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LEFSCHETZ PENCILS AND FINITELY PRESENTED GROUPS

RYyoMA KOBAYASHI AND NAOYUKI MONDEN

From the works of Gompf and Donaldson, it is known that every finitely
presented group can be realized as the fundamental group of the total space
of a Lefschetz pencil. We give an alternative proof of this fact by providing
the monodromy explicitly. In the proof, we give an alternative construction
of the monodromy of Gurtas’ fibration and a lift of that to the mapping class
group of a surface with two boundary components.

1. Introduction

There exist Lefschetz pencils (fibrations over S? with (—1)-sections) whose total
spaces have a prescribed fundamental group. This follows as a corollary of the results
of Gompf [1995], who showed that every finitely presented group is realized as the
fundamental group of some closed symplectic 4-manifold, and of Donaldson [1999],
who showed that every closed symplectic 4-manifold admits a Lefschetz pencil.
Note that since we obtain a Lefschetz fibration with (—1)-sections by blowing up the
base locus of a Lefschetz pencil, and blowing up has no effect on the fundamental
groups of 4-manifolds, the above claim for Lefschetz fibrations with (—1)-sections
follows. Conversely, a 4-manifold admitting a Lefschetz pencil (fibration with fiber
genus greater than one) is symplectic (cf. [Gompf and Stipsicz 1999]).

Let Eé’ be a compact oriented surface of genus g with b boundary components
81, ..., 08p, and let Modi’, be the mapping class group of Zé,’ . We denote by ¢, the
right-handed Dehn twist along a simple closed curve ¢ in Eé,’ . Then a relation
]_[[;-:1 ts; = [[i~, t, provides a genus-g Lefschetz pencil/fibration with b base
points/(—1)-sections. Conversely, given any Lefschetz pencil (fibration with (—1)-
sections), we obtain such a relation. However, the relations corresponding to the
above Lefschetz pencils/fibrations constructed based on the results of [Gompf 1995]
and [Donaldson 1999] are implicit. Our purpose is to provide the relation of such a
genus-g Lefschetz pencil explicitly, so this gives an alternative proof of the above
corollary using mapping class group arguments. To state our main result, we need
to introduce some notation.
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Definition 1.1. Let "= (x, x2, ..., x, |71, 72, ..., 1) be a finitely presented group
with n generators and k relations. For w € I', we define /(w), called the syllable
length of w, to be

[(w) =min{s | w=x""x]"---x]" for 1 <i; <nandm; € Z}.

Define [ = max{l(r;) | 1 <i <k}. If k =0, we define [ = 1 (note that /[ depends on
the presentation and that our definition of / differs from that of [Korkmaz 2009]).
We always assume that the relators r; are cyclically reduced.

In Section 5A, we give a relation f5,t5, = Wzg (1, ¥%) in Modé using certain
substitution techniques, where Wég (1, ¥) is a product of right-handed Dehn twists.
Our main result is the following:

Theorem 1.2. If k > 1 (resp. k = 0), then, for g > 4n+1— 1)+ k (resp. g >
4n +2), there exists a genus-g Lefschetz pencil/fibration with two base points/(—1)-
sections on a closed symplectic 4-manifold X such that t5,t5, = Wzg (1, Yi) is the
corresponding relation and 7\ (X) is isomorphic to T.

Theorem 1.2 gives an upper bound for the minimum g, denoted by gp(I"), for
which there exists a genus-g Lefschetz pencil on X such that 7y (X) is isomorphic
to I'. We describe it in Section 8. To give a better upper bound on gp(I"), we
construct a lift of Gurtas’ positive relator (see [Gurtas 2004]), denoted by 62, to
Modz, in Section 6 by combining a lift of a hyperelliptic involution and the relation
given in [Korkmaz 2009] to Modﬁ. On the other hand, Gurtas showed that the
positive word 62 given in [Gurtas 2004] is a positive relator by checking the images
of certain cycles on X, under 6. In this sense, our construction of the monodromy
of Gurtas’ fibration is different from that in [Gurtas 2004].

Here, we explain why we focus on Lefschetz fibrations with (—1)-sections. A
section of a Lefschetz fibration over S? plays important roles in the total space.
The existence of a section o of a Lefschetz fibration f : X — $? with a fiber F is
required to compute the fundamental group of X and to decide whether X is spin or
not (see [Gompf and Stipsicz 1999; Stipsicz 2001b]). In addition, the complement
of a regular neighborhood of F U o is a Stein filling of its boundary equipped with
the induced tight contact structure (see [Akbulut and Ozbagci 2002; Etnyre and
Honda 2002; Loi and Piergallini 2001]). Especially, a (—1)-section is important in
Lefschetz fibrations in the following senses.

(1) Blowing up of the base locus of a Lefschetz pencil yields a Lefschetz fibration
with (—1)-sections. Conversely, we can obtain a Lefschetz pencil by blowing
down of (—1)-sections of a Lefschetz fibration.

(i) From given Lefschetz fibrations, we can construct a new Lefschetz fibration by
fiber summing them. If a Lefschetz fibration admits a (—1)-section, it cannot
be decomposed as any nontrivial fiber sum (see [Stipsicz 2001a; Smith 2001]).
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For these reasons, we can regard Lefschetz fibrations with (—1)-sections as “funda-
mental” and “prime” ones.

Note that we can express Gompf’s result in terms of Lefschetz fibrations over S2.
The article [Amords et al. 2000] gave a construction of Lefschetz fibrations whose
total spaces have a given fundamental group without using Donaldson’s result.
However, their monodromies are implicit. The explicit monodromies of such
fibrations were given by Korkmaz [2009]. Akhmedov and Ozbagci [2013] gave a
new construction of such fibrations, and the first author [Kobayashi 2015] improved
the result of [Korkmaz 2009]. For technical reasons, the fibrations in [Korkmaz
2009; Akhmedov and Ozbagci 2013; Kobayashi 2015] have no (—1)-sections (see
Section 8), so we would like to emphasize that our result is different from the above
four results.

Here is an outline of this paper. In Section 2, we fix notation. In Section 3,
we introduce a substitution technique and the relation constructed by Korkmaz.
Section 4 reviews some standard facts on Lefschetz fibrations and pencils. In
Section 5, we prove the main results. In Section 6, we give an alternative construction
of the monodromy of Gurtas’ fibration and provide a lift of that to the mapping class
group of a surface with two boundary components. In Section 7, we introduce the
construction of a loop which is needed for the proof of Theorem 1.2. In Section 8§,
we give an upper bound of gp(I") and some remarks.

2. Notation

Let X, be the closed oriented surface of genus g standardly embedded in 3-space
as shown in Figure 1. We use the symbols ay, by, ..., ag, by to denote the standard
generators of the fundamental group 71 (Z,) of X,. For a and b in (%), the
notation ab means that we first apply a then b.

Let co, ¢1, €2, ..., Cg, A, Agy1, ), aéH be the simple loops in X, depicted in
Figure 1. Note that in 71 (%), up to conjugation,

(1) ci=b; by (aibiar) - (aibja; ') foreach 1<i<g;
ao aj ar as dg—1 Qg
1o 00 - b o8
, i ; : : . ~ gy
ap-" ¢q C1 C 3 Co_1 Cq

Figure 1. Generators a;, b; of the fundamental group and loops c;, a, a;, INE
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as well as
(2) co = Cg = 1’
3) ap=agr1=ay=ay,, =1.

