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ON THE GEOMETRIC CONSTRUCTION
OF COHOMOLOGY CLASSES FOR

COCOMPACT DISCRETE SUBGROUPS
OF SLn(R) AND SLn(C)

SUSANNE SCHIMPF

We construct nontrivial cohomology classes for certain cocompact discrete
subgroups of SLn(R) and SLn(C) using a geometric method. The discrete
subgroups are of arithmetic nature, i.e., they arise from arithmetic sub-
groups of suitably chosen algebraic groups. In certain cases, we show the
nonvanishing of automorphic representations as a consequence.

1. Introduction

This paper contributes to the research on cohomology of arithmetic groups by
providing a nonvanishing result for the cohomology of certain families of cocom-
pact discrete subgroups of the real Lie groups SLn(R) and SLn(C). The discrete
subgroups are of arithmetic nature, i.e., they arise from arithmetic subgroups of
suitably chosen algebraic groups. Our approach is via a geometric argument.

The main result. Let G be a semisimple real Lie group with finite center. Denote by
K a maximal compact subgroup and by 0 a torsion-free discrete subgroup of G. The
action of 0 on the symmetric space X := K\G is smooth, proper and free, and the
quotient X/0 is a K (0, 1)-space. In particular, one has H∗(0,C)= H∗(X/0;C),
i.e., the group cohomology of 0 with respect to the trivial 0-module C equals the
singular cohomology of X/0 with complex coefficients.

A particularly interesting case is the situation where the discrete subgroup 0 is
cocompact, i.e., the locally symmetric space X/0 is compact. General results by
Borel [1963] and Borel and Harder [1978] imply that such cocompact subgroups
can be constructed as arithmetic subgroups of suitable algebraic groups defined
over some algebraic number field. One can then use geometric methods to study
the cohomology of the compact locally symmetric space X/0. Assuming the space
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X/0 is orientable, one approach is to construct certain oriented, totally geodesic sub-
manifolds (so-called geometric cycles) and show that their fundamental homology
classes contribute nontrivially to the cohomology of X/0 via Poincaré duality. Such
methods have been successfully applied to discrete subgroups of several classical
and exceptional Lie groups including SO(p, q), SU(p, q), SU∗(2n) and G2; see
[Millson and Raghunathan 1981; Schwermer and Waldner 2011; Waldner 2010].
In this work, we deal with the special linear group over the real and the complex
numbers. We obtain a result of the following form (see Theorems 5.6 and 6.5).

Theorem. Let n ∈ N, n ≥ 2.

(1) Let X := SO(n)\SLn(R) denote the symmetric space attached to the real Lie
group SLn(R). If n is even, there exists a discrete cocompact arithmetically
defined subgroup 0 ⊂ SLn(R) such that H k(X/0;C) contains nontrivial
cohomology classes for all k of the form

k = pq and k = 1
2(p

2
+ q2
+ n)− 1,

where p and q are positive integers with p+ q = n, and, if n 6= 2, for

k = 1
4(n

2
+ 2n) and k = 1

4 n2
− 1.

(2) Let X := SU(n)\SLn(C) denote the symmetric space attached to the real
Lie group SLn(C). There exists a discrete cocompact arithmetically defined
subgroup 0 ⊂ SLn(C) such that H k(X/0;C) contains nontrivial cohomology
classes for all k of the form

k = 2pq and k = p2
+ q2
− 1,

where p and q are positive integers with p+ q = n, and for

k = 1
2(n

2
− n) and k = 1

2(n
2
+ n)− 1.

Moreover, if n is even and n 6= 2, there are nontrivial cohomology classes in
the degrees

k = 1
2(n

2
+ n), k = 1

2(n
2
− n)− 1, k = 1

2 n2
− 1 and k = 1

2 n2.

When H∗(X/0,C) is interpreted as the cohomology of the de Rham complex
�∗(X/0,C), the constructed classes are not represented by SLn(R)- or SLn(C)-
invariant differential forms on X.

A geometric method. The geometric method we are using to obtain our result was
developed by Millson and Raghunathan [1981] and is based on an earlier result of
Millson [1976] about the nonvanishing of the first Betti number of certain compact
hyperbolic manifolds.
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Their approach applies to the situation where the Lie group G is the group of
real points of a reductive algebraic Q-group and 0 is a cocompact torsion-free
arithmetic subgroup of this algebraic group. Under the assumption that the space
X/0 is orientable, they consider so-called geometric cycles, orientable totally
geodesic submanifolds of X/0. Then the approach of Millson and Raghunathan is
based on finding two such geometric cycles of complementary dimension in X/0
that intersect transversally and with positive multiplicity in all points of intersec-
tion. Under this assumption, the fundamental classes of the two submanifolds
have nontrivial intersection number, and hence they contribute nontrivially to the
cohomology of X/0. In 1993, Rohlfs and Schwermer found a way to generalize
the method in such a way that it also applies to nontransversal intersections, by
using the theory of so-called excess bundles. Their work involves the investigation
of deep orientability questions.

As the proof of our result is heavily based on the method of Rohlfs and Schwermer,
we give an overview of the relevant notions and their main theorem in Section 3.
Then, Section 4 is devoted to introducing the framework of algebraic groups in
which the construction of geometric cycles and the associated cohomology classes
is carried out: for our groups of interest, SLn(R) and SLn(C), the algebraic group
to start with is the special unitary group

G := SUm(h, D, σ )

defined over an algebraic number field F , where D is a division algebra with
involution σ and h denotes a σ -hermitian form on Dm . Under certain assumptions,
the associated real Lie group G∞ is isomorphic to SLn(R) or SLn(C) up to compact
factors and can be used for the construction of cocompact discrete subgroups. In
this setting, the construction of geometric cycles and the application of the method
of Rohlfs and Schwermer to obtain nontrivial cohomology classes is carried out
in Sections 5 and 6, for the real and complex case, respectively. The main results
are stated as Theorems 5.6 and 6.5.

Automorphic representations. Nonvanishing results for the cohomology of cocom-
pact discrete subgroups can be applied to the theory of automorphic representations
using a well-known result of Matsushima that allows one to interpret the cohomology
of X/0 in terms of the relative Lie algebra cohomology of irreducible unitary
representations of G. Thus, we have devoted Section 7 to the study of representa-
tions with nontrivial (g, K )-cohomology occurring in Matsushima’s formula for
the group G = SLn(C). Making explicit general results of Enright [1979] and
Delorme [1979] for simply connected complex Lie groups for the case of SLn(C),
we obtain a complete classification of the equivalence classes of irreducible unitary
representations with nontrivial (g, K )-cohomology. By comparing the occurring
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degrees in which X/0 may possibly have nontrivial cohomology with those detected
by special cycles, we can identify specific automorphic representations of G with
respect to 0 for small values of n.

2. Notation

• For an algebraic number field k, we let V = V (k) and V∞ = V∞(k) denote its set
of places and archimedean places, respectively. For a place v ∈ V , we denote by kv
the completion of k at v.

• All algebraic groups are assumed to be linear, i.e., they can be considered as
smooth affine algebraic group schemes. We denote algebraic groups by bold letters
(G, H , . . . ). For an algebraic group G defined over a number field k, we set
G∞ :=

∏
v∈V∞G(kv).

• Lie groups are denoted by standard Roman letters (G, H , . . . ). Whenever we
speak of a semisimple Lie group, we assume that it has finite center and finitely
many connected components.1 We use the notion of a reductive Lie group as in
[Knapp 1996, Section VII.2].

• For a semisimple Lie group G, we denote by Ĝ the unitary dual of G, that is, the
set of unitary equivalence classes of irreducible unitary representations.

• Lie algebras are denoted by small German letters (g, h, . . . ) and can be real or
complex depending on context. If g is a real Lie algebra, we will denote by gC its
complexification and if g is complex we write gR for the real Lie algebra underlying
g. In general, we denote the Lie algebra of a Lie group G by g and consider it as a
real or complex Lie algebra depending on whether G is a real or a complex group.

• Let R be a ring and let n ∈ N. We denote by In the n× n unity matrix in Mn(R)
and by Ip,q the matrix diag(Ip,−Iq) ∈ Mn(R), for p+ q = n. For even n, we set
Jn :=

( 0
In/2

−In/2
0

)
.

3. A geometric method

This section gives a brief summary of the method of Rohlfs and Schwermer [1993]
for the geometric construction of nontrivial cohomology classes.

3.1. Special cycles. Let G be a connected reductive algebraic group defined over Q

and write G for its group of real points G(R). Then G is a real reductive Lie group
with a maximal compact subgroup K ⊂G and we can form the associated symmetric
space X := K\G. Let now 0 ⊂ G(Q) be a torsion-free arithmetic subgroup. Then

1This is to ensure that the semisimple groups are also reductive in the sense of [Knapp 1996]. Lie
groups arising as the groups of real or complex points of semisimple algebraic groups will always
have this property.
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0 is a discrete subgroup of G and it acts on the symmetric space X by right
translations. This action is smooth, proper and free, and the quotient X/0 is a
Riemannian locally symmetric space.

Let µ be a Q-rational automorphism of G and assume that K and 0 are
invariant under µ. Then the fixed point group Fix(µ, G) is a reductive sub-
group of G and we can associate with it the locally symmetric space C(µ, 0) :=
Fix(µ, K )\Fix(µ, G)(R)/Fix(µ, 0). This is a connected, totally geodesic sub-
manifold of X/0 and is called the special cycle associated with µ.

Let us now assume that 2 is the group generated by two commuting Q-rational
automorphisms τ1, τ2 of G of finite order and that K and 0 are 2-invariant.2

In general, the locally symmetric space X/0 and its special cycles need not be
orientable. However, it was shown by Rohlfs and Schwermer [1993] that by passing
to a suitable subgroup of finite index in 0, one can always assume that the manifolds
X/0, C(τ1, 0), C(τ2, 0) and the (finitely many) connected components of their
intersection are orientable.

