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A PLANCHEREL FORMULA FOR L2(G/H) FOR ALMOST
SYMMETRIC SUBGROUPS

BENT ØRSTED AND BIRGIT SPEH

We study the Plancherel formula for a new class of homogeneous spaces for
real reductive Lie groups; these spaces are fibered over non-Riemannian
symmetric spaces, and they exhibit a phenomenon of uniform infinite mul-
tiplicities. The proof for this is new but rather elementary, and we give
all details. As an application we use several results from the recent liter-
ature studying possible nontemperedness of homogeneous spaces; thus we
provide examples of nontempered representations of the group appearing
in the Plancherel formula for our homogeneous spaces. Several classes of
examples are given, each building on different techniques and new results
from the theory of symmetric spaces.

I. Introduction

Considerable efforts have been devoted to obtaining the Plancherel formula for ho-
mogeneous spaces of the form G/H with G a real reductive Lie group and H a sym-
metric subgroup, a program completed by T. Oshima, P. Delorme, E. van den Ban,
and H. Schlichtkrull. This is a central theme in harmonic analysis, and there are
a number of natural ways to extend such a program. One is to consider spherical
spaces, i.e., where the homogeneous space admits an open orbit of a parabolic
subgroup. In this paper we shall rather extend the interest to

(1) square-integrable sections of homogeneous line bundles over symmetric spaces,
and

(2) spaces fibered over symmetric spaces.

Of course, these two questions are related, and we shall find several classes
of spaces where rather explicit answers can be found. As an example consider
G = SL(2,R) with H the connected diagonal subgroup; for each unitary character
of H we may consider the space (1) and the corresponding Plancherel formula:
This turns out to be independent of the character, and hence the space as in (2)
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above (in our case just the group G) has the same L2-content as the symmetric
space, only with infinite multiplicity. It is perhaps a little surprising, that one may
thus find embeddings of, e.g., the discrete series of G in a uniform way in each of
the spaces of sections (1).

To be more specific, our motivation in undertaking this work was to understand
the disintegration of the representation of a semisimple Lie group G on the space
L2(G/Hss) where Hss is a semisimple subgroup which differs from a symmetric
subgroup by a noncompact central real factor. In this paper we study this situation
for the simplest nonsymmetric subgroups Hss from the point of view of harmonic
analysis and obtain a Plancherel theorem for space L2(G/Hss) in terms of the one
for G/H .

Recently Y. Benoist and T. Kobayashi [2015] proved general criteria to determine
if for a semisimple subgroup H the spectrum of L2(G/H) contains nontempered
representations; this they use to determine in many examples if L2(G/H) is tem-
pered. Here a representation is called tempered if it appears in the usual Plancherel
formula for L2(G). However these authors do not obtain any results concerning
the multiplicity of the representations in the Plancherel formula. By obtaining a
Plancherel formula for L2(G/Hss) we are in a position to determine exactly in our
examples which nontempered representations appear in the spectrum, and also to
show that they appear with infinite multiplicities.

We consider a noncompact subgroup H = Hss Z H where H is a subgroup of
finite index in the fixpoints of an involution of G and Z H ' R is a subgroup of
finite index of the center of H . Under these assumptions we show the following.

Theorem. As a left regular representation of G

L2(G/Hss)' L2(G/H)⊗ L2(Z H ).

It is instructive to compare with the situation where the central subgroup is
compact, e.g., the case of G a simple noncompact Lie group and K a maximal
compact subgroup with a one-dimensional center Z . Here G/K is a noncompact
Riemannian symmetric space of Hermitian type, and L2(G/K ) has a different
Plancherel decomposition than L2(G/K , χ), the square-integrable sections of the
line bundle induced from a nontrivial unitary character χ of Z . In particular the
first space contains no discrete series representations, whereas the second space
typically does. Compare with Proposition III.3 for our situation of a noncompact
center.

A related problem for spherical varieties over non-Archimedian fields is discussed
in [Sakellaridis and Venkatesh 2014, Section 9.5].

The paper is organized as follows: In Section II, we show that we can regard
H as a subgroup of finite index in the Levi subgroup of a parabolic subgroup with
abelian nilradical. In Section III we prove our main theorem above. In Section IV
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we discuss some examples. In particular we note that we find several examples of
nontempered homogeneous spaces, some of them new; quite possibly our method
could extend to other instances of Plancherel theorems, such as cases of vector
bundles (as opposed to the cases of line bundles treated here).

