a′2
are disjoint from A1 and A1 is disjoint from A3, by conjugation by tA1 , we have

ta0 ta′0 ta2 ta′2 = tA3 tA2 ta1 ta′1 tA2 tA1 · tA3 tA2 ta1 ta′1 tA2 tA1

= tA3 tA2 ta1 ta′1 tA2 tA3 · tA1 tA2 ta1 ta′1 tA2 tA1 .

Hence, the conclusion of the proposition holds for g = 1.
Next we assume, inductively, that the relation holds in Mod4

g−1. Since then
a0, a′0, ag, a′g are disjoint from A1, . . . , A2g−1, we have the relation

ta0 ta′0 tag ta′g = tA2g−2 · · · tA1 · tA2g−1 · · · tA2 ta1 ta′1 tA2 · · · tA2g−1 · tA1 · · · tA2g−2 tag−1 t ′ag−1

in Mod4
g by conjugation by tA2g−2 · · · tA1 . Since ag−1, a′g−1, ag+1, a′g+1 are disjoint

from A2g−1, A2g, A2g+1, ag, a′g, by the four-holed torus relation

tag−1 ta′g−1
tag+1 ta′g+1

= (tA2g−1 tA2g+1 tA2g tag ta′g tA2g )
2
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and conjugation by tA2g−1 tA2g+1 tA2g , we have the relation

t−1
ag

t−1
a′g

tag+1 ta′g+1
= t−1

a′g−1
t−1
ag−1

tA2g tA2g−1 tA2g+1 tA2g tag ta′g tA2g tA2g−1 tA2g+1 tA2g .

By combining these relations, we have

ta0 ta′0 tag+1 ta′g+1
= tA2g−2 · · · tA1 · tA2g−1 · · · tA2 ta1 ta′1 tA2 · · · tA2g−1 · tA1 · · · tA2g−2

· tA2g tA2g−1 tA2g+1 tA2g · tag ta′g tA2g tA2g−1 tA2g+1 tA2g .

Note that A1, . . . , A2g+1 are disjoint from a0, a′0, ag+1, a′g+1. Moreover, A2g and
A2g+1 are disjoint from A1, . . . , A2g−2 and A1, . . . , A2g−1, respectively. Therefore,
by conjugation by tA2g−2 · · · tA1 and tA2g+1 tA2g , we have

ta0 ta′0 tag+1 ta′g+1
= tA2g−2 · · · tA1 · tA2g−1 · · · tA2 ta1 ta′1 tA2 · · · tA2g−1 · tA1 · · · tA2g−2

· tA2g tA2g−1 tA2g+1 tA2g · tag ta′g tA2g tA2g−1 tA2g+1 tA2g

= tA2g+1 tA2g · tA2g−1 · · · tA2 ta1 ta′1 tA2 · · · tA2g−1 · tA2g tA2g+1 · tA1 · · · tA2g−2

· tA2g−1 tA2g · tag ta′g tA2g tA2g−1 tA2g−2 · · · tA1 .

This completes the proof of Proposition 6.3. �

We now prove Proposition 6.1.

Proof of Proposition 6.1. Let c′h1
be the separating simple closed curve as shown in

Figure 7. By Lemma 6.2 and Proposition 6.3, we have

tah1+1 ta′h1+1
= tch1

tc′h1
(tD0 tD1 · · · tD2h1

)2,

tch1
tc′h1

tag+1 ta′g+1
= tag tA2g · · · tA4h1+2 tEh1

tEh1
tA4h1+2 · · · tA2g ta′g

· tA2g+1 · · · tA4h1+2 tah1+1 ta′h1+1
tA4h1+2 · · · tA2g+1 .

Since ch1 and c′h1
are disjoint from A2h1+2, . . . , A2g, Eh1, ah1+1, a′h1+1, it follows

that

t−1
c′h1

t−1
ch1
· tah1+1 ta′h1+1

= (tD0 tD1 · · · tD2h1
)2,

tag+1 ta′g+1
= tag tA2g · · · tA4h1+2 tEh1

tEh1
tA4h1+2 · · · tA2g ta′g

· tA2g+1 · · · tA4h1+2 · t
−1
c′h1

t−1
ch1
· tah1+1 ta′h1+1

· tA4h1+2 · · · tA2g+1 .

