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ON BLASCHKE’S CONJECTURE

XIAOLE SU, HONGWEI SUN AND YUSHENG WANG

Blaschke’s conjecture asserts that if a complete Riemannian manifold M
satisfies diam(M) = Inj(M) = π

2 , then M is isometric to Sn( 1
2

)
or to the

real, complex, quaternionic or octonionic projective plane with its canonical
metric. We prove that the conjecture is true under the assumption that
secM ≥ 1.

Introduction

The projective spaces KPn (considered with their canonical metric, induced from
the unit sphere) and the sphere Sn

( 1
2

)
are the only known examples of complete

Riemannian manifolds M satisfying

(0-1) diam(M)= Inj(M)= π
2 .

Here diam(M) and Inj(M) are the diameter and injective radius of M , and K is
one of the division algebras R,C,H or Ca, with n ≤ 2 if K = Ca. A longstanding
conjecture, whose history is reviewed in [Besse 1978; Berger 2003; Bougas 2013],
asserts that these are the only possibilities:

Blaschke’s Conjecture. If a complete Riemannian manifold M satisfies (0-1), then
M is isometric to Sn

( 1
2

)
or a KPn endowed with the canonical metric.

(See (1-1) below for the reason why it is called Blaschke’s conjecture.) Up to
now, the conjecture is still almost open (there are only some partial answers to it)
although (0-1) is an extremely strong condition. Note that the conjecture has no
restriction on the curvature. The main purpose of the present paper is to give a
positive answer to the conjecture under the additional assumption secM ≥ 1, which
is stated as follows.

Main Theorem. If a complete Riemannian manifold M satisfies (0-1) and secM ≥1,
then M is isometric to Sn

( 1
2

)
or a KPn endowed with the canonical metric.

If the curvature has an upper bound, we have the following result of Rovenskii
and Toponogov [1998] (see also [Shankar et al. 2005]).
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Theorem 0.1. If a complete, simply connected Riemannian manifold M satisfies
(0-1) and secM ≤ 4, then M is isometric to Sn

( 1
2

)
or a KPn (K 6= R) endowed with

the canonical metric.

From our Main Theorem and Theorem 0.1, one can see how beautiful the
following Berger’s rigidity theorem [Cheeger and Ebin 1975] is.

Theorem 0.2. Let M be a complete, simply connected Riemannian manifold with
1 ≤ secM ≤ 4. If diam(M) = π

2 , then M is isometric to Sn
( 1

2

)
or a KPn (K 6= R)

endowed with the canonical metric.

In fact, “1≤ secM ≤ 4” and “simply connected” imply that Inj(M)≥ π
2 [Cheeger

and Gromoll 1980], so “diam(M)= π
2 ” implies that M (in Theorem 0.2) satisfies

(0-1) (note that Inj(M)≤diam(M)). Hence, the Main Theorem implies Theorem 0.2
in the premise of (0-1) (as does Theorem 0.1). (Of course, “secM ≥ 1” implies
that diam(M)≤ π , and the maximal diameter theorem asserts that if diam(M)= π ,
then M is isometric to Sn(1), so Theorem 0.2 is also called the minimal diameter
theorem. Moreover, inspired by Theorem 0.2, Grove and Shiohama, Gromoll and
Grove, and Wilhelm supply some beautiful (but not purely isometric) classifications
under the conditions “secM ≥ 1 and diam(M)≥ π

2 or Rad(M)≥ π
2 ” [Gromoll and

Grove 1987; Wilhelm 1996].)
Moreover, from the proof in [Cheeger and Ebin 1975] for Theorem 0.2, it is not

hard to see the following.

Theorem 0.3. Let M be a complete Riemannian manifold satisfying (0-1) and
1≤ secM ≤ 4. Then M is isometric to Sn

( 1
2

)
or a KPn endowed with the canonical

metric.

We end this section with the idea of our proof of the Main Theorem. We first
prove that for any p ∈ M , denoting by |pq| the distance between p and q ,

{p}=π/2 ,
{
q ∈ M | |pq| = π

2

}
is a complete totally geodesic submanifold in M . Then using Theorem 1.3 below
and Toponogov’s comparison theorem, we derive by induction that 1≤ secM ≤ 4,
and thus the proof is done by Theorem 0.3. (We would like to point out that, in the
premise of Theorem 1.3, we can use the method in [Gromoll and Grove 1987; 1988;
Wilhelm 1996] to give the proof (which involves many significant classification
results). By comparison, however, our proof is much more direct.)

1. Blaschke manifolds

A closed Riemannian manifold M is called a Blaschke manifold if it is Blaschke at
each point p ∈ M , i.e., ⇑p

q is a great sphere in 6q M for any q in the cut locus of p
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[Besse 1978], where

6q M , {v ∈ Tq M | |v| = 1},

⇑
p
q , {the unit tangent vector at q of a minimal geodesic from q to p}.