Let us denote by [C(τi , 0)] the fundamental homology class of C(τi , 0) in
H∗(C(τi , 0)) and for simplicity also its image in H∗(X/0), for i ∈ {1, 2}. If we
assume in addition that the two cycles are of complementary dimension in X/0,
we can look at their intersection number [C(τ1, 0)][C(τ2, 0)].

Since these submanifolds need not necessarily intersect transversally, the de-
termination of their intersection number is a complicated issue. It involves the
computation of Euler numbers of a certain excess bundle. Under certain assumptions
connected to deep orientability questions for the involved manifolds, Rohlfs and
Schwermer have come up with a nonvanishing result for the intersection number:

Theorem 3.2 [Rohlfs and Schwermer 1993, Theorem 4.11]. Let G be a reductive
algebraic Q-group, let τ1 and τ2 be Q-rational automorphisms of G of finite
order, and let 0 be a torsion-free, 〈τ1, τ2〉-stable, cocompact arithmetic subgroup
of G such that X/0, C(τ1, 0), C(τ2, 0) and all connected components of their
intersection are orientable. Suppose that the associated cycles C(τ1) and C(τ2)

are of complementary dimension. Assume that

(i) the real Lie groups G(R), Fix(τ1, G)(R) and Fix(τ2, G)(R) act orientation-
preservingly on X , X (τ1) and X (τ2), respectively, and

(ii) the group Fix(〈τ1, τ2〉, G)(R) is compact.

Then there exists a 〈τ1, τ2〉-stable normal subgroup 0′ ⊂ 0 of finite index such that

[C(τ1, 0
′)][C(τ2, 0

′)] 6= 0.

2Such a choice of K and 0 is always possible without loss of generality. For K , this follows from
[Helgason 1978, Theorem 13.5]. For 0, set 0′ :=

⋂
θ∈2θ(0). Then 0′ is of finite index in 0 and

stable under 2 since the elements of 2 are automorphisms of finite order.
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Remark. Condition (i) is quite restricting and we will see below natural choices
for G, τ1 and τ2 where it is not met. Note that the condition is satisfied if G(R),
Fix(τ1, G)(R) and Fix(τ2, G)(R) are connected.

Clearly, the nonvanishing of the intersection number implies the nonvanishing of
the homology classes [C(τi , 0

′)] in H∗(X/0′,C) and of the respective cohomology
classes obtained via Poincaré duality, for i ∈ {1, 2}.

For a compact quotient X/0, it is well-known that there exists an injective
homomorphism β∗0 : H

∗(Xu,C)→ H∗(X/0,C), where Xu denotes the compact
dual symmetric space of X . When interpreting H∗(X/0,C) in terms of de Rham co-
homology, the classes in the image of this map can be identified with the G-invariant
differential forms on X . It was shown by Millson and Raghunathan [1981] that
under certain conditions the classes constructed with Theorem 3.2 are new in the
sense that they do not lie in the image of β0:

Theorem 3.3. Let G, τ1, τ2 and 0 satisfy the assumptions of Theorem 3.2 and
suppose moreover that τ1 and τ2 are of order two. Then there exists a 〈τ1, τ2〉-stable
subgroup 0′′ of 0′ of finite index such that the nontrivial cohomology classes defined
by [C(τ1, 0

′′)] and [C(τ2, 0
′′)] via Poincaré duality are not in the image of β∗0′′ .

Example 3.4. Consider the real Lie group G = SO(p, q) with maximal compact
subgroup K = S(O(p)×O(q)). The group K (and hence also G) is not connected
but has two connected components that are distinguished by the determinant of
the upper left (p× p)-block. One can show that the action of G on the quotient
X := K\G by left translations is orientation-preserving if and only if n = p+ q
is even. Note that G is the fixed point group of the involution x 7→ Ip,q(x t)−1 Ip,q

in the connected real Lie group SLn(R). Hence, for odd n, this is an example of a
fixed point group that does not meet the orientability condition (i) in Theorem 3.2.

A similar argument also applies to the real Lie group G = S(GLp(R)×GLq(R))

with maximal compact subgroup K = S(O(p)× O(q)).

4. The setup: the construction of discrete cocompact subgroups
of SLn(R) and SLn(C)

In this section we will see how to construct cocompact discrete subgroups of SLn(R)

or SLn(C) using an arithmetic method based on the compactness criterion by Borel
and Harish-Chandra. The starting point is the special unitary group over a division
algebra.

Let E be an algebraic number field and D a central division algebra over E of
degree d endowed with an involution σ of the first or second kind. Recall that if σ is
of the second kind, there exists a subfield F of E of index 2 such that σ |F = id and
σ |E = ι, where ι is the nontrivial Galois automorphism of E over F . For simplicity
of notation, we set F := E and ι := id in case σ is an involution of the first kind.
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Let m be a natural number and let h be a σ -hermitian (or σ -skew-hermitian) form
on Dm . Then the special unitary group of rank m over D is defined as

SUm(h, D, σ ) := {x ∈ SLm(D) | h(xv, xw)= h(v,w) for all v,w ∈ Dm
},

where SLm(D) denotes the group of matrices in Mm(D) with reduced norm 1.
It is well-known that there exists a simply connected semisimple algebraic group

defined over F , whose F-rational points coincide with SUm(h, D, σ ). We denote
this group by SUm(h, D, σ ). Indeed, on the algebraic F-group ResE/F SLm(D)
we can define an F-rational morphism ψ that is given on the F-rational points by
ψ(x)= H−1σ(x t)−1 H , where H is the matrix of h with respect to a chosen basis,
and we have SUm(h, D, σ )= Fix(ψ,ResE/F SLm(D)).

Being an F-rational algebraic group, we can look at the real Lie group of
Fv-rational points of SUm(h, D, σ ) for any archimedean place v ∈ V∞(F). The
nature of this real Lie group depends on the properties of the place v and the splitting
behavior of D at v. Recall that for a quadratic extension E/F a place v ∈ V (F) is
said to be decomposed in E if there are exactly two places w ∈ V (E) such that w | v,
and nondecomposed otherwise. We denote by ρ the involution on Mm(D) given
by ρ(x) := H−1σ(x)t H . The following result can be obtained as an application of
results from the theory of algebras with involutions and some easy computations.

Proposition 4.1. (1) Let σ be an involution of the first kind on D and assume that
D splits at all real places of E. Let w ∈ V∞(E) be an archimedean place of E.
Then there are the following possibilities:

• If w is a complex place, we have

SUm(h, D, σ )(Ew)∼=
{

SO(n,C) if ρ is of orthogonal type,
Sp(n,C) if ρ is of symplectic type.

• If w is a real place, we have

SUm(h, D, σ )(Ew)∼=
{

SO(p, q) if ρ is of orthogonal type,
Sp(n,R) if ρ is of symplectic type,

for suitable nonnegative integers p and q with p+ q = n.

(2) Let σ be an involution of the second kind on D and consider an archimedean
place v ∈ V∞(F). Then there are the following possibilities:

• If v is a complex place, we have SUm(h, D, σ )(Fv)∼= SLn(C).

• If v is a nondecomposed real place, we have SUm(h, D, σ )(Fv) ∼= SU(p, q)
for nonnegative integers p, q with p+ q = n.
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• If v is a decomposed real place and w1 | v and w2 | v are the real places of E
lying above v, we have

SUm(h, D, σ )(Fv)∼=
{

SLn(R) if D splits at w1 and w2,

SLn/2(H) if D ramifies at w1 and w2.

Using this result, we can now find certain conditions on the number fields E
and F , the involution σ and the division algebra D such that arithmetic subgroups
of SUm(h, D, σ ) give rise to cocompact discrete subgroups of either SLn(R) or
SLn(C). An involution σ of the second kind on D is called definite if for every real
nondecomposed place v of F we have an isomorphism (D, σ )v∼= (Md(C),

∗), where
x 7→ x∗ = x̄ t denotes the conjugate-transpose involution on Md(C). In general,
an involution of the second kind need not be definite. However, if there exists an
involution of the second kind on D, there is also a definite one (see [Scharlau 1985,
Chapter 10, Remark 6.11]).

Theorem 4.2. Let ` be an archimedean local field and let n ∈ N be fixed.

(1) If ` = R, let F be a totally real number field with [F : Q] ≥ 2, let E/F be
a quadratic extension such that there is exactly one place v ∈ V∞(F) that is
decomposed in E , and let D be a division algebra of degree d | n over E that
splits at the places w1 and w2 of E lying above v. Moreover, assume that there
is a definite involution σ of the second kind on D.

(2) If `= C, let F be an algebraic number field with [F :Q] ≥ 3 that has exactly
one complex place v, and let E/F be a quadratic extension such that all real
places of F are nondecomposed in E. Let D be a division algebra of degree
d | n over E that admits a definite involution σ of the second kind.

Let m ∈N be such that dm = n. Then one can choose a σ -hermitian form h on Dm

such that any arithmetic subgroup 0 ⊂ SUm(h, D, σ )(F) gives rise to a discrete
cocompact subgroup of SLn(`).

Proof. Choose a hermitian form h in such a way that the matrix of h at each nonde-
composed place v′ of F has only positive eigenvalues (take the trivial hermitian
form, for example). Set G′ := SUm(h, D, σ ). Then, using Proposition 4.1 and the
fact that σ is definite, it follows that

G′(Fv′)∼= SU(dm, 0)= SU(n)

for all nondecomposed real places of F ; in particular, these groups are compact.
By our choice of E and F there is at least one such nondecomposed place and thus
the group G′ is anisotropic over F . On the other hand, at the decomposed place v
we have G′(Fv)∼= SLn(`) by Proposition 4.1 and the fact that D is split at w1 and
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w2 if `= R. In particular, we have

G′
∞
:=

∏
v∈V∞(F)

G′(Fv)∼= SLn(`)×
∏

v′∈V∞(F)
real, nondecomposed

SU(n).

