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We use fermionic-bosonic representations to obtain a class of Q(N)-graded
Lie superalgebras coordinatized by quantum tori.

1. Introduction

Root graded Lie algebras were first introduced by Berman and Moody [1992] to
understand the generalized intersection matrix algebras of Slodowy. Berman and
Moody [1992] classified Lie algebras graded by the root systems of type Al , Dl ,
and E6, E7, E8 up to central isogeny. Benkart and Zelmanov [1996] classified Lie
algebras graded by the root systems of type Bn , Cn , F4, G2 up to central isogeny.
Allison et al. [2000] completed the classifications of the above root graded Lie
algebras by figuring out explicitly the centers of the universal coverings of those
root graded Lie algebras. It turns out that the classification of those root graded Lie
algebras played a crucial role in classifying the newly developed extended affine Lie
algebras (see [Berman et al. 1996]), which is a generalization of many important
Lie algebras, such as affine and toroidal Lie algebras.

Root graded Lie superalgebras are a “super” analog of root graded Lie algebras.
Lie superalgebras graded by the root systems of type A(m, n), B(m, n), C(n),
D(m, n), and D(2, 1;α), F(4), G(3) were classified by G. Benkart and A. Elduque.
Lie superalgebras graded by the root systems of type P(N ), Q(N ) were introduced
and classified by C. Martínez and E. I. Zelmanov [2003].

Fermionic representations for the affine Kac–Moody Lie algebras were first
developed by Frenkel [1980] and Kac and Peterson [1981] independently. Feingold
and Frenkel [1985] constructed representations for all classical affine Lie algebras
by using Clifford or Weyl algebras with infinitely many generators. Gao [2002]
gave bosonic and fermionic representations for the extended affine Lie algebra
g̃lN (Cq), where Cq is the quantum torus in two variables. Chen and Gao [2007]
constructed fermionic modules for some BCN -graded Lie algebras, Chen et al.
[2006] constructed modules for some B(0,N )-graded Lie superalgebras.
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In this paper, we use fermions and bosons to obtain a class of Q(N )-graded Lie
superalgebras coordinatized by quantum tori.

The structure of this paper is as follows. In Section 2, we review the definition
of Q(N )-graded Lie superalgebras and give examples of Q(N )-graded Lie superal-
gebras which coordinatized by quantum tori. In Section 3, we use a tensor product
of a fermionic module and a bosonic module to construct the representations for
those examples of Q(N )-graded Lie superalgebras.

Throughout this paper, we denote the field of complex numbers and the ring of
integers by C and Z respectively. Let F be a field of characteristic zero.

2. Lie superalgebras graded by Q(N)

In this section, we first recall the definition of Q(N )-graded Lie superalgebras.
Then we construct examples of Q(N )-graded Lie superalgebras coordinatized by
quantum tori.

Following the notations in [Kac 1977], the finite-dimensional split simple Lie
superalgebra Q(N−1) over F equals Q̃(N−1)/FI2N , where Q̃(N−1) consists of
the matrices of the form

(
a b
b a

)
, where a, b ∈ MN (F), and tr(b)= 0. Let

H=
{ N∑

i=1

ai (ei i + eN+i,N+i )

∣∣∣ ai ∈ C,

N∑
i=1

ai = 0
}
,

then H is a Cartan subalgebra of Q(N−1)0̄.
Define εi ∈H∗, i = 1, . . . , N , by

εi

( N∑
j=1

a j (e j j + eN+ j,N+ j )

)
= ai

for i = 1, · · · , N . Set

Q(N−1)α = {x ∈ Q(N−1) | [h, x] = α(h)x for all h ∈H}

as usual. Then

Q(N−1)=H+
∑
α∈10̄

Q(N−1)0̄α +
∑
β∈11̄

Q(N−1)1̄β

is the root space decomposition of Q(N−1) with respect to the action of H,
1Q(N−1) =10̄ ∪11̄, where

10̄ =11̄ = {εi − ε j | 1≤ i 6= j ≤ N }.