Then the fundamental group 71 (Z,) has the presentation
nl(Eg) = <a19 blv e 7ag7 bg | Cg)-

Let By, Bi, By, ..., By, aj, ..., az”, be the simple closed curves in X, shown in
Figure 2. Suppose that g = 2r. Then it is easy to check that, up to conjugation, the
following equalities hold in 7y (Xg):

“4) Box—1 = agbibyyy - - - bgy1-kCgr1-kagr1—x forl <k <r;
5) Boy = aybiy1biyo - - - bg_iCorag 1k forO<k <r;
(6) Apyy = CkQjt for0<k<g-—1.

If g =2r 41, then By;_ satisfies the equality (4) for 1 <k <r 4 1.
Let Ay, ..., Aygyy be the simple closed curves on X, shown in Figure 3. It is
easily seen that, up to conjugation, the following equalities hold in 71 (Xg):

(7) Ao = by forl <k=<g;
(8) A1 = aap), for0O<k<g.
Moreover, when we denote by Dy, D1, D, ..., Dy, and Ej, the simple closed

curves on X, indicated in Figure 3, it is immediate that, up to conjugation, the

dg+1

Figure 2. The curves By, By, By, ..., Bg,aj, ..., a,.
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2}{11
r N hy+1
’,,""——‘.--‘ l,,"".- -------------------- --\\\ E / /
S OY SN
2 2/”:: i A4\hl+3 A4\hl+5
—————— - /,
Aoy +1
2}{11
r N 612h1+1

Asghy43 Adhys
it
Doy +1
Figure 3. The curves Ay, Ay, ..., A2ey1, Do, D1, ..., Doy, and Ey,.

following equalities hold in 771 (Xg):

&) Do =Db1b; - "bzh]az_hll+l;

(10)  Dok—1 = arbibpy1 -+ - b2h1+lka2h1+17k02h1+17kaz_h]l+1 for 1 <k <hy;
(11) Dok = arby41bk12 -+ bzhl—kczhl—ka2h1+1—ka{;,11+1 for 1 <k < hy;
(12) Ep, = cpaop 41

Note that we can modify X, and Dy, D1, D, ..., Dy, E;, by isotopy as in
Figure 4.

Throughout this paper, we use the same symbol for a loop and its homotopy
class. Similarly, we use the same symbol for a diffeomorphism and its isotopy class,
or a simple closed curve and its isotopy class. A simple loop and a simple closed
curve will even be denoted by the same symbol. It will cause no confusion as it
will be clear from the context which one we mean.

3. Mapping class groups

3A. Substitution techniques. Let 2§ be a compact oriented surface of genus
g with b boundary components. The mapping class group of %’ which we
denote by Mod?, is the group of isotopy classes of orientation preserving self-
diffeomorphisms of Zb We assume that diffeomorphisms and isotopies fix the
points of the boundary. To simplify notation, we write ¥, = 20 and Mod, = Mod0
For ¢ and ¢, in Mod? , the notation ¢;¢, means that we ﬁrst apply ¢, then ¢1
(Our notation differs from that of [Korkmaz 2009].) Let z. be the Dehn twist about
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Figure 4. Modified surface £, and modified curves
Dy, Dy, ..., Doy, and Ep,.

a simple closed curve ¢ in Eé’ . Note that 74 = ¢t.¢~! for an element ¢ in Modi’,
and t.ty = t4t. if c is disjoint from d.

Definition 3.1. A word @ := 1.1, - - - 1., in Mod, is called a positive relator if
satisfies o = 1.

We introduce a primary technique to construct new products of right-handed
Dehn twists in Modg from old ones.

Definition 3.2. Let ¢ be an element in Modg. Write
W=tcte, 1o, W = tgentpen - 1o V=taqta, - tg.

If the relation V = W holds in Modg and ¢ (d;) =d; for all i, then by 74 = ¢tc¢_1
we obtain the relation
vV =we.

in Modg. Let o be a product of right-handed Dehn twists which includes V as a
subword:

o:=U;-V-U,,

where U, and U, are products of right-handed Dehn twists. Then we get a new
product ¢(¢) of right-handed Dehn twists

s(@):=U-W?-Uy,

and ¢ (¢) is said to be obtained by applying a W¥-substitution of V to .
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Remark 3.3. Fuller introduced the above operation for ¢ = id. Auroux [2006b;
2006a] introduced the operation to obtain ¢(¢) from ¢(id), called a “partial conju-
gation” by ¢. In a previous paper, we call the operation in Definition 3.2 a “twisted
substitution”. As B. Ozbagci and R. 1. Baykur kindly pointed out to us, the twisted
substitution is a combination of these two operations.

3B. The word W. In this section, we introduce a word W5 in Modi,. We denote
by 22 the surface of genus g with two boundary components obtained from X, by
remov1ng two disjoint open disks bounded by a¢1 and a 4 (cf. Figure 1 and 2),
SO g4 and a/ g1 are the boundary curves of E;. Set

o |Gnitsits, o tste)? if g =2r,
2 = 2 .
(tBotBlth thtt%rHta’ 1) if g=2r+1.

Korkmaz [2009] gave the following relation:
Lemma 3.4 [Korkmaz 2009]. We have t,,,, t“§+1 = Wf in Modé.

Although Korkmaz does not prove Lemma 3.4, we can prove it by applying
the same argument as in Section 2 of [Korkmaz 2001]. In Section 6A, we give a
very short outline of the proof. Since the simple closed curves ag1 and a; 4 are
null-homotopic in X, it follows that 7, , = =l = =1in Mod,. Therefore, the word
W2 in Mod, is a positive relator. This posmve relator for g = 2 was discovered
by Matsumoto [1996], and its generalization was constructed independently by
Cadavid [1998] and Korkmaz [2001].

4. Lefschetz pencils and fibrations

We recall the definition and basic properties of Lefschetz pencils and fibrations.
More details can be found in [Gompf and Stipsicz 1999].

Definition 4.1. Let X be a closed, connected, oriented smooth 4-manifold, and let
B=1{b1,...,byp}and C ={py, ..., p,} be finite, disjoint subsets of X.
Let f: X\ B — S? be a smooth map satisfying the following three conditions:

(a) For each b; € B, called the base point, there are orientation-preserving complex
coordinate charts on which f is of the form f(z1, z2) = z1/22.

(b) C is the set of critical points of f, and for each p; and f(p;), there are complex
local coordinate charts agreeing with the orientations of X and S? on which f
is of the form f(z1, z2) = z122.

(c) For g € 2 — f(C), the set f~'(q) U B C X is diffeomorphic to Z.

Then f is called a genus-g Lefschetz pencil if B is a nonempty set, and f is called
a genus-g Lefschetz fibration if B is the empty set.
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The set B is called the base locus, and for each g € S2, the set f(g)"'UB is
called the fiber of f. We assume that f is injective on C and that f is relatively
minimal (i.e., no fiber contains a sphere with self-intersection number —1). A fiber
containing a critical point is called a singular fiber. Each singular fiber is obtained
by collapsing a simple closed curve, called the vanishing cycle, in the regular fiber
to a point.

