Q(N)-GRADED LIE SUPERALGEBRAS ARISING FROM FERMIONIC-BOSONIC REPRESENTATIONS

JIN CHENG

We use fermionic-bosonic representations to obtain a class of $Q(N)$-graded Lie superalgebras coordinatized by quantum tori.

1. Introduction

Root graded Lie algebras were first introduced by Berman and Moody [1992] to understand the generalized intersection matrix algebras of Slodowy. Berman and Moody [1992] classified Lie algebras graded by the root systems of type A_l, D_l, and E_6, E_7, E_8 up to central isogeny. Benkart and Zelmanov [1996] classified Lie algebras graded by the root systems of type B_n, C_n, F_4, G_2 up to central isogeny. Allison et al. [2000] completed the classifications of the above root graded Lie algebras by figuring out explicitly the centers of the universal coverings of those root graded Lie algebras. It turns out that the classification of those root graded Lie algebras played a crucial role in classifying the newly developed extended affine Lie algebras (see [Berman et al. 1996]), which is a generalization of many important Lie algebras, such as affine and toroidal Lie algebras.

Root graded Lie superalgebras are a “super” analog of root graded Lie algebras. Lie superalgebras graded by the root systems of type $A(m, n)$, $B(m, n)$, $C(n)$, $D(m, n)$, and $D(2, 1; \alpha)$, $F(4)$, $G(3)$ were classified by G. Benkart and A. Elduque. Lie superalgebras graded by the root systems of type $P(N)$, $Q(N)$ were introduced and classified by C. Martínez and E. I. Zelmanov [2003].

Cheng was supported in part by the National Natural Science Foundation of China (No. 11101388).

MSC2010: 17B10.

Keywords: root graded Lie superalgebras, quantum tori, fermionic and bosonic representations.
In this paper, we use fermions and bosons to obtain a class of $Q(N)$-graded Lie superalgebras coordinatized by quantum tori.

The structure of this paper is as follows. In Section 2, we review the definition of $Q(N)$-graded Lie superalgebras and give examples of $Q(N)$-graded Lie superalgebras which coordinatized by quantum tori. In Section 3, we use a tensor product of a fermionic module and a bosonic module to construct the representations for those examples of $Q(N)$-graded Lie superalgebras.

Throughout this paper, we denote the field of complex numbers and the ring of integers by \mathbb{C} and \mathbb{Z} respectively. Let \mathbb{F} be a field of characteristic zero.

2. Lie superalgebras graded by $Q(N)$

In this section, we first recall the definition of $Q(N)$-graded Lie superalgebras. Then we construct examples of $Q(N)$-graded Lie superalgebras coordinatized by quantum tori.

Following the notations in [Kac 1977], the finite-dimensional split simple Lie superalgebra $Q(N-1)$ over \mathbb{F} equals $\tilde{Q}(N-1)/\mathbb{F}I_{2N}$, where $\tilde{Q}(N-1)$ consists of the matrices of the form $(a \ b \\
 b \ a)$, where $a, b \in M_N(\mathbb{F})$, and $\text{tr}(b) = 0$. Let

$$
\mathcal{H} = \left\{ \sum_{i=1}^{N} a_i(e_{ii} + e_{N+i,N+i}) \mid a_i \in \mathbb{C}, \sum_{i=1}^{N} a_i = 0 \right\},
$$

then \mathcal{H} is a Cartan subalgebra of $Q(N-1)_{\bar{0}}$.

Define $\varepsilon_i \in \mathcal{H}^*$, $i = 1, \ldots, N$, by

$$
\varepsilon_i \left(\sum_{j=1}^{N} a_j(e_{jj} + e_{N+j,N+j}) \right) = a_i
$$

for $i = 1, \ldots, N$. Set

$$
Q(N-1)_\alpha = \{ x \in Q(N-1) \mid [h, x] = \alpha(h)x \text{ for all } h \in \mathcal{H} \}
$$

as usual. Then

$$
Q(N-1) = \mathcal{H} + \sum_{\alpha \in \Delta_{\bar{0}}} Q(N-1)_{\bar{0}\alpha} + \sum_{\beta \in \Delta_{\bar{1}}} Q(N-1)_{\bar{1}\beta}
$$

is the root space decomposition of $Q(N-1)$ with respect to the action of \mathcal{H}, $\Delta_{Q(N-1)} = \Delta_{\bar{0}} \cup \Delta_{\bar{1}}$, where

$$
\Delta_{\bar{0}} = \Delta_{\bar{1}} = \{ \varepsilon_i - \varepsilon_j \mid 1 \leq i \neq j \leq N \}.
$$

Definition 2.1 [Martínez and Zelmanov 2003]. A Lie superalgebra L over \mathbb{F} is graded by $Q(N-1)$ if
(i) L contains a subsuperalgebra

$$Q(N-1) = \mathcal{H} + \sum_{\alpha \in \Delta_{Q(N-1)}} Q(N-1)_\alpha;$$

(ii) $L = \sum_{\alpha \in \Delta_{Q(N-1)} \cup \{0\}} L_\alpha$;

(iii) $L_0 = \sum_{\alpha \in \Delta_{Q(N-1)}} [L_{-\alpha}, L_\alpha]$.

