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KNOT HOMOTOPY IN SUBSPACES OF THE 3-SPHERE

YUYA KODA AND MAKOTO OZAWA

We discuss an extrinsic property of knots in a 3-subspace of the 3-sphere
S3 to characterize how the subspace is embedded in S3. Specifically, we
show that every knot in a subspace of the 3-sphere is transient if and only if
the exterior of the subspace is a disjoint union of handlebodies, i.e., regular
neighborhoods of embedded graphs, where a knot in a 3-subspace of S3 is
said to be transient if it can be moved by a homotopy within the subspace to
the trivial knot in S3. To show this, we discuss the relation between certain
group-theoretic and homotopic properties of knots in a compact 3-manifold,
which can be of independent interest. Further, using the notion of transient
knots, we define an integer-valued invariant of knots in S3 that we call the
transient number. We then show that the union of the sets of knots of un-
knotting number one and tunnel number one is a proper subset of the set of
knots of transient number one.

Introduction

In the list [Eilenberg 1949] of problems edited by Eilenberg, Fox proposed a program
to distinguish 3-manifolds by the differences in their “knot theories”. Following the
program, Brody [1960] reobtained the topological classification of the 3-dimensional
lens spaces using knot-theoretic invariants, which are the Alexander polynomials
of knots suitably factored out so that it depends only on the homology classes of
the knots. Bing’s recognition theorem [1958] can be regarded as another example
of works that follow Fox’s program. The theorem asserts that a closed, connected
3-manifold M is homeomorphic to the 3-sphere if and only if every knot in M
can be moved by an isotopy to lie within a 3-ball. We note here that if we replace
isotopy in this statement by homotopy, the assertion implies the Poincaré conjecture,
which was proved by Perelman [2002; 2003a; 2003b]. Bing’s recognition theorem
was generalized by Hass and Thompson [1989] and Kobayashi and Nishi [1994]
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proving that a closed, connected 3-manifold M admits a genus-g Heegaard splitting
if and only if there exists a genus-g handlebody V embedded in M such that every
knot in M can be moved by an isotopy to lie within V . We note that, as mentioned
in [Nakamura 2015], the homotopy version of this statement holds when g = 1,
again by the Poincaré conjecture, whereas the higher genus case fails in general. A
result of Brin, Johannson, and Scott [Brin et al. 1985] can also be regarded as a work
following Fox’s program. This result asserts that if every knot in M can be moved
by a homotopy to lie within a collar neighborhood of the boundary ∂M , then there
exists a component F of ∂M such that the natural map π1(F)→ π1(M) induced
by the inclusion is surjective. In particular, for a compact, connected, orientable,
irreducible, boundary-irreducible 3-manifold M , they proved that if every knot in M
can be moved by a homotopy to lie within a collar neighborhood of ∂M , then M is
homeomorphic to the 3-ball or the product6×[0, 1], where6 is a closed, orientable
surface of genus at least one. In the present paper, we will consider a relative version
of Fox’s program. Namely, we discuss “(extrinsic) knot theories” in 3-subspaces of
the 3-sphere S3 in order to characterize how the 3-subspaces are embedded in S3.

Let M be a compact, connected, proper 3-submanifold of S3. We say that M is
unknotted if its exterior is a disjoint union of handlebodies. A famous theorem of
Fox [1948] says that each M can be reembedded in S3 so that its image is unknotted.
A reembedding satisfying this property is called a Fox reembedding. Intuitively
speaking, unknottedness of M ⊂ S3 implies that M is embedded in S3 in one of
the “simplest” ways. We note that if M is a handlebody, an unknotted M in S3 is
actually unique up to isotopy [Waldhausen 1968]. The uniqueness up to isotopy and
a reflection holds for each knot exterior by a celebrated result of Gordon and Luecke
[1989]. However, in other cases M usually admits many mutually nonisotopic Fox
reembeddings into S3.

The unknottedness of a 3-submanifold, and so the existence of a Fox reembedding,
can be considered for an arbitrary closed, connected 3-manifold. Scharlemann and
Thompson [2005] generalized the above theorem of Fox by proving that any compact,
connected, proper 3-submanifold of an irreducible non-Haken 3-manifold N admits
a Fox reembedding into N or S3. Another generalization is given by Nakamura
[2015] who proved that a compact, connected, proper 3-submanifold M of a closed,
connected 3-manifold N admits a Fox reembedding into N if every knot in N can
be moved by an isotopy to lie within M . Here we remark that the property that
every knot in N can be moved by an isotopy to lie within M does not imply that
M itself is unknotted in N . This can be seen for example by considering the case
where N = S3 and M is not unknotted. In this paper, we will show that the property
of a compact, connected, proper 3-submanifold M of S3 that every knot in M can be
moved by a homotopy in M to be the trivial knot in S3 implies that M is unknotted
in S3. Following [Letscher 2012], we say that a knot K in M is transient in M if
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K can be deformed by a homotopy in M to be the trivial knot in S3; K is said to be
persistent in M otherwise. Using this terminology, we can state our main theorem:

Theorem 3.2. Let M be a compact, connected, proper 3-submanifold of S3. Then
every knot in M is transient in M if and only if M is unknotted.

Roughly speaking, the above theorem implies that a (homotopic) property of
knots in M deduces an isotopic property of M inside S3. We remark that the property
that a given knot K ⊂ M is transient is extrinsic with respect to the embedding
M ↪→ S3, in the sense that it depends not only on the pair (M, K ) but also on
the way M is embedded in S3. Indeed, we can find a persistent knot in a certain
genus-two handlebody V embedded in S3 in such a way that there exists another
embedding of V into S3 such that the reembedded knots in the reembedded V is
transient. See Section 3. Now, we can say a little more precisely what is the relative
version of Fox’s program; we expect that extrinsic properties for knots in a compact,
connected, proper 3-submanifold of S3 distinguish the isotopy class of M inside S3.
Our main theorem is a first step for the program. To obtain the theorem, we discuss
the relation between certain group-theoretic and homotopic properties of knots in a
compact 3-manifold, which can be of independent interest. See Section 1.

Given a knot K in a compact, connected, proper 3-submanifold M of S3, it is
actually difficult in general to detect if K is persistent in M . One method provided by
Letscher [2012] uses what he calls the persistent Alexander polynomial. In Section 4,
we provide examples of persistent knots in a 3-subspace of S3 whose persistence
are shown by using the notion of persistent lamination and accidental surface.

In Section 5, we will introduce an integer-valued invariant, the transient number
of knots in S3, whose definition is related to Theorem 3.2 as follows. Given a
knot K in S3, we may consider a system of simple arcs in S3 with their endpoints
in K such that K is transient in a regular neighborhood of the union of K and the
arcs. The transient number tr(K ) is then defined to be the minimal number of simple
arcs in such a system. By an easy observation, we see that the transient number is
bounded from above by both the unknotting number and the tunnel number. Further,
we will give a knot K that attains tr(K )= 1 while u(K )= t (K )= 2, where u(K )
and t (K ) are the unknotting number and the tunnel number of K , respectively (see
Proposition 5.2). In other words, the union of the sets of knots of unknotting number
one and tunnel number one is actually a proper subset of the set of knots of transient
number one. Section 6 contains some concluding remarks and open questions.