Once we fix an identification of X, with the fiber over a base point of S2— £(C),
we can characterize the Lefschetz fibration f : X — S? by its monodromy rep-
resentation m1(S*> — f(C)) — Mod,. Note that in this paper, this map is an
antthomomorphism. Let y1, ..., y, be an ordered system of generating loops for
71(S% — £(C)), such that each y; encircles only f(p;) and y;ys - -- ¥, is homo-
topically trivial. Thus, since the monodromy of the fibration along each of the
loops y; is a right-handed Dehn twist along the corresponding vanishing cycle, the
monodromy of f comprises a positive relator

ty, - tyty, =1 € Mod,,

where the v; are the corresponding vanishing cycles of the singular fibers. Con-
versely, for any positive relator ¢ € Mod,, we can construct a genus-g Lefschetz
fibration over S whose monodromy is 0. Therefore, we denote a genus-g Lefschetz
fibration associated to a positive relator ¢ in Mod, by f, : X, — § 2,

Definition 4.2. For a Lefschetz fibration f : X — S, amap o : §? — X is called
a k-section of f if f oo =1idg and the self-intersection number of the homology
class [0 (S?)] in Hy(X; Z) is equal to k.

When a Lefschetz fibration X — S? admits a section, we can compute the
fundamental group of X as follows.

Lemma 4.3 (cf. [Gompf and Stipsicz 1999]). Let o be a positive relator given by
by, -+ - tyby, = 1 in Modg. Suppose that a genus-g Lefschetz fibration f, : X, — 52
admits a section o. Then the fundamental group w\(X,) is isomorphic to the
quotient of w1 (X,) by the normal subgroup generated by vy, .. ., v,.

From the definitions of Lefschetz fibrations and pencils, blowing up all points of
B={qi,...,qp}of a genus-g Lefschetz pencil yields a genus-g Lefschetz fibration
with b disjoint (—1)-sections. Let 1, 2, . .., 85 be b boundary curves of Eg’. Then
a lift of a positive relator ¢ in Modg, namely t,, - - - t,,t,, = 1, to Modg as

tl);,, e tvétvi = t61[32 . o tab

shows the existence of b disjoint (—1)-sections of f,. Here, v; is a simple closed
curve mapped to v; under ES — X,. Conversely, such a relation determines a
genus-g Lefschetz fibration with m disjoint (—1)-sections and a genus-g Lefschetz
pencil by blowing these sections down.
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5. Proof of Theorem 1.2

For a finitely presented group I' = (x1, x2, ..., x, | 71, 12, . . ., 1) With n generators
and k relators, let [ = max{Il(r;) | 1 <i <k}, where [(r;) is the syllable length of r;.
In this section, we denote by 4| and h; two integers satisfying 1 > n 41 — 1 and
2(hy — 1) > k, respectively.

5A. Construction of a word Wf (1, ¥;). In this subsection, we construct a key
relation in Modz,.

Let us consider Z§ obtained from X, by removing two disjoint open disks

surrounded by a, 1 and a; 41 (see Section 2 and Figures 1-3). Write r =2h+hy—1

and g =2r or2r+1. For h, — 1 > 1, we set

X= tA4h|+2tA4h1+3 c Ay,
X= tay -+ tA4h1+3tA4hl+2’
Y = (tpylp, +* + tpy,)-
Moreover, we define words V; and V> to be
Vi=tg, Xta,ta;)_(tghl ta XYX1y,
Vo = tg, Xta ta Xtg, ta,  XYX1,,,.
Then we obtain the relations in the following proposition.
Proposition 5.1. We have 1., = Vi and t,, 1y = V2 in Modi,.

We postpone the proof of Proposition 5.1 until Section 6 (see Proposition 6.1).
Lethy >n+1—1and 2(hy — 1) > k. The next proposition is needed to prove
Theorem 1.2.

Proposition 5.2. Let F, be the subgroup of m\(X,) generated by the generators
ai,...,a, i.e., F, is a free group of rank n. Let ry, ..., r; be k elements in F,
represented as words in ay, ..., a,. Let ] = maxi<;<x{l(r;)}, where [(r;) is the
syllable length of r;. Then there are simple loops Ry, ..., Ry in Z, (see Figure 5)
with the property that, for 4h; +2 < j <4h;+2h, —2 and 1 <i <k,

(@) R;is disjointfrom A2h|+1, RN A4h| y C2hy+hy—1 (=cp).
(b) Ry intersects axp,+n,—1 at one point and does not intersect A for any j.

(¢) R; intersects Aap,2n,—i at one point and intersects neither ay, yp,—1 nor A
forany j #4hy+2hy —i andi > 2.

(d) ®([R;]) =ri, where [R;] € m1(X,) is the homotopy class of the loop R;, and
D (Xg) = m1(Z,) is the map defined by ®(a,,) = an, for 1 <m <n and
() =1 fora € {aps1,...,ag,b1,...,bg}.
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Qnii—1  2h a a ,

p / +1—-1 Al \ }h1+1 ]{2 /2h1+h2 1
pni=f £ Ag+1

O ©
© /
angl
< y Y %,_/ C2h1+h2 1
hy hy —1
Figure 5. Curves Ry, ..., R;in Z,.

In Section 7, we prove Proposition 5.2 by constructing simple loops Ry, ..., Ry
explicitly. We also consider the loops Ry, ..., Ry as simple loops on Eéz, by remov-

ing two disjoint open disks surrounded by a,1, a,, , from X, (see Figure 5).

g+l
Fori =0,1,...,k, we define an element v; in Modi, to be

Vo= Lay, Wby, 1Ty o+ Ty »

Vi = TR 1—i TRy " " IRy Yo,

where the R; are the loops on 22 described above. From Proposition 5.2, for each i,
we see that ¥;(c,) = ¢, if g = 2r while ¥{(a,+1) = a,+1 and ¥ (arH) = ar+1
if g=2r+1.

If g = 2r, then we can find two 7, in the word Wg By Proposition 5.1, we can
apply V‘d—substltutlon for one f, and V ‘-substitution for the other.

If g =2r + 1, then since t2 t2 = (tg, 1, ) we can find four 7,, .7, , in
Ari1 r+1

the word Wg By Proposition 5 1 we can apply V‘d—substltutlon for one 1,, 1,
and Vw’ substitution for the other.

If we set

r+1

W5 (1, ¥;) := (1Bt 1B, - - - 1, V1) (1Bl 1B, - - 1B, v
if g =2r, and
WS (L) = (tgts th, -+~ tyta, ey, V2 (BB, 1By 1B tay | V3
if g =2r + 1, then we get the next lemma.
Lemma 5.3. We have to,,1y, = W5 (1, ¥;) in Modz.

Since #4,,, = 1 and 7, = 1 in Mod,, the word W5 (1, ;) in Mod, is a pos-
itive relator. Therefore, we obtain a genus-g Lefschetz fibration fWg(l v With
two disjoint (—1)-sections (and genus-g Lefschetz pencil with two base points
corresponding to Wf (1, ¥)). Then, we have the following results which we prove
in Section 5B and in Section 5C.
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Theorem 5.4. Suppose that k = 0. We denote by F,, a free group of rank n. If
g >212n+ 1), then we have

T (wa(l,wo)) =F,.
Theorem 5.5. Suppose thatk > 0. If g > 4(n+1—1) +k, then we have
T (wa(l.m)) =T.
Combining Theorem 5.4 and 5.5, we obtain Theorem 1.2.

5B. Proof of Theorem 5.4. In this section, we prove Theorem 5.4. We begin with
a lemma.

