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DERIVED CATEGORIES OF
REPRESENTATIONS OF SMALL CATEGORIES
OVER COMMUTATIVE NOETHERIAN RINGS

BENJAMIN ANTIEAU AND GREG STEVENSON

We study the derived categories of small categories over commutative noe-
therian rings. Our main result is a parametrization of the localizing subcat-
egories in terms of the spectrum of the ring and the localizing subcategories
over residue fields. In the special case of representations of Dynkin quivers
over a commutative noetherian ring, we give a complete description of the
localizing subcategories of the derived category and a complete description
of the thick subcategories of the perfect complexes. We also show that the
telescope conjecture holds in this setting and we present some results con-
cerning the telescope conjecture more generally.

1. Introduction

If T is a triangulated category with all coproducts, a localizing subcategory L⊆ T
is a full triangulated subcategory closed under all coproducts in T. Localizing
subcategories are so-named because in good cases (the Bousfield localizations) the
Verdier quotient functor T→ T/L possesses a right adjoint, i.e., they give rise to
localization functors. Understanding the collection of localizing subcategories on
a given triangulated category is a challenging and interesting problem which has
been completely resolved in only a few classes of examples.

The history of such problems has roots in stable homotopy theory, where one
would like to relate two localizations of the p-local stable homotopy category
SH(p): one which has excellent theoretical properties (localization with respect to
the homology theory given by the Johnson–Wilson spectrum E(n)) and one which
is computable (the telescopic localization). The importance of such questions arose
first in [Bousfield 1979] and [Ravenel 1984]. That these two localizations agree is the
still-open telescope conjecture. Work on nilpotence closely related to the telescope
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conjecture by Devinatz, Hopkins, and Smith [Devinatz et al. 1988; Hopkins and
Smith 1998] has led to the classification of all thick subcategories, i.e., triangulated
subcategories closed under direct summands, of SHfin, the homotopy category of
finite spectra. Using similar ideas on the detection of nilpotent maps between
objects in D(R), Neeman [1992] classified the localizing subcategories of D(R)
and the thick subcategories of Dperf(R) when R is noetherian in terms of Spec R.

Going beyond the example of D(R) where R is noetherian and commutative
seems rather difficult. In terms of classification of thick subcategories of Dperf(X),
when X is a quasicompact and quasiseparated scheme, one has the result of
[Thomason 1997], which says that the thick subcategories which are also tensor
ideals correspond bijectively to unions of closed subsets of X with quasicompact
complement. This kind of result has been taken up by other authors, such as Benson,
Carlson, and Rickard [Benson et al. 1997] and Benson, Iyengar, and Krause [Benson
et al. 2011], who study the tensor ideals of stable module categories of finite groups.
This is part of a generalized framework of studying tensor ideals, pursued by Balmer
[2005], Dell’Ambrogio and Stevenson [2013; 2014], and Stevenson [2013; 2014].

In contrast to all that is known about thick subcategories, very little is known
about localizing subcategories outside of Neeman’s theorem. For instance, one does
not know all localizing subcategories of Dqc(P

1
C
). We mention one more example,

due to Brüning [2007], who classified the localizing subcategories of D(A) where
A is a hereditary Artin algebra of finite representation type.

Let R be a noetherian commutative ring. We show that in many cases classifi-
cation of the localizing subcategories of an R-linear triangulated category can be
reduced to studying the localizing subcategories of the “fibers” over the residue
fields of R.

Let C be a small category, and let s :L→Spec R denote the class constructed fiber
by fiber over Spec R, by letting s−1(p), for p ∈ Spec R, be the class of localizing
subcategories of D(k(p)C). Note that, a priori, the localizing subcategories of
D(k(p)C) only form a proper class, which is the reason for the careful wording
above. There is, however, no known example of a compactly generated triangulated
category whose collection of localizing subcategories does not form a set. The
following result is our first theorem.

Theorem (Corollary 4.3). Let R be a noetherian commutative ring and C a small
category. Then there is an isomorphism of lattices

{localizing subcategories L of D(RC)}
f
//
{sections l of L s

−→ Spec R},
g
oo

where f takes a localizing subcategory L of D(RC) to the function l : Spec R→ L

such that l(p) = add(k(p)⊗R L), and where g(l) is the localizing subcategory
generated by all X such that k(p)⊗R X ∈ l(p) for all p ∈ Spec R.
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In fact, our methods apply somewhat more generally, allowing one to replace
D(RC) with derived categories of representations of R-flat R-linear categories.

Our second result is a classification of the telescopic localizations of D(RQ) and
a classification of the thick subcategories of Dperf(RQ) when Q is a Dynkin quiver.

Theorem (Corollaries 5.1, 5.10, and 5.11). Let R be a noetherian commutative
ring and Q a simply laced Dynkin quiver, and denote by RQ the R-linear path
algebra of Q. There is an isomorphism of lattices

{localizing subcategories of D(RQ)}
f
//
{ functions Spec R→ NC(Q)},

g
oo

where NC(Q) denotes the lattice of noncrossing partitions associated to Q.
Moreover, the telescope conjecture holds for D(RQ), and the smashing sub-

categories, which by virtue of the telescope conjecture are in bijection with thick
subcategories of Dperf(RQ), correspond to those σ : Spec R→ NC(Q) such that
whenever p ⊆ q in Spec R we have σ(p)≤ σ(q).

In terms of the localizing subcategories, this theorem basically combines Corollary
4.3 with the results of [Ingalls and Thomas 2009] on localizing subcategories of
D(kQ) for fields k.

Initially, we had also hoped to prove the telescope conjecture for the telescopic
localizations of D(RC)more generally, at least with some hopefully mild hypothesis.
This turned out to be overly ambitious, but we present some partial results in
Section 6.

2. Preliminaries on representations of small categories

Throughout we fix a commutative ring R. Let C be a small category.

Definition 2.1. The category of right C-modules over R is the functor category

ModR C = Fun(Cop,Mod R)

consisting of contravariant functors from C to the category of R-modules.

The following well-known lemma ensures that we can use the standard tools of
homological algebra when dealing with C-modules.