Throughout this paper, we will work in the piecewise linear category.

Notation. Let X be a subset of a given polyhedral space Y . We will denote
the interior of X by Int X . We will use Nbd(X; Y ) to denote a closed regular
neighborhood of X in Y . If the ambient space Y is clear from the context, we denote
it briefly by Nbd(X). Let M be a 3-manifold. Let L ⊂ M be a submanifold with or
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without boundary. When L is 1- or 2-dimensional, we write E(L)=M \Int Nbd(L).
When L is 3-dimensional, we write E(L)=M \Int L . We shall often say “surfaces”,
“compression bodies”, etc., in an ambient manifold to mean their isotopy classes.

1. Knots filling up a handlebody

Let Fg be a free group of rank g with a basis Xg = {x1, x2, . . . , xg}. We set

X±g = Xg ∪ {x1
−1, x2

−1, . . . , xg
−1
}.

A word on Xg is a finite sequence of letters of X±g . For an element x of a group G,
we denote by cG(x) (or simply by c(x)) its conjugacy class in G.

Let G be a group with a decomposition G = G1 ∗ G2. Then G1 and G2 are
called free factors of G. In particular, if G2 6= 1, then G1 is called a proper free
factor of G. Following [Lyon 1980], we say that an element x of G binds G if x is
not contained in any proper free factor of G. Thus, for example, an element of Z

binds Z if and only if it is nontrivial. We can also see that an element of a rank-2
free group F2 = 〈x1, x2〉 binds F2 if and only if it is not a power of a primitive
element, where an element of a free group is said to be primitive if it is a member
of some free basis of the free group. For example x1x2x1x2 does not bind F2, while
x1x2x1x2

3 binds F . See, e.g., [Osborne and Zieschang 1981] and [Cho and Koda
2015]. Primitive elements of the rank-2 free group have been well understood
by, e.g., Osborne and Zieschang [1981] and Cohen, Metzler, and Zimmermann
[Cohen et al. 1981], whereas their classification in a free group of higher rank
is known to be a hard problem. See [Puder and Wu 2014] (and also [Shpilrain
2005]) and [Puder and Parzanchevski 2015] for some of the deepest results on
this problem. On the contrary, an algorithm to detect if a given element x of a
free group Fg binds Fg is given by Stallings [1999] using the combinatorics of its
Whitehead graph. See (2) in Section 6. It follows immediately from the definition
that if x binds G, then any element of its conjugacy class c(x) binds G. In fact,
if x lies in G1 for a decomposition G = G1 ∗G2, then a−1xa lies in a−1G1a and
F = (a−1G1a) ∗ (a−1G2a) is also a decomposition of G for any a ∈ G.

Let K be an oriented knot in a 3-manifold M . We denote by cπ1(M)(K ) (or
simply by c(K )) the conjugacy class in π1(M) defined by the homotopy class of K .
Here we recall that two oriented knots K and K ′ in M are homotopic in M if and
only if

cπ1(M)(K )= cπ1(M)(K
′).

We say that K binds π1(M) if an element (and so every element) of c(K ) binds
π1(M). It is clear by definition that, if K̄ is the knot K with the reversed orientation,
K binds π1(M) if and only if K̄ also does. For this reason, we can say whether or
not a knot K binds π1(M), while ignoring the orientation of K .



KNOT HOMOTOPY IN SUBSPACES OF THE 3-SPHERE 393

Let M be a compact 3-manifold and F a subsurface of ∂M , or a surface properly
embedded in M . Here we note that F is possibly disconnected. Recall that F is
said to be compressible if

(1) there exists a component of F that bounds a 3-ball in M , or

(2) there exists an embedded disk D in M , called a compression disk for F , such
that D ∩ F = ∂D and such that ∂D is an essential simple closed curve on F .

Otherwise, F is said to be incompressible. A 3-manifold is said to be irreducible if it
contains no incompressible 2-spheres and boundary-irreducible if its boundary is in-
compressible. The following lemma is a generalization of [Lyon 1980, Corollary 1].

Lemma 1.1. Let M be a compact, connected, orientable, irreducible 3-manifold
with nonempty boundary. Let K be an oriented simple closed curve in the boundary
of M. Then ∂M \ K is incompressible in M if and only if K binds π1(M).

Proof. We fix an orientation and a base point v of K .
Suppose first that K does not bind π1(M, v). Then there exists a decomposition

π1(M, v)= G1 ∗G2 with G2 6= 1 and [K ] ∈ G1. Let X i be a K (Gi , 1)-space, and
let p be a point not in X1 ∪ X2. We define X̂1 and X̂2 to be the mapping cylinders
of maps from p into X1 and X2, respectively. Let X denote the space obtained by
identifying the copy of p in X̂1 with that of p in X̂2. By the construction, we have
π1(X)= G1 ∗G2 and π2(X1)= π2(X2)= 0. Thus there exists a continuous map
f : M→ X satisfying the following properties:

(1) f (v)= p,

(2) the induced map f∗ :π1(M)→π1(X) is an isomorphism with f∗(Gi )=π1(X i )

for i ∈ {1, 2}, and

(3) f −1(p) consists of a finite number of compression disks for ∂M .

Here we use the assumption that M is irreducible. We may assume that | f −1(p)∩K |
is minimal among all continuous maps M→ X satisfying (1)–(3). Suppose that
f −1(p)∩ K is nonempty. Then f (K ) is a loop in X with base point p that can be
decomposed as

f (K )= α1 ∗α2 ∗ · · · ∗αr ,

where each αi lies in X̂1 or X̂2, and αi , αi+1 do not lie in one of X̂1 and X̂2 at
the same time. We note that r > 1. Suppose that no [αi ] is trivial in G1 or G2.
Then [α1], [α2], . . . , [αr ] is a reduced sequence, that is, [αi ] is in G1 or G2, and
[αi ], [αi+1] do not lie in one of G1 and G2 at the same time. On the other hand,
[ f (K )] lies in G1 by the assumption. This contradicts the uniqueness of reduced
sequences; see Theorem 4.1 of Magnus, Karrass, and Solitar’s book [Magnus et al.
1976]. Thus at least one of [α1], [α2], . . . , [αr ] is trivial. Consequently, there exists
a subarc α of K such that
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• α ∩ f −1(p)= ∂α,

• f (α)⊂ X is a contractible loop, and

• α is essential in ∂M cut off by ∂ f −1(p).

Then using a standard technique as in [Lyon 1980, Theorem 2], f can be deformed
by a homotopy to be a continuous map f ′ :M→ X satisfying the above (1)–(3) and
| f ′−1(p)∩ K |< | f −1(p)∩ K |. This contradicts the minimality of | f −1(p)∩ K |.
Thus we have f −1(p)∩ K =∅. This implies that ∂M \ K is compressible in M .