Lemma 5.6. Letr =2h; + hy — 1. Let (S) be the normal closure of the elements
of the set S of simple closed curves on I, defined by

S: {BO7 Blv L] Bgv D09 Dlv LI ] D2h17 Ehl’ A4]’l1+27 LI ] A2r,ar,a;}
if g =2r, and by
S:{BO’BI’ --~’Bg’ ar-‘r]»a;_l,_l’DOlea "'7D2h1’Eh17A4h1+27 ---9A2r+1»ar»a,/»}

ifg=2r+1. Then(Xy)/(S) has a presentation with generators ay, by, . . ., ag, b,
and with relations

aidgi1—i = biag—b—l—ibg—b—]—iag_ilfi =1 forl<i=<r,
@py+k =bop k=1 forl <k <hy;—1,
ajazy 41-j = bja2h1+lfjb2h1+lfja2_hl]+1_j =1 forl1<j=<h,
cp, =1
if g =2r,and
AiGgy1—i = biag+1_,~bg+1_ia;il_i =1 for 1<i<r,
@py+k =bopk =1 forl <k <hy—1,
a;jasp +1-j = bj“2h1+1—jb2h1+1—jaz_hll+1_j =1 forl1<j<h,
ary1=cp =1
ifg=2r+1.

Proof. Suppose that g = 2r. From the equalities (4) and (5) in Section 2, in
m1(Zg)/(S) we have

(13) ajagi1—i = 1.
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This gives
Il =Byi—1 =bibiy1---bgt1-icgy1-i forl <i=<r,
1=By = bi+1bi+2 s bg_icg_,» forl <i<r
in 1 (X,)/(S). From these two equalities, we have bic;_libgﬂ,icgﬂ,i =1 for

each 1l <i <rand

(14) ¢ =1.

Note that cgy1—; = bgil_icg_i (ag+1_,~bg+1_,~a;1_i) from the equality (1). There-
fore, by bic;_libgﬂ,icgﬂ,i =1, we obtain

(15) bkag+1—ibg+1—ia;1,i =1.

From a, =1, A; = 1 for 4h; + 2 <[ < 2r and the equalities (7) and (8), we
obtain
(16) a2,k = bopy 1k =1
for 1 <k <hy—1. From a, = 1 and the equalities (6), (14), (1) and (16), we have
(17) Ccr—1=cop, = 1.
By azp,+1 =1, ¢, = 1 and the equalities (9), (10) and (11), an argument similar
to the proofs of the relations (13) and (15) gives
(18)  ajam1-j = bjaom11-jbami-jay, ;=1 and ¢, =1

for 1 < j <2h.
From the equalities (13), (14), (15), (16), (17) and (18), we see that 1 (X,)/(S)
has a presentation with generators ay, by, ..., ag, bg and with relations

—1 .
@iGgi1-i =biagyi-ibgr1-ia,, ;=1 forl<i<r,
Wp 4k =boppk =1 forl <k <hy—1,
—1 .
ajash +1-j =bjam y1-jbon y1-jay, ;=1 forl<j<hi,
Cg=0Cr=Cr_1]=Cop =Cpy, = L.
Then by the equalities (1), (16) and (18), we can delete from the above the relations
Cg = ¢y = C¢r—1 = 25, = 1. This is our claim.
Suppose now that g = 2r + 1. Since @, 41 =a,,; =1 and a, | = c;a,11, we

have ¢, = 1. A similar argument as in the case g = 2r shows that 71 (X,)/(S) has
the desired presentation. This completes the proof. ([

We can now prove Theorem 5.4.
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Proof of Theorem 5.4. Let hy > n and hy — 1 > 1. For simplicity of notation, we
write G instead of 7y (XWZg(l’%)).
Suppose that g =2(2h; + hy — 1) and let r =2k + hy — 1. Note that G has a
presentation with generators ay, by, ..., ag, by and with relations
cg=1,
Bi=1 forO0<i<g,
ar=a.=E =1,
Di=Ar=1 for0<j=<2hy,4h+2=<k <4h;+2hy -2,
Volay) = yola,) = Yo(Ep) =1,
Iﬁo(Dj) =vYo(Ay) =1 for0<j<2hy,4h;+2 <k <4hy+2hy—2.

It is easily seen that, up to conjugation, we have the equalities

Yo(Do) = ap, - - - 120,41 Do,
-1
Yo(Dau—1) = by, 1ah, -+ Gng2anp1 Dy forl1 <l <n,

Yo(Du) = by, _y,\an, -+ Gny2ani 1Dy for1<l<n
in 1 (Xg). Thus, by Do = ¥0(Dg) = D; =o(D;) =1for 1 < j <2h, we obtain
b2h1_1+1 =1 forl<l<n.
Similarly, we have the following equalities (up to conjugation) in 71 (Z):

Yo(Day-1) = bg_hll_l+1ah1 ceappqDy—y forn+1<I<r-—1,
Yo(Da) = bz_hll _141Ghy Q20141 Dy forn+1 <1 <r—1,
Yo(Dop—1) = bh_llJrlah.Dzh]—h
Yo(Dan,) =b;1]+132h1-
By Dj =1for 1 < j <2hy and ¥o(Dy—1) = Yo(Dy) =1forn+1=<1=<hy, we

obtain
aq=1 forn+1<I<h.

Moreover, by ¥0(D2;) = $o(D2+1) = Yo(Dop) =1 forn+1 <1 <h; —1, we
have

b2h1_1+1 =1 forn+1<Il<h,.

Here, since Vo(a,) =a,, Yo(a,) =a,, Yo(Ep,) = Ej, and yo(Ar) = Ag in 1 (Xy)
for each 4h; + 2 < k < 4h| + 2hy — 2, we can delete the relations ¥y(a,) = 1,
Yola,) =1, Yo(Ep,) =1 and ¥o(Ag) = 1 from the above presentation of G.
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From the above arguments and Lemma 5.6, we see that G has a presentation
with generators ay, by, ..., ag, by and with relations

-1 .
aidgy1—i = b,-ag+1,,-bg+1,,-ag+l_i forl <i<r,

Wpk =boppx =1 forl <k <hy—1,

~1 .
ajrp 41— =bjaon 41-jbon v1-jay,, ;=1 forl <j<hy,

Ch1=1,
Apyl =Apy2 =" =dap, =1,
bhy =bpy1="--=boyp, = 1.

It is easily shown that this is a presentation of the free group of rank n with free
basis ay, ..., a,, that is, G is isomorphic to F,.
The proof for g =2r + 1 is similar. This completes the proof of Theorem 5.4. [J

5C. Proof of Theorem 5.5. We now prove Theorem 5.5. The proof is inspired by
[Korkmaz 2009] and that of Proposition 13 in [Akhmedov and Ozbagci 2013]. For
simplicity, we write G’ instead of 71 (X Wf(l,wl))'

Proof of Theorem 5.5. Suppose that g = 2(2h; + hp, — 1). Since R; intersects
a2h,+h,—1 at one point and does not intersect A; for j =4h;+2,...,4h;+2hy -2,
and A2y +hy—1 is disjoint from a,41, ..., ap,, bh|+1, R b2h1 and Ry, ..., Ry, we
see that in 1 (Xg), up to conjugation,

Yk (@2, +hy—1) = tR, (@2, +hy—1) = Aoh 41 —1 RS,

where € is equal to 1 or —1. Since azp,+n,—1 = 1 in G’, we may replace the relator
VYi(@n,+h,—1) =1by Ry = 1.