Lemma 2.2. The category ModR C of right C-modules over R is a Grothendieck
category with enough projectives.

Proof. Recall that a Grothendieck (abelian) category is an abelian category (1) sat-
isfying axiom (AB5), on the existence and exactness of filtered colimits, and
(2) possessing a generator. The lemma can be proved by showing that the direct
sum of the set of representable objects is a generator, that filtered colimits are
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computed pointwise so that (AB5) follows from the satisfaction of that axiom for
ModR itself, and finally that the projective objects of ModR C are summands of
direct sums of representables. Details are left to the reader. �

We can also approach C-modules via R-linear functors.

Definition 2.3. The R-linearization of C , which we will denote by RC , is the
category with the same objects as C and whose hom-objects are free R-modules on
the hom-sets of C

RC(c, c′)=
⊕

f ∈C(c,c′)

R f,

with the obvious composition rule. In other words, RC is the free R-linear category
on C .

Definition 2.4. An R-linear category D is a small category enriched in R-modules.
It is flat if D(c, c′) is a flat R-module for all pairs of objects c, c′ in D.

Definition 2.5. If D is an R-linear category, then the category of right D-modules
over R is defined to be the functor category

ModR D = FunR(D,Mod R)

of R-linear functors.

Evidently, RC is a flat R-linear category for any small category C , since the
hom-objects are free. The reason for looking at these more general categories is
to capture the representation theory of R-algebras “with many objects”, whereas
the representations of RC are representations of monoids with many objects. In
the case where C has one object with monoid of endomorphisms M , the cate-
gory of representations of C in R-modules is equivalent to the category of right
R[M]-modules, where R[M] is the monoid algebra of M . On the other hand, if D
is an R-linear category with one object having endomorphism algebra S, then S is
an R-algebra, and the category of R-linear representations of D is equivalent to the
category of right S-modules. Of course, not every R-algebra is a monoid algebra,
so the R-linear categories capture more examples.

Of course, we should now check that ModR C and ModR RC are equivalent. We
do this in a moment, but we first want to introduce extra structure that will be pre-
served. Tensoring an RC-module objectwise with an R-module defines a bifunctor

Mod R×ModR RC ⊗R
−→ModR RC

which is explicitly given by (M ⊗R F)(c) = M ⊗R F(c) for an R-module M , an
RC-module F , and c ∈ C . This gives an action of the category of R-modules on
the category of RC-modules. We note that this action is nothing other than the
existence of copowers for the R-linear category ModR RC . There is, of course, a
similar action on ModR D when D is an R-linear category.
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Remark 2.6. Here and in the sequel we will work with categories of the form RC
since our main examples are of this form. However, our results are equally valid
for flat R-linear categories; the only changes which need to be made are cosmetic.

Lemma 2.7. The natural map ModR RC → ModR C is an equivalence for any
small category C. This equivalence is compatible with the actions described above.

Proof. This follows from the standard 2-adjunction relating categories and R-linear
categories; see for instance [Kelly 1982, Chapter 2.5]. �

Lemma 2.8. Given a morphism of commutative rings R φ
−→ S, the natural base

change functor
φ∗ :ModR RC→ModS SC

has a right adjoint φ∗.

Proof. The functor φ∗ is given by applying S⊗R − objectwise, and φ∗ is induced
by restriction of scalars. This is again induced by a standard 2-adjunction between
R-linear and S-linear categories corresponding to φ. �

3. Generalities on derived categories of small categories
over a commutative ring

Again R is a fixed commutative ring which we now also assume is noetherian,
and C is a small category with R-linearization RC . The (unbounded) derived
category D(RC) of RC is the category of complexes of right RC-modules where
quasi-isomorphisms have been inverted. We note that this is a compactly gener-
ated triangulated category and the compact objects are, up to quasi-isomorphism,
precisely the bounded complexes of projective RC-modules.

Recall that a localizing subcategory of D(RC) is a full triangulated subcategory of
D(RC) closed under coproducts (any such subcategory is automatically closed under
direct summands). We want to consider to what extent the localizing subcategories
of D(RC) are determined by the localizing subcategories of D(k(p)C) as p ranges
over the prime ideals of R. This is inspired by work of Neeman [1992] who showed
that in the case where C is the terminal category, i.e., RC = R, the localizing
subcategories of D(R) are determined by those of the D(k(p)). We restrict to
noetherian rings as, even in the case RC = R, it is known that Spec R does not
determine the localizing subcategories of D(R) in general.

Let us begin by observing that the action of Mod R on ModR C can be derived:

Lemma 3.1. The bifunctor Mod R ×ModR C → ModR C is left-balanced, with
respect to flat R-modules and objectwise R-flat RC-modules, i.e., it is exact when
either the first variable is flat or the second variable is objectwise flat. It admits a left-
derived functor, independent up to isomorphism of which variable it is derived in,
which gives a left action D(R)×D(RC)→D(RC) in the sense of [Stevenson 2013].
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Proof. Given F ∈ModR C such that F is objectwise R-flat, it is clear that −⊗R F
is exact. As ModR C has enough projectives, and the projective RC-modules
are componentwise projective, we see that ModR C has enough objectwise R-flat
modules. It is thus clear that the functor can be left-derived, using resolutions either
in Mod R or ModR C , and that it does not matter, up to quasi-isomorphism, on which
side the resolution is taken (i.e.,−⊗R− is balanced as claimed). It is straightforward
to check that this gives an associative and unital action of D(R) on D(RC). �

Remark 3.2. Given E ∈D(R) and F ∈D(RC), we will simply denote E⊗L
R F by

E ⊗R F or even E ⊗ F ; no confusion should result as we will almost exclusively
work with derived functors (frequently with R fixed or clear from the context).

This allows us to utilize the machinery of tensor actions to analyze localizing
subcategories of D(RC). After giving a convenient lemma and some notation, we
will recall the main result that we will need from this theory.

Lemma 3.3. Any localizing subcategory L ⊆ D(RC) is closed under tensoring
with complexes of R-modules. Explicitly, for any M ∈ D(R) and X ∈ L, we have
M ⊗R X ∈ L .