Next suppose that there exists a compression disk D for ∂M \ K in M . Suppose
that D separates M into two components M1 and M2, where K lies in M1. Then
π1(M) can be decomposed as π1(M)= π1(M1)∗π1(M2), where [K ] ∈ π1(M1). If
π1(M2)= 1, then M2 ∼= B3 by the Poincaré conjecture proved by Perelman [2002;
2003a; 2003b]. This is a contradiction. Hence π1(M2) 6= 1, which implies that
K does not bind π1(M). Suppose that D does not separate M . Let M ′ be M cut
off by D. Then we have π1(M) = π1(M ′) ∗ Z and [K ] ∈ π1(M ′). Hence, again,
K does not bind π1(M). �

Let M be a compact, connected 3-manifold. Let K and K ′ be knots in M . We
write K ∼M K ′ if K and K ′ are homotopic in M . Let K be a knot in the interior
of M . We say that K fills up M if, for any knot K ′ in the interior of M such that
K ∼M K ′, the exterior E(K ′) is irreducible and boundary-irreducible.

Example. The knot K1 shown on the left-hand side in Figure 1 does not fill up
the handlebody V (because there exists a compression disk D for ∂V in V \ K1 as
shown), while the knot K2 shown on the right-hand side fills up V (see Lemma 1.5).

By a graph, we mean the underlying space of a (possibly disconnected) finite
1-dimensional simplicial complex. A handlebody is a 3-manifold homeomorphic
to a closed regular neighborhood of a connected graph embedded in the 3-sphere.
The genus of a handlebody is defined to be the genus of its boundary surface. For a
handlebody V , a spine is defined to be a graph 0 embedded in V so that V collapses
onto 0. By a 1-vertex spine we mean a spine with a single vertex. In other words,

V V

K1
K2

D

Figure 1. The knot K1 does not fill up V , while K2 fills up V .
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a 1-vertex spine is a spine of a handlebody that is homeomorphic to a rose, i.e., a
wedge of circles.

In the remainder of the section we fix the following:

• A handlebody V of genus g at least 1 with a base point v0.

• A 1-vertex spine 00 of V having the vertex at v0.

• A standard basis X = {x1, x2, . . . , xg} of π1(00, v0) ∼= π1(V, v0); that is, we
can assign names e0

1, e0
2, . . . , e0

g and orientations to the edges of 00 so that
xi corresponds to the oriented edge e0

i for each i ∈ {1, 2, . . . , g}.

In this setting, we identify π1(V )= π1(V, v0) with the free group F with basis X .
Let {y1, y2, . . . , yg} be a basis of F , where each yi is a word on the standard

basis X . We say that a 1-vertex spine 0 of V having the vertex at v0 is compatible
with the basis {y1, y2, . . . , yg} if we can assign names e1, e2, . . . , eg and orientations
to the edges of 0 so that a word on X corresponding to the oriented edge ei is yi

for each i ∈ {1, 2, . . . , g}.

Lemma 1.2. For each basis Y = {y1, y2, . . . , yg} of F , there exists a 1-vertex spine
of V with the vertex at v0 that is compatible with Y .

Proof. Let ϕ be the automorphism of F that maps xi to yi for each i ∈ {1, 2, . . . , g}.
By [Nielsen 1924], the map ϕ can be factored into a composition ϕn ◦ · · · ◦ϕ2 ◦ϕ1,
where each ϕj is an elementary Nielsen transformation. Here we recall that an
elementary Nielsen transformation is one of the four automorphisms ν1, ν2, ν3, ν4

of F , where

• ν1 switches x1 and x2,

• ν2 cyclically permutes x1, x2, . . . , xg to x2, . . . , xg, x1,

• ν3 replaces x1 with x1
−1, and

• ν4 replaces x1 with x1x2.

We refer the reader to [Magnus et al. 1976] for details. For each ϕi (i ∈ {1, 2, 3, 4}),
it is easy to see that there exists a homeomorphism gi of V such that gi fixes v0

and gi (00) is compatible with the basis {νi (x1), νi (x2), . . . , νi (xg)}. Let gj be one
of f1, f2, f3, f4 corresponding to ϕj . Then it is clear from the definition that
gn ◦ · · · ◦ g2 ◦ g1(00) is a required 1-vertex spine of V . �

Let M be a compact, connected, orientable, irreducible 3-manifold with nonempty
boundary and base point v. We say that M satisfies the strong bounded Kneser
conjecture (SBKC) if, whenever we have subgroups G1, G2 of π1(M, v) with
G1 ∩G2 = 1, π1(M, v) = G1 ∗G2 and Gi � 1 (i = 1, 2), there exists a properly
embedded disk D in M containing v such that D separates M into two components
M1 and M2 with ιi ∗(π1(Mi , v))= Gi (i = 1, 2), where ιi : Mi ↪→ M is the natural
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embedding. As we will see in the remark after the proof of Lemma 1.4, there exists
a 3-manifold that does not satisfy the SBKC. It follows directly from Lemma 1.2
that a genus-g handlebody V satisfies the SBKC. In fact, for each decomposition
π1(V, v0) = G1 ∗ G2, we have a 1-vertex spine 0 of V having the vertex at v0

that is compatible with the basis {y1, y2, . . . , yg}, where {y1, y2, . . . , yg1} is a basis
of G1 and {yg1+1, yg1+2, . . . , yg} is a basis of G2. Using the spine 0, we have the
required disk D. We note that a sufficient condition for a manifold to satisfy the
SBKC was given by Jaco as follows.

Lemma 1.3 [Jaco 1969]. Let M be a compact, connected, orientable, irreducible
3-manifold with nonempty, connected boundary. Suppose that π1(M) is freely
reduced, that is, if we have a decomposition G = G1 ∗ G2 then neither of G1

and G2 is a free group. Then M satisfies the SBKC.

Lemma 1.4. Let M be a compact, connected, orientable, irreducible 3-manifold
with nonempty boundary. Let K be an oriented knot in the interior of M. If K
binds π1(M), then K fills up M. Moreover, the converse is true when M satisfies
the SBKC.

Proof. Suppose that K does not fill up M . Then there exists an incompressible
sphere or a compression disk D for ∂M in M \K ′, where K ′ is a knot with K∼M K ′.
By the same argument as in the second half of the proof of Lemma 1.1, using K ′

instead of K in the proof, we can show that K does not bind π1(M).
Next, suppose that M satisfies the SBKC and that K does not bind π1(M). We fix

an orientation and a base point v of K . There exist subgroups G1, G2 of π1(M, v)
with G1 ∩G2 = 1, π1(M, v)= G1 ∗G2, G2 � 1, and [K ] ∈ G1. If G1 = 1, then
K is contractible and thus we are done. Suppose that G1 � 1. Then by the SBKC,
there exists a properly embedded disk D in M containing v such that D separates
M into two components M1 and M2 with ιi ∗(π1(Mi , v))= Gi (i ∈ {1, 2}), where
ιi : Mi ↪→ M is the natural embedding. We may assume that K is moved by a
homotopy fixing v so that |K ∩D| is minimal. If |K ∩D| = 0, we are done. Suppose
that |K ∩ D|> 0. Then [K ] can be decomposed into a product x1x2 · · · xr , where
xi is in G1 or G2, and xi , xi+1 do not lie in one of G1 and G2 at the same time.
We note that r > 1. Since [K ] ⊂ G1, at least one, say xi0 , of x1, x2, . . . , xr is
trivial. Then moving a neighborhood of the subarc of K corresponding to xi0 by a
homotopy, we can reduce |K ∩ D|. This contradicts the minimality of |K ∩ D|. �

We remark that the converse of Lemma 1.4 is not true. This can be seen as
follows. Let 6 be a closed orientable surface of genus at least one. Let M be
a 3-manifold obtained by attaching a 1-handle H to 6 × [0, 1] so as to connect
D × {0} and D × {1} and so that the resulting manifold M is orientable, where
D is a disk in 6. See Figure 2. Clearly, M is compact, connected, orientable
and irreducible. Let K ⊂ M be the knot obtained by extending the core of H
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6×[0, 1]

H

K E

Figure 2. The manifold M .

along a vertical arc {∗}× [0, 1] in 6× [0, 1]. We fix a base point v in K and an
orientation of K . Then the fundamental group π1(M, v) can be naturally identified
with π1(6) ∗Z, and under this identification [K ] is contained in the factor Z. This
implies that K does not bind π1(M). On the contrary, it is easy to see that the
cocore E of the 1-handle H is the unique compression disk for ∂M up to isotopy.
The algebraic intersection number of K and E is ±1 after giving an orientation
of E . This implies that after deforming K by any homotopy in M , K intersects E ,
whence K fills up M . We note that M does not satisfy the SBKC.

Lemma 1.5. Let V be a handlebody. Then there exists a knot in the interior of V
that fills up V .

Proof. Let K be a simple closed curve in ∂V such that ∂V \ K is incompressible
in V . Such a simple closed curve does exist. In fact, the simple closed curve shown
in Figure 3 satisfies this condition (see for instance [Wu 1996, Section 1]). Then
by Lemma 1.1 K binds π1(V ). It follows from Lemma 1.4 that a knot obtained by
moving K by an isotopy to lie in the interior of V fills up V . �

2. Knots filling up a 3-subspace of the 3-sphere

Let V be a handlebody. A (possibly disconnected) subgraph of a spine of V is called
a subspine if it does not contain a contractible component. A compression body W is
the complement of an open regular neighborhood of a (possibly empty) subspine 0

V

K

Figure 3. The surface ∂V \ K is incompressible in V .
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(i) (ii) (iii) (iv)

Figure 4

of a handlebody V . The component ∂+W = ∂V is called the exterior boundary
of W , and ∂−W = ∂W \∂+W = ∂ Nbd(0) is called the interior boundary of W . We
remark that the interior boundary is incompressible in W ; see [Bonahon 1983].

For a compression body W , a spine is defined to be a graph 0 embedded in W
such that

(1) 0 ∩ ∂W = 0 ∩ ∂−W consists only of vertices of valence one, and

(2) W collapses onto 0 ∪ ∂−W .

We note that this is a generalization of a spine of a handlebody. We also note that if V
is a handlebody and 0 is a subspine of 0̂ of V such that W ∼=V \Int Nbd(0; V ), then
0̂ \ Int Nbd(0; V ) is a spine of W . As a generalization of the case of handlebodies,
a 1-vertex spine of a compression body W is defined to be a (possibly empty)
connected spine 0 such that

(1) 0 is homeomorphic to the empty set, an interval, a circle, or a graph with a
single vertex of valence at least 3,

(2) 0 intersects each component of ∂−W in a single univalent vertex, and

(3) 0 has no univalent vertices in the interior of W .

If 0 is an interval or a circle, we regard it as a graph containing a unique vertex of
valence 2. The spines shown in Figure 4(i)–(iii) are 1-vertex spines while the one
shown in Figure 4(iv) is not so because it has a univalent vertex in the interior of
the illustrated compression body. We call a vertex of valence at least 2 the interior
vertex. We note that every 1-vertex spine has a unique interior vertex. This is the
reason why it is named so.

Let W be a compression body. Suppose that ∂−W consists of n closed surfaces
61, 62, . . . , 6n . A (possibly empty) set D={D1,D2, . . . ,Dm,E61,E62, . . . ,E6n }

of pairwise disjoint compression disks for ∂+W is called a cut-system for W if

(1) each E6i separates from W a component that is homeomorphic to 6i ×[0, 1]
and contains 6i ,

(2) W cut off by E61∪E62∪· · ·∪E6n has at most one handlebody component V, and

(3) D1 ∪ D2 ∪ · · · ∪ Dm cuts off V into a single 3-ball.
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E61

E62
D1 D2

D3

61

62

Figure 5. A cut system.

∂−W =6 ∂−W =6

W W

0
D

E6

Figure 6. Poincaré–Lefschez duality.

See Figure 5. We note that if W = 6 × [0, 1], where 6 is a closed orientable
surface, then m = n = 0. If W is a handlebody, then n is 0 and m is its genus.

By virtue of Poincaré–Lefschez duality, we have a one-to-one correspondence
between the 1-vertex spines and cut-systems of a compression body W modulo iso-
topy (see Figure 6). The correspondence can be described as follows. The 1-vertex
spine 0 dual to a given cut-system D for a compression body W is obtained by
regarding a regular neighborhood of each disk D in D as a 1-handle with D as the
cocore, and then extending the core arcs of the 1-handles in each component W0 of
the exterior of the union of the disks in D in such a way that

(1) if W0 is a 3-ball, then the extension is given by radial arcs, and

(2) if W0 is the product of a closed surface with an interval, then the extension is
given by a vertical arc.

By conversing the construction, we get the cut-system dual to a 1-vertex spine of W .
Let V be a handlebody of genus g and 0 a subspine of V . Assume that each

component of 0 is a rose. A cut-system for the pair (V, 0) is a cut-system for V
dual to a spine 0̂, where 0̂ is obtained by contracting a maximal subtree of a spine
0′ of V that contains 0 as a subgraph. See Figure 7.

Lemma 2.1. Let W be a compression body. Let D be a compression disk for ∂+W .
Then there exists a cut-system for W disjoint from D.
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0 0′

0̂

Figure 7. A cut-system for (V, 0) is a cut-system for V dual to a spine 0̂.

Proof. We may identify W with a genus-g handlebody V with an open regular
neighborhood of a subspine 0 removed. Further, we may assume that each com-
ponent of 0 is a rose. Let 01, 02, . . . , 0n be the components of 0. Choose a
cut-system {D1, D2, . . . , Dg} for the pair (V, 0) so that |D∩ (D1∪D2∪· · ·∪Dg)|

is minimal among all cut-systems for (V, 0). We note here that each component of
the intersection D∩ (D1 ∪ D2 ∪ · · · ∪ Dg) is an arc, for simple closed curves of the
intersection can be eliminated by a standard argument.

