CONJUGACY AND ELEMENT-CONJUGACY OF HOMOMORPHISMS OF COMPACT LIE GROUPS

Yingjue Fang, Gang Han and Binyong Sun

Let $G$ be a connected compact Lie group. Among other things, we prove that the following are equivalent. (a) For all connected compact Lie groups $H$ and all continuous homomorphisms $\phi, \phi' : H \to G$, if $\phi(h)$ and $\phi'(h)$ are conjugate in $G$ for all $h \in H$, then $\phi$ and $\phi'$ are $G$-conjugate. (b) The Lie algebra of $G$ contains no simple ideal of type $D_n$ ($n \geq 4$), $E_6$, $E_7$, or $E_8$.

1. Introduction

Let $G$ and $H$ be two topological groups, and let $\phi, \phi' : H \to G$ be two continuous homomorphisms. We say that $\phi$ and $\phi'$ are conjugate if there is an element $g \in G$ such that

$$g\phi(h)g^{-1} = \phi'(h)$$

for all $h \in H$.

We say that they are element-conjugate if for every $h \in H$, there is a $g \in G$ such that

$$g\phi(h)g^{-1} = \phi'(h).$$

Clearly, conjugate homomorphisms are element-conjugate. Conversely, we are interested to know to what extent the following statement holds.

(1) If $\phi$ and $\phi'$ are element-conjugate, then they are conjugate.

This is closely related to the failure of multiplicity one for the cuspidal spectrum of reductive groups over number fields (see [Blasius 1994, Section 1.1; Lapid 1999, Section 3; Arthur 2002, page 471; Lafforgue 2014, Section 0.8]). Some counterexamples to (1) are used to construct nonisometric pairs of isospectral manifolds (see [Larsen 1996, Theorem 2.7]).

We say that $G$ is $H$-acceptable if (1) holds for all continuous homomorphisms $\phi$ and $\phi'$. M. Larsen [1994] defined $G$ to be acceptable if it is $H$-acceptable whenever $H$ is finite. In [Larsen 1996], he classified acceptable, connected, simply connected compact Lie groups. In this paper, we are more concerned with the
YINGJUE FANG, GANG HAN AND BINYONG SUN

statement (1) when both $G$ and $H$ are connected compact Lie groups. This is more relevant to the classification of reductive subalgebras of semisimple Lie algebras, as studied in [Dynkin 1952; Liebeck and Seitz 1996; Malcev 1944; Minchenko 2006].

It was essentially known to Dynkin how counterexamples to (1) can be constructed when $G$ is a simple compact Lie group of type $D_n$ with $n \geq 4$ (see [Dynkin 1952, Theorem 1.4]; see also [Wang 2012]). M. Liebeck and G. Seitz [1996] found a counterexample when $G$ is simple of type $E_8$, and $H$ is simple of type $A_2$, in the setting of algebraic groups. For Lie algebra homomorphisms from a semisimple Lie algebra to a simple Lie algebra of type $E_6$, $E_7$ or $E_8$, all counterexamples of the Lie algebra analogue of (1) are listed in [Minchenko 2006, Table 9] (see Lemma 3.6).

Based on the main result of [Minchenko 2006], we prove the following theorem for connected compact Lie groups.

**Theorem 1.1.** Let $G$ be a connected compact Lie group. Then the following are equivalent. (a) The Lie algebra of $G$ contains no simple ideal of type $D_n$ ($n \geq 4$), $E_6$, $E_7$ or $E_8$. (b) The group $G$ is $H$-acceptable for all connected compact Lie groups $H$.

As a byproduct of the proof of Theorem 1.1, we get the following theorem for classical Lie groups.

**Theorem 1.2.** Let $G$ be a classical Lie group, that is, $G$ is $GL_n(\mathbb{R})$, $GL_n(\mathbb{C})$, $GL_n(\mathbb{H})$, $U(p, q)$, $O(p, q)$, $O_n(\mathbb{C})$, $Sp_{2n}(\mathbb{R})$, $Sp_{2n}(\mathbb{C})$, $Sp(p, q)$ or $O^*(2n)$, where $p, q, n \geq 0$. Then $G$ is $H$-acceptable for all compact Hausdorff topological groups $H$.