Definition 2.1 [Martínez and Zelmanov 2003]. A Lie superalgebra L over F is
graded by Q(N−1) if
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(ı) L contains a subsuperalgebra

Q(N−1)=H+
∑

α∈1Q(N−1)

Q(N−1)α;

(ı ı) L =
∑

α∈1Q(N−1)∪{0} Lα;

(ı ı ı) L0 =
∑

α∈1Q(N−1)
[L−α, Lα].

Let 0 6= q ∈C. A quantum torus associated to q is the unital associative C-algebra
Cq [x±1, y±1

] (or simply Cq ) with generators x±,y± and relations

xx−1
= x−1x = yy−1

= y−1 y = 1 and yx = qxy.

Let Matrm,n(Cq) denote the associative algebra consisting of m × n matrices
with entries in Cq .

For two arbitrary positive integers M and N we have an associative superalgebra
Matr(M, N )(Cq) consisting of (M, N )-block matrices with entries in Cq , whose
Z2-grading is given as follows:

Matr(M, N )(Cq)0̄ =

{(
A 0
0 B

) ∣∣∣ A ∈MatrM,M(Cq), B ∈MatrN ,N (Cq)

}
,

Matr(M, N )(Cq)1̄ =

{(
0 C
D 0

) ∣∣∣ C ∈MatrM,N (Cq), D ∈MatrN ,M(Cq)

}
.

Matr(M, N )(Cq) forms a Lie superalgebra under the supercommutator product
[x, y] := xy− (−1)|x ||y|yx for homogeneous x , y ∈Matr(M, N )(Cq). We denote
this Lie superalgebra by gl(M, N )(Cq).

Set 3(q)= {n ∈ Z | qn
= 1}.

We form a central extension of the Lie superalgebra gl(M, N )(Cq) as was done
in [Gao 2002] and [Chen and Gao 2007]:

ĝl(M, N )(Cq)= gl(M, N )(Cq)⊕

( ⊕
n∈3(q)

Cc(n)
)
⊕Ccy

with Lie superbracket

(2-1) [A(xm yn), B(x p ys)]

= A(xm yn)B(x p ys)− (−1)deg A deg B B(x p ys)A(xm yn)

+mqnp str(AB)δm+p,0δn+s,0̄c(n+ s)+ nqnp str(AB)δm+p,0δn+s,0cy

for m, p, n, s ∈ Z, A, B ∈ gl(M, N )α, α = 0̄ or 1̄, where str is the supertrace of
the Lie superalgebra gl(M, N ), c(u) for u ∈3(q) and cy are central elements of
ĝl(M, N )(Cq), and t̄ ∈ Z/3(q) for t ∈ Z.
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Let G =
√
−1
( 0 In
−In 0

)
. Using the matrix G, we define a Z2-graded subspace Q̃

with
Q̃0̄ = {X ∈ gl(N , N )(Cq)0̄ | XG−G X = 0},

Q̃1̄ = {X ∈ gl(N , N )(Cq)1̄ | XG+G X = 0}.

Proposition 2.2. The general form of a matrix in Q̃ is(
A B
B A

)
,

where A, B are N × N submatrices.

As in [Allison et al. 1997], we know that, for the Lie superalgebra Q= [Q̃, Q̃],
we have

Q=
{(

A B
B A

)
∈ Q̃

∣∣ tr(B)≡ 0 mod [Cq ,Cq ]

}
.

Let
g̃i j (m, n)= xm ynei j + xm yneN+i,N+ j ,

h̃i j (m, n)= xm ynei,N+ j + xm yneN+i, j .

Then we have the root space decomposition

Q=Q0⊕
⊕

1≤i 6= j≤N

Q0̄(εi−ε j )
⊕

⊕
1≤i 6= j≤N

Q1̄(εi−ε j )
,

where
Q0̄(εi−ε j )

= spanC{g̃i j (m, n) | m, n ∈ Z},

Q1̄(εi−ε j )
= spanC{h̃i j (m, n) | m, n ∈ Z},

and

Q0 = spanC{g̃i i (m, n) | 1≤ i ≤ N ,m, n ∈ Z}

⊕ spanC{h̃i i (m, n)− h̃N N (m, n) | 1≤ i ≤ N − 1, m, n ∈ Z}

⊕ spanC

{
h̃N N (m, n) | m, n ∈ (Z×Z)\(3(q)×3(q))

}
.