Proof. Evidently, if X ∈ L, then R ⊗R X ' X ∈ L. Since − ⊗R X preserves
coproducts, it follows that the subcategory of D(R) consisting of complexes of
R-modules M such that M ⊗R X ∈ L is localizing and contains R. Since R is a
compact generator of D(R), the lemma follows. �

Let f be an element of R. We denote by K∞( f ) the stable Koszul complex
R→ Rf of f , where the map is the canonical one. Given a prime ideal p of R, we set

K∞(p)= K∞( f1)⊗R · · · ⊗R K∞( fn),

where f1, . . . , fn is a choice of generators for p. The resulting complex is inde-
pendent of the choice of generators up to quasi-isomorphism (independence is
usually left as an exercise but a proof can be found, for instance, in [Greenlees
1993, Lemma 2.3]).

Given p ∈ Spec R, we define the object 0p R to be K∞(p)⊗R Rp. We recall
from [Stevenson 2013] that 0p R⊗R 0p R ' 0p R and for p 6= q in Spec R we have
0p R⊗R 0q R = 0.

Remark 3.4. In more familiar language, the object K∞(p) corresponds to taking
local cohomology with support in V (p) in the sense that the local cohomology
functor is isomorphic to K∞(p)⊗(−). Thus 0p R can be thought of as corresponding
to “p-localized local cohomology on V (p)”. In general it differs from the residue
field k(p), which is rarely tensor idempotent. In certain situations, for instance if
R = Z, one can express 0p R as a desuspension of a flat resolution of E(k(p)), the
injective envelope of the residue field at p; for instance, given a prime p ∈ Z, one
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has 0(p)Z∼=6−1 E(Z/pZ). However, in general the precise relationship between
0p R, k(p), and E(k(p)) seems to be more subtle.

As a final point of notation, we will use 〈S〉 to denote the smallest localizing
subcategory of a triangulated category generated by some collection of objects S.

Theorem 3.5 [Stevenson 2013, Theorem 6.9]. Given an object X of D(RC), there
is an equality of localizing subcategories

〈X〉 = 〈0p R⊗R X | p ∈ Spec R〉.

It follows that 0p R⊗R X ' 0 for all prime ideals p if and only if X ' 0.

Corollary 3.6. If X ∈ D(RC) is nonzero, then there is some prime ideal p of R
such that k(p)⊗R X is not zero.

Proof. By the theorem there is a p such that 0p R⊗R X is nonzero. The result now
follows as 〈0p R〉 = 〈k(p)〉 in D(R) by [Neeman 1992, Section 2], which implies
k(p)⊗R X ' 0 if and only if 0p R⊗R X ' 0. �

We now turn to analyzing the localizing subcategories of D(RC) in terms of the
“fibers” D(k(p)C) for p∈Spec R. Let L be the class defined in the following way. It
comes equipped with a surjective map L s

−→Spec R, and the fiber over p ∈ Spec R
is the class of localizing subcategories of D(k(p)C). We will define a pair of maps

{localizing subcategories L of D(RC)}
f
//
{sections l of L s

−→ Spec R}.
g
oo

In order to define the maps in the most convenient manner, we require a little
preparation.

Lemma 3.7. If X is in the image of the forgetful functor D(k(p)C)→ D(RC),
then k(p)⊗R X is a direct sum of suspensions of X. In particular, the base change
functor D(RC)→ D(k(p)C) is essentially surjective up to summands.

Proof. Let X be as in the statement, i.e., X is a complex of k(p)C-modules regarded
as a complex of RC-modules. Then

k(p)⊗R X ' (k(p)⊗R k(p))⊗k(p) X

is a coproduct of suspensions of X since k(p)⊗R k(p) is a coproduct of suspensions
of k(p). As the base change functor D(RC)→ D(k(p)C) is just k(p)⊗R −, the
final statement of the lemma is an immediate consequence. �

Lemma 3.8. Let L be a localizing subcategory of D(RC). Then add(k(p)⊗R L),
the closure of k(p)⊗R L under summands and isomorphisms in D(k(p)C), is a
localizing subcategory of D(k(p)C).
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Proof. It is evident that add(k(p)⊗R L) is closed under suspensions and coproducts
in D(k(p)C) as derived base change is exact and coproduct-preserving. Thus
it is sufficient to show that add(k(p)⊗R L) is closed under triangles. Suppose
X→Y→ Z→ is a triangle with X, Y ∈ add(k(p)⊗R L). Without loss of generality
we may assume X, Y ∈ k(p)⊗R L. By Lemma 3.3 the restrictions of X and Y lie
in L, so we deduce that the restriction of Z lies in L. Hence k(p)⊗R Z is in k(p)⊗RL
and using Lemma 3.7 we see that Z is in add(k(p)⊗R L), proving the lemma. �

The function f is defined as follows: we set f (L)(p)= add(k(p)⊗R L) which
is localizing by Lemma 3.8. Given a section l of s, define g(l) as the localizing
subcategory

{X ∈ D(RC) | k(p)⊗R X ∈ l(p) for all primes p ∈ Spec R}.

There is another natural function

{localizing subcategories L of D(RC)} {sections l of L s
−→ Spec R}

g′
oo

defined as follows: let g′ be the function that takes l to the localizing subcategory
generated by the objects X of l(p) for all p, viewed as RC-modules in the natural
way, i.e.,

g′(l)= 〈l(p) | p ∈ Spec R〉.

Lemma 3.9. If L is a localizing subcategory of D(RC) then g′( f(L))⊆L⊆g( f(L)).

Proof. The inclusion L⊆ g( f (L)) is clear:

g( f (L))= {X ∈ D(RC) | k(p)⊗R X ∈ add(k(p)⊗R L) for all p ∈ Spec R} ⊇ L .

To show the other inclusion, note that g′( f (L)) is generated by k(p)⊗R X , as
X ranges over the objects of L and p ranges over the primes of R. But, by
Lemma 3.3, these are all in L. �

Lemma 3.10. Suppose l is a section of s. Then f (g′(l))= l= f (g(l)). In particular,
f is surjective.