Let ¢ be an element of the set of the vanishing cycles of fwf (1.y)- If Ry is disjoint
from vYx_1(c), then we have Y (c) = tg, (Yk—1(c)) = Yx—1(c). If R intersects
Yr—1(c) at ¢ points, then it is easily seen that there are elements x, ..., x;4] in
m1(Zg) such that ¥, _1(c) = x1x2 - - - x;41 and that

tr, (Yi—1(0)) = X1 RY' X2 R -+ - x, RY' Xp 41

(up to conjugacy), where each ¢; is equal to 1 or —1. From R; = 1, we obtain
Yi(c) = tr,(Yr—1(c)) = Yx—1(c) in G'. Therefore, we may replace the relator
Vi(c) =1by Yi—1(c) = L.

By repeating this argument for each i = k — 1,..., 1, we see that we may
replace the relators ¥ (A4n,+2n,—k+1—i)) = 1 and Y (c) =1 by Ryy1—; =1 and
Yo(c) =1, respectively. In particular, since for each j =4h+2,...,4h;+2hy, —2,
Az +h,—1 =1 and A; =11in G’ and aop, 41,—1 = Yo(a2n, +n,—1) and A; = Yo (A))
in 1 (Xg) (up to conjugation), we can delete the relators Yy (a2p, +1,—1) = 1 and
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VYik(Aj) = 1. Therefore, from the proof of Theorem 5.4, we see that G’ has a
presentation with generators ay, by, ..., ag, by and with relations

-1 .
AiGgy1—i = biag+1,ibg+1,iag+l_i forl <i<r,
ap+k =bop =1 forl <k <hp—1,

~1 .
ajrp 41— =bjaon 41-jbonv1-jay, ;=1 forl <j<hy,

cp =1,

nt1 =apy2=---=ap =1,
bn, =bpy+1="--=bu, =1,
Ri=Ry=- =R, =1.

We note that the element [R;] € 1 (X,) is contained in the subgroup generated by
ay, by, ..., ap,, th and arhy+1, b2h1+1, ey Q2hythy—1s b2h1+h2—1- Since from this
presentation, we see thata; =1fors =n+1,...,h,2h1+1,...,2h1+hy — 1
andbj=1for j=1,...,hy,2h1+1,...,2h1+hy—1, we get a word representing
the element r; by Proposition 5.2. Therefore, G’ is isomorphic to T".

A similar argument works for g = 2(2h; + hy, — 1) + 1. Since fwf(l,wk) has
at least two disjoint (—1)-sections, by blowing down one of them we obtain the
required genus-g Lefschetz pencil. This completes the proof of Theorem 5.5 and
therefore, as discussed in Section 5A, also of Theorem 1.2. |

6. Construction of a lift of Gurtas’ positive relator

In this section, we prove Proposition 5.1 and give a lift to Modf, of the positive
relator in Mod, given by Gurtas [2004].

6A. Outline of the proof of Lemma 3.4. We now give an outline of the proof of
Lemma 3.4, which is needed to prove Proposition 5.1.

Outline of the proof of Lemma 3.4. We define Ag = Ag = 1. Moreover, for each
k=1,...,2g+ 1, we define Ay and Ay to be the words

Ak=l‘A1lA2---l‘Ak and Zk=tAk"'tA2tAl-
Foreachk=0,1,..., g, the words B and § are defined by
Bk = ZkAZg—H—kAz_glkak_l and B = Zﬁ“-

Then by applying the argument from Section 2 of [Korkmaz 2001] with o; (which
is the standard generator of the braid group Bog» on 2g + 2 strings) replaced by
ta,, we have the relation

(19) BoBiBa- - BeB2 = Angi1Ang - - A3ALAT.
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It is easy to check that Ak Aorg_i(Azg1+1-k) = By. This gives
g, = (ZkAZg—k)tAng,k(ZkAZg—k)_l = ZkAZg—H—kAz_g]_ka_I = Br.
Therefore, from the relation (19), we have
BB, 1B, * - th(Zg)2g+2 = Agg1Qng - - A3 A A

~28+2 ~g+l1

Using the chain relations Aj
g =2r+1, we have

=1, when g =2r and Ag" " =1,,,,1,, When

IByIB,IB, - - " IB,Ic, forg:2r,
(20)  Aggi1Agg- - A3A AL = ¢
1By !B\ 1By * 1B Lo, la),, TOrg=2r+1.

If we prove that tagﬂ = (Aggy1Q2g - A3A>A)? in Modz,, the assertion
follows. Note that the cham relation Afﬁ =lagla), > and 14, Ay = Apta,_ if
1 <k <m (see [Korkmaz 2001, Lemma 2.1(a)]), hold 1n Mod2 Then we have

2g+2

A2§+1 = A2g+1A2gl‘Azg+1A2g+1A2g+1

1
= A2g-‘r1 A2g A2g-‘r1 tAzg A2g+1

_ 2g—1
= Aog 1 A2 Agg1(Tag, sy )5, Adg

2g—2
= A2g+1 AQgAQg—] A2g+1 (tAZg—l tAZg)tAZg—] A2g+1

2g—2
= Aog1824A2g 1825 2(TAr, 1 TAs T Asg 1) (EAsy 1 TA2 )T A5 Ddg i

= Aog1Q0g - Ap(faytay -+ tay, ) (Faytas - - tay,) <+ - (EatA3)EA, Aogyi

= Aggi1log - A1Agy1Ang -+ Ay,
and the proof is complete. ([

6B. Proof of Proposition 5.1. In this section, we prove Proposition 6.1 instead
of Proposition 5.1. Note that if we set g = r in the notation of Proposition 6.1
and consider an embedding Erz — Ef, (resp. Erl — Zgz) mapping (@41, a;+1)
(resp. a,+1) in Proposition 6.1 to (a,41, a; +1) (resp. ¢,) in Proposition 5.1, then we
get Proposition 5.1. Therefore, it is sufficient to prove Proposition 6.1.

Proposition 6.1. Let E; (resp. X ;,) be the compact oriented surface of genus g
with two boundary components (resp. one boundary component) obtained from %,

by removing two disjoint open disks (resp. one open disk). Let ag1 1, a +1 = Cglg|
(resp. agy1) be the boundary curves of 22 (resp. the boundary curve of x! g)- Then
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the relations
2D tag+1taé,+1 = tE;,l tA4h]+2 <o tAzgtagtaétAzg <o tA4/,]+2tE/,]
'tA2g+1tA2g o 'tA4h1+2 ’ (tDOtDl e 'tDzhl )2 ’ tA4hl+2 o 'tAthAZgH’
(22) tangl = tEhl tA4h1+2 o 'tAzgtagtagtAzg T tA4h1+2tEhl
'tagtAzg tee tA4h1+2 : (tDotDl o 'tDzh, )2 : tA4/11+2 o 'tAzgta};
hold in M0d§ and Modi,, respectively.
In order to prove Proposition 6.1, we prepare Lemma 6.2 and Proposition 6.3.