As in [Chen and Gao 2007], one easily sees that Q is a Lie superalgebra graded
by Q(N−1). By a direct calculation, we get the central extension of Q with
superbracket as in (2-1) is trivial, and we have:

Proposition 2.3.

[g̃i j (m, n), g̃kl(p, t)]+ = δ jkqnp g̃il(m+p, n+t)− δilq tm g̃k j (m+p, n+t),(2-2)

[h̃i j (m, n), h̃kl(p, t)]+ = δ jkqnp g̃il(m+p, n+t)+δilq tm g̃k j (m+p, n+t),(2-3)

[g̃i j (m, n), h̃kl(p, t)]− = δ jkqnph̃il(m+p, n+t)−δilq tm h̃k j (m+p, n+t),(2-4)

for all m, p, n, t ∈ Z and 1≤ i , j , k, l ≤ N.



GRADED LIE SUPERALGEBRAS FROM FERMIONIC-BOSONIC REPRESENTATIONS 67

3. Module construction

Let R be an arbitrary associative algebra, ρ =±1. We define a ρ-bracket on R by

{a, b}ρ = ab+ ρba, a, b ∈R.

Let a be the unital associative algebra with 2N generators ai , a∗i , 1≤ i ≤ N , subject
to relations

{ai , a j }ρ = {a∗i , a∗j }ρ = 0

and

(3-1) {ai , a∗j }ρ = δi j .

Let the associative algebra α(N , ρ) be generated by{
u(m)

∣∣∣ u ∈
N⊕

i=1

(Cai ⊕Ca∗i ), m ∈ Z

}
subject to relations

{u(m), v(n)}ρ = {u, v}ρδm+n,0.

Then we define the normal ordering as in [Feingold and Frenkel 1985]:

:u(m)v(n): =


u(m)v(n) if n > m,
1
2

(
u(m)v(n)− ρv(n)u(m)

)
if m = n,

−ρv(n)u(m) if m > n,

=−ρ :v(n)u(m):

for n, m ∈ Z, u, v ∈ a. Set

(3-2) θ(n)=


1 for n > 0,
1
2 for n = 0, then 1− θ(n)= θ(−n).
0 for n < 0,

Then we have

:ai (m)a j (n): = ai (m)a j (n)=−ρa j (n)ai (m),

:a∗i (m)a
∗

j (n): = a∗i (m)a
∗

j (n)=−ρa∗j (n)a
∗

i (m),

and

(3-3) ai (m)a∗j (n)= :ai (m)a∗j (n): + δi jδm+n,0θ(m− n),

a∗j (n)ai (m)= :ai (m)a∗j (n): − δi jδm+n,0θ(n−m).

Proposition 3.1. In the Clifford algebra α(N ,+1) case, the subspaces of quadratic
operators are closed under the Lie bracket [ · , · ]− . We have the commutator
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relations

[ai (m)a j (n), ak(p)al(t)]− = 0,

[ai (m)a j (n), ak(p)a∗l (t)]− =−δilδm,−t ak(p)a j (n)+ δ jlδn,−t ak(p)ai (m),

[ai (m)a∗j (n), ak(p)a∗l (t)]− =−δilδm,−t ak(p)a∗j (n)+ δ jkδn,−pai (m)a∗l (t),

[ai (m)a∗j (n), a∗k (p)a
∗

l (t)]− =−δilδm,−t a∗k (p)a
∗

j (n)− δikδm,−pa∗j (n)a
∗

l (t),

[a∗i (m)a
∗

j (n), a∗k (p)a
∗

l (t)]− = 0,

[ai (m)a j (n), a∗k (p)a
∗

l (t)]− =−δilδm,−t a∗k (p)a j (n)+ δikδm,−pa∗l (t)a j (n)

+ δ jkδn,−pai (m)a∗l (t)− δ jlδn,−t ai (m)a∗k (p)

= δilδm,−t a j (n)a∗k (p)− δ jlδn,−t ai (m)a∗k (p)

+ δ jkδn,−pai (m)a∗l (t)− δikδm,−pa j (n)a∗l (t)

+ δikδ jlδm,−pδn,−t − δilδ jkδm,−tδn,−p.