Combining these relations gives the relation (21) in Proposition 6.1.
In 61

g , A2g+1 is homotopic to a′g, and (22) follows, completing the proof. �
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D0 D1

ch1

Eh1

c′h1

a2h1+1

a′2h1+1

A4h1+2 A4h1+4

A4h1+3 A4h1+5

Figure 7. The curve c′h1
on 62

g .

6C. A lift of Gurtas’ positive relator. Since ag+1 and a′g+1 are null-homotopic in
6g, we have tag+1 = ta′g+1

= 1 in Modg, so the relation in Proposition 6.1 is a positive
relator in Modg. Then we note that A2g+1 and a′g are homotopic to ag. On the other
hand, Gurtas [2004] gave the positive relator

(tA4h1+2 · · · tA2g tag tag tA2g · · · tA4h1+2 tD0 tD1 · · · tD2h1
tEh1

)2 = 1.

in Modg. Using the following theorem of Kas [1980] and Matsumoto [1996], we
show that the relation in Proposition 6.1 gives a lift of Gurtas’ positive relator in
Modg to Mod2

g.

Theorem 6.4 [Kas 1980; Matsumoto 1996]. If g ≥ 2, then the isomorphism class
of a Lefschetz fibration is determined by a positive relator modulo simultaneous
conjugations

tvn · · · tv2 tv1 ∼ tφ(vn) · · · tφ(v2)tφ(v1) for any φ ∈ 0g

and elementary transformations

tvn · · · tvi+2 tvi+1 tvi tvi−1 tvi−2 · · · tv1 ∼ tvn · · · tvi+2 tvi tt−1
vi (vi+1)

tvi−1 tvi−2 · · · tv1,

tvn · · · tvi+2 tvi+1 tvi tvi−1 tvi−2 · · · tv1 ∼ tvn · · · tvi+2 tvi+1 ttvi (vi−1)tvi tvi−2 · · · tv1 .

The aim of this section is to prove the following proposition. This proposition
applied to Proposition 6.1 gives the above mentioned lift.



LEFSCHETZ PENCILS AND FINITELY PRESENTED GROUPS 379

Proposition 6.5. In Modg, the following relation holds:

tEh1
tA4h1+2 · · · tA2g tag tag tA2g · · · tA4h1+2 tEh1

· tag tA2g · · · tA4h1+2 · (tD0 tD1 · · · tD2h1
)2 · tA4h1+2 · · · tA2g tag

∼ (tA4h1+2 · · · tA2g tag tag tA2g · · · tA4h1+2 tD0 tD1 · · · tD2h1
tEh1

)2.

In order to prove this, we need a lemma.

Lemma 6.6. We deform 62
g as shown in Figure 8(a) and (b). Let E and E ′ be the

simple closed curves in62
g as in Figure 8(a) and (b), and let a be the arc connecting

the boundary components of 62
g as in the figure. Then

tB0 tB1 · · · tBg (E)= E ′,(23)

tB0 tB1 · · · tBg tE(a)= tag+1 ta′g+1
(a).(24)

Proof. From the equality (20), we see that

tB0 tB1 · · · tBg =12g+1 · · ·1211t−1
cr
.

By drawing corresponding curves and applying the corresponding Dehn twist, we
find that

12g+1 · · ·1211t−1
cr
(E)= E ′ and 12g+1 · · ·1211t−1

cr
tE(a)= tag+1 ta′g+1

(a).

This proves the lemma. �

E
a2g+1

E ′

A1
A2 Ar

a′2g+1

Ar+2

a′2g+1 a2g+1

A1
A2 Ar

E ′

E
Ar+2

a2g+1

A1
A2 Ar

a

Ar+2

a′2g+1

(a)

a′2g+1 a2g+1

A1
A2 Ar

a

Ar+2

cr c′r

(b)

Figure 8. The curves E, E ′ and the arc a.
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Proof of Proposition 6.5. For simplicity of notation, we write

τ := tA4h1+2 · · · tA2g tag and τ := tag tA2g · · · tA4h1+2 .