Let 0 ⊂ G′(F) be an arbitrary arithmetic subgroup of G′. The image of 0 in G′
∞

under the diagonal embedding (still denoted by 0) is a discrete subgroup. Since G′

is semisimple and anisotropic over F , it follows from a well-know compactness
criterion due to Borel and Harish-Chandra [1962] and Mostow and Tamagawa
[1962] that the quotient G′

∞
/0 is compact. Moreover, the image of 0 under the

projection onto the noncompact factor of G′
∞

is a discrete cocompact subgroup of
G′(Fv)∼= SLn(`). �

5. Geometric cycles for SLn(R)

Let F be a totally real number field of degree r ≥ 2, and let E/F be a quadratic
extension such that there is exactly one archimedean place v ∈ V∞(F) that is
decomposed in E and all other archimedean places of F are nondecomposed. Let
us denote the nontrivial Galois automorphism of E/F by ι. Let D be a central
division algebra of degree d over E with a definite involution σ of the second kind.

In this section we will restrict to the cases where D is either the field E itself
(with σ = ι) or a quaternion division algebra over E that splits at the places w1

and w2 of E lying above v and admits a definite involution σ of the second kind.
In the latter case, we may assume by a theorem of Albert (see [Knus et al. 1998,
Proposition 2.22]) that

D = Q(a, b | F)⊗F E = Q(a, b | E)

for some a, b ∈ F× and that σ = τc,0⊗ ι, where τc,0 denotes the conjugation on
the quaternion algebra Q(a, b | F).

Let m ∈ N be arbitrary and set n := dm. Then D, E , F , σ and m satisfy the
conditions of Theorem 4.2(1) and we can find a hermitian form h such that any
arithmetic subgroup of G′ := SUm(h, D, σ ) gives rise to a discrete cocompact
subgroup of SLn(R). For technical reasons, we assume that the matrix H of h is a
diagonal matrix in Mm(F) that is positive definite under the embedding correspond-
ing to the decomposed place v. If D = E and if m is even, we assume in addition
that H is a symplectic matrix, that is, it commutes with the matrix Jm .3

In order to construct special cycles for SLn(R) we will now define suitable
morphisms of finite order. To do this, we need a preparatory lemma. Recall that,

3Such a choice of H clearly exists: take the identity matrix, for example.
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for each basis element e 6= 1 of a quaternion algebra, there exists an orthogonal
involution τe that sends e to −e and fixes all other basis elements.

Lemma 5.1. Let E be a number field and Q := Q(a, b | E) a quaternion algebra
that splits at a real place w of E. Then there exist orthogonal involutions τ and
τ(1,−1) and an isomorphism Q(a, b | Ew)→ M2(R) such that

(Q(a, b | Ew), τ ⊗ id)∼= (M2(R), x 7→ x t),

and

(Q(a, b | Ew), τ(1,−1)⊗ id)∼=
(
M2(R), x 7→

( 1
0

0
−1

)
x t( 1

0
0
−1

))
.

Proof. Let aw and bw denote the images of a and b under the embedding corre-
sponding to w. Since D splits at w, exactly one of the elements aw, bw and −awbw
is negative, i.e., there exists exactly one basis element e0 ∈ {i, j, k} such that e2

0
is negative. Denote the remaining nontrivial basis elements by e1 and e2. We set
τ := τe0 and τ(1,−1) := τe1 .

Now let ϕ be the R-linear map given on the basis of Q(a, b | Ew) by 1 7→ I2 and

e0⊗1 7→

(
0

√

−e2
0

−

√

−e2
0 0

)
, e1⊗1 7→

(
0
√

e2
1√

e2
1 0

)
, e2⊗1 7→

(√
e2

2 0
0 −

√

e2
2

)
.

Then ϕ : Q(a, b | Ew)→M2(R) is a well-defined isomorphism under which τe0⊗ id
goes over to x 7→ x t and τe1 ⊗ id goes over to x 7→

( 1
0

0
−1

)
x t
( 1

0
0
−1

)
. �

Remark. Note that the two orthogonal involutions τ and τ(1,−1) commute and
that we have τ ◦ τ(1,−1) = τ(1,−1) ◦ τ = Int(e2). Moreover, τ commutes with the
conjugation τc of Q and we have τ ◦ τc = Int(e0).

Let us return to our specific choice of a division algebra D = Q(a, b | F)⊗F E
as described above. Applying Lemma 5.1 to D, we get the existence of orthogonal
involutions τ and τ(1,−1) that are mapped to x 7→ x t and x 7→

( 1
0

0
−1

)
x t
( 1

0
0
−1

)
under

a suitable splitting isomorphism at the real place w1.
Using these involutions, we can now define the following automorphisms of

order two on SLm(D):

θ : SLm(D)→ SLm(D),

θ(x)=
{

H−1(x t)−1 H if D = E,
H−1(τ (x)t)−1 H if D = Q(a, b | E),

µ : SLm(D)→ SLm(D),

µ(x)=
{

H−1 Jm(x t)−1 J−1
m H if D = E and m > 2 even,

H−1(τc(x)t)−1 H if D = Q(a, b | E) and m > 1.
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Moreover, for certain positive integers p and q such that p+ q = n, we define a
family of automorphisms νp,q : SLm(D)→ SLm(D) by

νp,q(x)=


H−1 Ip,q((x)t)−1 Ip,q H if D = E,
H−1 Ip/2,q/2(τ (x)t)−1 Ip/2,q/2 H if D = Q(a, b | E) and p, q even,
H−1(τ(1,−1)(x)t)−1 H if D = Q(a, b | E)

and p = q = n/2 is odd.

Note that θ commutes with any of the other automorphisms.

5.2. To avoid case distinctions, we put in place the following general assumptions.
Whenever we deal with the maps νp,q it should be understood that the parameters
p and q are nonzero natural numbers satisfying p+ q = n. Moreover, if D is a
quaternion algebra, we assume that both p and q are even or that p = q = n/2.
Furthermore, statements involving the map µ are only applicable when n is even
and n > 2.

The maps θ , νp,q and µ are basically built out of E-linear maps (involutions
of the first kind on SLm(D)) and the group inversion, so they define E-rational
morphisms θ , νp,q and µ on the algebraic E-group SLm(D) and F-rational automor-
phisms ResE/F θ , ResE/F νp,q and ResE/F µ on ResE/F SLm(D) by restriction of
scalars. A straightforward computation shows that these maps commute with the
morphism ψ whose fixed points in ResE/F SLm(D) define the group G′ and can
thus be restricted to G′.

The fixed points of these morphisms define algebraic subgroups of G′ whose
Fv-rational points are certain Lie subgroups of G′(Fv)∼=SLn(R). We will now deter-
mine these subgroups. Recall the definition GL(1)r (C) :={g ∈ GLr (C), |det(g)| = 1}
for a natural number r .

Proposition 5.3. Let F be a totally real number field. For G′ defined as above, we
have G′(Fv)∼= SLn(R). The fixed points of the morphisms ResE/F θ , ResE/F νp,q ,
ResE/F (νp,q ◦ θ), ResE/F µ and ResE/F (µ ◦ θ) define the following subgroups
of SLn(R):

Fix(ResE/F θ , G′)(Fv)∼= SO(n),

Fix(ResE/F νp,q, G′)(Fv)∼= SO(p, q),

Fix(ResE/F (νp,q ◦ θ), G′)(Fv)∼= S(GLp(R)×GLq(R)),

Fix(ResE/F µ, G′)(Fv)∼= Sp(n,R),

Fix(ResE/F (µ ◦ θ), G′)(Fv)∼= GL(1)n/2(C).

In particular, ResE/F θ induces a Cartan involution on SLn(R).
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Proof. We start with a general observation. Let ϕ denote an E-rational morphism
of SLm(D) such that ResE/F ϕ commutes with ψ . Then ϕ can be restricted to G′

and we have

Fix(ResE/F ϕ, G′)= Fix(ResE/F ϕ,ResE/F SLm(D))∩ G′

as a subgroup of ResE/F SLm(D). At the Fv-rational points, there exists an isomor-
phism

ResE/F (SLm(D))(Fv)∼= SLm(D)(E ⊗F Fv)
∼= SLm(D)(Ew1 ⊕ Ew2)

∼= SLn(R)×SLn(R).

Moreover,

Fix(ResE/F ϕ,ResE/F SLm(D))(Fv)
= ResE/F Fix(ϕ,SLm(D))(Fv)

= Fix(ϕ,SLm(D))(Ew1)×Fix(ϕ,SLm(D))(Ew2)

⊂ SLn(R)×SLn(R).

On the other hand, the defining condition of G′ identifies the two copies of SLn(R)

(see Proposition 4.1). Thus we can restrict to one of the components (we choose
the first one without loss of generality) and get

Fix(ResE/F ϕ, G′)(Fv)= Fix(ResE/F ϕ,ResE/F SLm(D))(Fv)∩G′(Fv)
∼= Fix(ϕ,SLm(D))(Ew1)⊂ SLn(R).

Let us now specify ϕ to be one of the above morphisms. For ϕ = θ or ϕ = νp,q ,
the group Fix(ϕ,SLm(D)) is a special unitary group with respect to a hermit-
ian form and an orthogonal involution. Therefore, by Proposition 4.1, we have
Fix(ϕ,SLm(D))(Ew1)

∼= SO(p′, q ′) for suitable p′, q ′ ∈ N. Since H is positive
definite at the place v, it does not influence the signature (p′, q ′). When D = E
it is clear from the definitions of θ and νp,q that the signature comes from the
matrices Ip,q . When D= Q(a, b | E), we can conclude from Lemma 5.1 that, under
a suitable splitting at the place w1, the involution τ t is mapped to x 7→ x t on Mn(R)

and τ t
(1,−1) is mapped to x 7→ Int(In/2,n/2)(x t). Moreover, the matrices Ip/2,q/2 are

mapped to Ip,q at the place w1. Therefore, for both choices of D, we get

Fix(ResE/F (θ), G′)(Fv)= Fix(θ ,SLm(D))(Ew1)
∼= SO(n)

and

Fix(ResE/F (νp,q), G′)(Fv)= Fix(νp,q,SLm(D))(Ew1)
∼= SO(p, q).
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In particular, ResE/F θ induces a Cartan involution on SLn(R), as the group of
Fv-rational points of its fixed point group is isomorphic to SO(n), a maximal
compact subgroup of SLn(R).