Proposition 3.2. In the Weyl algebra α(N ,−1) case, the subspaces of quadratic
operators are closed under the Lie bracket [ · , · ]− . We have the commutator
relations

[ai (m)a j (n), ak(p)al(t)]− = 0,

[ai (m)a j (n), ak(p)a∗l (t)]− = δilδm,−t ak(p)a j (n)+ δ jlδn,−t ak(p)ai (m),

[ai (m)a∗j (n), ak(p)a∗l (t)]− = δilδm,−t ak(p)a∗j (n)− δ jkδn,−pai (m)a∗l (t),

[ai (m)a∗j (n), a∗k (p)a
∗

l (t)]− = δilδm,−t a∗k (p)a
∗

j (n)+ δikδm,−pa∗j (n)a
∗

l (t),

[a∗i (m)a
∗

j (n), a∗k (p)a
∗

l (t)]− = 0,

[ai (m)a j (n), a∗k (p)a
∗

l (t)]− = δilδm,−t a j (n)a∗k (p)+ δikδm,−pa∗l (t)a j (n)

+ δ jlδn,−t ai (m)a∗k (p)+ δ jkδn,−pa∗l (t)ai (m)

= δilδm,−t a j (n)a∗k (p)+ δ jlδn,−t ai (m)a∗k (p)

+ δ jkδn,−pai (m)a∗l (t)+ δikδm,−pa j (n)a∗l (t)

− δikδ jlδm,−pδn,−t − δilδ jkδm,−tδn,−p.

Remark. The subspaces of fermionic or bosonic quadratic operators are not closed
under [ · , · ]− , then we see that the fermionic or bosonic quadratic operators can
only correspond to even root vectors.

In the tensor product algebra α(N ,+1) ⊗ α(N ,−1) case, we will identify
u(m)

⊗
v(n)= u(m)v(n). Then we have

Proposition 3.3. If we express the generators of α(N ,+1) and α(N ,−1) by ai (m),
a∗j (n) and ei (m), e∗j (n) respectively, we get, for the quadric operators ai (m)⊗e j (n),
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ai (m)⊗ e∗j (n), a∗i (m)⊗ e j (n) and a∗i (m)⊗ e∗j (n), the anticommutation relations

[ai (m)e j (n), ak(p)el(t)]+ = 0,

[ai (m)e j (n), a∗k (p)el(t)]+ = δikδm,−pe j (n)el(t),(3-4)

[ai (m)e j (n), ak(p)e∗l (t)]+ = δ jlδn,−t ai (m)ak(p),

[ai (m)e j (n), a∗k (p)e
∗

l (t)]+ = δikδm,−pe∗l (t)e j (n)+ δ jlδn,−t ai (m)a∗k (p)(3-5)

= δikδm,−pe j (n)e∗l (t)+ δ jlδn,−t ai (m)a∗k (p)

− δikδ jlδm,−pδn,−t ,

[ai (m)e∗j (n), ak(p)e∗l (t)]+ = 0,

[ai (m)e∗j (n), a∗k (p)el(t)]+ = δikδm,−pel(t)e∗j (n)− δ jlδn,−t ai (m)a∗k (p),

[ai (m)e∗j (n), a∗k (p)e
∗

l (t)]+ = δikδm,−pe∗j (n)e
∗

l (t),

[a∗i (m)e j (n), a∗k (p)el(t)]+ = 0,

[a∗i (m)e j (n), a∗k (p)e
∗

l (t)]+ = δ jlδn,−t a∗i (m)a
∗

k (p),

[a∗i (m)e
∗

j (n), a∗k (p)e
∗

l (t)]+ = 0.