Suppose for a contradiction that D ∩ (D1 ∪ D2 ∪ · · · ∪ Dg) 6= ∅. Choose an
outermost subdisk δ of D cut off by D1 ∪ D2 ∪ · · · ∪ Dg. We may assume that
δ∩D1 6=∅. Let D′1 and D′′1 be the disks obtained from D1 by surgery along δ. Then
exactly one of {D′1, D2, . . . , Dg} and {D′′1 , D2, . . . , Dg}, say {D′1, D2, . . . , Dg}, is
a cut-system for the handlebody V . We note that D′′1 separates the handlebody V cut
off by D2∪D3∪· · ·∪Dg. Recall that D1 intersects 0 in at most one point. If D1 does
not intersect 0, then it follows that {D′1, D2, . . . , Dg} is a cut-system for the pair
(V, 0) with |D∩(D′1∪D2∪· · ·∪Dg)|< |D∩(D1∪D2∪· · ·∪Dg)|. This contradicts
the minimality of |D ∩ (D1 ∪ D2 ∪ · · · ∪ Dg)|. Suppose that D1 intersects 0. If D′′1
intersects 0, then D′′1 cannot separate the handlebody V cut off by D2∪D3∪· · ·∪Dg.
This is a contradiction. Thus D′1 intersects 0. This implies that {D′1, D2, . . . , Dg}

is a cut-system for the pair (V, 0). This contradicts, again, the minimality of
|D∩(D1∪D2∪· · ·∪Dg)|. Thus, we have D∩(D1∪D2∪· · ·∪Dg)=∅ and D∩0=∅.

From now on, we assume that each of D1, D2, . . . , Dm does not intersect 0,
while each of Dm+1, Dm+2, . . . , Dg does so. Let B be the 3-ball obtained by cutting
V along D1 ∪ D2 ∪ · · · ∪ Dg. Then B ∩0i is a cone on an even number of points.
We note that D is a separating disk in B disjoint from the cones B ∩0. For each
i ∈ {1, 2, . . . ,m} let D+i and D−i be the disks on the boundary of B coming from Di .
Then there exists a set {E61, E62, . . . , E6n } of mutually disjoint disks properly
embedded in B such that

(1) E61 ∪ E62 ∪ · · · ∪ E6n is disjoint from 0 ∪ D ∪ D±1 ∪ D±2 ∪ · · · ∪ D±g , and

(2) E6i separates from B a 3-ball Bi such that Bi ∩ (D±1 ∪ D±2 ∪ · · · ∪ D±m )=∅
and Bi ∩0 = B ∩0i .

Now {D1, D2, . . . , Dm, E61, E62, . . . , E6n } is a required cut-system for W . �
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Let M be a compact, connected, orientable, irreducible 3-manifold with con-
nected boundary. Following [Bonahon 1983], a characteristic compression body W
of M is defined to be a compression body embedded in M such that

(1) ∂+W = ∂M , and

(2) the closure of M \W is boundary-irreducible.

We remark that, for a given characteristic compression body W of M , by the
irreducibility of M , every compression disk for ∂M can be moved by an isotopy to
lie in W .

Theorem 2.2 [Bonahon 1983]. A compact, connected, orientable, irreducible
3-manifold with connected boundary has a unique (up to isotopy) characteristic
compression body.

Lemma 2.3. Let M be a compact, connected, orientable 3-manifold with connected
boundary. Let W be a compression body in M such that ∂M = ∂+W . Let K be a
knot in the interior of W . If K fills up M , then K fills up W . Further, when M is
irreducible and W is the characteristic compression body, then K fills up M if and
only if K fills up W .

Proof. Since any knot K ′ in the interior of W with K ∼W K ′ satisfies K ∼M K ′, it
follows immediately from the definition that if K fills up M , then K fills up W .

Suppose M is irreducible, W is the characteristic compression body, and K is a
knot in W that fills up W . We will show that K fills up M . If M is a handlebody, then
we have M =W and there is nothing to prove. Suppose that M is not a handlebody.
Then M can be decomposed as M =W ∪ X , where W ∩ X = ∂−W = ∂X and X is
the union of boundary-irreducible 3-manifolds. The interior boundary ∂−W consists
of a finite number of closed surfaces 61, 62, . . . , 6n of genus at least 1. Let gi

be the genus of 6i (i ∈ {1, 2, . . . , n}). We recall that each 6i is incompressible
in M . Suppose for a contradiction that there exists a knot K ′ in the interior of M
with K∼M K ′ such that ∂M is compressible in M \K ′. Let D be a compression disk
for ∂M in M \ K ′. We may assume that D is contained in W .

Suppose first that D does not separate W . By Lemma 2.1, there exists a cut-
system for W disjoint from D. By replacing a suitable disk in the system with D, we
obtain a cut-system D={D1, D2, . . . , Dm, E61, E62, . . . , E6n }where D=D1. Let
0 be the 1-vertex spine of W dual to D. Fix a presentation of the fundamental group
of each surface 6i as π1(6i ) = 〈ai, j , bi, j ( j ∈ {1, 2, . . . , gi }) |

∏gi
j=1[ai, j , bi, j ]〉,

where we take the base point at 0 ∩6i .
Let v0 be the interior vertex of 0. Let V be the unique component of W cut

off by the union of disks in D that is homeomorphic to a handlebody. We fix a
generating set {x1, x2, . . . , xm} of π1(V, v0) so that an element xi is defined by
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the loop in 0 dual to Di . Then by the Seifert–van Kampen theorem, π1(W, v0) is
generated by the xi , ai, j and bi, j . Set

G={xi
±1
| i ∈{1, 2, . . . ,m}}∪{ai, j

±1, bi, j
±1 ( j ∈{1, 2, . . . , gi }) | i ∈{1, 2, . . . , n}}.

Let H1, H2, . . . , Hl be 1-handles in X attached to ∂−W so that the closure of
M \(W ∪H1∪H2∪· · ·∪Hl) is the union of handlebodies. Let h1, h2, . . . , hl be the
element of π1(M, v0) corresponding to the core of the 1-handles H1, H2, . . . , Hl ,
respectively. We set

Ĝ = G ∪ {hi
±1
| i ∈ {1, 2, . . . , l}}.

We note that the elements of Ĝ generate the group π1(M, v0). In other words, any
element of π1(M, v0) can be represented by a word on Ĝ.

Since each 6i is incompressible in M , π1(W, v0) is a subgroup of π1(M, v0).
Consider the conjugation class cπ1(W,v0)(K ). Since K fills up W , every word w
on G representing an element of cπ1(W,v0)(K ) contains x±1

1 .
By the existence of K ′, there exists a word w′ on Ĝ \ {x1

±1
} representing an

element of cπ1(M,v0)(K ). Let u be a word on Ĝ such that u−1wu represents the same
element as w′ in π1(M, v0). Let ϕ : π1(M, v0)→ π1(W, v0) be the epimorphism
obtained by adding the relations hi = 1 for each i ∈ {1, 2, . . . , l}. For a word v,
we denote by ϕ(v) the word on G obtained from v by replacing each hi

± in the
word with ∅. Then ϕ(u−1wu)= ϕ(u)−1wϕ(u) represents an element contained in
cπ1(W,v0)(K ). It follows that ϕ(w′) is a word on G \ {x1

±
} representing an element

of cπ1(W,v0)(K ). This is a contradiction.
Next, suppose D separates W into two components W1 and W2. By Lemma 2.1,

there exists a cut-system D={D1, D2, . . . , Dm, E61, E62, . . . , E6n } for W disjoint
from D. Without loss of generality, we can assume that the set of disks of D con-
tained in W1 is {D1, D2, . . . , Dm1, E61, E62, . . . , E6n1

}, where m1 ∈ {1, 2, . . . ,m}
and n1 ∈ {0, 1, . . . , n}. Here we set n1 = 0 if none of {E61, E62, . . . , E6n } is
contained in W1.