II. Notation and preliminaries

We introduce the notation and prove some preliminary results.

Notation and assumptions. Let G be a real linear semisimple connected algebraic
group with maximal compact subgroup K and complexification GC. We consider
G and K ⊂ GC as subgroups.

Proposition II.1. Suppose that P = L N is a maximal parabolic subgroup with an
abelian nilradical N . Then L is the fixpoint set of an involution

τ : G→ G.

Proof (due to Dan Barbasch). We consider a maximal split Cartan subgroup and
its corresponding complex Cartan subalgebra. A parabolic subalgebra is given by
removing some simple roots from the diagram. The only way to get an abelian
nilradical is to remove a single simple root which appears with coefficient at most
one 1 if we write the roots as linear combinations of simple roots. The involution τ
is then conjugation by exp(iπ$) where $ is the coroot of the simple root which
was removed. �

Let H be a subgroup of the Levi subgroup L of P which contains the connected
component L0 of L . Then H = Hss Z H where Z H is a one dimensional connected
subgroup in the center of H and Hss is semisimple or discrete.

Example 1. G = SL(2,R), L diagonal matrices which are the fixed points under
the conjugation by the diagonal matrix of order 2 and determinant−1. Alternatively
we consider the adjoint representation. Then L is the stabilizer of a semisimple
nontrivial element of order 2. It is also the fixed point set of the automorphism by
the adjoint action of the matrix(

i 0
0 −i

)
= exp

(
π i
(

1/2 0
0 −1/2

))
.

We have to consider two subgroups H and Hss :

(a) H = L , Hss = Z2, Z H = R+ .G /Hss = PSL(2,R),

(b) H = L0, Hss = I and G/Hss = SL(2,R).

Proposition II.2. Suppose that F is the fixed point set of an involution τ : G→ G.
Assume in addition that it is a product F = Fss Z F where Z F is a subgroup of the
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center of F isomorphic to R+ and Fss is a semisimple group. Then F is contained
in the Levi subgroup of a maximal parabolic subgroup P with abelian nilradical N .

Proof. We choose maximally split Cartan subgroup C ⊂ F with complexified Lie
algebra hC. We choose the simple roots of hC, gC so that they are simple roots in
hC, fC. (In the lexicographical order we let f come before g, f the Lie algebra of
F .) Then f is the Levi subalgebra of a maximal parabolic subalgebra pC = fC⊕ nC

of gC.
It remains to show that N is abelian. Since τ leaves C invariant the induced

homomorphism of τ : N → N is equal to −1. Since τ induces a Lie algebra
homomorphism and hence preserves the Lie bracket in nC, the results follows from
the observation that τ(X)=−X and τ(Y )=−Y then τ([X, Y ])= [X, Y ]. �

Note that in the setting above, we have a direct product decomposition

G/H × Z H = G/Hss .

This will be useful later in connection with integration over this space, and in
considering the corresponding L2-space.

About L2(G/H). Keep the assumptions on G, H, Z H as above. We extend a
unitary character χ ∈ Ẑ H to a character of H and consider the unitary induced
representation IndG

H χ on L2(G/H)χ−1 . Normalize Plancherel measures on Z H

and its dual group in the usual way.

Proposition II.3. As a representation of G

L2(G/Hss)=

∫
χ∈Ẑ H

L2(G/H)χ−1dχ,

Proof. For f ∈ L2(G/Hss) and χ ∈ Ẑ H define

F(χ, g)=
∫

Z H

f (gz)χ(z)−1 dz,

Then for z0 ∈ Z H

F(χ, gz0)= F(χ, g)χ−1(z0),

so F(χ) ∈ L2(G/H)χ−1 . By Fourier analysis on Z H we have∫
χ∈Ẑ H

|F(χ, g)|2dχ =
∫

z∈Z H

| f (gz)|2, dz.

So ∫
G/Hss

| f (g′)|2dg′ =
∫

G/H

∫
Z H

| f (g′z)|2dzdg′

completes the proof. �
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III. Main results

In this section we relate the Plancherel formula for the left regular representation
of G on L2(G/Hss) to the Plancherel formula for the left regular representation
on L2(G/H). It turns out that these two spaces have the same content of unitary
representations of G, only differing by their multiplicities.

Induction to the parabolic subgroup P.

Lemma III.1. Let N̂ the dual group of N. There exist finitely many open H orbits
Oi in N̂ so that N̂ is the closure of their union

⋃
i Oi .