For ϕ = νp,q ◦ θ one can easily see from the definition of νp,q that

νp,q ◦ θ =


Int(Ip,q) if D = E,
Int(Ip/2,q/2) if D = Q(a, b | E) and p, q even,
Int(diag(e2, . . . , e2)) if D = Q(a, b | E) and p = q = n/2.

Here, we use the notation of Lemma 5.1 and its remark for the statement in the last
line. Under a suitable splitting isomorphism at the place w1 of E , these morphisms
go over to Int(Ip,q) on SLn(R) (to see this in the third case, use the isomorphism
given in Lemma 5.1). Therefore, we have

Fix(ResE/F (νp,q ◦ θ), G′)(Fv)= Fix(νp,q ◦ θ ,SLm(D))(Ew1)

∼= {x ∈ SLn(R) | Ip,q x Ip,q = x}
∼= S(GLp(R)×GLq(R)).

Let now ϕ = µ. The group Fix(ϕ,SLm(D)) is either a special unitary group
with respect to a skew-hermitian form and an orthogonal involution (when D = E ,
the matrix H−1 Jm occurring in the definition of µ is skew-symmetric and hence it
describes a skew-hermitian form over E) or a special unitary group with respect
to a hermitian form and a symplectic involution (when D is a quaternion algebra,
H is a diagonal matrix with entries in F and thus τc-invariant). In both cases,
Proposition 4.1 implies

Fix(ResE/F (µ), G′)(Fv)= Fix(µ,SLm(D))(Ew1)
∼= Sp(n,R).

Finally, we consider ϕ=µ◦θ . If D= E , we have (µ◦θ)(E)= Int Jm . In the case
D= Q(a, b | E), we note that (µ◦θ)(E)= τc ◦τ = Int diag(e0, . . . , e0) on Mm(D),
by the remark following Lemma 5.1. Under a suitable splitting isomorphism,
diag(e0, . . . , e0) is mapped to Jn at the place w1 of D (see Lemma 5.1). Therefore,
for both choices of D, we have

Fix(ResE/F (µ ◦ θ), G′)(Fv)= Fix(µ ◦ θ ,SLm(D))(Ew1)

∼= {x ∈ SLn(R) | Jnx J−1
n = x}

∼= GL(1)n/2(C). �

5.4. Now that we have defined certain F-rational morphisms on G′ and studied their
fixed point groups, we are ready to define the corresponding special cycles. To do
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this, we pass to the algebraic Q-group G :=ResF/Q G′. We have G(Q)∼=G′(F) and

G(R)∼= G′(R⊗Q F)=
∏

v′∈V∞(F)

G′(Fv′)= SLn(R)×
∏
v′∈V∞
v′ 6=v

SU(n).

Moreover, there exist Q-rational morphisms θ , νp,q and µ of order two on G that are
induced from the corresponding morphisms of G′. Let 0 ⊂ G(Q) be an arithmetic
subgroup of G. The image of 0 under the isomorphism G(Q) ∼= G′(F) is an
arithmetic subgroup of G′ and thus it gives rise to a discrete cocompact subgroup
of SLn(R) that we will still denote by 0 for simplicity of notation.4 Let K ′ denote
a maximal compact subgroup of G(R) and X := K ′\G(R) the symmetric space
attached to G(R). Since G(R) is a product of SLn(R) and compact factors, X is
isomorphic to SO(n)\SLn(R) and 0 acts on X by right translations. Note that X
is a symmetric space of dimension

dim X = dim(SLn(R))− dim(SO(n))= n2
− 1− 1

2 n(n− 1)= 1
2 n(n+ 1)− 1.

Let now 0 ⊂ G(Q) be a torsion-free arithmetic subgroup of G and assume that
0 and K ′ are invariant under the morphisms θ , νp,q and µ.5 Then these morphisms
induce certain special geometric cycles in X/0, as explained in Section 3.1.

Theorem 5.5. The morphisms νp,q and νp,q ◦ θ of G induce a family of pairs
of special geometric cycles C(νp,q), C(νp,q ◦ θ) in X/0, for positive integers p
and q with p+ q = n if G comes from a special unitary group over an algebraic
number field, and for positive integers p and q with p+ q = n and p and q even
or p = q = n/2 if G comes from a special unitary group over a quaternion algebra.
If n is even and n > 2, the morphisms µ and µ◦ θ induce a pair of geometric cycles
C(µ), C(µ◦θ) in X/0. Some properties of these cycles are summarized in Table 1.

Proof. The existence of the cycles is clear from Section 3.1. The isomorphisms
in the second column of Table 1 follow from Proposition 5.3 and the fact that
G(R) ∼= G′(Fv) up to compact factors. The dimensions of the cycles can be
computed as the dimensions of the associated symmetric spaces, using the dimen-
sions of the occurring real Lie groups and their maximal compact subgroups (for
a list of dimensions of classical Lie groups, see, e.g., [Helgason 1978, Table IV,
p. 516]). Note that both SO(p, q) and S(GLp(R)×GLq(R)) have maximal compact

4To be precise, the arithmetic subgroup 0 ⊂ G(Q) can be regarded as a subgroup of G(R) =
SLn(R)× compact factors, and the discrete cocompact subgroup is in fact the projection of 0 to the
noncompact factor of G(R).

5Such a choice of K ′ is possible by [Helgason 1978, Theorem 13.5]
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C = C(ϕ) Fix(ϕ, G)(R)∼= dim C

C(νp,q) SO(p, q) pq

C(νp,q ◦ θ) S(GLp(R)×GLq(R))
1
2(p

2
+ q2
+ n)− 1

C(µ) Sp(n,R) 1
4(n

2
+ 2n)

C(µ ◦ θ) GL(1)n/2(C)
1
4 n2
− 1

Table 1. Geometric cycles in SO(n)\SLn(R)/0: the isomorphism
in the second column is up to compact factors and the lower half
of the table is only applicable if n is even and n > 2.

subgroup S(O(p)× O(q)) and that both Sp(n,R) and GL(1)n/2(C) have maximal
compact subgroup isomorphic to U (n/2).6 �

Finally, we can apply Theorem 3.2 to the constructed cycles to obtain a nonvanish-
ing result for the cohomology of X/0. As before, we denote by Xu∼=SO(n)\SU(n)
the compact dual symmetric space of X .

Theorem 5.6. Let n ∈ N be even.

(1) There exists a cocompact discrete subgroup 01 of SLn(R) that arises from an
arithmetic subgroup of a special unitary group over an algebraic number field,
such that H k(X/01,C) contains nontrivial cohomology classes for

k = pq and k = 1
2(p

2
+ q2
+ n)− 1,

where p and q are positive integers with p+ q = n, and, if n 6= 2, for

k = 1
4(n

2
+ 2n) and k = 1

4 n2
− 1.

(2) There exists a cocompact discrete subgroup 02 of SLn(R) that arises from an
arithmetic subgroup of a special unitary group over a quaternion algebra, such
that H k(X/02,C) contains nontrivial cohomology classes for

k = pq and k = 1
2(p

2
+ q2
+ n)− 1,

where p and q are positive, even integers with p+q = n or p = q = n/2, and,
if n 6= 2, for

k = 1
4(n

2
+ 2n) and k = 1

4 n2
− 1.

In both cases, these classes are not in the image of the respective injective map

β∗0i
: H∗(Xu,C)→ H∗(X/0i ,C),

i.e., they are not represented by SLn(R)-invariant forms on X.
6Here U (n/2) is considered as a subgroup of Sp(n) via the embedding φ : GLn/2(C)→ GLn(R),

X = A+ i B 7→
( A

B
−B
A
)
, for A, B ∈ GLn/2(R).
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Proof. We give a detailed proof of (1), then (2) follows analogously.
Let G denote the algebraic Q-group whose real points are isomorphic to SLn(R)

up to compact factors and which is defined via a special unitary group over an
algebraic number field. Set 9 := {νp,q | p+ q = n, p 6= 0 6= q} ∪ {µ} and let 0 be
a torsion-free arithmetic subgroup of G that is stable under the group generated
by 9 ∪ {θ}. If we choose τ1 ∈ 9 and set τ2 := τ1 ◦ θ , the pair (τ1, τ2) is a pair
of commuting morphisms of order two and it defines a pair of geometric cycles
on X/0, whose properties are given in Theorem 5.5. As discussed in Section 3 we
may assume that the cycles and the connected components of their intersection are
orientable. Moreover, it follows from Table 1 and the fact that τ1 ◦τ2 = θ induces a
Cartan involution on SLn(R) that the cycles C(τ1) and C(τ2) are of complementary
dimension and satisfy condition (ii) of Theorem 3.2.

To apply Theorem 3.2, it remains to check condition (i). It suffices to look at
the action of the noncompact factor of Fix(τ1, G)(R) and Fix(τ2, G)(R) on the
respective symmetric space.

For τ1 = µ, we have Fix(τ1, G)(R)∼= Sp(n,R) and Fix(τ2, G)(R)∼=GL(1)n/2(C)

up to compact factors (see Table 1). These are connected Lie subgroups of
SLn(R) and hence they act orientation-preservingly on the respective symmetric
spaces. For τ1 = νp,q , we have Fix(τ1, G)(R) ∼= SO(p, q) and Fix(τ2, G)(R) ∼=
S(GLp(R)×GLq(R)) up to compact factors, where p+ q = n. Since n is even, it
follows from Example 3.4 that these groups act orientation-preservingly on their
associated symmetric spaces.