Note that for each i = 2h1+ 2, . . . , 2g, we find that

tEh1
ττ tEh1

(Ai )= Ai and tEh1
ττ tEh1

(ag)= ag.

This gives

tEh1
ττ tEh1

· tAi ∼ tAi · tEh1
ττ tEh1

and tEh1
ττ tEh1

· tag∼ tag · tEh1
ττ tEh1

,

so we obtain the relation

tEh1
ττ tEh1

· τ ∼ τ · tEh1
ττ tEh1

.

Therefore, applying elementary transformations (including cyclic permutations)
gives

(25) tEh1
ττ tEh1

· τ(tD0 tD1 · · · tD2h1
)2 · τ ∼ tEh1

ττ tEh1
· τ · τ(tD0 tD1 · · · tD2h1

)2.

Since by drawing corresponding curves, applying the corresponding Dehn twist
and (24) in Lemma 6.6, we have

(ττ )−1(Eh1)= ta2h1+1 ta′2h1+1
(Eh1)= tD0 tD1 · · · tD2h1

(Eh1),

we thus obtain

ττ · tD0 tD1 · · · tD2h1
· tEh1
∼ tEh1

· ττ · tD0 tD1 · · · tD2h1
.

Therefore, by using this relation, we have

(26) tEh1
ττ tEh1

· ττ · (tD0 tD1 · · · tD2h1
)2

∼ tEh1
ττ · ττ · tD0 tD1 · · · tD2h1

· tEh1
· tD0 tD1 · · · tD2h1

.

By drawing corresponding curves, applying the corresponding Dehn twist and
(23) in Lemma 6.6, we obtain

(ττ )−1(A4h1+2)= tD0 tD1 · · · tD2h1
tEh1

(A4h1+2).

Therefore, we have

ττ · tD0 tD1 · · · tD2h1
tEh1
· tA4h1+2∼ tA4h1+2 · ττ · tD0 tD1 · · · tD2h1

tEh1
.

Note that for each i = 4h1+ 3, . . . , 2g, we find that

ττ(Ai )= Ai and ττ(ag)= ag.
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Moreover, since A4h1+3, . . . , A2g and ag are disjoint from D0, . . . , D2h1, Eh1 , we
therefore obtain, for each i = 2h1+ 3, . . . , 2g,

ττ tD0 tD1 · · · tD2h1
tEh1
· tAi ∼ tAi · tττ tD0 tD1 · · · tD2h1

tEh1
,

ττ tD0 tD1 · · · tD2h1
tEh1
· tag∼ tag · ττ tD0 tD1 · · · tD2h1

tEh1
.

This gives

ττ · ττ tD0 tD1 · · · tD2h1
tEh1
∼ ττ tD0 tD1 · · · tD2h1

tEh1
· ττ .

From this relation, applying elementary transformations (including cyclic permuta-
tions) gives

(27) tEh1
ττ · ττ · tD0 tD1 · · · tD2h1

tEh1
· tD0 tD1 · · · tD2h1

∼ ττ · tD0 tD1 · · · tD2h1
tEh1
· ττ · tD0 tD1 · · · tD2h1

· tEh1
.

Proposition 6.5 follows from the relations (25)–(27). �

7. Construction of simple loops R1, . . . , Rk

In this section, we prove Proposition 5.2. This was based on Korkmaz’s work [2009]
and the argument in [Akhmedov and Ozbagci 2013]. In Proposition 4.3 of [Korkmaz
2009], he defined l as l = l(r1)+ · · ·+ l(rk). However, in this paper, it is sufficient
to consider l as l =max1≤i≤k{l(ri )}. Before providing the simple loops in 6g in
Proposition 5.2, we need the following proposition about simple loops R1, . . . , Rk

in 6n+l−1.