Proof. Here we refer to results by Wallach [2006]. Here he proves that our parabolic
algebras are “very nice” since they have abelian nilradicals (see Corollary 6.4 of
that reference). In particular there is only one open orbit of L on N .

Since our group H is a subgroup of finite index in L we will get a finite number
of open orbits with dense union. Actually, the statement that “open orbit is generic”
(i.e., “nice parabolic”) would suffice for our purposes here. �

Let χ ∈ Ẑ H . We consider again χ as a character of H and consider again the
unitary induced representation IndP

H χ .

Proposition III.2. Let χ and χ̃ be unitary characters of Z H considered as charac-
ters of H. Then we have (equivalence of representations)

IndP
H χ = IndP

H χ̃ .

Proof. We denote the induced representations acting on functions F ∈ L2(N ) by

ρχ (n0)F(n)= F(n · n0),

ρχ (h0)F(n)= χ(h0)F(h−1
0 nh0).

Using the Fourier transform we realize the representation IndP
H χ on L2(N̂ ). It is a

direct sum of irreducible representations on L2(Oi ) where

ρ̂χ (n0) is a multiplication operator,

ρ̂χ (h0)F̂(ξ)= χ(h0)J (ht
0ξ)

1/2 F̂(ht
0ξ).

The other representation on the orbit is obtained by multiplication of the right hand
side of the second equation with a character χ1 = χ̃χ

−1 of H . In each orbit we fix
an element ξi .

We get a intertwining operator on each of the irreducible representations by

I (F)(ξ)= χ1(ξ)F(ξ).

Here ξ = hξi and χ1(ξ) := χ1(h). �
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Example 2. Consider the group P = H N with

H =
{( a 0

0 1

) ∣∣∣ a > 0
}

and
N =

{( 1 b
0 1

) ∣∣∣ b ∈ R
}
.

We note that there are three orbits of H on

N̂ =
{
ξt

∣∣∣ ξt

(( 1 b
0 1

))
= ei t ·b

}
,

namely, O+ = {ξt | t > 0} , O− = {ξt | t < 0} and O1
= {ξ0}. The unitary rep-

resentation ρ1 of P induced from the trivial representation of H acts on L2(N )
by

ρ1

(( a 0
0 1

))
F(x)= a1/2 F(ax)

and
ρ1

(( 1 b
0 1

))
F(x)= F(x + b).

To analyze this representation we consider the Fourier transform of L2(N ). The
representation is a direct sum of two unitary representations of functions whose
Fourier transform has support in ξ ∈ O+ and in ξ ∈ O−.

We consider χs : a → ais as a character of H . After applying the Fourier
transform the representation ρ̂s induced from χs has the form

ρ̂s

(( a 0
0 1

))
F̂(ξ)= a−1/2ais F̂(a−1ξ)

and
ρ̂t

(( 1 b
0 1

))
F̂(ξ)= eibξ F̂(ξ).

The equivalence of the representations ρs and ρ1 follows from the intertwining
operator

Is : ρ0→ ρs defined by Is F̂(ξ)= ξ is F̂(ξ).

Induction to G.

Proposition III.3. Let χ and χ̃ be characters of Z H considered as characters of H.
As representations of G we have (equivalence)

IndG
H χ = IndG

H χ̃ .

Proof. By induction by stages (Proposition III.2) we have

IndG
H χ = IndG

P IndP
H χ = IndG

P IndP
H χ̃ = IndG

H χ̃ . �
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Example 3. G = SU(1, 1) and

H = A = exp R

(
0 1
1 0

)
.

We identify G/K with the complex unit disk D. We realize the discrete series
representations Dn in the holomorphic functions on D. Then we have the H -
invariant distribution vector, giving the embedding into L2(G/H),

v∗ = (1+ z2)−n/2
∈ D−∞,Hn ,

and similarly the distribution vector

v∗ = (1+ z2)−n/2
(

1− z
1+ z

)iλ

∈ D−∞,H,χλn ,

transforming by the character χλ of H . So indeed every discrete series representation
occurs in every L2(G/H)χλ .

Theorem III.4. As a left regular representation of G

L2(G/Hss)' (IndG
H 1)⊗ L2(Z H )' L2(G/H)⊗ L2(Z H ).

Proof. This follows from Propositions II.3 and III.3. �

Corollary III.5. All irreducible representations in the discrete spectrum of

L2(G/Hss)

have infinite multiplicity.