Let $0 \neq q \in \mathbb{C}$. A quantum torus associated to q is the unital associative \mathbb{C}-algebra $\mathbb{C}_q[x^{\pm 1}, y^{\pm 1}]$ (or simply \mathbb{C}_q) with generators x^{\pm}, y^{\pm} and relations

$$xx^{-1} = x^{-1}x = yy^{-1} = y^{-1}y = 1 \quad \text{and} \quad yx = qxy.$$

Let $\text{Matr}_{m,n}(\mathbb{C}_q)$ denote the associative algebra consisting of $m \times n$ matrices with entries in \mathbb{C}_q.

For two arbitrary positive integers M and N we have an associative superalgebra $\text{Matr}(M, N)(\mathbb{C}_q)$ consisting of (M, N)-block matrices with entries in \mathbb{C}_q, whose \mathbb{Z}_2-grading is given as follows:

$$\text{Matr}(M, N)(\mathbb{C}_q)_{\bar{0}} = \left\{ \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \mid A \in \text{Matr}_{M,M}(\mathbb{C}_q), B \in \text{Matr}_{N,N}(\mathbb{C}_q) \right\},$$

$$\text{Matr}(M, N)(\mathbb{C}_q)_{\bar{1}} = \left\{ \begin{pmatrix} 0 & C \\ D & 0 \end{pmatrix} \mid C \in \text{Matr}_{M,N}(\mathbb{C}_q), D \in \text{Matr}_{N,M}(\mathbb{C}_q) \right\}.$$

$\text{Matr}(M, N)(\mathbb{C}_q)$ forms a Lie superalgebra under the supercommutator product $[x, y] := xy - (-1)^{|x||y|}yx$ for homogeneous $x, y \in \text{Matr}(M, N)(\mathbb{C}_q)$. We denote this Lie superalgebra by $\text{gl}(M, N)(\mathbb{C}_q)$.

Set $\Lambda(q) = \{ n \in \mathbb{Z} \mid q^n = 1 \}$.

We form a central extension of the Lie superalgebra $\text{gl}(M, N)(\mathbb{C}_q)$ as was done in [Gao 2002] and [Chen and Gao 2007]:

$$\widehat{\text{gl}}(M, N)(\mathbb{C}_q) = \text{gl}(M, N)(\mathbb{C}_q) \oplus \left(\bigoplus_{n \in \Lambda(q)} \mathbb{C}c(n) \right) \oplus \mathbb{C}c_y$$

with Lie superbracket

$$\text{(2-1)} \quad [A(x^m y^n), B(x^p y^s)]$$

$$= A(x^m y^n)B(x^p y^s) - (-1)^{\deg A \deg B} B(x^p y^s)A(x^m y^n)$$

$$+ mq^{np} \text{str}(AB)\delta_{m+p,0}\delta_{n+s,0}c(n+s) + nq^{np} \text{str}(AB)\delta_{m+p,0}\delta_{n+s,0}c_y$$

for $m, p, n, s \in \mathbb{Z}$, $A, B \in \text{gl}(M, N)_\alpha$, $\alpha = \bar{0}$ or $\bar{1}$, where str is the supertrace of the Lie superalgebra $\text{gl}(M, N)$, $c(u)$ for $u \in \Lambda(q)$ and c_y are central elements of $\widehat{\text{gl}}(M, N)(\mathbb{C}_q)$, and $\bar{t} \in \mathbb{Z}/\Lambda(q)$ for $t \in \mathbb{Z}$.
Let $G = \sqrt{-1} \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$. Using the matrix G, we define a \mathbb{Z}_2-graded subspace \widetilde{Q} with

\[
\begin{align*}
\widetilde{Q}_0 &= \{ X \in \mathfrak{gl}(N, N)(\mathbb{C}_q)_0 \mid XG - GX = 0 \}, \\
\widetilde{Q}_1 &= \{ X \in \mathfrak{gl}(N, N)(\mathbb{C}_q)_1 \mid XG + GX = 0 \}.
\end{align*}
\]

Proposition 2.2. The general form of a matrix in \widetilde{Q} is

\[
\begin{pmatrix} A & B \\ B & A \end{pmatrix},
\]

where A, B are $N \times N$ submatrices.

As in [Allison et al. 1997], we know that, for the Lie superalgebra $Q = [\widetilde{Q}, \widetilde{Q}]$, we have

\[
Q = \left\{ \begin{pmatrix} A & B \\ B & A \end{pmatrix} \in \widetilde{Q} \mid \text{tr}(B) \equiv 0 \mod \{ \mathbb{C}_q, \mathbb{C}_q \} \right\}.
\]

Let

\[
\begin{align*}
\tilde{g}_{ij}(m, n) &= x^m y^n e_{ij} + x^m y^n e_{N+i,N+j}, \\
\tilde{h}_{ij}(m, n) &= x^m y^n e_{i,N+j} + x^m y^n e_{N+i,j}.
\end{align*}
\]