We conclude that, for any choice of τ1 ∈ 9, the pair (τ1, τ2) meets all as-
sumptions of Theorem 3.2. Therefore, for each such τ1, we can find a normal,
〈τ1, τ2〉-stable subgroup 0τ1 ⊂ 0 of finite index such that H k(X/0τ1,C) 6= 0 for
k ∈ {dim C(τ1), dim C(τ2)}. Moreover, 0τ1 can be chosen such that the nontrivial
cohomology classes detected by C(τ1) and C(τ2) are not represented by SLn(R)-
invariant differential forms on X , as follows from Theorem 3.3. Set

0′ :=
⋂
τ1∈9

0τ1 and 01 :=
⋂
τ1∈9

τ1(0
′)∩ τ2(0

′).

Then 01 is a cocompact discrete subgroup of SLn(R) that is of finite index in each
0τ1 and 〈τ1, τ2〉-stable for each τ1 ∈9. The group 01 admits nontrivial cohomology
classes in all degrees k ∈ {dim C(τ1), dim C(τ2)} for possible pairs (τ1, τ2) with
τ1 ∈9, and these classes are not represented by SLn(R)-invariant differential forms
on X .7 The exact dimensions can be read off from Table 1. �

Remark. (1) We do not get any result in the case where n is odd. The morphism µ

is not defined in this case, so we are left with the cycles C(νp,q) and C(νp,q ◦ θ).

7Here we use the fact that the results of Theorems 3.2 and 3.3 carry over to finite index subgroups
of 0.
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dim X/0 Cycle Subgroup Contributing Occurs for
of SLn(R) to degree 0 = 01 0 = 02

n = 2 2 C(ν1,1) SO(1, 1) 1 × ×

C(ν1,1 ◦ θ) S(GL1×GL1) 1 × ×

C(ν1,3 ◦ θ) S(GL1×GL3) 3 ×

C(µ) Sp(4,R) 3 × ×

n = 4 9 C(ν2,2 ◦ θ) S(GL2×GL2) 4 × ×

C(ν2,2) SO(2, 2) 5 × ×

C(µ ◦ θ) GL(1)2 (C) 6 × ×

C(ν1,3) SO(1, 3) 6 ×

Table 2. Real case: degrees in H∗(X/0) in which we have non-
trivial cohomology classes coming from special cycles.

These are indeed of complementary dimension and Fix(〈νp,q, νp,q ◦ θ〉, G)(R) is
compact. However, the cycles do not satisfy condition (i) in Theorem 3.2 (see
Example 3.4). Therefore, the result of Rohlfs and Schwermer is not applicable
and we cannot deduce any statement about the intersection number of C(νp,q) and
C(νp,q ◦ θ). It is still an open question whether or not this number is nontrivial.

(2) Ash and Ginzburg [1994] show a part of our result in Theorem 5.6(1) to use it in
the proof of their Lemma 5.4.2. More precisely, in the case where n is even and G is
the algebraic group associated with a special unitary group over a number field, they
construct the pair of special cycles C(νn/2,n/2), C(νn/2,n/2 ◦ θ) (in our notation).
Then, using the result of Rohlfs and Schwermer, they show that the intersection
number of these cycles is nonzero and deduce the existence of a nonvanishing
homology class.

Example 5.7. Let 0 be a cocompact discrete subgroup of SLn(R) chosen as in
Theorem 5.6(1) or (2). In Table 2 we give an overview of the occurring cycles,
the associated subgroups of SLn(R) and the degrees in the cohomology of X/0
to which these cycles contribute,8 for some choices of n. The last two columns
indicate if the respective cycle exists for the choice of 0 as in Theorem 5.6(1) or (2).

Remark. Using the method of crosswise intersection (see [Waldner 2010]), one
can show that for n = 2 the two cohomology classes contributing to degree 1 are
linearly independent. Unfortunately, for n > 2 we do not get a result on the linear
independence of the constructed cohomology classes using this technique.

8Note that these degrees are not the dimensions of the cycles but their complements, since we are
looking at the cohomology classes obtained via Poincaré duality.
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6. Geometric cycles for SLn(C)

We will work in the following general setting. Let F0 be a totally real number field
and let E/F0 be a totally complex biquadratic extension.9 Assume that there is a
quadratic extension F/F0 such that F is a subfield of E with exactly one complex
place v and denote by v0 the real place of F0 with v | v0. Moreover, let L and L ′

denote the other two intermediate fields of the extension E/F0. Then L is a quadratic
extension of F0 that has two real places v1, v2 lying above v0 and only complex
archimedean places otherwise, and L ′ is a totally complex quadratic extension of F0.
This is to say, we have F = F0(

√
D1), L = F0(

√
D2) and L ′ = F0(

√
D1 D2) for

D1, D2 ∈ F0 such that none of D1, D2 and D1 D2 is a square in F0 and such that
(D1)v0 < 0, (D2)v0 > 0 and (D1)v′ > 0> (D2)v′ for v′ ∈ V∞(F0) and v′ 6= v0. We
write ι and ω for the nontrivial Galois automorphisms of E/F and E/L , respectively.
Then ι and ω generate the Galois group of E/F0 and the third nontrivial element
ι ◦ω = ω ◦ ι is the nontrivial Galois automorphism of E over L ′. Moreover, we
note that ι|L is the nontrivial Galois automorphism of the quadratic extension L/F0,
ω|F is the one of F/F0 and ι|L ′=ω|L ′ is the one of L ′/F0. The field extension E/F0,
its intermediate subfields and the nontrivial Galois automorphisms corresponding
to each extension are illustrated in the following diagram:

E

F

ι

L

ω

L ′

ι◦ω=ω◦ι

F0

ω|L′=ι|L′
ι|L

ω|F

Now we let D be a division algebra of degree d over E with an involution σ of the
second kind. Again we will restrict to the cases where D is either the field E itself
and σ = ι or D is a quaternion division algebra over E constructed in the following
way. Let D′ over L ′ be a quaternion division algebra that does not split over E and
that admits an involution γ of the second kind (with respect to the subfield F0⊂ L ′).
Without loss of generality, we may assume that γ is definite. Moreover, by Albert’s
theorem, we find a quaternion division algebra D0 = Q(a, b | F0) over F0 with
a, b ∈ F×0 such that (D′, γ ) ∼= (D0 ⊗F0 L ′, τc,0 ⊗ ω|L ′), where τc,0 denotes the
conjugation on D0. Now set D := D0⊗F0 E = D′⊗L ′ E . By our choice of D′, this
is a quaternion division algebra over E that admits the two involutions σ := τc,0⊗ ι

and σ ′ := τc,0⊗ω, both of the second kind. Note that σ is trivial on the subfield

9A biquadratic extension of a number field F0 is an extension of degree 4 with Galois group
Gal(E/F0)∼= Z/2Z×Z/2Z.
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F of E , and σ ′ is trivial on the subfield L of E . Moreover, it follows from the
choice of γ that both involutions are definite. For simplicity of notation, we will
set D0 := F0, D′ = L ′, γ := ω|L ′ = ι|L ′ and σ ′ := ω when D = E .

Let m ∈ N be arbitrary and set n := 2m. Then D, E , F , σ and m satisfy the
conditions of Theorem 4.2(2), and we can choose a hermitian form h on Dm such
that each arithmetic subgroup of G′ := SUm(h, D, σ ) gives rise to a cocompact
discrete subgroup of SLn(C). As above, h can be chosen such that its diagonal
representation H is an element of Mm(F0) and we will restrict to this situation
for technical reasons. Moreover, we suppose that H is positive definite under the
embedding corresponding to the real place v0 of F0.

We can now define some automorphisms of order two on SLm(D):

θ : SLm(D)→ SLm(D),

θ(x)= H−1(σ ′(x)t)−1 H,

η : SLm(D)→ SLm(D),

η(x)=
{

H−1(x t)−1 H if D = E,
H−1(τk(x)t)−1 H if D = Q(a, b | E),

µ : SLm(D)→ SLm(D),

µ(x)=
{

H−1 Jm(x t)−1 J−1
m H if D = E and m > 2 even,

H−1(τc(x)t)−1 H if D = Q(a, b | E) and m > 1.

Moreover, for certain positive integers p and q such that p+ q = n, we define a
family of automorphisms νp,q : SLm(D)→ SLm(D) by

νp,q(x)=
{

H−1 Ip,q(σ
′(x)t)−1 Ip,q H if D = E,

H−1 Ip/2,q/2(σ
′(x)t)−1 Ip/2,q/2 H if D = Q(a, b | E) and p, q even.

Again, θ commutes with each of the other automorphisms.

6.1. As in Section 5.2, we will assume from now on that p and q are positive
integers such that p+ q = n and that p and q are both even, whenever we deal
with the case where D is a quaternion algebra. Statements involving the map µ
will again only be applicable if n is even and n > 2.

The maps η and µ are built out of E-linear maps (involutions of the first kind
on SLm(D)) and the group inversion, and hence they define E-rational morphisms
η and µ on the algebraic E-group SLm(D), as expected. However, the maps
θ and νp,q involve involutions of the second kind with respect to the subfield
L of E , and therefore they only define L-rational morphisms θ and νp,q of the
algebraic L-group ResE/L SLm(D). On the other hand, the morphism ψ defining
the algebraic group G′ is an F-rational morphism of the group ResE/F SLm(D). To
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work with all of these morphisms simultaneously, we need to pass to an algebraic
group over the common subfield F0 of F , L and E .10 Using restriction of scalars
with respect to the field F0, the morphisms η, µ, θ and νp,q give rise to F0-rational
morphisms on ResE/F0 SLm(D). An easy computation shows that these morphisms
commute with ResF/F0 ψ and can thus be restricted to the group G′′ :=ResF/F0 G′=
Fix(ResF/F0 ψ,ResE/F0 SLm(D)).

Their fixed points define algebraic subgroups of G′′ whose F0,v0-rational points
are certain Lie subgroups of SLn(C). We now determine these subgroups.