Lemma 6.2. Suppose that g = 2r. In the notation of Lemma 3.4, let c.. be the
separating simple closed curve defined by ag1(by41 - - -bg)aéﬂ(brﬂ e bg)*lcr
(¢f. Figure 6(a)). We modify Eg and By, ..., By, ¢y, c, by isotopy as shown in
Figure 6(b) and (c). Then in Modi,, the following relation holds:

lagailal ., = lot gyl - tg,)*.
Proof. 1t is easily seen that foreachi =1, ..., g, we have
Apgi1--- AaA1(A;) = Aggiai.
This gives the relation
AL PR RERNAVYANTVVES VUSNWAY PES EERYAV YAV |
foreachi =1, ..., 2r. Therefore, we have

Aggir DaAT(A) ™ = (1g oo tay ) TH P Ay - AoAyL

PR

:"'Bg <r
Ag4142g+1

i
Ar+l%r+2

Cr

(@)

Figure 6. Modified surface Eg2 and curves By, ...
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Since
A )28+2 _ —
1BytB 1B, - - - 1B, (Ag) = Aogt1- - A2Ay (=1pylp I, -~ 1B, 1c,)
from the proof of Lemma 3.4, we have

2g+2
(tAngz e tAngr]) st tBotBlth o th = A2g+1 e AZAI
(=tpytB 1B, "+ " IB,Ic,)-

By the chain relation, we obtain 7., = (14 “TAgei )28+2 Therefore,

g+2 :

tag+1 la

- =tc;t30t3| .. -th 'tBotBl .. ‘thtc,

follows by Lemma 3.4. By conjugation by ¢.,, we have
agnlal ,, = le,le; (Thyl By 1) a

Proposition 6.3 was shown by Hamada [> 2016] based on the argument of
[Tanaka 2012]. Its statement concerns a;, a null-homotopic simple closed curve in
%, defined by aj = coao.

Proposition 6.3 [Hamada > 2016]. Let E;‘ be the compact oriented surface of
genus g with four boundary components obtained from X, by removing four disjoint

open disks surrounded by ay, a;,, a1 and ag, +1- Then the following relation in
Mody holds:

talaplageta,, = Wsger = holarta By Thggyr " TAL + Laglaglaytag, =+ 1A, -

Proof. The proof is by induction on the genus.
Suppose that g = 1. The four-holed torus relation,

2
taota()taztaé = (tAltA3tA2ta1tag tAz) s

was constructed by Korkmaz and Ozbagci [2008, Section 3.4]. Since ag, a)), a2, a,
are disjoint from A; and A is disjoint from A3, by conjugation by z4,, we have

taota(/)taztaé = tAgtAztalta{ TAy A, - tA3tA2ta1ta’| fayta,
= tA3tAztalta{ TATAS tAltAztmtaitAztAl-

Hence, the conclusion of the proposition holds for g = 1.
Next we assume, inductively, that the relation holds in Modg_l. Since then
ap, a(/), aqg, a’g are disjoint from Ay, ..., Aye_1, we have the relation

/
tdota{)tagtaé, =TAyy Ay A 'tAztalta] /PR VR VY 'tAzg—ztug—ltag,l

in Mod, by conjugation by t4,, , - - - £a,. Since ag_1, aéq’ g1, a;H are disjoint
from Asg_1, Azg, Adgt1, ay, ag,, by the four-holed torus relation

_ 2
tagq ta;/;—l tllg+1 ta;,_H - (tA2g71 tAngr] tAzg tag taé tAzg)



LEFSCHETZ PENCILS AND FINITELY PRESENTED GROUPS 371

and conjugation by 74,, ,fa,,,,%,,,» We have the relation

1,1 RS |
tag ta!’), tag+1ta;+1 = taéiltagfltAthAngltA2g+ltA2gtagtaétA2gtA2g71tA2g+ltA2g'

By combining these relations, we have

taota(’)t“gﬂtag,ﬂ = [AZg—Z 7Y 'tAzg—l t tAztaltaj fay -+ tAZg—l SlA 'tAzg—z
TArgTAre 1TArg 1T As, * Lag ta; LAng Az 1TAsg 41T A,
.. , ,
Note that Ay, ..., Asgy1 are disjoint from ag, ag, agy1, Qg Moreover, A, and
g ooy — g ooy —1s . E)
Ajgqq are disjoint from A Ajg_pand Ay Ajg_1, respectively. Therefore
by conjugation by 74,,_, - - -4, and 1, 14,,, We have
taOta(,)tag+ltﬂ;+l =TAgy oA Ay v tAztaltaitAz Ay Ay TAy
Ty LAs TAy tAZg ) tagtaétAZg LAng 1 TAngi1TAg,

= tA2g+] tAZg : tAZg—l s Ayl ta/, fay -~ tA2g—| : [AthA2g+l 7Y tAZg—2

. tAZg—l tAzg . tagtag,tAzgtAzg,ltAzg,z s Tay.
This completes the proof of Proposition 6.3. U
We now prove Proposition 6.1.

Proof of Proposition 6.1. Let c;“ be the separating simple closed curve as shown in
Figure 7. By Lemma 6.2 and Proposition 6.3, we have

tah1+1t

— 2
a;ll+l - tChl tc;” (tD()tDl Tt tDZhl) )

tchl tc;,l tag+1ta;,+, = tagtAZg T tA4h1+2tEh1 tEh] tA4h1+2 T tAzgtaé

ta121+1tA4h1+2 LA

: tAZngl T tA4hl+2tah1+1
Since ¢j,, and c;” are disjoint from Az, 42, ..., Asg, Epy, ap 41, a;”H, it follows
that
—1,-1

t, t. -t
c;‘l Chy Apy+1

t

— 2
a;lle — (tDotDl e tDZhl) )

l‘lngrlta,;+1 =1q,lAy, " 'tA4h]+2tEh] tEh] tA4h]+2 e 'tAzgtag

—1.-1
: tA2g+1 T tA4lzl+2 ’ tc;” tchl ’ t61111+1ta;,1+l ’ [A4h1+2 “ lAgg -

Combining these relations gives the relation (21) in Proposition 6.1.
In X él,, Agy1 1s homotopic to a;,, and (22) follows, completing the proof.  [J
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Chy

E/” o

J
('/71

Figure 7. The curve ¢j, on Zf,.

6C. A lift of Gurtas’ positive relator. Since ag | and aig 4 are null-homotopic in
X4, we have 75, = ta,, = 1 in Modg, so the relation in Proposition 6.1 is a positive
relator in Mod,. Then we note that A, and a’g are homotopic to ag. On the other
hand, Gurtas [2004] gave the positive relator

2 __
(tA4h1+2 T tAthagtagtAZg T [A4h1+2tD()tD1 T tDZhltEhl) =1

in Mod,. Using the following theorem of Kas [1980] and Matsumoto [1996], we
show that the relation in Proposition 6.1 gives a lift of Gurtas’ positive relator in
Mod, to Modé.

Theorem 6.4 [Kas 1980; Matsumoto 1996]. If g > 2, then the isomorphism class
of a Lefschetz fibration is determined by a positive relator modulo simultaneous
conjugations

tu, - toytoy ~ g, lpplpy  forany ¢ €Ty
and elementary transformations
R VR L L L VI (T A I L T LI L VI Ty
Lo, =+ Ly vy Do Ty = Toy ™ By, o Ty By By, (o) Boi oy 7 Ty -

The aim of this section is to prove the following proposition. This proposition
applied to Proposition 6.1 gives the above mentioned lift.
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Proposition 6.5. In Mod,, the following relation holds:

tEh| tA4h|+2 T tAthagtagtAZg T tA4hl+2tEh1
laglay, ~ 'tA4hl+2 “(tpytp, - 'tDzhl )2 ) tA4hl+2 o TAyla,
~ ([A4h1+2 o laglagla LAy, TAgy o IDOID) **  IDy, tEhl)z'
In order to prove this, we need a lemma.