On a Blaschke manifold, one can get the following not so obvious fact (p. 137 in
[Besse 1978]).

Proposition 1.1. For a Blaschke manifold M , we have that diam(M)= Inj(M).

A much more difficult observation is the following (p. 138 in [Besse 1978]).

Proposition 1.2. Given a closed Riemannian manifold M and a point p ∈ M , if
|pq| is a constant for all q in the cut locus of p, then M is Blaschke at p.

Obviously, it follows from Propositions 1.1 and 1.2 that

(1-1) a closed Riemannian manifold M is Blaschke⇔ diam(M)= Inj(M).

Up to now, Blaschke’s conjecture has been solved only for spheres.

Theorem 1.3 [Besse 1978; Berger 2003]. If a Blaschke manifold is homeomorphic
to a sphere, then it is isometric to the unit sphere (up to a rescaling).

2. Proof of the Main Theorem

We first give our main tool of the paper: Toponogov’s comparison theorem.

Theorem 2.1 [Petersen 1998; Grove and Markvorsen 1995]. Let M be a complete
Riemannian manifold with secM ≥ κ , and let S2

κ be the complete, simply connected
2-manifold of curvature κ .

(i) To any p ∈ M and minimal geodesic [qr ] ⊂ M , we associate p̃ and a minimal
geodesic [q̃r̃ ] in S2

κ with | p̃q̃| = |pq|, | p̃r̃ | = |pr | and |r̃ q̃| = |rq|. Then for
any s ∈ [qr ] and s̃ ∈ [q̃r̃ ] with |qs| = |q̃ s̃|, we have that |ps| ≥ | p̃s̃|.

(ii) To any minimal geodesics [qp] and [qr ] in M , we associate minimal geodesics
[q̃ p̃] and [q̃r̃ ] in S2

κ with |q̃ p̃| = |qp|, |q̃r̃ | = |qr | and 6 p̃q̃r̃ = 6 pqr. Then we
have that | p̃r̃ | ≥ |pr |.

(iii) If equality in (ii) (or in (i) for some s in the interior part of [qr ]) holds, then
there exists a minimal geodesic [pr ] such that the triangle formed by [qp],
[qr ] and [pr ] bounds a surface which is convex1 and can be isometrically
embedded into S2

κ .

1We say that a subset A is convex (resp. totally convex) in M if, between any x ∈ A and y ∈ A,
some minimal geodesic [xy] (resp. all minimal geodesics) belongs to A.
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In the rest of this paper, M always denotes the manifold in the Main Theorem,
and N denotes {p}=π/2,

{
q ∈M | |pq|= π

2

}
for an arbitrary fixed point p∈M . We

first give an easy observation following from (0-1) (i.e., Inj(M)= diam(M)= π
2 ),

namely that

(2-1) for any x ∈ M ,

there is a minimal geodesic [pq] with q ∈ N such that x ∈ [pq].

Lemma 2.2. N is a complete totally geodesic submanifold in M ; if dim(N ) = 0,
then N consists of a single point.

Remark 2.3. Since secM ≥ 1, it follows from (i) of Theorem 2.1 that

{p}≥π/2 ,
{
q ∈ M | |pq| ≥ π

2

}
is totally convex in M . Note that N = {p}≥π/2 because diam(M)= π

2 , and that N
is closed in M . On the other hand, since M is a Blaschke manifold, we know that
N is a submanifold in M [Besse 1978]. It then follows that N is a totally geodesic
submanifold in M . This proof is short because we apply the proposition that N is a
submanifold in M , which is a significant property of a Blaschke manifold [Besse
1978]. Here, in order to show the importance of “secM ≥ 1”, we will supply a proof
only based on the definition of a Blaschke manifold.

Proof of Lemma 2.2. From Remark 2.3, we know that N is totally convex in M ,
which implies that N consists of a single point if dim(N ) = 0. Hence, we can
assume that dim(N ) > 0; for any geodesic γ (t)|t∈[0,`] ⊂ N , we need only to show
that its prolonged geodesic γ (t)|t∈[0,`+ε] in M also belongs to N for some small
ε > 0. Note that, without loss of generality, we can assume that there is a unique
minimal geodesic between γ (0) and γ (`+ ε). Due to (2-1), we can select q ∈ N
such that γ (`+ ε) ∈ [pq]. Observe that q 6= γ (0) (otherwise, γ (`) ∈ [pq] must
hold, contradicting γ (`) ∈ N ). Let [qγ (0)] be a minimal geodesic in N (note that
N is convex in M). By the first variation formula, it is easy to see that

| ↑
γ (0)
q ξ | ≥ π

2 in 6q M , for any ξ ∈ ⇑p
q .

On the other hand, ⇑p
q is a great sphere in 6q M because M is Blaschke at p (see

Proposition 1.2). It follows that in fact

| ↑
γ (0)
q ξ | = π

2 for any ξ ∈ ⇑p
q .