Let 0 be the 1-vertex spine of W dual to D. Using the spine 0, fix generating sets

G={xi
±1
| i ∈ {1, 2, . . . ,m}}∪{ai, j

±1, bi, j
±1
| i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , gi }}

of π1(W, v0) and
Ĝ = G ∪ {hi

±1
| i ∈ {1, 2, . . . , l}}.

of π1(M, v0) and an epimorphism ϕ : π1(M, v0)→ π1(W, v0) as above.
If m1 6= m, then, by the existence of K ′, there exists a word w′ on Ĝ \ {x1

±1
}

or Ĝ \ {xm
±1
} representing an element of cπ1(M,v0)(K ). By the same argument as

in the case where D is nonseparating, this is a contradiction. If m1 = m, then
n1 6= n. Hence, by the existence of K ′, there exists a word w′ on Ĝ \ {x1

±1
} or
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Ĝ \ {an, j
±1, bn, j

±1
| j ∈ {1, 2, . . . , gn}} representing an element of cπ1(M,v0)(K ). It

follows that ϕ(w′) is a word on G\{x1
±1
} or G\{an, j

±1, bn, j
±1
| j ∈{1, 2, . . . , gn}}

representing an element of cπ1(W,v0)(K ). However, this is again a contradiction
because the fact that K fills up W implies that every word on G representing an
element of cπ1(W,v0)(K ) contains both one of {an, j

±1, bn, j
±1
| j ∈ {1, 2, . . . , gn}}

and one of x±1
1 . This completes the proof. �

Theorem 2.4. Let M be a compact, connected, orientable, irreducible 3-manifold
with connected boundary. Then there exists a knot K in the interior of M that fills
up M. Moreover, such a knot K can be taken to lie in Nbd(∂M;M).

Proof. If M is a handlebody, the assertion follows from Lemma 1.5. Suppose
that M is not a handlebody. Let W be the characteristic compression body of M .
We may identify W with the complement of an open regular neighborhood of a
subspine 0 of a handlebody V . Let K be a knot in the interior of V that fills up V .
Since K can be taken not to intersect a spine of V containing 0 as a subgraph, we
may assume that K lies in a collar neighborhood of ∂+W = ∂M . By Lemma 2.3,
K fills up W . Thus, again by Lemma 2.3, K fills up M . �

3. Transient knots in a subspace of the 3-sphere

Let M be a compact, connected, proper 3-submanifold of S3. A knot K in M ⊂ S3

is said to be transient in M if K can be deformed by a homotopy in M to be the
trivial knot in S3. Otherwise, K is said to be persistent in M .

Example. The knot K1 described on the left-hand side in Figure 8 is transient in
the handlebody V1 in S3, while the knot K2 described on the right-hand side is
persistent in V2.

The next lemma follows straightforwardly from the definition.

Lemma 3.1. Let M be a compact, connected, proper 3-submanifold of S3 and let
N be a compact, connected 3-submanifold of M. If a knot K in N is persistent
in M , then it is also persistent in N.

V1 V2

K1 K2

Figure 8. The knot K1 is transient in V1, while K2 is persistent in V2.
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A compact, connected, proper 3-submanifold M of S3 is said to be unknotted if
the exterior E(M) is a disjoint union of handlebodies. Otherwise M is said to be
knotted. We recall that a theorem of Fox [1948] says that any compact, connected,
proper 3-submanifold of S3 can be reembedded in S3 in such a way that its image
is unknotted. See [Scharlemann and Thompson 2005] and [Ozawa and Shimokawa
2015] for certain generalizations and refinements of Fox’s theorem.

Remark. As mentioned in the introduction, M usually admits many nonisotopic
embeddings into S3 with the unknotted image. The uniqueness holds for a handle-
body by [Waldhausen 1968]. Here the uniqueness is up to isotopy for subsets of S3,
where we recall that two subsets M1 and M2 of S3 are isotopic if and only if there
exists an orientation-preserving homeomorphism f of S3 carrying M1 onto M2. If
we consider isotopies not between the embedded subsets but between embeddings,
it is far from being unique even for a handlebody. This can be explained under a
general setting as follows. Let M be a compact, connected 3-submanifold M that can
be embedded in S3. Then its mapping class group MCG+(M) is defined to be the
group of isotopy classes of orientation-preserving homeomorphisms of M . We fix an
embedding ι0 :M→ S3. Let Gι0(M)=MCG+(S3, ι0(M)) be the mapping class group
of the pair (S3, ι0(M)), that is, the group of isotopy classes of orientation-preserving
homeomorphisms of S3 that preserve ι0(M). See [Koda 2015] for details of this
group when M is a knotted handlebody. We can define an injective homomorphism
ι∗0 : Gι0(M) ↪→MCG+(M) by assigning to each homeomorphism ϕ ∈ Gι0(M) a unique
element f of MCG+(M) satisfying ϕ ◦ ι0 = ι0 ◦ f . Then the set of embeddings
of M into S3 with the same image up to isotopy can be identified with the right
cosets ι∗0(Gι0(M))\MCG+(M), where the identification is given by assigning to
f ∈MCG+(M) the embedding ι0◦ f :M→ S3. When M is a handlebody of genus at
least two, it is clear that this is an infinite set. We note that, when ι0(M) is an unknot-
ted handlebody of genus two, the group Gι0(M) is called the genus-two Goeritz group
of S3 and studied in [Goeritz 1933; Scharlemann 2004; Akbas 2008; Cho 2008].

Let K be a knot in M . Let f be contained in the coset ι∗0(Gι0(M)) idM . By the
observation above and the definition of the persistence of knots in M ⊂ S3, it
follows immediately that ι0 ◦ f (K ) is persistent in M if and only if K is. We note
that if f is not contained in the coset ι∗0(Gι0(M)) idM , then the knot ι0 ◦ f (K ) is not
necessarily persistent in M even if K is persistent in M . See Figure 9. Be that
as it may be, we discuss in this paper extrinsic properties of knots embedded in
submanifolds of S3, not intrinsic ones.

Theorem 3.2. Let M be a compact, connected, proper 3-submanifold of S3. Then
every knot in M is transient if and only if M is unknotted.

Proof. Suppose first that M is unknotted, i.e., M = S3
\ Int Nbd(0), where 0 is a

graph embedded in M . Let K be a knot in M . Considering a diagram of the spatial
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M
ι0

ι0 ◦ f

ι0 ◦ f (M)

K

ι0 ◦ f (K )

f

Figure 9. Persistence is an extrinsic property.

M

Y Y

N

W

X6

Figure 10. The configurations of M , N , W , 6, X and Y .

graph K ∪0, we easily see that K can be converted into the trivial knot in S3 by a
finite number of crossing changes of K itself. This implies that K is transient in M .

Next suppose that M is knotted. Then there exists a component N of the exterior
of M that is not a handlebody. Let W be the characteristic compression body of N .
We note that if N is boundary-irreducible, then W is a collar neighborhood of ∂N
in N . Since W is not a handlebody, we can take a nonempty component 6 of ∂−W .
Then6 separates S3 into two components X and Y so that X is boundary-irreducible
and Y contains M ∪W . See Figure 10.