Proposition 6.2. The algebraic F0-group G′′ satisfies G′′(F0,v0)
∼= SLn(C). The

fixed points of (certain compositions of ) the above-defined F0-rational morphisms
define the following subgroups of SLn(C):

Fix(ResL/F0 θ , G′′)(F0,v0)
∼= SU(n),

Fix(ResE/F0 η, G′′)(F0,v0)
∼= SO(n,C),

Fix(ResE/F0 η ◦ResL/F0 θ , G′′)(F0,v0)
∼= SL(n,R),

Fix(ResE/F0 µ, G′′)(F0,v0)
∼= Sp(n,C),

Fix(ResE/F0 µ ◦ResL/F0 θ , G′′)(F0,v0)
∼= SU∗(n),

Fix(ResL/F0 νp,q, G′′)(F0,v0)
∼= SU(p, q),

Fix(ResL/F0(νp,q ◦ θ), G′′)(F0,v0)
∼= S(GLp(C)×GLq(C)),

Fix(ResE/F0(η ◦µ), G′′)(F0,v0)
∼= S(GLn/2(C)×GLn/2(C)),

Fix(ResE/F0(η ◦µ) ◦ResL/F0 θ , G′′)(F0,v0)
∼= SU(n/2, n/2).

In particular, ResL/F0 θ induces a Cartan involution on SLn(C).

Proof. We have G′′(F0,v0) = G′(Fv) ∼= SLn(C) by construction of the algebraic
group G′. To determine the fixed points of the morphisms, we need to study each
map separately. We start with the morphism θ . The F0-group Fix(ResL/F0 θ , G′′)
is defined by the equations θ(x)= x = ψ(x) on SLm(D)= ResE/F0 SLm(D)(F0).
We have

Fix(ResL/F0 θ , G′′)(F0)

= {x ∈ SLm(D) | θ(x)= x = ψ(x)}

= {x ∈ SLm(D) | H−1(σ ′(x)t)−1 H = x = H−1(σ (x)t)−1 H}

= {x ∈ SLm(D) | (σ ′ ◦ σ)(x)= x and x = H−1(σ (x)t)−1 H}

= {x ∈ SLm(D′) | x = H−1(γ (x)t)−1 H},

10The reason for this additional complication is that we want the map θ to define a Cartan
involution of SLn(C). Unlike in the real case, this involves complex conjugation and can hence not be
defined by an E-rational morphism.
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which yields Fix(ResL/F0 θ , G′′)=SUm(h|D′, D′, γ ). Now Proposition 4.1 implies

Fix(ResL/F0 θ , G′′)(F0,v0)
∼= SU(n),

since the real place v0 of F0 is nondecomposed in L ′, the map γ is a definite invo-
lution on D′ and the matrix H ∈ Mm(F0) is chosen positive definite at the place v0.
In particular, this shows that ResL/F0 θ induces a Cartan involution on SLn(C).

Next, we consider the maps ResL/F0 νp,q and ResL/F0(νp,q ◦ θ). On SLm(D) we
have νp,q = Int(Ip,q)◦θ and νp,q ◦θ = Int(Ip,q) if D= E , and νp,q = Int(Ip/2,q/2)◦θ

and νp,q ◦θ = Int(Ip/2,q/2) if D= Q(a, b | E).11 However, in the latter case, the ma-
trices Ip/2,q/2 are mapped to Ip,q under a suitable splitting of Mm(D)⊗C→Mn(C),
and therefore these maps induce the groups

Fix(ResL/F0 νp,q, G′′)(F0,v0)
∼= {x ∈ SLn(C) | Ip,q(x∗)−1 Ip,q = x} ∼= SU(p, q)

and

Fix(ResL/F0(νp,q ◦ θ), G′′)(F0,v0)
∼= {x ∈ SLn(C) | Ip,q x Ip,q = x}
∼= S(GLp(C)×GLq(C))

for both choices of D.
To deal with the maps ResE/F0 η, ResE/F0 µ and ResE/F0(η ◦µ) we proceed as

in the proof of Proposition 5.3. In fact, for any E-rational morphism ϕ on SLm(D)
such that ResE/F ϕ commutes with ψ , we have

Fix(ResE/F0 ϕ, G′′)(F0,v0)= Fix(ResE/F ϕ, G′)(Fv)
∼= Fix(ϕ,SLm(D))(Ew1)⊂ SLn(C).

Here, the isomorphism is chosen as in the proof of Proposition 5.3. However,
since v is now a complex place of F , we obtain a subgroup of SLn(C) instead of
SLn(R). The result then follows from the determination of Fix(ϕ,SLm(D))(Ew1)

for ϕ ∈ {η,µ, η ◦µ}, where we use in the third case the fact that η ◦µ is mapped
to Int(In/2,n/2) under a suitable splitting isomorphism Mm(D)⊗C→ Mn(C).

For the remaining morphisms ResE/F0 η ◦ResL/F0 θ , ResE/F0 µ ◦ResL/F0 θ and
ResE/F0(η ◦µ) ◦ResL/F0 θ , the result follows from straightforward calculations if
D= E . Thus, we only deal with the more complicated case where D= Q(a, b | E).

Recall that D = D0⊗F0 E . One can show that D0 ramifies at all archimedean
places of F0 since the involution γ = τc,0⊗ω|L ′ on D0⊗F0 L ′ is definite and all
real places of F0 are nondecomposed in L ′. In particular, we have av0 < 0 and
bv0 < 0. Moreover, recall that F = F0(

√
D1) for some square-free element D1 ∈ F0

such that D1 is negative under the embedding corresponding to the place v0 of F0.
Therefore, the quaternion algebra Q0 := Q(D1a, D1b | F0) is a division algebra

11Recall that in the case of a quaternion algebra the maps νp,q are only defined for even p and q .
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that splits at the place v0 of F0. Note that x ∈ (Q0⊗F0 L) if and only if x ∈ D and
(τk ◦ τc)(x)= (id⊗ω)(x). With the help of these observations, we can describe the
fixed points of η ◦ θ in G′′(F0) with the equation

Fix(ResE/F0 η ◦ResL/F0 θ , G′′)(F0)

= {x ∈ SLm(D) | (η ◦ θ)(x)= x = ψ(x)}

= {x ∈ SLm(D) | (τr ◦ (τc,0⊗ω))(x)= x = H−1(σ (x)t)−1 H}

= {x ∈ SLm(D) | (τr ◦ τc)(x)= (id⊗ω)(x) and x = H−1((τc,0⊗ ι)(x)t)−1 H}

= {x ∈ SLm(Q0⊗F0 L) | x = H−1((τc,Q0 ⊗ ι|L)(x)
t)−1 H},

where τc,Q0 denotes the canonical symplectic involution of Q0. This implies

Fix(ResE/F0 η ◦ResF/F0 θ , G′′)= SUm(h|Q0⊗F0 L, Q0⊗F0 L, τc,Q0 ⊗ ι|L),

and hence by Proposition 4.1

Fix(ResE/F0 η ◦ResF/F0 θ , G′′)(F0,v0)
∼= SLn(R),

since the real place v0 of F0 is decomposed in L and Q0 splits at v0.
A similar calculation for the other two morphisms leads to

Fix(ResE/F0 µ ◦ResF/F0 θ , G′′)= SUm(h|D0⊗F0 L, D0⊗F0 L, τc,0⊗ ι|L)

and

Fix(ResE/F0(η ◦µ) ◦ResL/F0 θ , G′′)= SUm(h|Q0⊗F0 L′, Q0⊗F0 L′, τc,Q0 ⊗ ι|L′).

For the first group, Proposition 4.1 implies

Fix(ResE/F0 µ ◦ResF/F0 θ , G′′)(F0,v0)
∼= SLn/2(H)∼= SU∗(n),

since the real place v0 of F0 is decomposed in L and D0 ramifies at v0. For the
second group, we note that the involution τc,Q0 ⊗ ι|L ′ of the second kind cannot be
definite on Q0⊗F0 L ′ because Q0 does not ramify at the real place v0 of F0 that is
nondecomposed in L ′. This means we get a signature of (n/2, n/2) when passing
to the F0,v0-rational points:

Fix(ResE/F0(η ◦µ) ◦ResL/F0 θ)(F0,v0)
∼= SU(n/2, n/2). �

6.3. In this section, we study the geometric cycles defined by the various morphisms
on G′′. To do this, we pass to the algebraic Q-group G := ResF0/Q G′′. This is an
algebraic group over Q with G(Q)∼= G′′(F0) and

G(R)∼= G′′(R⊗Q F0)= G′(R⊗Q F)=
∏

v′∈V∞(F)

G′(Fv′)= SLn(C)×
∏
v′∈V∞
v′ 6=v

SU(n).
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Moreover, we have Q-rational morphisms θ , νp,q , η and µ of order two on G that
are induced from the corresponding morphisms of G′′.

Let 0 ⊂ G(Q) be an arithmetic subgroup of G. In analogy to the real case,
0 gives rise to a discrete cocompact subgroup of SLn(C) that we still denote by 0
for simplicity of notation. Let K ′ denote a maximal compact subgroup of G(R) and
X := K ′\G(R) the symmetric space attached to G(R). Since G(R) is a product of
SLn(C) and compact factors, X is isomorphic to SU(n)\SLn(C) and 0 acts on X
by right translations. Note that X is a symmetric space of real dimension

dim X = dim(SLn(C))− dim(SU(n))= 2n2
− 2− (n2

− 1)= n2
− 1.

Let now 0 ⊂ G(Q) be a torsion-free arithmetic subgroup of G and assume that
0 and K ′ are invariant under θ , νp,q , η and µ. Then these morphisms induce certain
special geometric cycles in X/0, as explained in Section 3:

Theorem 6.4. The pair of morphisms (η, η ◦ θ) and, if n is even and n > 2, the
pairs (µ,µ ◦ θ) and (η ◦µ, (η ◦µ) ◦ θ) induce pairs of special geometric cycles
C(η), C(η ◦ θ), C(µ), C(µ ◦ θ) and C(η ◦µ), C((η ◦µ) ◦ θ) in X/0. Moreover,
the morphisms νp,q and νp,q ◦ θ induce a family of pairs of special geometric cycles
C(νp,q), C(νp,q ◦ θ) in X/0, for positive integers p and q with p+ q = n if G
is induced from a special unitary group over an algebraic number field, and for
positive, even integers p and q with p+q = n if G is induced from a special unitary
group over a quaternion algebra. The properties of these cycles are summarized
in Table 3.