Proof. The value of f (g′(l)) at a prime p consists of the localizing subcategory of
D(k(p)C) generated by the complexes k(p)⊗R X for X ∈ l(p). By Lemma 3.7
k(p)⊗R X is a direct sum of suspensions of X and thus f (g′(l)) = l. Similarly
l = f (g(l)), proving the lemma. �

Our goal is to show that g′( f (L))=L= g( f (L)). This will prove that g and f are
inverse bijections and so gives a description of the lattice of localizing subcategories
of D(RC) in terms of the corresponding derived categories over the residue fields
of Spec R.
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4. Proof of the main theorem

This section is dedicated to proving g′( f (L))= L = g( f (L)).
Write 0pD(RC) for the localizing subcategory consisting of objects X supported

at p ∈ Spec R, i.e., those X satisfying k(q)⊗R X ' 0 for q 6= p. Equivalently,
one can describe 0pD(RC) as the essential image of 0p R⊗R − in D(RC). We can
restrict f to the class of localizing subcategories of 0pD(RC).

Proposition 4.1. The following are equivalent:

(1) the functions f and g are inverse bijections;

(2) the restrictions{
localizing subcategories

of 0pD(RC)

} fp
//

{
localizing subcategories

of D(k(p)C)

}
gp
oo

are inverse bijections for all primes p;

(3) for every prime ideal p in Spec R and for every object X of 0pD(RC), the
localizing subcategories 〈k(p)⊗R X〉 and 〈X〉 are the same.

Proof. Clearly (1) implies (2). That (2) implies (3) follows from the fact that the
localizing subcategories 〈X〉 and 〈k(p)⊗R X〉 have the same image under fp. Since
f is surjective, to prove that (3) implies (1), it suffices to prove that (3) implies f is
injective. Assuming this for a moment, Lemma 3.10 says that both g and g′ are
inverses for f , which must then coincide.

Assume now that L is a localizing subcategory of D(RC) and that X ∈ L.
It suffices to show that X ∈ g′( f (L)) since we have the other containment by
Lemma 3.9. Under the assumption (3), 0p R ⊗R X ∈ g′( f (L)) for every prime
ideal p in Spec R because k(p)⊗R 0p R ⊗R X ∼= k(p)⊗R X . Hence there is a
containment of localizing subcategories

〈0p R⊗R X | p ∈ Spec R〉 ⊆ g′( f (L)).

By Theorem 3.5, X ∈ 〈0p R⊗R X | p ∈ Spec R〉, and so X ∈ g′( f (L)), completing
the proof. �

The following observation is our main ‘theorem’.

Theorem 4.2. Let p be a prime ideal of R and X an object of 0pD(RC). Then
X ∈ 〈k(p)⊗R X〉 and hence

〈k(p)⊗R X〉 = 〈X〉.

Proof. Let X be as in the lemma and consider the full subcategory

M= {E ∈ D(R) | E ⊗R X ∈ 〈k(p)⊗R X〉}
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of D(R). As 〈k(p)⊗R X〉 is a localizing subcategory, it follows that M is also
localizing (this is relatively straightforward but a proof can be found in [Stevenson
2013, Lemma 3.8]). It is immediate from the definition that k(p) ∈ M and so
〈k(p)〉 ⊆M. By Neeman’s classification result [1992] we have 0p R ∈ 〈k(p)〉, and
hence 0p R also lies in M. Thus 0p R⊗R X ∈ 〈k(p)⊗R X〉 and it only remains to
observe that X ∈ 0pD(RC) implies 0p R⊗R X ' X . �

Corollary 4.3. Let R be a commutative noetherian ring and C a small category.
Then the assignments

{localizing subcategories L of D(RC)}
f
//
{sections l of L s

−→ Spec R}
g
oo

are inverse to one another.

Proof. It is sufficient to verify condition (3) of Proposition 4.1, i.e., that for every
X ∈ 0pD(RC) we have X ∈ 〈k(p)⊗R X〉. This is precisely the content of the
theorem and so we see that f and g are inverse. �

Remark 4.4. As noted in Remark 2.6, our results are also valid in the case where D
is a flat R-linear category and we consider D(ModR D). One just needs to replace
k(p)C by k(p)⊗R D, the base change of D to k(p); the arguments don’t change.

5. Dynkin quivers

In this section we give a concrete application of the formalism above by considering
the case where C is the path category of a simply laced Dynkin quiver. Let Q be a
quiver whose underlying graph is a simply laced Dynkin diagram. We can naturally
view Q as a poset, i.e., a small category, and apply our result to the study of the
derived category, D(RQ), of representations of Q over R. This yields the following
extension of work of Ingalls and Thomas [2009], where we refer the reader for
information about noncrossing partitions.

Corollary 5.1. Let R be a commutative noetherian ring and Q a simply laced
Dynkin quiver, and denote by RQ the R-linear path algebra of Q. There is an
isomorphism of lattices

{localizing subcategories of D(RQ)}
f
//
{ functions Spec R→ NC(Q)},

g
oo

where NC(Q) denotes the lattice of noncrossing partitions associated to Q.

Proof. Corollary 4.3 applies so it just remains to demonstrate that there is a bijection

{sections of L s
−→ Spec R} ' Hom(Spec R,NC(Q)).
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This follows from [Krause 2012, Theorem 6.10] which shows, without restriction
on the field k, that there is a bijection between the lattice of thick subcategories of
Db(kQ) and NC(Q). As kQ is hereditary and of finite representation type, D(kQ) is
pure-semisimple, i.e., every object is a direct sum of compact objects, and so we de-
duce a bijection between the lattice of localizing subcategories of D(kQ) and NC(Q).
Thus sections of L→ Spec R are nothing but functions from Spec R to NC(Q). �

Remark 5.2. One can also use Lemma 3.10 and Krause’s extension [2012, Theorem
6.10] of a result by Igusa and Schiffler to get partial information on the lattice of
localizing subcategories of D(RQ) for an arbitrary quiver Q.