By Theorem 2.4, there exists a knot K lying in Nbd(∂Y ; Y ) that fills up Y . In
particular K lies in W . Thus by an isotopy we can move K to lie within M . Let
K ′ ⊂ M be an arbitrary knot with K∼M K ′. Since K fills up Y , 6 is incompressible
in Y \ K ′. Thus 6 is incompressible in S3

\ K ′. This implies that K ′ is not the
trivial knot in S3. Therefore K is persistent in M . �

Remark. Let M be a compact, connected, knotted, proper 3-submanifold of S3. In
the proof of Theorem 3.2, we explained how to obtain a knot in M that is persistent
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V

K

Figure 11. The knot K fills up V , whereas K is transient in V .

in M . In the process, some readers may have guessed that if a knot K ⊂ M filled
up M , then K would already be persistent. If so, the process to consider the
characteristic compression body of a nonhandlebody component of the exterior in
the proof would not be necessary. However, the guess is not true in fact. Let K be
the knot in the genus-two knotted handlebody V ⊂ S3 as shown in Figure 11. Then
we see that K fills up V by the same reason as in the proof of Lemma 1.5 (see also
(2) in Section 6, whereas K is apparently transient in V .

4. Construction of persistent knots

Persistent laminations and persistent knots. Let M be a compact, connected,
proper 3-submanifold of S3 whose exterior consists of boundary-irreducible 3-
manifolds. It is easy to see that every knot filling up M is persistent in M . Indeed,
if a knot K in M fills up M , then each component of ∂M will be an incompressible
surface in the exterior of any knot K ′ homotopic to K in V , hence K ′ is not the
trivial knot in S3. However, the converse is false in general as we see now:

Proposition 4.1. There exists a genus-two handlebody V embedded in S3 with
the boundary-irreducible exterior such that there exists a knot K ⊂ V which is
persistent in V , and which does not fill up V .

Proof. Let V be the genus-two handlebody in S3 and K the knot in V as shown in
Figure 12. We note that the handlebody V is the exterior of Brittenham’s branched
surface [1999] constructed from a disk spanning the trivial knot in S3. In particular,
the exterior of V is boundary-irreducible. We note that K does not fill up V since
there exists a compression disk D for ∂V in V \ K as shown in the figure.

We will show that K is persistent in V . As illustrated in the figure, there are
meridian disks D1, D2 of V each of which intersects K once and transversely.
Let K ′ be any knot homotopic to K in V . Then K ′ intersects each of D1 and D2

at least once. By [Hirasawa and Kobayashi 2001] or [Lee and Oh 2002], which
generalizes the result of [Brittenham 1999], in the exterior of V there exists a
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V

K

D D1 D2

Figure 12. A handlebody V in S3 with the boundary-irreducible
exterior such that there exists a knot K ⊂ V which is persistent
in V , and which does not fill up V .

persistent lamination, that is, an essential lamination that remains essential after
performing any nontrivial Dehn surgeries along K ′. This implies that K ′ is not the
trivial knot. Thus K is persistent in V . �

Accidental surfaces and persistent knots. A closed essential surface 6 in the
exterior of a knot K in the 3-sphere is called an accidental surface if there exists an
annulus A, called an accidental annulus, embedded in the exterior E(K ) such that

• the interior of A does not intersect 6 ∪ ∂E(K ),

• A∩6 6=∅ and A∩ ∂E(K ) 6=∅, and

• A ∩6 and A ∩ ∂E(K ) are essential simple closed curves in 6 and ∂E(K ),
respectively.

In [Ichihara and Ozawa 2000] it is shown that, for each accidental surface in
the exterior of a knot in S3, the boundary curves of accidental annuli determine a
unique slope on the boundary of a regular neighborhood of the knot. This slope
is called an accidental slope for 6. By the work of Culler, Gordon, Luecke, and
Shalen [Culler et al. 1987], an accidental slope is either meridional or integral.

Proposition 4.2. Let M be a compact, connected, proper 3-submanifold of S3 with
connected boundary such that the exterior of M is boundary-irreducible. Let K
be a knot in M such that ∂M is incompressible in M \ K . If ∂M is an accidental
surface with integral accidental slope in the exterior of K , then K is persistent in
the submanifold M of S3 bounded by 6 and containing K .

Proof. Let A⊂M be an accidental annulus connecting K and a simple closed curve
in ∂M . Using this annulus, we move K to a knot K ∗ lying in ∂M by an isotopy.
Since ∂M is incompressible in E(K ), ∂M \ K ∗ is incompressible in M . Thus by
Lemma 1.1 K ∗ binds π1(M), and so does K . By Lemma 1.4, K fills up M . Let
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K ′ ⊂ M be an arbitrary knot lying in the interior of M with K ∼M K ′. Since K fills
up M , ∂M is incompressible in M \K ′. Thus ∂M is incompressible in S3

\K ′. This
implies that K ′ is not the trivial knot in S3. Therefore, K is persistent in M . �

5. Transient number of knots

Let K be a knot in S3. A crossing move on a knot K is the operation of passing one
strand of K through another. The unknotting number u(K ) of K , which was first
defined by Wendt [1937], is then the minimal number of crossing moves required
to convert the knot into the trivial knot. We note that to each crossing move we
can associate a simple arc α in S3 such that α ∩ K = ∂α and such that the crossing
move is performed in Nbd(α).

An unknotting tunnel system for K is a set {γ1, γ2, . . . , γn} of mutually disjoint
simple arcs in S3 such that γi ∩ K = ∂γi for each i ∈ {1, 2, . . . , n} and such that
the exterior of the union K ∪γ1∪γ2∪ · · ·∪γn is a handlebody. The tunnel number
t (K ) of K , first defined in [Clark 1980], is the minimal number of arcs in any of
the unknotting tunnel systems for K .

We introduce a new invariant for a knot in the 3-sphere that is strongly related to
the above two classical invariants. We define a transient system for K to be a set
{τ1, τ2, . . . , τn} of mutually disjoint simple arcs in S3 such that τi ∩ K = ∂τi for
each i ∈ {1, 2, . . . , n} and such that K is transient in Nbd(K ∪ τ1 ∪ τ2 ∪ · · · ∪ τn).
The transient number tr(K ) of K is defined to be the minimal number of arcs in
any of the transient systems for K .

Proposition 5.1. Let K be a knot in S3. Then tr(K )6 u(K ) and tr(K )6 t (K ).

Proof. Suppose that u(K )= m. Let {α1, α2, . . . , αm} be a set of mutually disjoint
simple arcs associated to m crossing moves that convert K into the trivial knot.
Then K is transient in the handlebody Nbd(K ∪α1∪α2∪· · ·∪αm). In other words,
{α1, α2, . . . , αm} is a transient tunnel system for K . This implies that tr(K )6 m.

Suppose that t (K ) = n. Let {γ1, γ2, . . . , γn} be an unknotting tunnel system
for K . Since the handlebody Nbd(K ∪γ1∪γ2∪· · ·∪γn) is unknotted, K is transient
in Nbd(K ∪ γ1 ∪ γ2 ∪ · · · ∪ γn) by Theorem 3.2. This implies that tr(K )6 n. �

Proposition 5.2. There exists a knot K in S3 with tr(K )= 1 and u(K )= t (K )= 2.