Then we have the root space decomposition

\[
Q = Q_0 \oplus \bigoplus_{1 \leq i \neq j \leq N} Q_{0(\epsilon_i - \epsilon_j)} \oplus \bigoplus_{1 \leq i \neq j \leq N} Q_{1(\epsilon_i - \epsilon_j)},
\]

where

\[
\begin{align*}
Q_{0(\epsilon_i - \epsilon_j)} &= \text{span}_\mathbb{C}\{ \tilde{g}_{ij}(m, n) \mid m, n \in \mathbb{Z} \}, \\
Q_{1(\epsilon_i - \epsilon_j)} &= \text{span}_\mathbb{C}\{ \tilde{h}_{ij}(m, n) \mid m, n \in \mathbb{Z} \},
\end{align*}
\]

and

\[
Q_0 = \text{span}_\mathbb{C}\{ \tilde{g}_{ii}(m, n) \mid 1 \leq i \leq N, m, n \in \mathbb{Z} \} \oplus \text{span}_\mathbb{C}\{ \tilde{h}_{ii}(m, n) - \tilde{h}_{NN}(m, n) \mid 1 \leq i \leq N - 1, m, n \in \mathbb{Z} \} \oplus \text{span}_\mathbb{C}\{ \tilde{h}_{NN}(m, n) \mid m, n \in (\mathbb{Z} \times \mathbb{Z}) \setminus (\Lambda(q) \times \Lambda(q)) \}.
\]

As in [Chen and Gao 2007], one easily sees that Q is a Lie superalgebra graded by $Q(N-1)$. By a direct calculation, we get the central extension of Q with superbracket as in (2-1) is trivial, and we have:

Proposition 2.3.

\[
\begin{align*}
(2-2) \quad [\tilde{g}_{ij}(m, n), \tilde{g}_{kl}(p, t)]_+ &= \delta_{jk} q^{np} \tilde{g}_{ii}(m+p, n+t) - \delta_{il} q^{tm} \tilde{g}_{kj}(m+p, n+t), \\
(2-3) \quad [\tilde{h}_{ij}(m, n), \tilde{h}_{kl}(p, t)]_+ &= \delta_{jk} q^{np} \tilde{h}_{ii}(m+p, n+t) + \delta_{il} q^{tm} \tilde{g}_{kj}(m+p, n+t), \\
(2-4) \quad [\tilde{g}_{ij}(m, n), \tilde{h}_{kl}(p, t)]_- &= \delta_{jk} q^{np} \tilde{h}_{ii}(m+p, n+t) - \delta_{il} q^{tm} \tilde{h}_{kj}(m+p, n+t),
\end{align*}
\]

for all $m, p, n, t \in \mathbb{Z}$ and $1 \leq i, j, k, l \leq N$.

3. Module construction

Let \mathcal{R} be an arbitrary associative algebra, $\rho = \pm 1$. We define a ρ-bracket on \mathcal{R} by

$$\{a, b\}_\rho = ab + \rho ba, \quad a, b \in \mathcal{R}.$$

Let \mathfrak{a} be the unital associative algebra with $2N$ generators $a_i, a_i^*, \ 1 \leq i \leq N$, subject to relations

$$\{a_i, a_j\}_\rho = [a_i^*, a_j^*]_\rho = 0$$

and

$$\{a_i, a_i^*\}_\rho = \delta_{ij}. \tag{3-1}$$

Let the associative algebra $\alpha(N, \rho)$ be generated by

$$\left\{ u(m) \mid u \in \bigoplus_{i=1}^{N} (\mathbb{C}a_i \oplus \mathbb{C}a_i^*), \ m \in \mathbb{Z} \right\}$$

subject to relations

$$\{u(m), v(n)\}_\rho = \{u, v\}_\rho \delta_{m+n,0}.$$

Then we define the normal ordering as in [Feingold and Frenkel 1985]:

$$:u(m)v(n): = \begin{cases}
 u(m)v(n) & \text{if } n > m, \\
 \frac{1}{2}(u(m)v(n) - \rho v(n)u(m)) & \text{if } m = n, \\
 -\rho v(n)u(m) & \text{if } m > n,
\end{cases}$$

for $n, m \in \mathbb{Z}, \ u, v \in \mathfrak{a}$. Set

$$\theta(n) = \begin{cases}
 1 & \text{for } n > 0, \\
 \frac{1}{2} & \text{for } n = 0, \\
 0 & \text{for } n < 0,
\end{cases} \text{ then } 1 - \theta(n) = \theta(-n). \tag{3-2}$$