Definition. Following Benoist and Kobayashi we say that L2(G/Hss) is not tem-
pered if the representations in the Plancherel formula for the right regular represen-
tation of G on L2(G/Hss) are not a subset of the representations of the Plancherel
formula for G.

Corollary III.6. L2(G/Hss) is tempered if and only if L2(G/H) is tempered.

Example 1 (continued). G = SL(2,R), H diagonal matrices, Then X = G/H is a
hyperboloid and

L2(G/H)=⊕ν∈2N Dν ⊕ 2
∫
∞

0
πi t ,

where Dν are the discrete series representations with parameter ν and πi t are
the tempered spherical principal series representations with parameter i t . Here
Hss = Z2, then L2(G/Hss)= L2(PSL(2,R)) and so the left regular representation
contains the even discrete series representations with∞ multiplicity.

If H is connected, then L2(G/H) contains all discrete series representations and
so does the left regular representation of G on L2(G).
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IV. More examples

We discuss in this section some interesting examples of groups G and Hss , illustrat-
ing our results; one aspect is to find reductive spaces that are not tempered.

We use the Plancherel formula to determine if L2(G/Hss) is tempered. Some of
our examples are also contained in [Benoist and Kobayashi 2015], where they are
obtained with a different technique; others are new.

E. van den Ban and H. Schlichtkrull [2005] proved a Plancherel formula for
L2(G/H) for a fixed point set H of an involution τ of G. They showed that only
discrete series representations of L2(G/H) and principal series representations
unitarily induced from a θτ invariant parabolic MAN , a discrete series representation
π of M/M ∩ H and a unitary character of A contribute to the Plancherel formula.
On the other hand the work of M. Flensted-Jensen and Oshima and Matsuki shows
that the discrete spectrum of G/H is nontrivial if and only if

rank G/H = rank K/K ∩ H.

A parametrization of the representations in the discrete spectrum was obtained by
T. Matsuki and T. Oshima [1984]. See also [Schlichtkrull 1983]. We will make
extensive use of these results in the proofs of our examples.

Remark 1. Induction by stages enlarges the set of pairs G, H̃ for which L2(G/H̃)
is tempered. (See [Fell 1962, Theorem 4.2]; here the point is that induction preserves
weak containment, so if we have groups H ⊂ H̃ ⊂G so that L2(G/H) is tempered
and we know that L2(H̃/H) contains the trivial representation weakly, then also
L2(G/H̃) is tempered.)

Remark 2. The nontempered representations in the discrete spectrum of L2(G/Hss)

are automorphic representations [Burger and Sarnak 1991]. Most of these automor-
phic representations are known and have been constructed using other techniques for
example in [Kudla and Rallis 1990; Howe and Piatetski-Shapiro 1979; Schlichtkrull
1983; Mœglin and Waldspurger 1989].

Example 4. Let G = SL(2n,R), We take H as the connected component of
S
(
GL(p,R)×GL(q,R)

)
. Then Hss = SL(p,R)× SL(q,R) where p + q = 2n.

and
rank G/H = rank K/K ∩ H =min(p, q).

The results of van den Ban and Schlichtkrull show that all the representations
in the continuous spectrum are unitarily induced from θτ -stable parabolic sub-
groups. It is easy to see that these parabolic subgroups are all cuspidal and thus
the representations in the discrete spectrum determine whether L2(SL(n,R)/H) is
tempered.
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We recall the parametrization of the representations in the discrete spectrum.
Using the decomposition h⊗C⊕ q⊗C of gl(2n,C) we conclude that the skew
diagonal matrices in q⊗C are a maximal abelian subspace of so(2n,C)∩q⊗C. By
[Ōshima and Matsuki 1984] their centralizer L is the Levi subgroup of a θ stable
parabolic subgroup. The representations in the discrete spectrum are cohomolog-
ically induced from a character of the subgroup L . If the commutator subgroup
L does not contain a noncompact semisimple subgroup then the representations
are tempered. (For this, see [Knapp and Vogan 1995, Chapter XI] or [Vogan and
Zuckerman 1984, Theorem 6.16]). Thus we conclude:

• If p = q = n the subgroup [L , L] is a product of n compact tori. Hence all
representation L2(SL(2n,R)/(SL(n,R)×SL(n,R)) in the discrete spectrum
are tempered and thus L2(SL(2n,R)/Hss) is tempered.