Proof. We only check (3-4) and (3-5):

[ai (m)e j (n), a∗k (p)el(t)]+ = ai (m)e j (n)a∗k (p)el(t)+ a∗k (p)el(t)ai (m)e j (n)

= ai (m)e j (n)a∗k (p)el(t)+ δikδm,−pe j (n)el(t)

− ai (m)a∗k (p)el(t)e j (n)

= δikδm,−pe j (n)el(t);

[ai (m)e j (n), a∗k (p)e
∗

l (t)]+ = ai (m)e j (n)a∗k (p)e
∗

l (t)+ a∗k (p)e
∗

l (t)ai (m)e j (n)

= ai (m)e j (n)a∗k (p)el(t)+ δikδm,−pe∗l (t)e j (n)

− ai (m)a∗k (p)e
∗

l (t)e j (n)

= ai (m)e j (n)a∗k (p)e
∗

l (t)+ δikδm,−pe∗l (t)e j (n)

− ai (m)a∗k (p)e j (n)e∗l (t)+ δ jlδn,−t ai (m)a∗k (p)

= δikδm,−pe j (n)e∗l (t)+ δ jlδn,−t ai (m)a∗k (p)

− δikδ jlδm,−pδn,−t .

The proofs of the others are similar. �

As in [Feingold and Frenkel 1985; Gao 2002], let α(N , ρ)+ be the subalgebra
generated by ai (n), a∗j (m), a∗k (0) for n, m > 0 and 1≤ i , j , k ≤ N . Let α(N , ρ)−

be the subalgebra generated by ai (n), a∗j (m), ak(0) for n, m< 0 and 1≤ i , j , k ≤ N .
Those generators in α(N , ρ)+ are called annihilation operators while those in
α(N , ρ)− are called creation operators. Let V (N , ρ) be a simple α(N , ρ)-module
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containing an element vρ0 , called a“vacuum vector” and satisfying

α(N , ρ)+vρ0 = 0.

So all annihilation operators kill vρ0 and

V (N , ρ)= α(N , ρ)−vρ0 .

The normal orderings of the mixed quadratic elements are given as follows:

:ai (m)e j (n): = ai (m)e j (n), :ai (m)e∗j (n): = ai (m)e∗j (n),

:a∗i (m)e j (n): = a∗i (m)e j (n), :a∗i (m)e
∗

j (m): = a∗i (m)e
∗

j (m).

We see that the α(N ,+1)⊗α(N ,−1)-module

V (N ) := V (N ,+1)⊗ V (N ,−1)= α(N ,+1)⊗α(N ,−1)v+0 ⊗ v
−

0

is simple.
Motivated by Propositions 2.3, 3.1, 3.2, and 3.3, we let

hi j (m, n)=
∑
s∈Z

q−ns
:ai (m− s)e j (s): +

∑
s∈Z

q−ns
:a∗j (s)e

∗

i (m− s): .

Lemma 3.4.

[hi j (m, n), hkl(p, t)]+

= δilq tm
∑
s∈Z

q−(n+t)s
{:ak(m+ p− s)a∗j (s): + :e j (s)e∗k (m+ p− s):}

+ δ jkqnp
∑
s∈Z

q−(n+t)s
{:ai (m+ p− s)a∗l (s): + :el(s)e∗i (m+ p− s):}.

Proof. First we have

[hi j (m, n), hkl(p, t)]+

= δil

∑
s1,s2∈Z

q−ns1−ts2{δm−s1,−s2e∗k (p− s2)e j (s1)+ δm−s1,−s2ak(p− s2)a∗j (s1)}

+ δ jk

∑
s1,s2∈Z

q−ns1−ts2{δs1,s2−pe∗i (m− s1)el(s2)+ δs1,s2−pai (m− s1)a∗l (s2)}.