Then we have

$$:a_i(m)a_j(n): = a_i(m)a_j(n),$$

$$:a_i^*(m)a_j^*(n): = a_i^*(m)a_j^*(n),$$

and

$$a_i(m)a_j^*(n) = :a_i(m)a_j^*(n): + \delta_{ij}\delta_{m+n,0}\theta(m-n), \tag{3-3}$$

$$a_j^*(n)a_i(m) = :a_i(m)a_j^*(n): - \delta_{ij}\delta_{m+n,0}\theta(n-m).$$

Proposition 3.1. In the Clifford algebra $\alpha(N, +1)$ case, the subspaces of quadratic operators are closed under the Lie bracket $\{\cdot, \cdot\}_-$. We have the commutator
relations

\[[a_i(m) a_j(n), a_k(p) a_l(t)] = 0, \]
\[[a_i(m) a_j(n), a_k(p) a_l^*(t)] = -\delta_{ij} \delta_{m,-l} a_k(p) a_j(n) + \delta_{ji} \delta_{n,-l} a_k(p) a_i(m), \]
\[[a_i(m) a_j^*(n), a_k(p) a_l^*(t)] = -\delta_{ij} \delta_{m,-l} a_k(p) a_j^*(n) + \delta_{ji} \delta_{n,-l} a_i(m) a_l^*(t), \]
\[[a_i(m) a_j^*(n), a^*_k(p) a_l^*(t)] = -\delta_{ij} \delta_{m,-l} a^*_k(p) a_j^*(n) - \delta_{ij} \delta_{m,-l} a_i^*(n) a_l^*(t), \]
\[[a_i^*(m) a_j^*(n), a^*_k(p) a_l^*(t)] = 0, \]
\[[a_i(m) a_j(n), a^*_k(p) a_l^*(t)] = -\delta_{ij} \delta_{m,-l} a^*_k(p) a_j(n) + \delta_{jk} \delta_{m,-l} a_i^*(n) a_l^*(t), \]
\[+ \delta_{jk} \delta_{m,-l} a_i^*(n) a_l^*(t) - \delta_{ij} \delta_{m,-l} a_i^*(n) a_l^*(t), \]
\[+ \delta_{jk} \delta_{m,-l} a_i^*(n) a_l^*(t) - \delta_{ij} \delta_{m,-l} a_i^*(n) a_l^*(t). \]

Proposition 3.2. In the Weyl algebra \(\alpha(N, -1) \) case, the subspaces of quadratic operators are closed under the Lie bracket \([\cdot, \cdot]_-\). We have the commutator relations

\[[a_i(m) a_j(n), a_k(p) a_l^*(t)] = 0, \]
\[[a_i(m) a_j(n), a_k(p) a_l^*(t)] = \delta_{ij} \delta_{m,-l} a_k(p) a_j(n) + \delta_{ji} \delta_{n,-l} a_k(p) a_i(m), \]
\[[a_i(m) a_j^*(n), a_k(p) a_l^*(t)] = \delta_{ij} \delta_{m,-l} a_k(p) a_j^*(n) - \delta_{ji} \delta_{m,-l} a_i(m) a_l^*(t), \]
\[[a_i(m) a_j^*(n), a^*_k(p) a_l^*(t)] = \delta_{ij} \delta_{m,-l} a^*_k(p) a_j^*(n) + \delta_{ik} \delta_{m,-l} a_j^*(n) a_l^*(t), \]
\[[a_i^*(m) a_j^*(n), a^*_k(p) a_l^*(t)] = 0, \]
\[[a_i(m) a_j(n), a^*_k(p) a_l^*(t)] = \delta_{ij} \delta_{m,-l} a_j(n) a_k(p) a_l^*(t) a_j(n), \]
\[+ \delta_{ji} \delta_{n,-l} a_i(m) a_k^*(p) + \delta_{jk} \delta_{n,-l} a_l^*(t) a_i(m), \]
\[= \delta_{ij} \delta_{m,-l} a_j(n) a_k(p) a_l^*(t) a_j(n), \]
\[+ \delta_{jk} \delta_{m,-l} a_i(m) a_k^*(p) + \delta_{ji} \delta_{n,-l} a_l^*(t) a_i(m), \]
\[+ \delta_{jk} \delta_{m,-l} a_i(m) a_k^*(p) + \delta_{ji} \delta_{n,-l} a_l^*(t) a_i(m), \]
\[- \delta_{ik} \delta_{ji} \delta_{m,-l} \delta_{n,-l} - \delta_{ij} \delta_{jk} \delta_{m,-l} \delta_{n,-l}. \]

Remark. The subspaces of fermionic or bosonic quadratic operators are not closed under \([\cdot, \cdot]_-\), then we see that the fermionic or bosonic quadratic operators can only correspond to even root vectors.

In the tensor product algebra \(\alpha(N, +1) \otimes \alpha(N, -1) \) case, we will identify \(u(m) \otimes v(n) = u(m) v(n) \). Then we have