By convention, when $n = 0$ or $p + q = 0$, the corresponding classical group of the above theorem is the trivial group, and the theorem is trivial in this case.

2. Classical Lie groups

In the rest of the paper, let $H$ be a compact Hausdorff topological group. By abuse of notation, we do not distinguish a representation from its underlying vector space. All representations are assumed to be complex, finite-dimensional and continuous.

**Classical complex groups.** We begin with the following classical result.

**Proposition 2.1.** The complex general linear group $GL_n(\mathbb{C})$ ($n \geq 0$) is $H$-acceptable.

**Proof.** This is well known. Let $\phi, \phi' : H \to GL_n(\mathbb{C})$ be two continuous homomorphisms, to be viewed as two $n$-dimensional representations of $H$. If they are element-conjugate, then they have the same character. By the classical character theory of representations of compact groups, these two representations are isomorphic. This is the same as saying that the homomorphisms $\phi$ and $\phi'$ are conjugate. \qed
We define an orthogonal representation of $H$ to be a representation $V$ of $H$ together with an $H$-invariant orthogonal form $\langle \cdot, \cdot \rangle$ on it. Here by an orthogonal form, we mean a nondegenerate symmetric bilinear form. Two orthogonal representations $(V, \langle \cdot, \cdot \rangle)$ and $(V', \langle \cdot, \cdot \rangle')$ are called isomorphic if there is an $H$-intertwining linear isomorphism from $V$ to $V'$ which sends $\langle \cdot, \cdot \rangle$ to $\langle \cdot, \cdot \rangle'$.

Similarly, we define the notions of symplectic representations and isomorphisms of symplectic representations. The next result is well known (see [Malcev 1944]).

**Proposition 2.2.** Let $(V, \langle \cdot, \cdot \rangle)$ and $(V', \langle \cdot, \cdot \rangle')$ be two orthogonal (symplectic) representations of $H$. If $V$ and $V'$ are isomorphic as representations of $H$, then $(V, \langle \cdot, \cdot \rangle)$ and $(V', \langle \cdot, \cdot \rangle')$ are isomorphic as orthogonal (symplectic) representations.

It is clear that Propositions 2.1 and 2.2 imply the following result, which is stated and proved in [Larsen 1994, Propositions 2.3 and 2.4], in the setting that $H$ is a finite group.

**Proposition 2.3.** The complex orthogonal group $O_n(\mathbb{C})$ and the complex symplectic group $Sp_{2n}(\mathbb{C})$ ($n \geq 0$) are $H$-acceptable.

**Maximal compact subgroups.** Let $G$ be a Lie group with finitely many connected components. Let $K$ be a maximal compact subgroup of $G$, which always exists and is unique up to conjugation [Borel 1998, Chapter VII, Theorem 1.2(i)]. Write $i_K : K \rightarrow G$ for the inclusion map.

**Lemma 2.4.** Let $\phi_K, \phi'_K : H \rightarrow K$ be two continuous homomorphisms. Write $\phi := i_K \circ \phi_K$ and $\phi' := i_K \circ \phi'_K$. Then

(a) $\phi$ and $\phi'$ are conjugate if and only if $\phi_K$ and $\phi'_K$ are conjugate, and

(b) $\phi$ and $\phi'$ are element-conjugate if and only if $\phi_K$ and $\phi'_K$ are element-conjugate.

**Proof.** We only prove (a), since (b) can be proved by the same method, and is also implied by (a). The “if” part of (a) is obvious. We prove the “only if” part below.

Write “Ad” for the conjugation action. By [Borel 1998, Chapter VII, Theorem 1.2(ii)], there is a closed analytic submanifold $E$ of $G$ such that

\[(2) \quad \text{Ad}_k(E) = E \quad \text{for all} \quad k \in K,\]

and every $g \in G$ is uniquely of the form

\[(3) \quad g = ke, \quad \text{with} \quad k \in K, \quad e \in E.\]

Assume that $\phi$ and $\phi'$ are conjugate, i.e., there is an element $g$ in $G$ such that $\phi' = \text{Ad}_g \circ \phi$. 