Proposition 7.1. Let Fn be the subgroup of π1(6n) generated by a1, . . . , an , i.e.,
Fn is a free group of rank n. Let r1, . . . , rk be k arbitrary elements in Fn represented
as words in a1, . . . , an . Let l =max1≤i≤k{l(ri )}, where l(ri ) is the syllable length
of ri . Then there are simple loops R1, . . . , Rk in 6n+l−1 with the property that for
each 1≤ i ≤ k:

(a) Ri is freely homotopic to a simple closed curve which intersects an+l−1 trans-
versely at only one point.

(b) 8([Ri ]) = ri , where [Ri ] ∈ π1(6n+l−1) is the homotopy class of Ri , and
8 : π1(6n+l−1)→ π1(6n) is the map defined by 8(a j ) = a j for 1 ≤ j ≤ n
and 8(α)= 1 for α ∈ {an+1, . . . , an+l−1, b1, . . . , bn+l−1}.

Proof. Let us consider the surface 6n embedded in R3 as shown in Figure 1 such
that for each 1≤ j ≤ n, a simple closed curve b′j in 6n which is isotopic to b j lies
on the plane x = 0. Write ri = am1

i1
· · · amd

id
, where d = l(ri ) is the syllable length

of ri . We denote by ξ a constant such that the base point lies in the plane z = ξ .
Let L be an arc in 6n which lies in the half plane {z = ξ} ∩ {x ≥ 0}.
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γ1 γ1 γ2 γ−3 γ−1

B2 B1 B3 B5 B4
A2 A1 A3 A5 A4 L

(a)

δ1 δ4

δ2 δ3

δ′

δ′′

(b)

δ̃1

δ̃2 δ̃3
δ̃4

δ′

δ′′

(c)

Figure 9. Construction of Ri on 6n+d−1 for ri = a2a1a2
2a−1

5 a−3
4

and for n = 5.

For 1≤ t ≤ d , let αt be a loop in 6n which is isotopic to ait . If js = js′ for some
s < s ′, then we assume that αs′ is to the right of αs and that αs′ is disjoint from αs .
Here, right means the positive direction of the y-axis. Let At (resp. Bt ) be points
on L lying to the left (resp. right) of αt such that there are no As (resp. Bs) between
αt and At (resp. Bt ).

Let γmt = t−mt
αt

(ζt), where ζt is the subarc of L from the point A j to the point B j .
For each 1 ≤ j ≤ d − 1, let δ j denote the subarc of L from the point B j to the
point A j+1. Then we can define an arc β in 6n connecting A1 to Bd to be

β = γm1? δ1 ? γm2 ? δ2 ? · · · ? δd−1 ? γmd ,

where γ ? δ denotes an arc γ followed by an arc δ. Let δ0 be the subarc of L
from the base point to A1, and δd the subarc from Bd to the base point. Then
δ0 ? β ? δd represents ri (cf. Figure 9(a)). After perturbing β slightly, we assume
that δ1, . . . , δd−1 are pairwise disjoint and lie parallel to the plane x = 0. Note that
all self-intersection points of δ0 ? β ? δd lie on δ0 ∪ δ1 ∪ · · · ∪ δd .
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Let δ′ and δ′′ be arcs from the base point to A1 and from Bd to the base point,
respectively, which are disjoint from α1, α2, . . . , αd and b′1, b′2, . . . , b′n and lie in
the space {z ≤ ξ}. Suppose that the interiors of δ′, δ′′ and β are pairwise disjoint.
Then the loop δ′? β ? δ′′ represents

b1b2 · · · bi1−1ri b−1
id
· · · b−1

2 b−1
1

in π1(6n) (cf. Figure 9(b)).
Let D1, D′1, . . . , Dd−1, D′d−1 be pairwise disjoint disks in 6n such that for each

1≤ t ≤ d−1, Int(Dt) and Int(D′t) are disjoint from δ′, β and δ′′, and At ∈ ∂Dt and
Bt ∈ ∂D′t . We remove 2d − 2 open disks Int(Dt) and Int(D′t) from 6n . Then for
each 1≤ t ≤ d − 1, by attaching an annulus, denote by At , to the surface

6n \

d−1⋃
t=1

(
Int(Dt)∪ Int(D′t)

)
along ∂Dt and ∂D′t , we obtain the closed oriented surface(

6n \

d−1⋃
t=1

(
Int(Dt)∪ Int(D′t)

))
∩

( d−1⋃
t=1

At

)
of genus n+ d − 1, denoted by 6n+d−1. An orientation on 6n+d−1 is given by the
orientation on 6n .