Proposition 3.3. If we express the generators of \(\alpha(N, +1) \) and \(\alpha(N, -1) \) by \(a_i(m), a^*_j(n) \) and \(e_i(m), e^*_j(n) \) respectively, we get, for the quadric operators \(e_i(m) \otimes e_j(n), \)
\(a_i(m) \otimes e_j^*(n), \ a_j^*(m) \otimes e_j(n)\) and \(a_i^*(m) \otimes e_j^*(n)\), the anticommutation relations

\[
[a_i(m)e_j(n), a_k(p)e_l(t)]_+ = 0,
\]
\[(3-4) \quad [a_i(m)e_j(n), a_k^*(p)e_l^*(t)]_+ = \delta_{ik}\delta_{m,-p}e_j(n)e_l(t),
\]
\[(3-5) \quad [a_i(m)e_j(n), a_k^*(p)e_l^*(t)]_+ = \delta_{ik}\delta_{m,-p}e_j^*(n)e_l^*(t) + \delta_{jl}\delta_{n,-t}a_i(m)a_k^*(p)
= \delta_{ik}\delta_{m,-p}e_j(n)e_l^*(t) + \delta_{jl}\delta_{n,-t}a_i(m)a_k^*(p)
- \delta_{ik}\delta_{jl}\delta_{m,-p}\delta_{n,-t},
\]
\[
[a_i(m)e_j^*(n), a_k(p)e_l^*(t)]_+ = 0,
\]
\[
[a_i(m)e_j^*(n), a_k^*(p)e_l^*(t)]_+ = \delta_{ik}\delta_{m,-p}e_j^*(n)e_l^*(t) - \delta_{jl}\delta_{n,-t}a_i(m)a_k^*(p),
\]
\[
[a_i^*(m)e_j(n), a_k^*(p)e_l^*(t)]_+ = 0,
\]
\[
[a_i^*(m)e_j^*(n), a_k(p)e_l^*(t)]_+ = \delta_{jl}\delta_{n,-t}a_i^*(m)a_k^*(p),
\]
\[
[a_i^*(m)e_j^*(n), a_k(p)e_l^*(t)]_+ = 0.
\]

Proof. We only check (3-4) and (3-5):

\[
[a_i(m)e_j(n), a_k^*(p)e_l^*(t)]_+
= a_i(m)e_j(n)a_k^*(p)e_l^*(t) + a_k^*(p)e_l^*(t)a_i(m)e_j(n)
= a_i(m)e_j(n)a_k^*(p)e_l^*(t) + \delta_{ik}\delta_{m,-p}e_j(n)e_l(t)
- a_i(m)a_k^*(p)e_l(t)e_j(n)
= \delta_{ik}\delta_{m,-p}e_j(n)e_l(t);
\]
\[
[a_i(m)e_j(n), a_k^*(p)e_l^*(t)]_+
= a_i(m)e_j(n)a_k^*(p)e_l^*(t) + a_k^*(p)e_l^*(t)a_i(m)e_j(n)
= a_i(m)e_j(n)a_k^*(p)e_l^*(t) + \delta_{ik}\delta_{m,-p}e_j^*(n)e_l^*(t)
- a_i(m)a_k^*(p)e_l^*(t)e_j(n)
= a_i(m)e_j(n)a_k^*(p)e_l^*(t) + \delta_{ik}\delta_{m,-p}e_j^*(n)e_l^*(t)
- a_i(m)a_k^*(p)e_l^*(t)e_j(n)
- \delta_{ik}\delta_{jl}\delta_{m,-p}\delta_{n,-t).
\]

The proofs of the others are similar.

As in [Feingold and Frenkel 1985; Gao 2002], let \(\alpha(N, \rho)^+\) be the subalgebra generated by \(a_i(n), a_j^*(m), a_k^*(0)\) for \(n, m > 0\) and \(1 \leq i, j, k \leq N\). Let \(\alpha(N, \rho)^-\) be the subalgebra generated by \(a_i(n), a_j^*(m), a_k(0)\) for \(n, m < 0\) and \(1 \leq i, j, k \leq N\). Those generators in \(\alpha(N, \rho)^+\) are called annihilation operators while those in \(\alpha(N, \rho)^-\) are called creation operators. Let \(V(N, \rho)\) be a simple \(\alpha(N, \rho)\)-module
containing an element \(v_0^\rho \), called a “vacuum vector” and satisfying

\[
\alpha(N, \rho)^+ v_0^\rho = 0.
\]

So all annihilation operators kill \(v_0^\rho \) and

\[
V(N, \rho) = \alpha(N, \rho)^- v_0^\rho.
\]

The normal orderings of the mixed quadratic elements are given as follows:

\[
: a_i(m)e_j(n) : = a_i(m)e_j(n), \quad : a_i(m)e_j^*(n) : = a_i(m)e_j^*(n),
\]

\[
: a_i^*(m)e_j(n) : = a_i^*(m)e_j(n), \quad : a_i^*(m)e_j^*(m) : = a_i^*(m)e_j^*(m).
\]

We see that the \(\alpha(N, +1) \otimes \alpha(N, -1) \)-module

\[
V(N) := V(N, +1) \otimes V(N, -1) = \alpha(N, +1) \otimes \alpha(N, -1)v_0^+ \otimes v_0^-
\]

is simple.