\[\phi' = \text{Ad}_g \circ \phi.\]
Write \( g = ke \) as in (3). Then
\[
\text{Ad}_{k^{-1}} \circ \phi' = \text{Ad}_e \circ \phi.
\]
Let \( h \in H \) and put
\[
k_1 := (\text{Ad}_{k^{-1}} \circ \phi')(h), \quad k_2 := \phi(h).
\]
Then \( k_1, k_2 \in K \) and
\[
k_1 = \text{Ad}_e(k_2),
\]
or the same,
\[
k_1 e = k_2 \text{Ad}_{k_2^{-1}}(e).
\]
Now (2) and the uniqueness of the decomposition (3) imply that \( k_1 = k_2 \). This proves that \( \text{Ad}_{k^{-1}} \circ \phi' = \phi \), and thus \( \phi_K \) and \( \phi'_K \) are conjugate.

The following result generalizes [Larsen 1994, Proposition 1.7].

**Proposition 2.5.** The group \( G \) is \( H \)-acceptable if and only if so is \( K \).

**Proof.** Let us prove the “if” part first. Assume that \( K \) is \( H \)-acceptable, and let \( \phi, \phi' : H \to G \) be two continuous homomorphisms which are element-conjugate. We need to prove that \( \phi \) and \( \phi' \) are conjugate. Since every compact subgroup of \( G \) is conjugate to a subgroup of \( K \), we assume without loss of generality that the images of \( \phi \) and \( \phi' \) are both contained in \( K \). Let \( \phi_K \) and \( \phi'_K \) be as in Lemma 2.4 so that \( \phi := i_K \circ \phi_K \) and \( \phi' := i_K \circ \phi'_K \). Then Lemma 2.4 implies that \( \phi_K \) and \( \phi'_K \) are element-conjugate, and they are conjugate since \( K \) is \( H \)-acceptable. This implies that \( \phi \) and \( \phi' \) are conjugate.

To prove the “only if” part, we assume that \( G \) is \( H \)-acceptable. Write \( \phi, \phi', \phi_K \) and \( \phi'_K \) as before. Assume that \( \phi_K \) and \( \phi'_K \) are element-conjugate. Then \( \phi \) and \( \phi' \) are element-conjugate, and therefore conjugate since \( G \) is \( H \)-acceptable. Now Lemma 2.4 implies that \( \phi_K \) and \( \phi'_K \) are conjugate. This proves that \( K \) is \( H \)-acceptable.

**Corollary 2.6.** The compact groups \( U(n) \), \( O(n) \) and \( Sp(n) \), where \( n \geq 0 \), are \( H \)-acceptable.

**Proof.** Note that \( U(n) \), \( O(n) \) or \( Sp(n) \) is a maximal compact subgroup of \( \text{GL}_n(\mathbb{C}) \), \( O_n(\mathbb{C}) \) or \( \text{Sp}_{2n}(\mathbb{C}) \), respectively. Therefore the corollary is a consequence of Propositions 2.1, 2.3 and 2.5.

The following lemma is obvious.

**Lemma 2.7.** Let \( G_1 \) and \( G_2 \) be two topological groups. Then \( G_1 \times G_2 \) is \( H \)-acceptable if and only if so are both \( G_1 \) and \( G_2 \).
Now we come to the proof of Theorem 1.2. When $G$ is $\text{GL}_n(\mathbb{R})$, $\text{GL}_n(\mathbb{C})$, $\text{GL}_n(\mathbb{H})$, $O(p, q)$, $O_n(\mathbb{C})$, $U(p, q)$, $\text{Sp}(p, q)$, $\text{Sp}_{2n}(\mathbb{R})$, $\text{Sp}_{2n}(\mathbb{C})$ or $O^*(2n)$, its maximal compact subgroup is $O(n)$, $U(n)$, $\text{Sp}(p) \times O(q)$, $O(n)$, $U(p) \times U(q)$, $\text{Sp}(p) \times \text{Sp}(q)$, $U(n)$, $\text{Sp}(n)$ or $U(n)$, respectively. By Corollary 2.6 and Lemma 2.7, all these compact groups are $H$-acceptable. Therefore $G$ is $H$-acceptable by Proposition 2.5. This proves Theorem 1.2.

We record the following two results for later use.

