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BRIDGE SPHERES FOR THE UNKNOT
ARE TOPOLOGICALLY MINIMAL

JUNG HOON LEE

Topologically minimal surfaces were defined by Bachman as topological
analogues of geometrically minimal surfaces, and one can associate a topo-
logical index to each topologically minimal surface. We show that an (n+1)-
bridge sphere for the unknot is a topologically minimal surface of index at
most n.

1. Introduction

Let S be a closed orientable separating surface embedded in a 3-manifold M . The
structure of the set of compressing disks for S, such as how a pair of compressing
disks on opposite sides of S intersects, reveals some topological properties of M .
For example, if S is a minimal genus Heegaard surface of an irreducible manifold M
and S has a pair of disjoint compressing disks on opposite sides, then M contains
an incompressible surface [Casson and Gordon 1987].

The disk complex D(S) of S is a simplicial complex defined as follows.

• Vertices of D(S) are isotopy classes of compressing disks for S.

• A collection of k + 1 vertices forms a k-simplex if there are representatives
for each that are pairwise disjoint.

The disk complex of an incompressible surface is empty. A surface S is strongly
irreducible if S compresses to both sides and every compressing disk for S on one
side intersects every compressing disk on the opposite side. So the disk complex of
a strongly irreducible surface is disconnected. Extending these notions, Bachman
[2010] defined topologically minimal surfaces, which can be regarded as topological
analogues of (geometrically) minimal surfaces.

A surface S is topologically minimal if D(S) is empty or πi (D(S)) is nontrivial
for some i . The topological index of S is 0 if D(S) is empty, and the smallest n
such that πn−1(D(S)) is nontrivial, otherwise.

Topologically minimal surfaces share some useful properties. For example, if an
irreducible manifold contains a topologically minimal surface and an incompressible
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surface, then the two surfaces can be isotoped so that any intersection loop is
essential in both surfaces. There exist topologically minimal surfaces of arbitrarily
high index [Bachman and Johnson 2010], and see also [Lee 2015] for possibly high
index surfaces in (closed orientable surface)× I . In this paper we consider bridge
splittings of 3-manifolds, and show that the simplest bridge surfaces, bridge spheres
for the unknot in S3, are topologically minimal. The main idea is to construct a
retraction from the disk complex of a bridge sphere to Sn−1 as in [Bachman and
Johnson 2010] and [Lee 2015].

Theorem 1.1. An (n+ 1)-bridge sphere for the unknot is a topologically minimal
surface of index at most n.

In particular, the topological index of a 3-bridge sphere for the unknot is two.
We conjecture that the topological index of an (n+ 1)-bridge sphere for the unknot
is n. There is another conjecture that the topological index of a genus n Heegaard
surface of S3 is 2n− 1. This correspondence may be due to the fact that a genus n
Heegaard splitting of S3 can be obtained as a 2-fold covering of S3 branched along
an unknot in (n+ 1)-bridge position.

2. Bridge splitting

For a closed 3-manifold M , a Heegaard splitting M = V+∪S V− is a decomposition
of M into two handlebodies V+ and V− with ∂V+ = ∂V− = S. The surface S is
called a Heegaard surface of the Heegaard splitting.

Let K be a knot in M such that V± ∩ K is a collection of n boundary-parallel
arcs {a±1 , . . . , a±n } in V±. Each a±i is called a bridge. The decomposition

(M, K )= (V+, V+ ∩ K )∪S (V−, V− ∩ K )

is called a bridge splitting of (M, K ), and we say that K is in n-bridge position
with respect to S. A bridge a±i cobounds a bridge disk 1±i with an arc in S. We
can take the bridge disks 1+i (i = 1, . . . , n) to be mutually disjoint, and similarly
for 1−i (i = 1, . . . , n). By a bridge surface, we mean S− K . The set of vertices of
D(S− K ) consists of compressing disks for S− K in V+− K and V−− K .

Two bridge surfaces S − K and S′ − K are equivalent if they are isotopic in
M−K . An n-bridge position of the unknot in S3 is unique for every n [Otal 1982],
so for n ≥ 2 it is perturbed, i.e., there exists a pair of bridge disks 1+i and 1−j such
that the arcs 1+i ∩ S and 1−j ∩ S intersect at one endpoint. The uniqueness also
holds for 2-bridge knots [Scharlemann and Tomova 2008] and torus knots [Ozawa
2011]. However, there are 3-bridge knots that admit multiple 3-bridge spheres
[Birman 1976; Montesinos 1976].
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Figure 1. Bridges and bridge disks.