Motivated by Propositions 2.3, 3.1, 3.2, and 3.3, we let

\[
v^s = \sum_{s \in Z} q^{-ns} : a_i(m - s)e_j(s): + \sum_{s \in Z} q^{-ns} : a_j^*(s)e_i^*(m - s):.
\]

Lemma 3.4.

\[
[h_{ij}(m, n), h_{kl}(p, t)]_+ = \delta_{il}q^{tm} \sum_{s \in Z} q^{-(n+t)s} [: a_k(m + p - s)a_j^*(s): + : e_j(s)e_k^*(m + p - s):]
\]

\[
+ \delta_{jk}q^{np} \sum_{s \in Z} q^{-(n+t)s} [: a_i(m + p - s)a_j^*(s): + : e_j(s)e_l^*(m + p - s):].
\]

Proof. First we have

\[
[h_{ij}(m, n), h_{kl}(p, t)]_+ = \delta_{il} \sum_{s_1, s_2 \in Z} q^{-ns_1 - ts_2} \{ \delta_{m-s_1, -s_2} e_k^*(p - s_2)e_j(s_1) + \delta_{m-s_1, -s_2} a_k(p - s_2)a_j^*(s_1) \}
\]

\[
+ \delta_{jk} \sum_{s_1, s_2 \in Z} q^{-ns_1 - ts_2} \{ \delta_{s_1, s_2 - p} e_i^*(m - s_1)e_l(s_2) + \delta_{s_1, s_2 - p} a_i(m - s_1)a_l^*(s_2) \}.
\]

Secondly notice that

\[
e_k^*(p - s_2)e_j(s_1) = e_j(s_1)e_k^*(p - s_2) - \delta_{jk} \delta_{s_1, s_2 - p},
\]

and by the property (3-3) of the normal ordering we have

\[
a_k(p - s_2)a_j^*(s_1) = : a_k(p - s_2)a_j^*(s_1): + \delta_{jk} \delta_{s_1, s_2 - p} \theta(p - s_2 - s_1),
\]

\[
e_j(s_1)e_k^*(p - s_2) = : e_j(s_1)e_k^*(p - s_2): + \delta_{jk} \delta_{s_1, s_2 - p} \theta(s_1 + s_2 - p).
\]
Then
\[e_k^*(p - s_2)e_j(s_1) + a_k(p - s_2)a_j^*(s_1) = :a_k(p - s_2)a_j^*(s_1): + :e_j(s_1)e_k^*(p - s_2): + \delta_{jk}\delta_{s_1,s_2 - p}\theta(s_1 + s_2 - p) \]
\[+ \delta_{jk}\delta_{s_1,s_2 - p}\theta(p - s_1 - s_2) - \delta_{jk}\delta_{s_1,s_2 - p} \]
\[= :a_k(p - s_2)a_j^*(s_1): + :e_j(s_1)e_k^*(p - s_2): \]
since \(\theta(s_1 + s_2 - p) + \theta(p - s_1 - s_2) = 1 \). We get
\[
[h_{ij}(m, n), h_{kl}(p, t)]_+ = \delta_{il} \sum_{s_1, s_2 \in Z} q^{-ns_1 - ts_2} \delta_{m - s_1, -s_2} \{ :a_k(p - s_2)a_j^*(s_1): + :e_j(s_1)e_k^*(p - s_2): \}
\[+ \delta_{jk} \sum_{s_1, s_2 \in Z} q^{-ns_1 - ts_2} \delta_{s_1,s_2 - p} \{ :a_i(m - s_1)a_l^*(s_2): + :e_l(m - s_1)e_i(s_2): \} \]
\[= \delta_{il}q^{jm} \sum_{s \in Z} q^{-(n + t)s} \{ :a_k(m + p - s)a_j^*(s): + :e_j(s)e_k^*(m + p - s): \} \]
\[+ \delta_{jk} q^{np} \sum_{s \in Z} q^{-(n + t)s} \{ :a_i(m + p - s)a_l^*(s): + :e_l(s)e_i^*(m + p - s): \}. \]

Comparing with Proposition 2.3, let
\[g_{ij}(m, n) = \sum_{s \in Z} q^{-ns} :a_i(m - s)a_j^*(s): + \sum_{s \in Z} q^{-ns} :e_j(s)e_i^*(m - s):. \]
Then we only need to check the remaining Lie brackets (2-2) and (2-4).

Lemma 3.5.
\[
[g_{ij}(m, n), h_{kl}(p, t)]_- = \delta_{jk} q^{np} h_{il}(m + p, n + t) - \delta_{il} q^{jm} h_{kj}(m + p, n + t).
\]

Proof. Notice that removing the normal ordering has no effect on Lie bracket; then we have
\[
[g_{ij}(m, n), h_{kl}(p, t)]_- = \sum_{s_1, s_2 \in Z} q^{-ns_1 - ts_2} \left[a_i(m - s_1)a_j^*(s_1) + e_j(s_1)e_i^*(m - s_1), \right.
\[a_k(p - s_2)e_l(s_2) + a_j^*(s_2)e_k^*(p - s_2) \].
\]
Secondly, for \([a_i(m - s_1)a_j^*(s_1), a_k(p - s_2)e_l(s_2)]_-\) we have
\[
[a_i(m - s_1)a_j^*(s_1), a_k(p - s_2)e_l(s_2)]_- = \delta_{jk}\delta_{s_1,s_2 - p}a_i(m - s_1)e_l(s_2).
\]
Similarly, we have
\[
[a_i(m - s_1)a_j^*(s_1), a_l^*(s_2)e_k^*(p - s_2)]_- = -\delta_{il}\delta_{m - s_1, -s_2}a_j^*(s_1)e_k^*(p - s_2),
\]
\[
[e_j(s_1)e_i^*(m - s_1), a_k(p - s_2)e_l(s_2)]_- = -\delta_{il}\delta_{m - s_1, -s_2}e_j(s_1)a_k(p - s_2),
\]
\[
[e_j(s_1)e_i^*(m - s_1), a_l^*(s_2)e_k^*(p - s_2)]_- = \delta_{jk}\delta_{s_1,s_2 - p}a_l^*(s_2)e_i^*(m - s_1).
\]
Then we replace \(s_1 \) or \(s_2 \) in the above four terms by \(s \):