**Corollary 2.8.** The compact groups $\text{SU}(n)$ and $\text{SO}(2n + 1)$, where $n \geq 0$, are $H$-acceptable.

**Proof.** By Corollary 2.6, the groups $U(n)$ and $O(2n + 1)$ are $H$-acceptable. Then the corollary follows by noting that every inner automorphism of $U(n)$ or $O(2n + 1)$ restricts to an inner automorphism of $\text{SU}(n)$ or $\text{SO}(2n + 1)$, respectively. □

The following lemma is obvious.

**Lemma 2.9.** If $G$ is commutative, then it is $H$-acceptable.

### 3. A proof of Theorem 1.1

In this section, we concentrate on connected compact Lie groups.

**Lemma 3.1.** Let $\phi, \phi' : H \to G$ be two continuous homomorphisms of connected compact Lie groups. Then they are element-conjugate if and only if $\phi|_S$ and $\phi'|_S$ are conjugate, where $S$ is a maximal torus in $H$.

**Proof.** This is because $S$ is topologically cyclic, and every element of $H$ is $H$-conjugate to an element of $S$. □

**Lemma 3.2.** Let $\rho : \tilde{G} \to G$ be a surjective continuous homomorphism with finite kernel of connected compact Lie groups. Let $\tilde{\phi}, \tilde{\phi}' : H \to \tilde{G}$ be two continuous homomorphisms of connected compact Lie groups. Then $\tilde{\phi}$ and $\tilde{\phi}'$ are conjugate if and only if $\rho \circ \tilde{\phi}$ and $\rho \circ \tilde{\phi}'$ are conjugate, and $\tilde{\phi}$ and $\tilde{\phi}'$ are element-conjugate if and only if $\rho \circ \tilde{\phi}$ and $\rho \circ \tilde{\phi}'$ are element-conjugate.

**Proof.** The first assertion easily follows from the observation that

$$\tilde{\phi} = \tilde{\phi}' \quad \text{if and only if} \quad \rho \circ \tilde{\phi} = \rho \circ \tilde{\phi}'.$$

We leave the details to the reader. The second assertion is a consequence of the first one and Lemma 3.1. □

**Lemma 3.3.** Let $G$ and $G'$ be two connected compact Lie groups with isomorphic Lie algebras. If $G$ is $H$-acceptable for all connected compact Lie groups $H$, then so is $G'$.
Proof. Note that $G$ and $G'$ have a common finite fold covering group, that is, there is a connected compact Lie group $\tilde{G}$, and surjective continuous homomorphisms $\rho : \tilde{G} \to G$ and $\rho' : \tilde{G} \to G'$ with finite kernels.

Assume that $G$ is $H$-acceptable for all connected compact Lie groups $H$. Let $\tilde{\phi}_1, \tilde{\phi}_2 : H \to \tilde{G}$ be two element-conjugate continuous homomorphisms. Then $\rho \circ \tilde{\phi}_1$ and $\rho \circ \tilde{\phi}_2$ are element-conjugate. Therefore by the assumption on $G$, $\rho \circ \tilde{\phi}_1$ and $\rho \circ \tilde{\phi}_2$ are conjugate. Therefore by Lemma 3.2, $\tilde{\phi}_1$ and $\tilde{\phi}_2$ are conjugate. This shows that $\tilde{G}$ is $H$-acceptable for all connected compact Lie groups $H$.

To prove that $G'$ is $H$-acceptable for all connected compact Lie groups $H$, we let $\phi'_1, \phi'_2 : H \to G'$ be two element-conjugate continuous homomorphisms. Then there is a connected compact Lie group $\tilde{H}$, with a surjective continuous homomorphism $\rho_H : \tilde{H} \to H$ with finite kernel, and two continuous homomorphisms $\tilde{\phi}'_1, \tilde{\phi}'_2 : \tilde{H} \to \tilde{G}$ such that the diagram

$$
\begin{array}{ccc}
\tilde{H} & \xrightarrow{\tilde{\phi}'} & \tilde{G} \\
\rho_H \downarrow & & \downarrow \rho' \\
H & \xrightarrow{\phi'} & G'
\end{array}
$$

commutes ($i = 1, 2$).