In this situation we can obtain a classification of the thick subcategories of
Dperf(RQ), the category of perfect complexes of RQ-modules. Recall that Dperf(RQ)
is the full subcategory of D(RQ) consisting of those objects quasi-isomorphic to a
bounded complex of finitely generated projective modules; it is a thick subcategory
and is the subcategory of compact objects in D(RQ). As in the case of Dperf(R), the
thick subcategories of Dperf(RQ) are given by a sublattice of the lattice of localizing
subcategories defined by a certain specialization closure condition.

Definition 5.3. We call a function σ : Spec R→ NC(Q) specialization closed if
whenever p ⊆ q we have σ(p)≤ σ(q) in NC(Q).

Remark 5.4. This recovers the usual notion of specialization closure of subsets of
Spec R when Q = A1 and so NC(Q)= {0, 1}. Moreover, returning to the general
simply laced case, if L is a localizing subcategory with f (L) specialization closed
then for p ⊆ q we have

k(p)⊗L 6= 0 ⇒ k(q)⊗L 6= 0.

We will show that specialization closed functions Spec R → NC(Q) classify
smashing subcategories of D(RQ) and that the telescope conjecture holds. Combin-
ing these two results gives the claimed classification result for thick subcategories
of Dperf(RQ). We begin by recalling a useful fact and then present the easiest part
of the argument.

Lemma 5.5. Let p be a prime ideal of R and let M be an indecomposable k(p)Q-
module with dimension vector α. Then there is a rigid lattice M̃ over RQ, i.e., M̃ is
R-free and Ext1RQ(M̃, M̃)= 0, with rank vector α. Moreover, for any q ∈ Spec R
the module k(q)⊗ M̃ is the unique indecomposable k(q)Q-module with dimension
vector α. In particular,

k(p)⊗ M̃ ∼= M.

Proof. This is a (very) special case of [Crawley-Boevey 1996, Theorem 1]. �

Lemma 5.6. Let σ :Spec R→NC(Q) be specialization closed. Then the localizing
subcategory L= g(σ ) is generated by objects of Dperf(RQ).
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Proof. We prove this by just writing down a (rather redundant) generating set for L.
For each prime ideal p such that k(p)⊗L 6= 0, let M(p) be a compact generator
for the localizing subcategory of D(k(p)Q) generated by k(p)⊗L. Since M(p) is
a finite sum of (suspensions of) indecomposable modules in D(k(p)Q), we can lift
it to a lattice M̃(p) in D(RQ) using Lemma 5.5. In particular, it is easily seen that
M̃(p) is compact in D(RQ). Set

G =
{
K (p)⊗ M̃(p) | p ∈ Spec R with k(p)⊗L 6= 0

}
and L′ = 〈G〉,

where K (p) denotes the Koszul complex for p defined by

K (p)=
r⊗

i=1

cone(R fi
−→ R),

where p is generated by f1, . . . , fr . (Recall that this implicitly means the derived
tensor product over R.) Since K (p) ∈ Dperf(R) and M̃(p) ∈ Dperf(RQ), the set G
consists of compact objects by [Stevenson 2013, Lemma 4.6].

For primes p ⊆ q ∈ Spec R the object k(q)⊗
(
K (p)⊗ M̃(p)

)
is a finite sum

of suspensions of copies of the k(q)Q-module k(q)⊗ M̃(p). This latter module
can be described as follows: each indecomposable summand of M(p) corresponds
to an indecomposable k(q)Q-module, namely the indecomposable k(q)Q-module
with the same dimension vector, and k(q)⊗ M̃(p) is the corresponding sum of
these indecomposable k(q)Q-modules. In particular, M(p) and k(q) ⊗ M̃(p)
correspond to the same element of NC(Q). If, on the other hand, p * q then
k(q)⊗

(
K (p)⊗ M̃(p)

)
= 0.

Putting everything together we see that

〈k(q)⊗L′〉 = 〈k(q)⊗ K (p)⊗ M̃(p) | p ∈ Spec R with k(p)⊗L 6= 0〉

= 〈k(q)⊗ M̃(q)〉 = 〈M(q)〉 = 〈k(q)⊗L〉,

where the second equality follows from the computation in the preceding paragraph
together with specialization closure of σ , and the third and fourth equalities are
by definition of M(q) and M̃(q). This shows that f (L)= f (L′) and thus, by the
classification of localizing subcategories, L= L′. We have thus exhibited a set of
generators G ⊆ Dperf(RQ) for L. �

We now continue with proving that the specialization closed functions Spec R→
NC(Q) classify smashing subcategories of D(RQ). Combined with the above
lemma, this proves the telescope conjecture and classifies the thick subcategories
of Dperf(RQ).

Fix a smashing subcategory S of D(RQ), i.e., consider a localization sequence

S
i∗
//

oo

i !
D(RQ)

j∗
//

oo

j∗
S⊥,
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where i ! and j∗ are the right adjoints of the inclusion functors i∗ and the localization
functor j∗, respectively, and all of these functors preserve coproducts. In particular,
S⊥ is also a localizing subcategory of D(RQ). In order to prove the result indicated
above we start with two elementary lemmas.

Lemma 5.7. Let S be as above. Then for any Y ∈ D(R) and X ∈ D(RQ) we have
canonical isomorphisms

i∗ i !(Y ⊗ X)∼= Y ⊗ i∗ i !X and j∗ j∗(Y ⊗ X)∼= Y ⊗ j∗ j∗X.

Proof. Consider the localization triangle for X

i∗ i !X→ X→ j∗ j∗X→6i∗ i !X.

Acting on this triangle with Y gives a new triangle

Y ⊗ i∗ i !X→ Y ⊗ X→ Y ⊗ j∗ j∗X→6(Y ⊗ i∗ i !X).