Then by (iii) of Theorem 2.1, there is a minimal geodesic [pγ (0)] such that
the triangle formed by [qγ (0)], [pq] and [pγ (0)] bounds a surface (containing
[γ (0)γ (`+ ε)]) which is convex and can be isometrically embedded into S2(1). It
then has to hold that [γ (0)γ (`+ ε)] = [γ (0)q] because [γ (0)γ (`)] belongs to N ,
and so [γ (0)γ (`+ ε)] ⊂ N . �
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Since N is a complete totally geodesic submanifold in M , for any q ∈ N , any
minimal geodesic [pq] is perpendicular to N at q , i.e.,

(2-2) ⇑
p
q ⊆ (6q N )=π/2 in 6q M .

Then from the proof of Lemma 2.2, we have the following corollary.

Corollary 2.4. For any minimal geodesics [pq] and [qq ′] ⊂ N , there is a minimal
geodesic [pq ′] such that the triangle formed by [pq], [qq ′] and [pq ′] bounds a
surface which is convex and can be isometrically embedded into S2(1).

Moreover, the “⊆” in (2-2) can in fact be changed to “=”.

Lemma 2.5. For any q ∈ N , we have that ⇑p
q = (6q N )=π/2 in 6q M.

Proof. According to (2-2), it suffices to show that for any ζ ∈ (6q N )=π/2 there is
a minimal geodesic [qp] such that ↑p

q = ζ . Note that there is a minimal geodesic
[qx] (x ∈ M) such that ↑x

q = ζ , and we can assume that there is a unique geodesic
between q and x . It follows from (2-1) that there is a minimal geodesic [pqx ] with
qx ∈ N such that x ∈ [pqx ]. Hence, we need only to show that qx = q. If this is
not true, then by Corollary 2.4 there are minimal geodesics [pq] and [qqx ] ⊂ N
such that the triangle formed by [pq], [pqx ] and [qqx ] bounds a surface D which
is convex and can be isometrically embedded into S2(1). Note that [qx] belongs
to D. This is impossible because both [qp] (see (2-2)) and [qx] are perpendicular
to [qqx ] at q (in D). �

Now we give the proof of our Main Theorem.

Proof of the Main Theorem. Note that, according to Theorem 0.3, we need only to
show that

(2-3) 1≤ secM ≤ 4.

We will apply induction on dim(N ).

• dim(N )= 0: By Lemma 2.2, N consists of a point, so M is homeomorphic to a
sphere (because M consists of minimal geodesics between p and N ). It follows
from Theorem 1.3 that M is isometric to Sn

( 1
2

)
(which implies (2-3)).

• dim(N )= 1: Note that N is a closed geodesic of length π . Let q1 and q2 be two
antipodal points of N (i.e., |q1q2| =

π
2 ). It follows that there are only two minimal

geodesics between q1 and q2 (note that N is totally convex in M). Similarly, we
consider L , {q2}

=π/2 containing p and q1, which is a totally geodesic submanifold
in M of dimension > 0 by Lemma 2.2. Then similar to Lemma 2.5, we have that

⇑
q2
p = (6p L)=π/2 = (6q1 L)=π/2 =⇑q2

q1
.
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This implies that there are only two minimal geodesics between p and any q ∈ N
(by Lemma 2.5). It is then easy to see that secM ≡ 1 by Corollary 2.4 (in fact, M is
isometric to RP2 with the canonical metric).

• dim(N ) > 1: Since N is a complete totally geodesic submanifold in M (see
Lemma 2.2), (0-1) implies that

(2-4) diam(N )= Inj(N )= π
2 .

By the inductive assumption on N , we have that

(2-5) 1≤ secN ≤ 4.

On the other hand, we claim:

Claim. For any q ∈ N ,

S(p, q), {the point on a minimal geodesic between p and q}

is totally geodesic in M and is isometric to Sm
( 1

2

)
, where m = dim(M)− dim(N ).

Note that (2-3) is implied by the claim, (2-5), Lemma 2.5, Corollary 2.4 and
Lemma 2.2. Hence, in the rest of the proof, we need only to verify the claim.

By (2-4), we can select r ∈ N such that |qr | = π
2 . Similarly, we consider

K , {r}=π/2 containing p and q , which is a complete totally geodesic submanifold
in M with dim(K ) > 0; moreover, we have that

⇑
r
p = (6p K )=π/2,

and ⇑r
p is isometric to a unit sphere by Lemma 2.5. On the other hand, note that ⇑p

r

is isometric to Sm−1(1) by Lemma 2.5, and that ⇑p
r is isometric to ⇑r

p. Therefore,
it is easy to see (again from Lemma 2.5 on K ) that

dim(K )= dim(N ).

Hence, by the inductive assumption on K (similar to on N ), K is isometric to Sl
( 1

2

)
or a KPl endowed with the canonical metric, which implies the claim above. �
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