We define a loop Ri in 6n+d−1 as follows. For each 1 ≤ t ≤ d − 1, let δ̃t be a
simple arc in At from the point Bt to the point At+1 such that δ̃t lies parallel to the
plane x = 0. Then by “replacing” δt in δ′? β ? δ′′ by δ̃t , we obtain the loop

R = δ′ ? γm1 ? δ̃1 ? γm2 ? δ̃2 ? · · · ? δ̃d−1 ? γmd ? δ
′′.

In particular, Ri is simple in 6n+d−1 (cf. Figure 9(c)).
Note that from construction, δ̃t ? δt is a simple closed curve in 6n+d−1. If we

collapse each At onto the arc δt , then we obtain a map 6n+d−1→6n . The induced
map π1(6n+d−1)→ π1(6n) takes [R] to

b1b2 · · · bi1−1ri b−1
id
· · · b−1

2 b−1
1 ,

which in turn is mapped to ri under the map π1(6n)→ π1(6n) sending a j to a j

and b j to 1 for all j .
Let h = n + l − 1, where l = max1≤i≤k{l(ri )}. For each 1 ≤ i ≤ k, we now

construct a loop Ri in 6h as follows. First, by sliding A1, . . . ,Al(ri )−1, we deform
the surface 6n+l(ri )−1 into the standard position as shown in Figure 1 in such a way
that the simple loop δ̃t ? δt becomes isotopic to bn+t and the boundary curves of
At become isotopic to an+t (cf. Figure 10(a), (b) and (c)). If l(r j )= l for some j ,
then we see that the simple closed curve ah intersects R j transversely at one point.
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(a) (b)

(c)

6h

(d)

61
h

(e)

6g

Figure 10. Construction of Ri for ri = a−1
3 a−1

2 in the case n = 3
and g = 8.

Therefore, we assume that l(ri ) < l. Next, we remove a small open disk from the
deformed surface near an+l(ri )−1 and disjoint from Ri (cf. Figure 10(d)). Thus, we
obtain a surface of genus n + l(ri )− 1 with one boundary component, denoted
by 61

n+l(ri )−1. We embed 61
n+l(ri )−1 into the standard surface 6h in such a way

that for each 1 ≤ t ≤ n + l(ri )− 1, simple loops at , bt in 61
n+l(ri )−1 correspond

to the simple loops at , bt in 6h (cf. Figure 10(e)). Finally, we replace Ri with
a simple representative of [Ri ]

(
(b1b2 · · · bh−1)(b1b2 · · · bh)

−1
)ε , where ε = ±1

(cf. Figure 10(d)). Then we see that the resulting simple loop Ri intersects ah

transversely at one point.
From the above construction, 8 : π1(6h)→ π1(6n) maps [Ri ] to ri for each

i = 1, . . . , k. This gives the required simple loops R1, . . . , Rk . �

Proof of Proposition 5.2. Consider a surface 6n+l−1 and the loops R1, . . . , Rk con-
structed in Proposition 7.1. We remove a small open disk from 6n+l−1 near an+l−1

and disjoint from all Ri (cf. Figure 11(a)). Denote by61
n+l−1 the resulting surface of

genus n+ l−1 with one boundary component. We embed 61
n+l−1 into the standard

surface6g in such a way that for each 1≤ t ≤n+l−1, simple loops at , bt in61
n+l−1

correspond to the simple loops at , bt in 6g (cf. Figure 11(b)). Then we can modify
R1, . . . , Rk so that each Ri (i = 1, . . . , k) satisfies the property of Proposition 5.2
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an+l−1