Secondly notice that

e∗k (p− s2)e j (s1)= e j (s1)e∗k (p− s2)− δ jkδs1,s2−p,

and by the property (3-3) of the normal ordering we have

ak(p− s2)a∗j (s1)= :ak(p− s2)a∗j (s1): + δ jkδs1,s2−pθ(p− s2− s1),

e j (s1)e∗k (p− s2)= :e j (s1)e∗k (p− s2): + δ jkδs1,s2−pθ(s1+ s2− p).
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Then

e∗k (p− s2)e j (s1)+ ak(p− s2)a∗j (s1)= :ak(p− s2)a∗j (s1): + :e j (s1)e∗k (p− s2):

+ δ jkδs1,s2−pθ(s1+ s2− p)

+ δ jkδs1,s2−pθ(p− s1− s2)− δ jkδs1,s2−p

= :ak(p− s2)a∗j (s1): + :e j (s1)e∗k (p− s2):

since θ(s1+ s2− p)+ θ(p− s1− s2)= 1. We get

[hi j (m, n), hkl(p, t)]+

= δil

∑
s1,s2∈Z

q−ns1−ts2δm−s1,−s2{:ak(p−s2)a∗j (s1): + :e j (s1)e∗k (p−s2):}

+ δ jk

∑
s1,s2∈Z

q−ns1−ts2δs1,s2−p{:ai (m−s1)a∗l (s2): + :e∗i (m− s1)el(s2):}

= δilq tm
∑
s∈Z

q−(n+t)s
{:ak(m+p−s)a∗j (s): + :e j (s)e∗k (m+p−s):}

+ δ jkqnp
∑
s∈Z

q−(n+t)s
{:ai (m+p−s)a∗l (s): + :el(s)e∗i (m+p−s):}. �

Comparing with Proposition 2.3, let

gi j (m, n)=
∑
s∈Z

q−ns
:ai (m− s)a∗j (s): +

∑
s∈Z

q−ns
:e j (s)e∗i (m− s): .

Then we only need to check the remaining Lie brackets (2-2) and (2-4).

Lemma 3.5.

[gi j (m, n), hkl(p, t)]− = δ jkqnphil(m+ p, n+ t)− δilq tmhk j (m+ p, n+ t).

Proof. Notice that removing the normal ordering has no effect on Lie bracket; then
we have

[gi j (m, n), hkl(p, t)]− =
∑

s1,s2∈Z

q−ns1−ts2
[
ai (m− s1)a∗j (s1)+ e j (s1)e∗i (m− s1),

ak(p− s2)el(s2)+ a∗l (s2)e∗k (p− s2)
]
−
.

Secondly, for [ai (m− s1)a∗j (s1), ak(p− s2)el(s2)]− we have

[ai (m− s1)a∗j (s1), ak(p− s2)el(s2)]− = δ jkδs1,s2−pai (m− s1)el(s2).

Similarly, we have

[ai (m− s1)a∗j (s1), a∗l (s2)e∗k (p− s2)]− =−δilδm−s1,−s2a∗j (s1)e∗k (p− s2),

[e j (s1)e∗i (m− s1), ak(p− s2)el(s2)]− =−δilδm−s1,−s2e j (s1)ak(p− s2),

[e j (s1)e∗i (m− s1), a∗l (s2)e∗k (p− s2)]− = δ jkδs1,s2−pa∗l (s2)e∗i (m− s1).
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Then we replace s1 or s2 in the above four terms by s:

[gi j (m, n), hkl(p, t)]−i

= δ jkqnp
∑
s∈Z

q−(n+t)s(ai (m+ p− s)el(s)+ a∗l (s)e
∗

i (m+ p− s))

− δilq tm
∑
s∈Z

q−(n+t)s(ak(m+ p− s)e j (s)+ a∗j (s)e
∗

k (m+ p− s))

= δ jkqnphil(m+ p, n+ t)− δilq tmhk j (m+ p, n+ t). �

Lemma 3.6.

[gi j (m, n), gkl(p, t)]− = δ jkqnpgil(m+ p, n+ t)− δilq tm gk j (m+ p, n+ t).

Proof.