Since $\phi'_1$ and $\phi'_2$ are element-conjugate, we know that $\phi'_1 \circ \rho_H$ and $\phi'_2 \circ \rho_H$ are element-conjugate, or equivalently, $\rho' \circ \tilde{\phi}'_1$ and $\rho' \circ \tilde{\phi}'_2$ are element-conjugate. Then by Lemma 3.2, $\tilde{\phi}'_1$ and $\tilde{\phi}'_2$ are element-conjugate. Therefore $\phi'_1$ and $\phi'_2$ are conjugate since $\tilde{G}$ is $H$-acceptable. Thus $\rho' \circ \tilde{\phi}'_1$ and $\rho' \circ \tilde{\phi}'_2$ are conjugate, or equivalently, $\phi'_1 \circ \rho_H$ and $\phi'_2 \circ \rho_H$ are conjugate. This implies that $\phi'_1$ and $\phi'_2$ are conjugate. Thus $G'$ is $H$-acceptable. \qed

We say that two homomorphisms $\phi, \phi' : \mathfrak{h} \to \mathfrak{g}$ between two finite-dimensional complex Lie algebras are conjugate if there is an inner automorphism $\varphi$ of $\mathfrak{g}$ such that $\varphi \circ \phi = \phi'$.

**Lemma 3.4** [Minchenko 2006, Theorem 3; Dynkin 1952, Theorem 1.1]. Let $\mathfrak{g}$ be a simple complex Lie algebra of type $G_2$ or $F_4$. Let $\mathfrak{h}$ be a reductive complex Lie algebra, and let $\phi, \phi' : \mathfrak{h} \to \mathfrak{g}$ be two injective Lie algebra homomorphisms whose images are reductive Lie subalgebras of $\mathfrak{g}$. If $\phi|_s$ and $\phi'|_s$ are conjugate, then $\phi$ and $\phi'$ are conjugate, where $s$ is a Cartan subalgebra of $\mathfrak{h}$.

Recall that a Lie subalgebra of a finite-dimensional complex Lie algebra $\mathfrak{g}$ is said to be reductive if its adjoint representation on $\mathfrak{g}$ is completely reducible.

Lemma 3.4 has the following consequence.

**Proposition 3.5.** Let $G$ be a connected compact Lie group whose complexified Lie algebra is simple of type $G_2$ or $F_4$. Then $G$ is $H$-acceptable for all connected compact Lie groups $H$. 
Proof. Let $\phi, \phi' : H \to G$ be two element-conjugate homomorphisms. We want to show that they are conjugate. Note that $\phi$ and $\phi'$ have the same kernel. Replacing $H$ by its quotient by the kernel, we assume without loss of generality that both $\phi$ and $\phi'$ are injective. Let $S$ be a maximal torus in $H$. Write $c_G : G \to G_C$ for the universal complexification of $G$, which is injective (see [Hochschild 1966]). Write $s, h$ and $g$ for the complexified Lie algebras of $S, H$ and $G$, respectively.

By Lemma 3.1, $\phi|_S$ and $\phi'|_S$ are conjugate. Therefore their complexified differentials $d(\phi|_S) : s \to g$ and $d(\phi'|_S) : s \to g$ are conjugate. Then Lemma 3.4 implies that the complexified differentials $d(\phi) : h \to g$ and $d(\phi') : h \to g$ are conjugate. This implies that the homomorphisms $c_G \circ \phi : H \to G_C$ and $c_G \circ \phi' : H \to G_C$ are conjugate. Since $G$ is a maximal compact subgroup of $G_C$, Lemma 2.4 implies that $\phi$ and $\phi'$ are conjugate. This proves the proposition. □

Lemma 3.6. Let $g$ be a simple complex Lie algebra of type $D_n (n \geq 4), E_6, E_7$ or $E_8$. Then there are a semisimple complex Lie algebra $h$ and two nonconjugate injective Lie algebra homomorphisms $\phi, \phi' : h \to g$ such that $\phi|_s$ and $\phi'|_s$ are conjugate. Here $s$ is a Cartan subalgebra of $h$.

Proof. The lemma is a consequence of [Dynkin 1952, Theorem 1.4] when $g$ has type $D_n (n \geq 4)$ and a consequence of [Minchenko 2006, Theorem 7] when $g$ has type $E_6, E_7$ or $E_8$. □

Lemma 3.6 has the following consequence.