Proof. This is proved completely analogously to Theorem 5.5. �

C = C(ϕ) Fix(ϕ, G)(R)∼= dim C

C(νp,q) SU(p, q) 2pq

C(νp,q ◦ θ) S(GLp(C)×GLq(C)) p2
+ q2
− 1

C(η) SO(n,C) 1
2(n

2
− n)

C(η ◦ θ) SLn(R)
1
2(n

2
+ n)− 1

C(µ) Sp(n,C) 1
2(n

2
+ n)

C(µ ◦ θ) SU∗(n) 1
2(n

2
− n)− 1

C(η ◦µ) S(GLn/2(C)×GLn/2(C))
1
2 n2
− 1

C((η ◦µ) ◦ θ) SU(n/2, n/2) 1
2 n2

Table 3. Geometric cycles in SU(n)\SLn(C)/0: the isomorphism
in the second column is up to compact factors and the bottom half
of the table is only applicable if n is even and n > 2.
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Theorem 6.5. Let n ∈ N be arbitrary.

(1) There exists a cocompact discrete subgroup 01 of SLn(C) that arises from an
arithmetic subgroup of a special unitary group over an algebraic number field,
such that H k(X/01,C) contains nontrivial cohomology classes for

k = 2pq and k = p2
+ q2
− 1,

where p and q are positive integers with p+ q = n, and for

k = 1
2(n

2
− n) and k = 1

2(n
2
+ n)− 1.

Moreover, if n is even and n 6= 2, there are nontrivial cohomology classes in
the degrees

k = 1
2(n

2
+ n), k = 1

2(n
2
− n)− 1, k = 1

2 n2
− 1 and k = 1

2 n2.

(2) If n is even, there exists a discrete, cocompact subgroup 02 of SLn(C) that
arises from an arithmetic subgroup of a special unitary group over a quaternion
algebra, such that H k(X/02,C) contains nontrivial cohomology classes for

k = 2pq and k = p2
+ q2
− 1,

where p and q are positive, even integers with p+ q = n, and for

k = 1
2(n

2
− n) and k = 1

2(n
2
+ n)− 1.

Moreover, if n 6= 2, there exist nontrivial cohomology classes in the degrees

k = 1
2(n

2
+ n), k = 1

2(n
2
− n)− 1, k = 1

2 n2
− 1 and k = 1

2 n2.

In both cases these classes are not in the image of the respective injective map

β∗0i
: H∗(Xu,C)→ H∗(X/0i ,C),

i.e., they are not represented by SLn(C)-invariant forms on X.

Proof. The proof is completely analogous to the proof of Theorem 5.6; details are
left to the reader. In contrast to the real case, orientability questions are not an issue
here, as all occurring fixed point groups are connected Lie subgroups of SLn(C). �

Example 6.6. Table 4 summarizes the occurring cycles and the degrees in which
they contribute to the cohomology for small values of n. The group 0 denotes a
cocompact discrete subgroup of SLn(C) chosen as in Theorem 6.5(1) or (2).

Remark. (1) Looking at these examples, the question arises of whether the degrees
in which we have constructed nontrivial cohomology classes exhaust all degrees
in the cohomology of X/0 in which there is cohomology that is not coming from
the compact dual symmetric space. In general, this is not the case, as we will see in
Section 7 using methods from representation theory. For certain choices of n, this
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dim X/0 Cycle Subgroup Contributing Occurs for
of SLn(C) to degree 0 = 01 0 = 02

C(ν1,1) SU(1, 1) 1 ×

n = 2 3 C(η ◦ θ) SL2(R) 1 × ×

C(ν1,1 ◦ θ) S(GL1×GL1) 2 ×

C(η) SO(2,C) 2 × ×

C(η ◦ θ) SL3(R) 3 ×

n = 3 8 C(ν1,2) SU(1, 2) 4 ×

C(ν1,2 ◦ θ) S(GL1×GL2) 4 ×

C(η) SO(3,C) 5 ×

Table 4. Complex case: degrees in H∗(X/0) in which we have
nontrivial cohomology classes coming from special cycles.

can also be seen using the Euler characteristic: it is a consequence of the Gauss–
Bonnet formula that for compact quotients X/0, where X = SU(n)\SLn(C) and
n≥2, the Euler characteristic of X/0 is always 0. This implies that the sum over the
Betti numbers in even degrees equals the sum over the Betti numbers in odd degrees.

Now for certain choices of n (in fact, whenever n ≥ 2 and n ≡ 1 (mod 4)) the
cohomology classes constructed in Theorem 6.5 all contribute to even degrees in the
cohomology of X/0. Therefore, the vanishing of the Euler characteristic implies
the existence of at least one nontrivial cohomology class in an odd degree that does
not lie in the image of the cohomology of the compact dual symmetric space.

The smallest n to which our argumentation applies is n = 5. For this case, one
can easily read off from Theorem 6.5 that the constructed cycles do indeed only
contribute to even degrees.

(2) Again, by using the technique of intersecting crosswise, one can show that
when n = 2 and 0 = 01 the two cohomology classes in each of the degrees 1 and 2
are linearly independent. However, for the case n = 3 it remains an open question
whether or not the two classes in degree 4 are linearly independent.

7. Representation theory and Matsushima’s formula

Let G be a connected semisimple Lie group (with finite center), K a maximal
compact subgroup, X := K\G the associated symmetric space and 0 ⊂ G a
discrete, cocompact subgroup. By a well-known result of Matsushima [1962],
the cohomology of X/0 decomposes as a finite algebraic sum over the set of
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equivalence classes of irreducible unitary representations of G,

H∗(X/0,C)=
⊕
π∈Ĝ

m(π, 0)H∗(g, K ; H∞π,K ),

where the m(π, 0) are nonnegative integers and we denote by H∞π,K the Harish-
Chandra module of K-finite, smooth vectors associated with an element π ∈ Ĝ.
Moreover, m(C, 0)= 1, i.e., there is an injection of the (g, K )-cohomology of the
trivial representation into H∗(X/0,C).

The unitary representations with nonvanishing (g, K )-cohomology contribut-
ing to the right-hand side of Matsushima’s formula are classified by the work of
Enright [1979] (for complex groups) and Vogan and Zuckerman [1984] (for real
groups). Note that, by a well-known result of Wigner (see [Borel and Wallach
2000, Theorem 5.3(ii)]), the representations π with H∗(g, K ;C⊗ H∞π,K ) 6= 0 are
only those with trivial infinitesimal character. Representations occurring with a
nontrivial multiplicity are called automorphic representations of G with respect to 0.
In general, given an irreducible unitary representation π of G, it is still an open
question whether the corresponding multiplicity m(π, 0) is nontrivial or not. For
groups admitting discrete series representations, there are nonvanishing results by
DeGeorge and Wallach [1978], Wallach [1990], Langlands [1966], and others (see
[Schwermer 1990]). We point out that for our cases of interest (i.e., G = SLn(R)

or G = SLn(C)), there is no discrete series except for the case G = SL2(R).
Against this background, the result from Section 6 can be interpreted as a result

in the theory of automorphic representations. To make a precise statement and
possibly identify one (or several) automorphic representations explicitly, we will
devote this section to the classification of all irreducible unitary representations
with nonvanishing (g, K )-cohomology of the group SLn(C) and the determination
of their cohomology.

7.1. First we need to fix some notation. Let G be a complex simply connected
semisimple Lie group with Lie algebra g. Considered as a real Lie algebra, g has a
Cartan involution θ and a corresponding Cartan decomposition g = k⊕ p. Let h
denote a θ -stable Cartan subalgebra of g. Then h admits the structure of a complex
Lie algebra and we denote by 8(g, h) and 8+(g, h) the set of roots and a system of
positive roots of the pair (g, h), respectively. We denote by q0 the minimal parabolic
subalgebra of g associated with the system of positive roots 8+ and by q⊃ q0 a
standard parabolic subalgebra of g. Let l denote the Levi factor of q and s= [l, l]

its derived Lie algebra. Then h∩ s is a Cartan subalgebra of s and we can identify
the root system 8s of s with respect to h ∩ s with the set of roots in 8 that are
trivial on the center Z l of l. Using this identification, we can set 8+s :=8s ∩8

+

and this is a system of positive roots for 8s.
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On the other hand, we may consider q as a real parabolic subalgebra of g and
as such it has a Langlands decomposition of the form q=m⊕ a⊕ n. We denote
by Q0, Q, L , S, M , A and N the connected Lie subgroups of G with Lie algebras
q0, q, l, s, m, a and n, respectively.

The irreducible unitary representations of G with trivial infinitesimal character
have been completely classified by the work of Delorme and Enright. They have
shown that one can associate with each standard parabolic subgroup Q ⊃ Q0 a
principal series representation πQ that has the desired properties and that these
representations exhaust the set of irreducible unitary representations of G with
trivial infinitesimal character up to unitary equivalence. Being principal series
representations, the (g, K )-cohomology of the πQ can be computed with the help
of a well-known theorem [Borel and Wallach 2000]. This leads to the following
general result.

Theorem 7.2. Let G be a connected, simply connected complex Lie group. The
correspondence Q↔ πQ is a bijective correspondence between the standard par-
abolic subgroups Q ⊃ Q0 of G and the set of equivalence classes of irreducible
unitary representations of G with trivial infinitesimal character.

The relative Lie algebra cohomology of the representations πQ is given by

(1) H k+dQ (g, K ; H∞πQ ,K )=
⊕

r+s=k

(
H r (m, KQ;C)⊗

∧saC

)
,

where KQ := K ∩ Q and dQ := |8
+(g, h)| − |8+s |.