Lemma 6.6. We deform 252, as shown in Figure 8(a) and (b). Let E and E' be the
simple closed curves in Eg as in Figure 8(a) and (b), and let a be the arc connecting
the boundary components of E; as in the figure. Then

(23) Iyt - -1, (E) = E',
(a).

(24) 1BytB, - - - 1B, IE(A) = lag la)
Proof. From the equality (20), we see that
Ipytp, + - th = A2g+1 S AzAllC:l.

By drawing corresponding curves and applying the corresponding Dehn twist, we
find that

(a).

+1

Dogr--DaBit; (E)=E' and  Aoggry--- Moty 1p(@) = to, 1)

This proves the lemma. O

/
Arg+1 Argt1 Aogtl
E' -

!
ret1

() (b)

Figure 8. The curves E, E’ and the arc a.
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Proof of Proposition 6.5. For simplicity of notation, we write
TI=1Ay 40 TAsla, AN T =14, 0a, - Ty, .
Note that for each i =2h; +2, ..., 2g, we find that
Z‘Ehl‘ffl‘Ehl(Ai) =A; and l‘Ehl‘Efl‘Ehl(ag) =dg.
This gives
Z‘Ehl‘EfZ‘Ehl ST EA Z‘EhlfftEhl and lEhl‘EfZEhl . tag ~ tag . ZE,”‘[flEhl s
so we obtain the relation
lEh]T‘flEhl cT~T- Z‘EhITfZ‘Ehl .

Therefore, applying elementary transformations (including cyclic permutations)
gives

- - 2 - - 2
(25) lEhl‘L"L'tEhl'T(l‘DOZDI .. 'tDzhl) - T NlEhITTZ‘Ehl- T -‘L’(IDOZD1 .. -ZDZhl) .

Since by drawing corresponding curves, applying the corresponding Dehn twist
and (24) in Lemma 6.6, we have

——1 _ _
(IT) (Ehl) - taz/11+1taéh]+l(Eh1) — tD()tDl T tDZhI (Ehl)s
we thus obtain
TT - Ipytpy + - tDZhl . tEh, ~ tEh, -TT - Ipytp, * - tDzh] .
Therefore, by using this relation, we have

- - 2
(26) Z‘Ehl‘E‘L'lEh] “TT - (tDotDl cee tDzhl)

~ tEthT “TT -Ipylp, - tDZh] . IEI:I “IpyIp; - - tD2h| .

By drawing corresponding curves, applying the corresponding Dehn twist and
(23) in Lemma 6.6, we obtain

—\—1
(TT) (A4h1+2) = tDotDl e tDz;,l tEhl(A4/11+2)'
Therefore, we have
TT -Ipylp, -+ ZD2hl tEhl ) tA4hl+2N tA4h1+2' TT - Ipylp, * - tDZhl tEhl :
Note that for eachi =4h;+3, ..., 2g, we find that

TT(A;)) =A; and 7t7(ag) =a,.
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Moreover, since Aap, 43, ..., A2g and a, are disjoint from Dy, ..., Doy, Ej,, we
therefore obtain, for eachi =2h; 43, ..., 2g,

‘L’fl‘DOl‘D1 e tDzhltEhl cTA; LA Z“EfZDOl‘Dl e Z‘DZhIZEhI s

Tfl[)ol[)] o tDzhl tEhl . tag ~ tag . Tleol‘Dl o tDzhl tEhl .
This gives

TT - ‘L’fl’Dol‘D1 e tDzhltEhl ~ ‘L"fl‘DOlDl oo tDZhl l‘Eh1 -TT.

From this relation, applying elementary transformations (including cyclic permuta-
tions) gives

27 Z‘Eh]‘ff -T‘f-l‘DOl‘Dl . 'tDZhIIEm “IpyID; +* 'tDZh]

~TT-Ipylp, - 'tDzhl tEnl “TT -Ipytp, - 'tDzhl ’ tEhl :

Proposition 6.5 follows from the relations (25)—(27). O

7. Construction of simple loops Ry, ..., Ri

In this section, we prove Proposition 5.2. This was based on Korkmaz’s work [2009]
and the argument in [Akhmedov and Ozbagci 2013]. In Proposition 4.3 of [Korkmaz
2009], he defined [ as [ =1(r) + - - - + L (rr). However, in this paper, it is sufficient
to consider / as [ = max<;<,{/(r;)}. Before providing the simple loops in X, in
Proposition 5.2, we need the following proposition about simple loops Ry, ..., R
in z:n+l—l~

Proposition 7.1. Let F, be the subgroup of m\(X,) generated by ay, ..., a,, ie.,

F, is a free group of rank n. Let ry, ..., ry be k arbitrary elements in F, represented
aswords inay, ..., a,. Let | = maxi<;<x{l(r;)}, where [(r;) is the syllable length
of ri. Then there are simple loops Ry, ..., Ry in X, 1,1 with the property that for

each 1 <i <k:

(a) R; is freely homotopic to a simple closed curve which intersects an+;—1 trans-
versely at only one point.

(b) ®([R;]) = ri, where [R;] € m(Xy41—1) is the homotopy class of R;, and
D (Zpqi—1) = m(X,) is the map defined by ®(aj) =ajfor1 < j<n
and ®(x) =1 fora € {ay+1, ..., anri—1,b1, ..., bpri—1}.

Proof. Let us consider the surface X, embedded in R3 as shown in Figure 1 such
that for each 1 < j < n, a simple closed curve b;. in X,, which is isotopic to b; lies
on the plane x = 0. Write r; = a;']“ . -al-'Z ¢, where d = [(r;) is the syllable length
of r;. We denote by & a constant such that the base point lies in the plane z = &.

Let L be an arc in X, which lies in the half plane {z =&} N {x > 0}.
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Y1 Yi V2 V-3 V-1

/ B, [ B[] B \1 i:\Bs B

(©

Figure 9. Construction of R; on ¥,,,4_1 for r; = azalagas_laf

and for n = 5.

For 1 <t <d, let o; be aloop in X, which is isotopic to a;,. If j; = jy for some
s < ', then we assume that «y is to the right of « and that oy is disjoint from «.
Here, right means the positive direction of the y-axis. Let A, (resp. B;) be points
on L lying to the left (resp. right) of «; such that there are no Ay (resp. By) between
o; and A, (resp. B;).

Let yi, = la, "1(¢r), where ; is the subarc of L from the point A to the point B;.
Foreach 1 < j <d —1, let §; denote the subarc of L from the point B; to the
point A ;. Then we can define an arc 8 in X, connecting A to By to be

B = Vm1*51*3/m2*52*' : ‘*Sd—l*ymd7

where y x § denotes an arc y followed by an arc §. Let 6o be the subarc of L
from the base point to Aj, and §; the subarc from B, to the base point. Then
8o * B x84 represents r; (cf. Figure 9(a)). After perturbing 8 slightly, we assume
that &y, ..., 84— are pairwise disjoint and lie parallel to the plane x = 0. Note that
all self-intersection points of §o x B x 54 lie on o U U---Ué,.
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Let 8" and 8" be arcs from the base point to A; and from By to the base point,
respectively, which are disjoint from «y, aa, ..., aq and b}, b}, ..., b, and lie in
the space {z < &}. Suppose that the interiors of §’, §” and § are pairwise disjoint.
Then the loop 8" * B 8" represents

biby---bi_yrib; '+ by by

in 71 (X,) (cf. Figure 9(b)).