By Lemma 3.3 both S and S⊥ are closed under the D(R) action and so we have
Y ⊗ i∗ i !X ∈ S and Y ⊗ j∗ j∗X ∈ S⊥. The claimed isomorphisms follow immediately
from the uniqueness of localization triangles. �

Lemma 5.8. Let p′ ∈ Spec R. Let M , N be indecomposable k(p′)Q-modules with

Homk(p′)Q(M, N ) 6= 0

and denote choices of their respective rigid lattice lifts by M̃ and Ñ . Then, given
p ⊆ q ∈ Spec R, we have

HomRQ
(
E(k(p))⊗ M̃, E(k(q))⊗ Ñ

)
6= 0,

where E(k(p)), E(k(q)) denote the injective envelopes of the residue fields k(p), k(q).

Proof. We know there are rigid lattice lifts of M and N by Lemma 5.5. We can
choose, using the classification of indecomposable modules over Q, a nonzero
φ : M→ N given on each component by matrices involving only zero and identity
maps. It is then clear that we can lift it to a nonzero φ̃ : M̃→ Ñ such that φ̃, like φ,
is given componentwise by matrices whose only entries are zero and identity maps.
On the other hand, since p ⊆ q, there is a nonzero map ψ : E(k(p))→ E(k(q)).
It is thus evident by our choice of φ̃ that either of the equal composites in the
commutative square

E(k(q))⊗ M̃
1⊗φ̃

// E(k(q))⊗ Ñ

E(k(p))⊗ M̃

ψ⊗1

OO

1⊗φ̃
// E(k(p))⊗ Ñ

ψ⊗1

OO

gives the desired nonzero morphism. �
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Using this series of easy observations we can now dispose of the proof of the
theorem in short order.

Theorem 5.9. Let S be a smashing subcategory of D(RQ) with notation as intro-
duced above. Then f (S) : Spec R→ NC(Q) is specialization closed.

Proof. Fix p⊆q∈Spec R and an indecomposable module M∈k(p)⊗S⊆D(k(p)Q)
with dimension vector α. By Lemma 5.5 there is a lattice M̃ ∈ Dperf(RQ) with
k(p)⊗ M̃ ∼= M and k(q)⊗ M̃ the unique indecomposable k(q)Q-module with
dimension vector α. We have to show that k(q)⊗ M̃ is in k(q)⊗ S. To this end
consider the localization triangle

i∗ i !M̃→ M̃→ j∗ j∗M̃→6i∗ i !M̃ .

Pick an indecomposable summand N of k(q)⊗ j∗ j∗M̃ and note that, by Lemma 5.7,
N ∈S⊥. We assume N is nonzero since if k(q)⊗ j∗ j∗M̃ is zero then k(q)⊗M̃ is in S
and we are done. Let Ñ be a lattice lift of N . As we have assumed k(q)⊗ j∗ j∗M̃
is nonzero, the morphism

φ = k(q)⊗ M̃→ k(q)⊗ j∗ j∗M̃→ N ∼= k(q)⊗ Ñ

must also be nonzero. Thus we can apply Lemma 5.8 to produce a nonzero morphism

γ : E(k(p))⊗ M̃→ E(k(q))⊗ Ñ

in D(RQ).
On the other hand, by assumption k(p)⊗ M̃ ∈ S and k(q)⊗ Ñ ∈ S⊥. Since both

S and S⊥ are localizing, and since for any prime ideal p′ we have E(k(p′))∈〈k(p′)〉,
we see (as in the proof of Theorem 4.2) that

E(k(p))⊗ M̃ ∈ S and E(k(q))⊗ Ñ ∈ S⊥.

But this contradicts the existence of the nonzero morphism γ . Hence N must have
been zero, showing that k(q)⊗ j∗ j∗M̃ ∼= 0, which in turn implies (via Lemma 5.7)
that k(q)⊗ M̃ ∈ S as desired. �

This theorem has the following, more palatable, consequences.

Corollary 5.10. Let R be a commutative noetherian ring and Q a simply laced
Dynkin quiver. Then D(RQ) satisfies the telescope conjecture: every smashing
subcategory is generated by objects of Dperf(RQ).

Proof. Suppose S is a smashing subcategory. Then by the classification given in
Corollary 5.1 we know S= g f (S). By Theorem 5.9 the function f (S) is special-
ization closed and so by Lemma 5.6 we see that S= g f (S) is generated by objects
of Dperf(RQ) as claimed. �
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{1, 2, 3}

{1, 2} {2, 3} {1, 3}

{1}, {2}, {3}

Figure 1. The lattice of noncrossing partitions of {1, 2, 3}. The
coarser partitions are decreed to be bigger in the lattice structure.

Corollary 5.11. Let R be a commutative noetherian ring and Q a simply laced
Dynkin quiver. There is an isomorphism of lattices{

thick subcategories
of Dperf(RQ)

}
f
//

{
specialization closed functions

Spec R→ NC(Q)

}
,

g
oo

where NC(Q) denotes the lattice of noncrossing partitions associated to Q.

Proof. Considering the classification of Corollary 5.1 and combining Theorem 5.9
and Lemma 5.6 gives a classification of the smashing subcategories of D(RQ) in
terms of the specialization closed functions Spec R→ NC(Q). By the previous
corollary this is also the classification of the localizing subcategories of D(RQ)
generated by objects of Dperf(RQ). One obtains the isomorphism we have asserted
in the statement in the standard way: by Thomason’s localization theorem (see, for
example, [Neeman 1996, Theorem 2.1]) the thick subcategories of Dperf(RQ) are
in order-preserving bijection with the localizing subcategories of D(RQ) which are
generated by perfect complexes. �

Example 5.12. Let R be a local 1-dimensional domain. Then Spec R consists of
two points: a generic point η and a closed point x . We will consider the case of
Q= A2 in Corollary 5.11. The lattice NC(A2) consists of the noncrossing partitions
of the set {1, 2, 3}. A noncrossing partition of a cyclically ordered set S determined
by an equivalence relation ∼ is one where x < y < z < w, x ∼ z, and y ∼ w
together imply x ∼ y ∼ z ∼ w.