Proposition 3.7. Let $G$ be a connected compact Lie group whose complexified Lie algebra is simple of type $D_n (n \geq 4), E_6, E_7$ or $E_8$. Then $G$ is not $H$-acceptable for some connected compact Lie group $H$.

Proof. Write $g$ for the complexified Lie algebra of $G$. Let $h, s, \phi, \phi' : h \to g$ be as in Lemma 3.6. As in the proof of Proposition 3.5, write $c_G : G \to G_C$ for the universal complexification of $G$. Let $H_C$ be a simply connected, connected complex Lie group whose Lie algebra is identified with $h$. Then $\phi, \phi'$ integrate to holomorphic homomorphisms

$$\psi_C, \psi'_C : H_C \to G_C.$$ (4)

Take a maximal compact subgroup $H$ of $H_C$, and a maximal torus $S$ in $H$ such that the complexified Lie algebra of $S$ equals $s$. Replacing $\phi$ and $\phi'$ by their conjugations by appropriate elements of $G_C$, we assume without loss of generality
that $\psi_C(H) \subset G$ and $\psi'_C(H) \subset G$. Then the homomorphisms in (4) restrict to two homomorphisms

$$\psi, \psi' : H \to G.$$ 

Since $\phi$ and $\phi'$ are nonconjugate, we know that $\psi_C$ and $\psi'_C$ are nonconjugate, which implies that $\psi$ and $\psi'$ are nonconjugate. On the other hand, since $\phi|_S$ and $\phi'|_S$ are conjugate, we know that $\psi_C|_S$ and $\psi'_C|_S$ are conjugate. Then Lemma 2.4 implies that $\psi|_S$ and $\psi'|_S$ are conjugate. This implies that $\psi$ and $\psi'$ are element-conjugate by Lemma 3.1. This proves the proposition.

Finally, in view of Lemmas 3.3 and 2.7, Theorem 1.1 is a consequence of Lemma 2.9, Corollaries 2.6 and 2.8, and Propositions 3.5 and 3.7.

References


MR 2908081 Zbl 1246.22028


YINGJUE FANG
COLLEGE OF MATHEMATICS AND STATISTICS
SHENZHEN UNIVERSITY
SHENZHEN, 518060
CHINA
joyfang@szu.edu.cn

GANG HAN
DEPARTMENT OF MATHEMATICS
ZHEJIANG UNIVERSITY
P.O. BOX 1511
HANG ZHOU, 310027
CHINA
mathhgg@zju.edu.cn

BINYONG SUN
ACADEMY OF MATHEMATICS AND SYSTEMS SCIENCE
CHINESE ACADEMY OF SCIENCES
BEIJING, 100190
CHINA
sun@math.ac.cn
A New family of simple $\mathfrak{gl}_{2n}(\mathbb{C})$-modules

JONATHAN NILSSON

Derived categories of representations of small categories over commutative noetherian rings

BENJAMIN ANTIEAU and GREG STEVENSON

Vector bundles over a real elliptic curve

INDRANIL BISWAS and FLORENT SCHAFFHAUSER

Q(N)-graded Lie superalgebras arising from fermionic-bosonic representations

JIN CHENG

Conjugacy and element-conjugacy of homomorphisms of compact Lie groups

YINGJUE FANG, GANG HAN and BINYONG SUN

Entire sign-changing solutions with finite energy to the fractional Yamabe equation

DANILO GARRIDO and MONICA MUSSO

Calculation of local formal Mellin transforms

ADAM GRAHAM-SQUIRE

The untwisting number of a knot

KENAN INCE

A Plancherel formula for $L^2(G/H)$ for almost symmetric subgroups

BENT ØRSTED and BIRGIT SPEH

Multiplicative reduction and the cyclotomic main conjecture for $GL_2$

CHRISTOPHER SKINNER

Commensurators of solvable $S$-arithmetic groups

DANIEL STUDENMUND

Gerstenhaber brackets on Hochschild cohomology of quantum symmetric algebras and their group extensions

SARAH WITHERSPOON and GUODONG ZHOU