Let Dy, D}, ..., Dy_1, D&_l be pairwise disjoint disks in X, such that for each
1 <t <d—1,Int(D,) and Int(D;) are disjoint from &', g and 8”, and A; € dD; and
B; € dD;. We remove 2d — 2 open disks Int(D;) and Int(D}) from X,. Then for
each 1 <t <d — 1, by attaching an annulus, denote by #,, to the surface

d—1

=\ | (Int(D;) UInt(D))

=1
along dD; and dD;, we obtain the closed oriented surface

d—1

d—1
(2,, \ (o)) U Int(D;))) N < U &at>
t=1 t=1

of genus n +d — 1, denoted by ¥, +4—1. An orientation on ¥, ;41 is given by the
orientation on %,,.

We define a loop R; in X,4_1 as follows. Foreach 1 <t <d — 1, let Sl be a
simple arc in &, from the point B, to the point A, such that S, lies parallel to the
plane x = 0. Then by “replacing” 8, in 8’ 8+ 8” by &;, we obtain the loop

R="08 %y 81 % Yy %8y %+ %841 % Y, % 8.

In particular, R; is simple in ¥, 41 (cf. Figure 9(c)).

Note that from construction, 5, * §; 1s a simple closed curve in X, 4_1. If we
collapse each &, onto the arc §;, then we obtain a map %, 41 — %,. The induced
map 71 (Zpa—1) = w1(X,) takes [R] to

biby---bi,yrib; by by

which in turn is mapped to r; under the map 71(%,) — m1(Z,) sending a; to a;
and b; to 1 for all ;.

Let h =n+1—1, where | = max;<;<x{/(r;)}. For each 1 <i <k, we now
construct a loop R; in ¥, as follows. First, by sliding s, ..., #¢;)—1, we deform
the surface ¥, 4;(,)—1 into the standard position as shown in Figure 1 in such a way
that the simple loop &, x §; becomes isotopic to b,, and the boundary curves of
s, become isotopic to a,; (cf. Figure 10(a), (b) and (c)). If I(r;) = [ for some j,
then we see that the simple closed curve ay intersects R; transversely at one point.
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(e)

Figure 10. Construction of R; for r; = a; laz_ in the case n = 3
and g = 8.

Therefore, we assume that [(r;) < [. Next, we remove a small open disk from the
deformed surface near a,,;(;)—1 and disjoint from R; (cf. Figure 10(d)). Thus, we
obtain a surface of genus n + [(r;) — 1 with one boundary component, denoted
by X ,ll -1 We embed E}l -1 into the standard surface X, in such a way
that for each 1 <t <n+[(r;) — 1, simple loops a,, b; in ErllJrl(r,-)fl correspond
to the simple loops a;, b; in X, (cf. Figure 10(e)). Finally, we replace R; with
a simple representative of [R,-]((blbz cbp_1)(b1by - - -bh)_l)e, where € = *+1
(cf. Figure 10(d)). Then we see that the resulting simple loop R; intersects ay,
transversely at one point.

From the above construction, ® : m;(X;) — m1(Z,) maps [R;] to r; for each

i=1,...,k. This gives the required simple loops Ry, ..., Ry. ([

Proof of Proposition 5.2. Consider a surface X4, and the loops Ry, ..., Ry con-
structed in Proposition 7.1. We remove a small open disk from X, ,;_; near a,;—1
and disjoint from all R; (cf. Figure 11(a)). Denote by Ei 41 the resulting surface of
genus n 4+ [ — 1 with one boundary component. We embed X ,1 4/ into the standard
surface X in such a way that for each 1 <t <n-+/—1, simple loops a;, b; in E;JFFI
correspond to the simple loops a;, b; in X, (cf. Figure 11(b)). Then we can modify
Ry,..., Ry sothateach R; (i =1, ..., k) satisfies the property of Proposition 5.2
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A2p1+1 A2k +hy—1
i P

- O (b)

S Cohy4hy—1

hy —1

Figure 11. Modified curves Ry, ..., R; in 2.

by replacing R; with a simple representative of [R;[(ban,+1b2n,42 « - - b2n,+hy—i )€
if i is odd, and [Ri]a§h1+h2_l. if i is even, where € = %1 (cf. Figure 5). Therefore,
we obtain the required simple loops Ry, ..., Ry. U

8. Remarks

The results of [Gompf 1995; Donaldson 1999; Gompf and Stipsicz 1999] men-
tioned in the introduction naturally raise the following two basic questions, which
remain open.

Question 8.1 (cf. [Korkmaz and Stipsicz 2009]). Given a symplectic 4-manifold,
what is the minimal genus g for which it has a genus-g Lefschetz pencil?

Question 8.2. Given a finitely presented group I', what is the minimal genus,
denoted by gp(I"), for which there exists a genus-g Lefschetz pencil on a symplectic
4-manifold with fundamental group I'?

Although these two questions remain open, for Question 8.2, we can give an
upper bound for gp(I") as a corollary of Theorem 1.2.

Corollary 8.3. We have gp(I') <4(n+1—1)+k fork > 1,and gp(F,) <4n+2.

However, this upper bound for gp(I") may not be sharp. In fact, since CP?
admits a genus-0 Lefschetz pencil, gp(I') =0 if I is the trivial group. When we
replace the relations in Proposition 5.1 and the map v in Section 5A by another
relation and map, we can improve the upper bound of gp(I'). For example, for
every positive integer 7, the article [Hamada et al. > 2016] gave a genus-g Lefschetz
pencil on a 4-manifold X, such that 7{(X,) = Z & Z, for every g > 4 using a
similar construction to this paper. Therefore, gp(Z @ Z,,,) < 4.
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We expect that by a combination of substitution techniques and partial conjugation
techniques, we could obtain results for Lefschetz fibrations with (—1)-sections
analogous to those obtained by fiber sum operations. The articles [Ozbagci and
Stipsicz 2000; Korkmaz 2001; Monden 2014] gave examples of nonholomorphic
Lefschetz fibrations by fiber sum operations (and lantern substitutions). By a similar
technique to this paper (and a lantern substitution), two kinds of nonholomorphic
Lefschetz fibrations with (—1)-sections were constructed in [Hamada et al. > 2016].
One is a Lefschetz fibration with noncomplex total space, and the other is a Lefschetz
fibration violating the “slope inequality”.

Finally, we explain why the Lefschetz fibrations constructed in [Korkmaz 2009;
Akhmedov and Ozbagci 2013; Kobayashi 2015] do not have (—1)-sections. In
[Korkmaz 2009; Kobayashi 2015], twisted fiber sum operations were adopted,
and the fibrations in [Akhmedov and Ozbagci 2013] were obtained by performing
Luttinger surgeries and knot surgeries on the symplectic sum of certain symplectic
4-manifolds. The fiber sum of Lefschetz fibrations has no (—1)-sections (see
[Stipsicz 2001a], and also [Smith 2001]). In particular, the symplectic sum of
symplectic 4-manifolds is minimal, that is, it does not contain any (—1)-spheres
(see [Usher 2006], and also [Sato 2006; Baykur 2015]), and Luttinger surgery
and knot surgery preserve minimality of symplectic 4-manifolds from the result of
[Usher 2006]. Therefore, we see that the fibrations in [Korkmaz 2009; Akhmedov
and Ozbagci 2013; Kobayashi 2015] do not have any (—1)-sections.
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