Proof. Let K be the satellite knot of the figure-eight knot shown in Figure 13.
Clearly, the genus of K is one. The transient number of K is one because K admits
a transient tunnel as shown in the figure. In [Kobayashi 1989] and [Scharlemann
and Thompson 1989], it is proved that the only knots of genus one and unknotting
number one are the doubled knots. It follows that the unknotting number of K is at
least two. It is then straightforward to see that the unknotting number is exactly two.
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K

τ

Figure 13. A knot K with tr(K )= 1 and u(K )= t (K )= 2.

It is proved in [Morimoto and Sakuma 1991] that the only nonsimple knots
having unknotting tunnels are certain satellites of torus knots. It follows that the
tunnel number of K is at least two. It is then straightforward to see that the tunnel
number is exactly two. �

6. Concluding remarks

(1) Let M be a compact, connected, proper 3-submanifold of S3. Let K be a knot
in the interior of M . In the earlier sections, we have introduced various homotopic
properties of knots in M . We summarize their relations. We say that K is accidental
in M if K can be moved to a knot K ′ in ∂M by a homotopy in M so that ∂M \ K ′

is incompressible in M . Then we have the following:

(a) If K is accidental, then K binds π1(M) (see Lemma 1.1).

(b) If K binds π1(M), then K fills up M (see Lemma 1.4).

(c) By (a) and (b), if K is accidental, then K fills up M .

The converse of each of these is false. To see this, suppose that M is the exterior of
a nontrivial knot in S3. We note that π1(M) is freely indecomposable by the Kneser
conjecture. Let K be a knot in M that cannot be moved by any homotopy in M to lie
in ∂M . Such a knot K always exists by, for instance, the work of Brin, Johannson,
and Scott [Brin et al. 1985]. This implies that K binds π1(M), whereas K is not
accidental in M . A somewhat more subtle example is shown on the left in Figure 14.
In the figure, the knot K lies in a genus-two handlebody V , and thus K can be moved
by homotopy to lie within a collar neighborhood of ∂V . If K is accidental, then by
attaching a 2-handle to V we obtain a 3-manifold M with toroidal boundary whose
fundamental group has the presentation 〈x, y | xyx−2 y−1

〉. This group is called the
Baumslag–Solitar group, BS(1), and is known not to be a 3-manifold group; see
the work of Aschenbrenner, Friedl, and Wilton [Aschenbrenner et al. 2015]. This
implies that K is not accidental in V . On the other hand, it follows straightforwardly
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V

K

Figure 14. The knot K binds V and is not accidental in V .

from Theorem 6.1 that K binds V since the corresponding Whitehead graph, shown
on the right in Figure 14, is connected and contains no cut vertex.

The remark after the proof of Lemma 1.4 shows that the converse of Lemma 1.4
is false. However, the 3-manifold M introduced in the example is not embeddable
in S3. To have a counterexample of the converse of (b), let 6 be a closed orientable
surface of genus at least one. Let M be an orientable 3-manifold obtained by
attaching a 1-handle to each component of ∂(6×[0, 1]). We note that M can be
embedded in S3. Let D0 and D1 be the cocore of the 1-handles. Then we can easily
show as in the remark that there exists a knot K in M , intersecting each of D0

and D1 once and transversely, that fills up M , whereas K does not bind π1(M).
The relations of these three intrinsic properties are shown on the left-hand side
in Figure 15. It is worth noting that, to show that a given knot K in M ⊂ S3 is
persistent, we have used an intrinsic property of K in a subset of S3 containing M .
See Theorem 3.2 and Propositions 4.1 and 4.2.

(2) Let Fg be a rank-g free group. As mentioned in Section 1, an algorithm to detect
whether a given element x of a free group Fg binds Fg is described by Stallings
using the combinatorics of its Whitehead graph. In fact, the following is proved:

Theorem 6.1 [Stallings 1999]. Let x be a cyclically reduced word on the set
Xg = {x1, x2, . . . , xg}. If the Whitehead graph of x is connected and contains no
cut vertex, then x binds Fg.

For a simple closed curve in the boundary of a handlebody, this can be seen
clearly as follows. Let x be an element of the rank-g free group Fg. We identify

accidental

fills up binds

persistent
transient

(M, K ) (S3,M, K )

intrinsic extrinsic

(a)

(b)

(c)

Figure 15. Correlation diagrams of extrinsic and intrinsic properties.
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Fg with the fundamental group of a genus-g handlebody. In the case of M = Vg in
Lemma 1.1, which is actually [Lyon 1980, Corollary 1], we have seen that if x can
be represented by an oriented simple closed curve K in ∂Vg, then x binds Fg if and
only if ∂Vg \ K is incompressible. On the other hand, Starr [1992] (see also [Wu
1996, Theorem 1.2]) showed that ∂Vg \ K is incompressible if and only if there is a
complete meridian disk system D1, D2, . . . , Dg of Vg such that the planar graph
with “fat” vertices obtained by cutting ∂Vg along

⋃g
i=1 Di is connected and contains

no cut vertex. This graph is actually nothing else but the Whitehead graph of x . (As
explained in [Stallings 1999], we can obtain a geometric interpretation of this for
an arbitrary element of Fg if we consider the connected sum of g copies of S2

× S1

instead of Vg.)

(3) Let M be a compact, connected, proper 3-submanifold of S3. In the proofs
of Theorem 3.2 and Propositions 4.1 and 4.2, we provided a way to show that a
given knot K ⊂ M is persistent in M . The key idea is to find an essential surface
(or lamination) in the exterior of M that is also essential in the exterior of any knot
K ′ homotopic to K in M . As mentioned in the introduction, another way to show
persistence was provided by Letscher [2012] and uses what he calls the persistent
Alexander polynomial.

Problem 1. Provide more methods for detecting whether a knot K ⊂M is persistent.

(4) As we have summarized in Figure 15, the only extrinsic property of knots in a 3-
subspace of S3 we have considered in the present paper is transience (or persistence).
Using this property, we have actually gotten an “if and only if” condition for a
3-subspace of S3 being unknotted in Theorem 3.2. This is a first step for a relative
version of Fox’s program and further progress will be expected.

Problem 2. Consider other extrinsic properties of knots in M ⊂ S3 in order to
characterize how M is embedded in S3.

We note that the case where M is a handlebody is already a very interesting
problem. See, e.g., [Ishii 2008; Koda 2015; Koda and Ozawa 2015].

(5) As mentioned in the introduction, the unknottedness of a 3-submanifold can be
considered for an arbitrary closed, connected 3-manifold. Thus it is natural to ask:

Question 1. Can Theorem 3.2 be generalized for M in an arbitrary 3-manifold N?

(6) Finally, in Section 5, we defined an integer-valued invariant tr(K ), the transient
number, for a knot K in S3. This invariant is nice in the sense that it shows the knots
of unknotting number 1 and those of tunnel number 1 from the same perspective
as we have seen in Proposition 5.1. However, it remains unknown whether there
exists a knot whose transient number is more than 1.

Question 2. Can the transient number tr(K ) be arbitrarily large?
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