\[
\begin{align*}
[g_{ij}(m, n), h_{kl}(p, t)]_i &= \delta_{jk}q^{np} \sum_{s \in Z} q^{-(n+t)s}(a_i(m + p - s)e_i(s) + a_i^*(s)e_i^*(m + p - s)) \\
&\quad - \delta_{ii}q^{tm} \sum_{s \in Z} q^{-(n+t)s}(a_k(m + p - s)e_j(s) + a_j^*(s)e_k^*(m + p - s)) \\
&= \delta_{jk}q^{np} h_{il}(m + p, n + t) - \delta_{il}q^{tm} h_{kj}(m + p, n + t). \\
\end{align*}
\]

Lemma 3.6.

\[
[g_{ij}(m, n), g_{kl}(p, t)]_i = \delta_{jk}q^{np} g_{ii}(m + p, n + t) - \delta_{ii}q^{tm} g_{kj}(m + p, n + t).
\]

Proof.

\[
[g_{ij}(m, n), g_{kl}(p, t)]_i = \sum_{s_1, s_2 \in Z} q^{-n s_1 - t s_2} [a_i(m - s_1)a_j^*(s_1) + e_j(s_1)e_i^*(m - s_1), a_k(p - s_2)a_l^*(s_2) + e_l(s_2)e_k^*(p - s_2)].
\]

Then, for \([a_i(m - s_1)a_j^*(s_1), a_k(p - s_2)a_l^*(s_2)]_i\), by using Proposition 3.1 we have

\[
[a_i(m - s_1)a_j^*(s_1), a_k(p - s_2)a_l^*(s_2)]_i = -\delta_{ii}\delta_{m - s_1, -s_2}a_k(p - s_2)a_l^*(s_1) + \delta_{jk}\delta_{s_1, s_2 - p}a_i(m - s_1)a_l^*(s_2).
\]

Using Proposition 3.2,

\[
[e_j(s_1)e_i^*(m - s_1), e_l(s_2)e_k^*(p - s_2)] = -\delta_{ii}\delta_{m - s_1, -s_2}e_j(s_1)e_k^*(p - s_2) + \delta_{jk}\delta_{s_1, s_2 - p}e_l(s_2)e_i^*(m - s_1).
\]

Clearly,

\[
[a_i(m - s_1)a_j^*(s_1), e_l(s_2)e_k^*(p - s_2)]_i = [e_j(s_1)e_i^*(m - s_1), a_k(p - s_2)a_l^*(s_2)] = 0.
\]

From (3-3) and (3-2), we have

\[
\begin{align*}
a_k(p - s_2)a_j^*(s_1) &= a_k(p - s_2)a_j^*(s_1) + \delta_{jk}\delta_{s_1, s_2 - p}\theta(p - s_1 - s_2), \\
e_j(s_1)e_k^*(p - s_2) &= e_j(s_1)e_k^*(p - s_2) + \delta_{jk}\delta_{s_1, s_2 - p}\theta(s_1 + s_2 - p), \\
a_i(m - s_1)a_l^*(s_2) &= a_i(m - s_1)a_l^*(s_2) + \delta_{ii}\delta_{m - s_1, -s_2}\theta(m - s_1 - s_2), \\
e_l(s_2)e_i^*(m - s_1) &= e_l(s_2)e_i^*(m - s_1) + \delta_{ii}\delta_{m - s_1, -s_2}\theta(s_1 + s_2 - m), \\
\theta(p - s_1 - s_2) + \theta(s_1 + s_2 - p) &= \theta(m - s_1 - s_2) + \theta(s_1 + s_2 - m) = 1.
\end{align*}
\]
So

\[-\delta_{ij}\delta_{m-s_1,-s_2}a_k(p-s_2)a_j^*(s_1) + \delta_{jk}\delta_{s_1,s_2-p}a_i(m-s_1)a_l^*(s_2)\]

\[-\delta_{il}\delta_{m-s_1,-s_2}e_j(s_1)e_k^*(p-s_2) + \delta_{jk}\delta_{s_1,s_2-p}e_l(s_2)e_i^*(m-s_1)\]

\[= \delta_{jk}\delta_{s_1,s_2-p}(a_i(m-s_1)a_l^*(s_2) + e_l(s_2)e_i^*(m-s_1))\]

\[-\delta_{il}\delta_{m-s_1,-s_2}(a_k(p-s_2)a_j^*(s_1) + e_j(s_1)e_k^*(p-s_2)).\]

Then we get

\[[g_{ij}(m, n), g_{kl}(p, t)]_\ast\]

\[= \sum_{s_1, s_2 \in Z} q^{n s_1 - t s_2} \left\{ \delta_{jk}\delta_{s_1,s_2-p}(a_i(m-s_1)a_l^*(s_2) + e_l(s_2)e_i^*(m-s_1))\right.\]

\[-\delta_{il}\delta_{m-s_1,-s_2}(a_k(p-s_2)a_j^*(s_1) + e_j(s_1)e_k^*(p-s_2)) \right\}.