In Figure 1 we display each partition as determined by its largest equivalence
classes. The class of all localizing subcategories of D(RA2) in this case is simply
two copies of this lattice, indexed on η and x . Figure 2 shows the lattice of
specialization closed functions Spec R→ NC(A2), which by the results above is
the lattice of thick subcategories of Dperf(RA2).
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[{1, 2, 3}]

[{1}, {2}, {3}]

[{1, 2}, {3}]

[{1, 2}], [{3}]

[{1}, {2}], [{3}]

[{1, 3}, {2}]

[{1, 3}], [{2}]

[{1}, {3}], [{2}]

[{2, 3}, {1}]

[{2, 3}], [{1}]

[{2}, {3}], [{1}]

[{1}], [{2}], [{3}]

Figure 2. The lattice of specialization closed functions Spec R→
NC(A2) for R a 1-dimensional local domain. The partition given
by the black parentheses is the noncrossing partition corresponding
to the generic point η, while the partition determined by the red
parentheses is the partition corresponding to the closed point x .

6. Towards telescopy

We have seen in Corollary 5.10 that the telescope conjecture holds for D(RQ) when
Q is an ADE quiver and R is any commutative noetherian ring. Unfortunately we
were not able to prove such a general statement for even arbitrary quivers, let alone
arbitrary small categories. However, we do have some partial results and remarks
that we present in this section which revolve around the following question.

Question 6.1. Let R be a noetherian commutative ring. Does the telescope conjec-
ture hold for D(RC) when C is an ordinary (not R-linear) category if it holds for
D(k(p)C) for all p ∈ Spec R?
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We begin to answer this question by showing that the bijection of Proposition
4.1(2) restricts to a bijection between the collections of smashing subcategories.
Given a localizing subcategory L of some triangulated category, we will denote the
associated acyclization and localization functors by 0L and LL respectively.

Remark 6.2. Throughout we will prove that some localizing subcategory S is
smashing by exhibiting that the right orthogonal S⊥ is also localizing. In order
for this condition to be equivalent to S being smashing, one needs to know that
the inclusion of S admits a right adjoint. In all of the cases we consider S will
clearly be generated by a set of objects; for instance, it will be the localizing
subcategory generated by the image of some other smashing subcategory under an
exact functor, and so the existence of the adjoint follows from Brown representability.
Indeed, in this case one has a generating set, as any smashing subcategory of a
compactly generated triangulated category has a set of generators by [Krause 2010,
Theorem 7.4.1], and so one can apply Brown representability for well-generated
categories as in [Neeman 2001] (or see [Krause 2010, Theorem 5.1.1]). Thus we
will suppress this part of the arguments throughout.

For the moment, fix some p ∈ Spec R and denote by i∗ the functor k(p)⊗ (−) :
0pD(RC)→ D(k(p)C) and by i∗ its right adjoint.

Lemma 6.3. Suppose S is a smashing subcategory of 0pD(RC) and set

T= f (S)= add(k(p)⊗S) and T′ = f (S⊥)= add(k(p)⊗S⊥).

Then T′ is the right orthogonal of T, and hence T is a smashing subcategory of
D(k(p)C).

Proof. If X ∈ T′ then there is, by definition, some X̄ ∈ S⊥ such that X is a summand
of i∗ X̄ . Given Y ∈T, which we can assume to be of the form i∗Ȳ with Ȳ ∈S, we have

Hom(i∗Ȳ , i∗ X̄)∼= Hom(Ȳ , i∗ i∗ X̄).

This latter hom-set is zero, as Ȳ ∈ S and i∗ i∗ X̄ ∈ S⊥ by the closure of localizing
subcategories under the D(R) action. Thus T′ ⊆ T⊥.

On the other hand, if Hom(i∗S, Z)= 0 for some Z ∈D(k(p)C), then by adjunc-
tion i∗Z ∈ S⊥. Hence i∗i∗Z ∈ T′ and we know, by Lemma 3.7, that Z is a summand
of i∗i∗Z . So Z is in T′, proving that T⊥ ⊂ T′ and completing the argument. �

Now we fix a smashing subcategory T of D(k(p)C) and set

S= g(T)= 〈i∗T〉 and S′ = g(T⊥)= 〈i∗T⊥〉.

We wish to show that S is smashing with right orthogonal S′. We prove this in the
following four statements.
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Lemma 6.4. The subcategories S and S′ generate 0pD(RC), i.e., we have

〈S∪S′〉 = 0pD(RC).

Proof. Let X be an object of 0pD(RC). By Theorem 4.2 we know X is in the
localizing subcategory 〈i∗ i∗X〉. We have a localization triangle in D(k(p)C)

0Ti∗X→ i∗X→ LTi∗X→60Ti∗X,

where 0Ti∗X ∈ T and LTi∗X ∈ T⊥. Applying i∗ gives a triangle in D(RC)

i∗0Ti∗X→ i∗ i∗X→ i∗LTi∗X→6i∗0T i∗X

with i∗0Ti∗X ∈ S and i∗LTi∗X ∈ S′ by definition. Thus X ∈ 〈i∗ i∗X〉 ⊆ 〈S∪ S′〉,
as claimed. �

Lemma 6.5. There is a containment of triangulated subcategories S′ ⊆ S⊥.

Proof. It is enough to check that for every t ∈ T and t ′ ∈ T⊥ we have

Hom(i∗t, i∗t ′)= 0.

The required vanishing follows from the isomorphisms

Hom(i∗t, i∗t ′)∼= Hom(i∗i∗t, t ′)∼= Hom
(∐
λ

6nλ t, t ′
)
∼=

∏
λ

Hom(6nλ t, t ′)= 0,

where the first isomorphism is by adjunction, the second is by Lemma 3.7, and the
final hom-set vanishes by assumption. �

Lemma 6.6. There is an equality

0pD(RC)= {X ∈ 0pD(RC) | there exists a triangle X ′→ X→ X ′′→6X ′

with X ′ ∈ S and X ′′ ∈ S′}.

Proof. It is routine to verify that the full subcategory defined on the right-hand side
above is localizing, and it contains S and S′ by definition. The equality then follows
from Lemma 6.4. �

Proposition 6.7. S is smashing in 0pD(RC) with right orthogonal S′.