12

7.3. Let us apply the above result to the case G = SLn(C). On sln(C) considered
as a real Lie algebra, we have a Cartan involution θ : X 7→ −X t . The subalgebra
h := {X ∈ sln(C) | X = diag(x1, . . . , xn)} of diagonal matrices is a θ -stable Cartan
subalgebra of sln(C) and, with the usual choice of positive roots, the algebra q0 of
upper triangular matrices is a Borel subalgebra in sln(C). Then the standard para-
bolic subalgebras of g are in bijective correspondence with the set of compositions
of n; with a composition n = `1+ · · ·+ `m we associate the parabolic subalgebra

q= q`1,...,`m =

{
X ∈ g

∣∣X =
X1 ∗ ∗

. . . ∗

0 Xm

,where X j ∈ GL`j (C), 1≤ j ≤ m
}
.

The Levi component of q is given by the subalgebra of block diagonal matrices
l = {X ∈ q | X = diag(X1, . . . , Xm)} and it decomposes into its semisimple part

12Note that KQ = K ∩ Q ⊂ M and that KQ is a maximal compact subgroup of M by [Borel and
Wallach 2000, Section 0.1.6], so taking the relative Lie algebra cohomology of m with respect to KQ
is defined.
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and its center, given respectively by s= {X ∈ l | tr(X j )= 0 for all 1≤ j ≤m} and
Z l = {X ∈ l | X j = x j I`j for some x j ∈ C, 1≤ j ≤ m}.

Considering q as a real Lie algebra, it also has a Langlands decomposition of
the form q=m⊕ a⊕ n, where

m= {X ∈ q | X = diag(X1, . . . , Xm), tr(X j ) ∈ i ·R for all 1≤ j ≤ m},

a= {X ∈ q | X = diag(X1, . . . , Xm), X j = x j I`j for some x j ∈ R, 1≤ j ≤ m}

and

n=

{
X ∈q

∣∣X=
0 ∗ ∗

. . . ∗

0 0

,where the j-th diagonal 0-block is of size `j×`j

}
.

We use capital letters to denote the connected Lie subgroups of SLn(C) correspond-
ing to these Lie algebras.

Theorem 7.4. The equivalence classes of irreducible unitary representations of
SLn(C) with trivial infinitesimal character are in one-to-one correspondence with
the standard parabolic subgroups Q ⊃ Q0 of SLn(C); a standard parabolic sub-
group corresponds to the induced representation πQ . The (g, K )-cohomology of the
representation πQ is given by the Poincaré polynomial

PH∗(g,K ;H∞πQ ,K
)(t)= td

·

(m−1∑
k=0

(m−1
k

)
tk
)
·

m∏
j=1
`j 6=1

`j∏
k=2

(1+ t2k−1),

where m denotes the number of blocks of Q, `j denotes the length of the j-th block
and

d := 1
2 n(n− 1)−

m∑
j=1

1
2`j (`j − 1).

Proof. The first part of the theorem is a direct application of Theorem 7.2 to the
connected simply connected complex Lie group SLn(C).

To compute the cohomology of the representations πQ , we use the formula from
Theorem 7.2. Note that, in terms of Poincaré polynomials, this formula says

(2) PH∗(g,K ;H∞πQ ,K
)(t)= tdQ ·PH∗(m,KQ;C)(t) ·P

∧
(aC)(t).

Therefore, it suffices to determine the number dQ and the Poincaré polynomials of
H∗(m, KQ;C) and

∧
(aC).
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(1) The Poincaré polynomial of
∧
(aC): From the structure of a given above we

conclude that aC has complex dimension m− 1, and thus

P∧(aC)(t)=
m−1∑
k=0

(m−1
k

)
tk

by the general formula for the Poincaré polynomial of the exterior algebra of a
complex vector space.

(2) The Poincaré polynomial of H∗(m, KQ;C): First, we consider Q = Q0. The
group Q0 has the Langlands decomposition Q0 = M0 A0 N0, where M0 is compact.
This implies KQ0 = K ∩M0 = M0, so in fact we consider the relative Lie algebra
cohomology H∗(m0,M0;C). By the definition of relative Lie algebra cohomology,
this is one-dimensional in degree 0 and trivial in all higher degrees. In particular,

PH∗(m0,KQ0 ;C)
(t)= 1.

Now let Q 6=Q0. The Lie algebra m is reductive, has semisimple part s and center
Zm⊂ k. Using the Künneth rule (see [Borel and Wallach 2000, Section I.1.3]) and the
fact that KQ and KQ∩S are connected, we obtain H∗(m,KQ;C)= H∗(s,KQ ∩ S;C),
so we can restrict to the semisimple part. From the structure of s given above we de-
duce that S ∼=

∏m
j=1SL`j (C), which is clearly the group of real points of a reductive

algebraic R-group. Therefore, by [Vogan 1997, Theorem 2.10], H∗(s, KQ ∩ S;C)
equals the cohomology of the compact symmetric space

∏m
j=1SU(`j ), the compact

dual symmetric space of S. For `j ≥ 2, the Poincaré polynomial of H∗(SU(`j );C)

is given by

PH∗(SU(`j );C)(t)=
`j∏

k=2

(1+ t2k−1)

(see [Greub et al. 1976, Theorem VI.X]). For `j = 1, we have SU(1)= S1, so the
Poincaré polynomial is given by PH∗(SU(1),C)(t)= 1. Putting everything together,
we obtain the formula

PH∗(m,KQ;C)(t)=
m∏

j=1

PH∗(SU(`j ),C)(t)=
m∏

j=1
`j 6=1

`j∏
k=2

(1+ t2k−1),

where we have used the Künneth rule for singular cohomology in the first step.
(3) Determination of dQ : Recall from Theorem 7.2 that dQ = |8

+
|−|8+s |. From

the structure of the set of positive roots 8+(g, h) and the definition of 8s as given
above, we conclude that

dQ =
1
2 n(n− 1)−

m∑
j=1

1
2`j (`j − 1). �
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(`1, . . . , `m) PH∗(g,K ;πQ`1,...,`m
)(t)

(1, 1, 1) t3
+ 2t4

+ t5

(1, 2) t2
+ t3
+ t5
+ t6

(2, 1) t2
+ t3
+ t5
+ t6

(3) 1+ t3
+ t5
+ t8

Table 5. Poincaré polynomials of the irreducible unitary represen-
tations of SL3(C) with nontrivial (g, K )-cohomology.

Example 7.5. Let’s look at some examples for small values of n.
In the case n = 2, SL2(C) only has two standard parabolic subgroups, corre-

sponding to the compositions 2 = 1+ 1 and 2 = 2 of 2. These are the minimal
parabolic subgroup Q = Q0 and the whole group Q = G, with associated represen-
tations πQ0 and πG (the latter being the trivial representation). An application of
Theorem 7.4 gives us the Poincaré polynomials of the (g, K )-cohomology of these
representations:

PH∗(g,K ;πQ0 )
(t)= t + t2, PH∗(g,K ;πG)(t)= 1+ t3.

For n = 3, the situation is more complicated and we will give the results in
Table 5. We denote a composition n = `1+ · · ·+ `m by the m-tuple (`1, . . . , `m)

and the associated parabolic subgroup by Q`1,...,`m .

7.6. Let us relate our findings to the results of Theorem 6.5. Assume we are given a
cocompact discrete subgroup 0 ⊂ SLn(C). The irreducible unitary representations
with trivial infinitesimal character that we have classified in the previous sections
are exactly the representations that can possibly contribute to the cohomology of
X/0 via Matsushima’s formula. In general, the question of whether or not a given
representation π ∈ Ĝ does actually contribute to the cohomology, i.e., m(0, π) 6= 0,
is still open. However, the nonvanishing results for the cohomology in Theorem 6.5
imply the existence of (at least) one nontrivial automorphic representation for
SLn(C) with respect to 0. For small values of n, we can even identify explicit
representations with nonvanishing multiplicity. If for one of the degrees for which
we have constructed nontrivial cohomology classes in Theorem 6.5 there is exactly
one representation π with nontrivial (g, K )-cohomology that contributes in that
degree, we can deduce that the corresponding multiplicity m(π, 0) is not zero.

To be able to compare the degrees in which we have cohomology coming
from geometric cycles and the degrees to which our representations can possibly
contribute, we summarize this information in Tables 6 and 7 for n = 2, 3. As above,
we denote a representation πQ by the associated tuple (`1, . . . , `m).
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0 1 2 3

Cycles × ×

Trivial representation × ×

(1, 1) × ×

Table 6. Complex case: contribution to the cohomology of X/0, n = 2.

0 1 2 3 4 5 6 7 8

Cycles × × ×

Trivial representation × × × ×

(1, 1, 1) × × ×

(2, 1) × × × ×

(1, 2) × × × ×

Table 7. Complex case: contribution to the cohomology of X/0, n = 3.

Corollary 7.7. Let n ∈ {2, 3} and let Q0 denote the minimal parabolic subgroup
of upper triangular matrices of SLn(C). Then there exists a cocompact discrete
subgroup 0 ⊂ SLn(C) such that the multiplicity m(0, πQ0) is not 0.

Proof. We choose 0 as in Theorem 6.5 for n = 2 or n = 3. Then the result can
be read off from Tables 6 and 7: when n = 2, we have cycles contributing to the
cohomology in degrees 1 and 2, and πQ0 is the only unitary representation that has
cohomology in these degrees. Therefore, we conclude m(0, πQ0) 6= 0. Similarly,
for n = 3, we have cycles contributing to degree 4, and πQ0 is the only unitary
representation of SL3(C) that has cohomology in degree 4. �

Remark. Unfortunately, for bigger n the situation is more complicated and this
reasoning is not successful anymore. Already in the case n = 4 one can easily see
(by looking at a similar table) that there is no degree in the cohomology of X/0
in which we have a nontrivial class coming from a cycle and to which only one
representation can contribute.
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