3. Proof of Theorem 1.1

Let S3 be decomposed into two 3-balls B+ and B− with common boundary S.
Let K be an unknot in S3 which is in (n + 1)-bridge position with respect to S.
Then K ∩ B± is a collection of n + 1 bridges a±i (i = 1, . . . , n + 1) in B±. We
assume that the bridges are arranged with a±1 adjacent to a∓1 and a∓2 , with a±i
adjacent to a∓i−1 and a∓i+1 for 2 ≤ i ≤ n, and with a±n+1 adjacent to a∓n and a∓n+1.
Let {1±i } be a collection of disjoint bridge disks 1±i for a±i with 1±i ∩ S = b±i . We
assume that int b+i ∩ int b−j =∅ for any i and j . See Figure 1 for an example.

Let P be the (2n+2)-punctured sphere S−K . We define compressing disks D±i
(i = 1, . . . , n) for P in B±− K as follows. Let D+1 be a disk in B+− K such that
∂D+1 = ∂N (b+1 ), where N (b+1 ) is a neighborhood of b+1 taken in S. Similarly, other
disks are defined so as to satisfy the following.

∂D−1 = ∂N (b−1 ),

∂D+2 = ∂N (b+1 ∪ b−1 ∪ b+2 ),

∂D−2 = ∂N (b−1 ∪ b+1 ∪ b−2 ),
...

∂D+i = ∂N (b+1 ∪ b−1 ∪ · · · ∪ b+i−1 ∪ b−i−1 ∪ b+i ),

∂D−i = ∂N (b−1 ∪ b+1 ∪ · · · ∪ b−i−1 ∪ b+i−1 ∪ b−i ),
...

∂D+n = ∂N (b+1 ∪ b−1 ∪ · · · ∪ b+n−1 ∪ b−n−1 ∪ b+n ),

∂D−n = ∂N (b−1 ∪ b+1 ∪ · · · ∪ b−n−1 ∪ b+n−1 ∪ b−n ).

The ∂D±i ’s in P are depicted in Figure 2.
Now we define subsets C±i (i = 1, . . . , n) of the set of vertices of D(P) as
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Figure 2. ∂D±i (i = 1, . . . , n) in P .

follows. For odd i , let

C+i = {D
+

i },

C−i = {essential disks in B−− K that intersect D+i
and are disjoint from D+1 , D+3 , . . . , D+i−2}.

For even i , let

C+i = {essential disks in B+− K that intersect D−i
and are disjoint from D−2 , D−4 , . . . , D−i−2},

C−i = {D
−

i }.

Note that for all i , D±i belongs to C±i .

Lemma 3.1. The collection {C±i } (i = 1, . . . , n) is a partition of the set of essential
disks in B±− K .

Proof. First we show that {C+i } (i = 1, . . . , n) is a partition of the set of essential
disks in B+− K . We show that any essential disk in B+− K belongs to one and
only one C+i .

An essential disk in B+−K that intersects D−2 belongs to C+2 by definition. Let
E2 = N (b−1 ∪ b+1 ∪ b−2 ) be the disk in S such that ∂E2 = ∂D−2 .

Claim 1. If an essential disk D in B+− K is disjoint from D−2 and ∂D is in E2,
then D is isotopic to D+1 ∈ C+1 .

Proof of Claim 1. We assume that D intersects D+1 transversely and minimally, so
D ∩ D+1 consists of arc components. Let E1 = N (b+1 ) be the disk in S such that
∂E1 = ∂D+1 . See Figure 3. Suppose that D ∩ D+1 6= ∅. Consider an outermost
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Figure 3. D+1 in C+1 .

disk 1 of D cut off by an outermost arc of D∩D+1 . By the minimality of |D∩D+1 |,
1 cannot lie in the 3-ball B bounded by D+1 ∪ E1 containing a+1 . So 1 lies outside
of B. Let D be one of the disks obtained from D+1 by surgery along1 such that ∂D
bounds a disk E in E2− E1. Let p be the point a+2 ∩ (E2− E1) and q be the point
a+3 ∩ (E2− E1).

Suppose E contains p. Then the sphere D∪E intersects a+2 ∪b+2 in a single point
after a slight isotopy of int b+2 into B−, a contradiction. So E does not contain p,
and by similar reasoning E does not contain q. Then E is an inessential disk in
E2− E1− K , so we can reduce |D ∩ D+1 |, a contradiction.