Proof. We already know by Lemma 6.5 that S′ ⊆ S⊥. Let X be an object of S⊥. By
the last lemma we know there is a triangle

X ′→ X→ X ′′→6X ′

with X ′ ∈ S and X ′′ ∈ S′. But, since X ∈ S⊥, the first map must vanish, implying
X ′′ ∼= X ⊕6X ′. This in turn implies X ′ ∼= 0 since S∩ S′ = 0. We thus conclude
that X ∼= X ′′, i.e., X ∈ S′, proving S⊥ = S′. In particular, S is smashing. �
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We now have enough to prove that we can describe the smashing subcategories
of 0pD(RC) in terms of the smashing subcategories of D(k(p)C).

Theorem 6.8. There is an order-preserving bijection{
smashing subcategories

of 0pD(RC)

} fp
//

{
smashing subcategories

of D(k(p)C)

}
.

gp
oo

Proof. We know from Proposition 4.1(2) that there is a bijection between the sets
of localizing subcategories of 0pD(RC) and D(k(p)C) given by fp and gp. By
Lemma 6.3 and Proposition 6.7 both fp and gp send smashing subcategories to
smashing subcategories and so the bijection restricts as claimed. �

Obtaining the corresponding result for localizing subcategories generated by
compact objects of 0pD(RC) and D(k(p)C) seems more subtle. However, if R is
sufficiently nice at the prime ideal p this is possible. In order to state the result we
need a simple preparatory lemma.

Lemma 6.9. Let p be a prime ideal of Spec R. The category 0pD(RC) is a com-
pactly generated triangulated category.

Proof. Recall that 0pD(RC) is the essential image of acting by

0p R = K∞(p)⊗R Rp.

It is clear that D(RpC), the essential image of acting by Rp, is a compactly generated
triangulated category. By [Stevenson 2013, Corollary 4.11] the essential image of
K∞(p)p⊗Rp (−) acting on D(RpC), namely 0pD(RC), is also compactly generated
(even by objects of Dperf(RpC)). �

In the statement and proof of the following proposition, (0pD(RC))c denotes the
full subcategory of compact objects of 0pD(RC).

Proposition 6.10. Let p be a prime ideal of R such that Rp is regular. Then the
assignments fp and gp of Proposition 4.1(2) induce an order-preserving bijection
between localizing subcategories of 0pD(RC) generated by objects of (0pD(RC))c

and localizing subcategories of D(k(p)C) generated by objects of Dperf(k(p)C).

Proof. The base change functor 0pD(RC)→D(k(p)C) has a coproduct-preserving
right adjoint and so sends compacts to compacts by [Neeman 1996, Theorem 5.1].
Thus it is clear that fp sends any localizing subcategory of 0pD(RC) generated
by objects of (0pD(RC))c to a localizing subcategory generated by objects of
Dperf(k(p)C). The argument for gp is similar, using the fact that, as Rp is regular,
the residue field k(p) is compact, and so the right adjoint of the restriction functor
HomR(k(p),−) is also coproduct-preserving. �
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As an immediate consequence of the theorem and the proposition we deduce the
following corollary.

Corollary 6.11. Suppose Rp is regular. Then 0pD(RC) satisfies the telescope
conjecture if and only if D(k(p)C) satisfies the telescope conjecture.

Proof. Suppose D(k(p)C) satisfies the telescope conjecture and let S be a smashing
subcategory of 0pD(RC). Then fp(S) is smashing in D(k(p)C) by Theorem 6.8
and we have gp fp(S) = S. Since we have assumed the telescope conjecture for
D(k(p)C), we know fp(S) is generated by objects of Dperf(k(p)C). Applying
Proposition 6.10 we deduce that S = gp fp(S) is generated by objects which are
compact in 0pD(RC). Thus the telescope conjecture holds for 0pD(RC). The other
implication is clear since i∗ preserves compact objects. �

This corollary already buys us something in a concrete setting, although it is not
clear how to extend it to all of D(RC).

Corollary 6.12. Let Q be a quiver and let R be a commutative noetherian ring.
For each p ∈ Spec R such that Rp is regular, the telescope conjecture holds for
0pD(RC).

Proof. By the previous corollary it is sufficient to verify the telescope conjecture for
D(k(p)Q). This has been done by Krause and Št́ovíček [2010, Theorem 7.1]. �

We give one additional lemma that could prove useful in resolving Question 6.1.

Lemma 6.13. If S is a smashing subcategory of D(RC) then for every p ∈ Spec R
the localizing subcategory 0pS is smashing in 0pD(RC).

Proof. It is not hard to check that both 0pS and 0p(S⊥) are localizing subcategories
of 0pD(RC). Moreover,

0pS⊆ S and 0p(S⊥)⊆ S⊥

by Lemma 3.3. In particular, 0p(S⊥)⊆ (0pS)⊥. Applying 0p R⊗R (−) to localization
triangles for S shows that every object X of 0pD(RC) fits into a triangle

X ′→ X→ X ′′→6X ′

with X ′ ∈ 0pS and X ′′ ∈ 0p(S⊥). One can conclude the proof by arguing as in the
proof of Proposition 6.7. �

In summary, we understand what happens at “points” and we can pass from a
smashing subcategory of D(RC) to a smashing subcategory at each prime. What
is not clear is how to use this pointwise information to deduce something about
the original smashing subcategory. The naive idea, based on the existing proofs
of the telescope conjecture in various instances, would be to prove some sort
of specialization closure condition for the section corresponding to a smashing
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subcategory as in Theorem 5.9. One could then hope to combine such a condition
with the fiberwise results above. However, the following example shows that one
cannot always expect specialization closure.

Example 6.14. Consider the projection Spec k[x, y] → Spec k[x]. We then view
Mod k[x, y] as a k[x]-linear category. This gives rise to an action of D(k[x]) on
D(k[x, y]). Let S be the smashing subcategory of D(k[x, y]) determined by the
closed curve xy = 1. Then the support of S with respect to the action of D(k[x]) is
open in Spec k[x]. Of course, in this case the telescope conjecture does hold.
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