[gi j (m, n), gkl(p, t)]−=
∑

s1,s2∈Z

q−ns1−ts2
[
ai (m−s1)a∗j (s1)+e j (s1)e∗i (m−s1),

ak(p− s2)a∗l (s2)+ el(s2)e∗k (p− s2)
]
−
.

Then, for [ai (m− s1)a∗j (s1), ak(p− s2)a∗l (s2)]−, by using Proposition 3.1 we have

[ai (m− s1)a∗j (s1), ak(p− s2)a∗l (s2)]−

=−δilδm−s1,−s2ak(p− s2)a∗j (s1)+ δ jkδs1,s2−pai (m− s1)a∗l (s2).

Using Proposition 3.2,

[e j (s1)e∗i (m− s1), el(s2)e∗k (p− s2)]−

=−δilδm−s1,−s2e j (s1)e∗k (p− s2)+ δ jkδs1,s2−pel(s2)e∗i (m− s1).

Clearly,

[ai (m−s1)a∗j (s1), el(s2)e∗k (p−s2)]−= [e j (s1)e∗i (m−s1), ak(p−s2)a∗l (s2)]−= 0.

From (3-3) and (3-2), we have

ak(p− s2)a∗j (s1)= :ak(p− s2)a∗j (s1): + δ jkδs1,s2−pθ(p− s1− s2),

e j (s1)e∗k (p− s2)= :e j (s1)e∗k (p− s2): + δ jkδs1,s2−pθ(s1+ s2− p),

ai (m− s1)a∗l (s2)= :ai (m− s1)a∗l (s2): + δilδm−s1,−s2θ(m− s1− s2),

el(s2)e∗i (m− s1)= :el(s2)e∗i (m− s1): + δilδm−s1,−s2θ(s1+ s2−m),

θ(p−s1−s2)+ θ(s1+s2−p)= θ(m−s1−s2)+ θ(s1+s2−m)= 1.
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So

−δilδm−s1,−s2ak(p− s2)a∗j (s1)+ δ jkδs1,s2−pai (m− s1)a∗l (s2)

−δilδm−s1,−s2e j (s1)e∗k (p− s2)+ δ jkδs1,s2−pel(s2)e∗i (m− s1)

= δ jkδs1,s2−p
(
:ai (m− s1)a∗l (s2): + :el(s2)e∗i (m− s1):

)
−δilδm−s1,−s2

(
:ak(p− s2)a∗j (s1): + :e j (s1)e∗k (p− s2):

)
.

Then we get

[gi j (m, n), gkl(p, t)]−

=

∑
s1,s2∈Z

q−ns1−ts2
{
δ jkδs1,s2−p

(
:ai (m− s1)a∗l (s2): + :el(s2)e∗i (m− s1):

)
− δilδm−s1,−s2

(
:ak(p− s2)a∗j (s1): + :e j (s1)e∗k (p− s2):

)}
.

Now we replace s1 or s2 in the above terms by s; we get

[gi j (m, n), gkl(p, t)]−

= δ jkqnp
∑
s∈Z

q−(n+t)s(ai (m+ p− s)a∗l (s)+ el(s)e∗i (m+ p− s))

− δilq tm
∑
s∈Z

q−(n+t)s(ak(m+ p− s)a∗j (s)+ e j (s)e∗k (m+ p− s))

= δ jkqnpgil(m+ p, n+ t)− δilq tm gk j (m+ p, n+ t). �

Although gi j (m, n) and hi j (m, n) are infinite sums, they are well defined as
operators on V (N ) since at most finitely many terms can have a nontrivial action
on any v ∈ V (N )= α(N ,+1)⊗α(N ,−1)v+0 ⊗ v

−

0 .
Then from Lemmas 3.4, 3.5 and 3.6 we have:

Theorem 3.7. V (N ) is a module for the Q(N−1)-graded Lie superalgebra Q
under the action given by

π(g̃i j (m, n))= gi j (m, n),

π(h̃i j (m, n))= hi j (m, n),

for all m, n ∈ Z and 1≤ i , j ≤ N.
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