Hence D∩D+1 =∅. Let E be the disk in E2 such that ∂E = ∂D. If ∂E is in E1,
then D is isotopic to D+1 . Suppose ∂E is in E2− E1. Then E contains neither p
nor q, since otherwise D ∪ E intersects a+2 ∪ b+2 or a+3 ∪ b+3 in a single point as
above. So we get the conclusion that D is isotopic to D+1 . �

Therefore if an essential disk in B+− K is disjoint from D−2 and its boundary is
in S− E2, then it belongs to one of C+3 , . . . ,C+n .

An essential disk in B+− K that is disjoint from D−2 and intersects D−4 belongs
to C+4 by definition. Let E4= N (b−1 ∪b+1 ∪· · ·∪b−3 ∪b+3 ∪b−4 ) be the disk in S such
that ∂E4 = ∂D−4 . Let D be an essential disk in B+− K that is disjoint from D−2
and D−4 and such that ∂D ⊂ S− E2.

Claim 2. If ∂D is in E4 (hence in E4− E2), then D is isotopic to D+3 ∈ C+3 .

Proof of Claim 2. We assume that |D ∩ D+3 | is minimal up to isotopy, so D ∩ D+3
consists of arc components. Let E3 = N (b+1 ∪ b−1 ∪ b+2 ∪ b−2 ∪ b+3 ) be the disk in S
such that ∂E3 = ∂D+3 . See Figure 4.

Suppose that D ∩ D+3 6= ∅. Consider an outermost disk 1 of D cut off by an
outermost arc of D ∩ D+3 . Without loss of generality, we assume that ∂1∩ S lies
in E3− E2. Let D be one of the disks obtained from D+3 by surgery along 1 such
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Figure 4. D+3 in C+3 .

that ∂D bounds a disk E in E3− E2. Let p be the point a+2 ∩ (E3− E2) and q be
the point a+3 ∩ (E3− E2).

Suppose E contains p. Then the sphere D∪E intersects a+2 ∪b+2 in a single point
after a slight isotopy, a contradiction. So E does not contain p, and similarly E
does not contain q . Then E is an inessential disk in E3− E2−K , so we can reduce
|D ∩ D+3 |, a contradiction. Hence D ∩ D+3 = ∅. Then, reasoning as we did for
Claim 1, we see that D is isotopic to D+3 . �

Therefore if an essential disk in B+ − K is disjoint from D−2 and D−4 and its
boundary is in S− E4, then it belongs to one of C+5 , . . . ,C+n .

In general, let E2i = N (b−1 ∪ b+1 ∪ · · · ∪ b−2i−1 ∪ b+2i−1 ∪ b−2i ) be the disk in S
such that ∂E2i = ∂D−2i . Let D be an essential disk in B+− K that is disjoint from
D−2 , D−4 , . . . , D−2i−2 and such that ∂D ⊂ S− E2i−2.

• If ∂D ⊂ E2i − E2i−2, then D is isotopic to D+2i−1 ∈ C+2i−1.

• If D intersects D−2i , then D belongs to C+2i by definition.

• If ∂D ⊂ S− E2i , then D belongs to one of C+2i+1, . . . ,C+n .

An inductive argument in this way leads to the conclusion that any essential disk
in B+− K belongs to one and only one C+i . A similar argument shows that {C−i }
(i = 1, . . . , n) is a partition of the set of essential disks in B−− K . �

The collection of disks {D+1 , D−1 , . . . , D+n , D−n } spans an (n− 1)-sphere Sn−1

in D(P). There is no edge in D(P) connecting C+i and C−i by definition. There
exists an edge in D(P) connecting C±i and C±j for i 6= j , e.g., an edge between D±i
and D±j , and there exists an edge in D(P) connecting C+i and C−j for i 6= j , e.g.,
an edge between D+i and D−j . Hence if we define a map r̄ from the set of vertices
of D(P) to the set of vertices of Sn−1 by

r̄(v)= D±i if v ∈ C±i ,
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then r̄ extends to a continuous map from the 1-skeleton of D(P) to the 1-skeleton
of Sn−1. Since higher-dimensional simplices of D(P) are determined by 1-simplices,
the map r̄ can be extended to a retraction r :D(P)→ Sn−1. Hence πn−1(D(P)) 6= 1,
and the topological index of P is at most n.
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