R2

R1
R3

n+ l − 1

(a)

an+l−1 2h1 a2h1+1 a2h1+h2−1

R2

R1
R3

h1 h2− 1
c2h1+h2−1

(b)

Figure 11. Modified curves R1, . . . , Rk in 6g.

by replacing Ri with a simple representative of [Ri ](b2h1+1b2h2+2 · · · b2h1+h2−i )
ε

if i is odd, and [Ri ]aε2h1+h2−i if i is even, where ε =±1 (cf. Figure 5). Therefore,
we obtain the required simple loops R1, . . . , Rk . �

8. Remarks

The results of [Gompf 1995; Donaldson 1999; Gompf and Stipsicz 1999] men-
tioned in the introduction naturally raise the following two basic questions, which
remain open.

Question 8.1 (cf. [Korkmaz and Stipsicz 2009]). Given a symplectic 4-manifold,
what is the minimal genus g for which it has a genus-g Lefschetz pencil?

Question 8.2. Given a finitely presented group 0, what is the minimal genus,
denoted by gP(0), for which there exists a genus-g Lefschetz pencil on a symplectic
4-manifold with fundamental group 0?

Although these two questions remain open, for Question 8.2, we can give an
upper bound for gP(0) as a corollary of Theorem 1.2.

Corollary 8.3. We have gP(0)≤ 4(n+ l− 1)+ k for k ≥ 1, and gP(Fn)≤ 4n+ 2.

However, this upper bound for gP(0) may not be sharp. In fact, since CP2

admits a genus-0 Lefschetz pencil, gP(0)= 0 if 0 is the trivial group. When we
replace the relations in Proposition 5.1 and the map ψk in Section 5A by another
relation and map, we can improve the upper bound of gP(0). For example, for
every positive integer n, the article [Hamada et al.≥ 2016] gave a genus-g Lefschetz
pencil on a 4-manifold Xn such that π1(Xn) ∼= Z⊕ Zn for every g ≥ 4 using a
similar construction to this paper. Therefore, gP(Z⊕Zm)≤ 4.



386 RYOMA KOBAYASHI AND NAOYUKI MONDEN

We expect that by a combination of substitution techniques and partial conjugation
techniques, we could obtain results for Lefschetz fibrations with (−1)-sections
analogous to those obtained by fiber sum operations. The articles [Ozbagci and
Stipsicz 2000; Korkmaz 2001; Monden 2014] gave examples of nonholomorphic
Lefschetz fibrations by fiber sum operations (and lantern substitutions). By a similar
technique to this paper (and a lantern substitution), two kinds of nonholomorphic
Lefschetz fibrations with (−1)-sections were constructed in [Hamada et al. ≥ 2016].
One is a Lefschetz fibration with noncomplex total space, and the other is a Lefschetz
fibration violating the “slope inequality”.

Finally, we explain why the Lefschetz fibrations constructed in [Korkmaz 2009;
Akhmedov and Ozbagci 2013; Kobayashi 2015] do not have (−1)-sections. In
[Korkmaz 2009; Kobayashi 2015], twisted fiber sum operations were adopted,
and the fibrations in [Akhmedov and Ozbagci 2013] were obtained by performing
Luttinger surgeries and knot surgeries on the symplectic sum of certain symplectic
4-manifolds. The fiber sum of Lefschetz fibrations has no (−1)-sections (see
[Stipsicz 2001a], and also [Smith 2001]). In particular, the symplectic sum of
symplectic 4-manifolds is minimal, that is, it does not contain any (−1)-spheres
(see [Usher 2006], and also [Sato 2006; Baykur 2015]), and Luttinger surgery
and knot surgery preserve minimality of symplectic 4-manifolds from the result of
[Usher 2006]. Therefore, we see that the fibrations in [Korkmaz 2009; Akhmedov
and Ozbagci 2013; Kobayashi 2015] do not have any (−1)-sections.
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