Now we replace \(s_1\) or \(s_2\) in the above terms by \(s\); we get

\[[g_{ij}(m, n), g_{kl}(p, t)]_\ast\]

\[= \delta_{jk}q^{np} \sum_{s \in Z} q^{-(n+t)s}(a_i(m+p-s)a_l^*(s) + e_l(s)e_i^*(m+p-s))\]

\[+ \delta_{il}q^{tm} \sum_{s \in Z} q^{-(n+t)s}(a_k(m+p-s)a_j^*(s) + e_j(s)e_k^*(m+p-s))\]

\[= \delta_{jk}q^{np} g_{il}(m+p, n+t) - \delta_{il}q^{tm} g_{kj}(m+p, n+t).\]

Although \(g_{ij}(m, n)\) and \(h_{ij}(m, n)\) are infinite sums, they are well defined as operators on \(V(N)\) since at most finitely many terms can have a nontrivial action on any \(v \in V(N) = \alpha(N, +1) \otimes \alpha(N, -1) v_0^+ \otimes v_0^-\).

Then from Lemmas 3.4, 3.5 and 3.6 we have:

Theorem 3.7. \(V(N)\) is a module for the \(Q(N-1)\)-graded Lie superalgebra \(Q\) under the action given by

\[\pi(\tilde{g}_{ij}(m, n)) = g_{ij}(m, n),\]

\[\pi(\tilde{h}_{ij}(m, n)) = h_{ij}(m, n),\]

for all \(m, n \in \mathbb{Z}\) and \(1 \leq i, j \leq N\).

References

Received August 29, 2015. Revised December 20, 2015.

JIN CHENG
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA
HEFEI, 230026
CHINA
cheng934@mail.ustc.edu.cn
PACIFIC JOURNAL OF MATHEMATICS

Volume 283
No. 1
July 2016

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A New family of simple $\mathfrak{gl}_{2n}(\mathbb{C})$-modules</td>
<td>1</td>
</tr>
<tr>
<td>JONATHAN NILSSON</td>
<td></td>
</tr>
<tr>
<td>Derived categories of representations of small categories over commutative noetherian rings</td>
<td>21</td>
</tr>
<tr>
<td>BENJAMIN ANTIEAU and GREG STEVENSON</td>
<td></td>
</tr>
<tr>
<td>Vector bundles over a real elliptic curve</td>
<td>43</td>
</tr>
<tr>
<td>INDRANIL BISWAS and FLORENT SCHAFFHAUSER</td>
<td></td>
</tr>
<tr>
<td>Q(N)-graded Lie superalgebras arising from fermionic-bosonic representations</td>
<td>63</td>
</tr>
<tr>
<td>JIN CHENG</td>
<td></td>
</tr>
<tr>
<td>Conjugacy and element-conjugacy of homomorphisms of compact Lie groups</td>
<td>75</td>
</tr>
<tr>
<td>YINGJUE FANG, GANG HAN and BINYONG SUN</td>
<td></td>
</tr>
<tr>
<td>Entire sign-changing solutions with finite energy to the fractional Yamabe equation</td>
<td>85</td>
</tr>
<tr>
<td>DANILO GARRIDO and MONICA MUSSO</td>
<td></td>
</tr>
<tr>
<td>Calculation of local formal Mellin transforms</td>
<td>115</td>
</tr>
<tr>
<td>ADAM GRAHAM-SQUIRE</td>
<td></td>
</tr>
<tr>
<td>The untwisting number of a knot</td>
<td>139</td>
</tr>
<tr>
<td>KENAN INCE</td>
<td></td>
</tr>
<tr>
<td>A Plancherel formula for $L^2(G/H)$ for almost symmetric subgroups</td>
<td>157</td>
</tr>
<tr>
<td>BENT ØRSTED and BIRGIT SPEH</td>
<td></td>
</tr>
<tr>
<td>Multiplicative reduction and the cyclotomic main conjecture for GL_2</td>
<td>171</td>
</tr>
<tr>
<td>CHRISTOPHER SKINNER</td>
<td></td>
</tr>
<tr>
<td>Commensurators of solvable S-arithmetic groups</td>
<td>201</td>
</tr>
<tr>
<td>DANIEL STUDENMUND</td>
<td></td>
</tr>
<tr>
<td>Gerstenhaber brackets on Hochschild cohomology of quantum symmetric algebras and their group extensions</td>
<td>223</td>
</tr>
<tr>
<td>SARAH WITHERSPOON and GUODONG ZHOU</td>
<td></td>
</tr>
</tbody>
</table>