• If p − q ≥ 2 then L has a noncompact subgroup and hence the representa-
tions in the discrete spectrum of L2(G/Hss) are the Langlands subquotient of
representations which is not unitarily induced. Hence

L2(SL(2n,R)/(SL(n,R)×SL(n,R))

is not tempered.

• Using Remark 2 we can construct a large number of additional semisimple
subgroups Hss so that L2(SL(2n,R)/Hss) is tempered.

C. Mœglin and J. L. Waldspurger [1989] show that these representations are in the
residual spectrum of a congruence subgroup of GL(n,R). Similar considerations
for general linear groups can be found in [Venkatesh 2005].

Example 5. G = SO(p, q), p+ q = 2n ≥ 4 with p ≥ q > 2 and

H = SO(1, 1)×SO(p− 1, q − 1) and Hss = SO(p− 1, q − 1).

Claim. L2
(
SO(p, q)/SO(p− 1, q − 1)

)
is not tempered.

We have
rank G/H = rank K/K ∩ H = 2.

We argue as in Example 2. The group [L , L] has a factor isomorphic to

SO(p− 2, q − 2),

and is hence is not compact. So there are nontempered representations in the discrete
spectrum.

T. Kobayashi [1992] considered the case G/H0 where H = Hc × H0. Here
Hc is a compact orthogonal group and H0 is a noncompact orthogonal group.
He determined the parameter of the representations in the discrete spectrum of
L2(G/H0) and their multiplicities.
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Example 6. G = Sp(n,R), H = GL(n,R), Hss = SL(n,R).

Claim. L2(Sp(n,R)/SL(n,R)) is tempered.

The proof proceeds as follows:

Step 1: All the representations in the discrete spectrum are tempered.

Step 2: Each conjugacy class of parabolic subgroups contains a θτ -invariant
parabolic subgroup MAN .

Step 3: All discrete series representations of M/M ∩ H are tempered.

For simplicity assume that the symplectic group is defined by the quadratic form
defined by the matrix (

0 I
−I 0

)
,

where I is the identity matrix. The subgroup H =GL(n,R) of G is the fixed point
set of the automorphism τ defined by conjugation with(

I 0
0 I

)
.

The maximal compact subgroup KH of H is K ∩ H = O(n). Furthermore

g= k⊕ p,

g= h⊕ q.

The one-dimensional torus T0 in the center of K also defines a torus on K/H ∩ K .
Its Lie algebra t0 is direct summand of the maximal abelian subalgebra ak of
qk = k∩q. Since T0 defines the complex structure on the symmetric space G/K the
centralizer of ak in G is contained in K . Thus every representation in the discrete
spectrum is tempered.

The θτ -stable parabolic subalgebras are determined by maximal abelian sub-
spaces i in p∩ q. Now

h̃ := k∩ h⊕ p∩ q= gl(n,R)

is the fixed point set of the involution θτ since the fixed point set of θτ is conjugate
in GL(2n,R) to GL(n,R). This implies that there is a n-dimensional abelian split
subalgebra ãH in p∩ q consisting of the matrices(

0 D
D 0

)
,

where D is a real diagonal matrix. Hence every conjugacy classes of parabolic
subgroups contains a θτ -stable parabolic Ps = Ms As Ns whose Levi subgroup is a
centralizer of ãH .
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Next we have to determine Ms ∩ H . Note that Ms is a product of general linear
groups and a symplectic group. The factors isomorphic to general linear groups are
subgroups of H̃ . Since H̃ ∩ H = K ∩ H is an orthogonal group, the intersection of
the general linear subgroups of Ms with H are orthogonal groups and hence the
corresponding symmetric space has no discrete spectrum. Thus we may assume
that Ms = Sp(m,R) with m < n. In this case θτ is an involution of Ms with fixed
points H̃ ∩Ms = GL(m,R). Furthermore since θ and τ commute their restriction
to Ms also defines an automorphisms of Ms . So the fixed point set of θτ|Ms is
conjugate to the fixpoint set of τ|Ms in GL(2n,R). Hence we conclude that Ms ∩H
is isomorphic to GL(m,R). By Step 1 the representations in the discrete spectrum
of Sp(m,R)/GL(m,R) are tempered and thus by [van den Ban and Schlichtkrull
2005] all the representations in the continuous spectrum of Sp(n,R)/SL(n,R) are
tempered.

Example 7. Cayley-type spaces are considered in [Ólafsson and Ørsted 1999;
Faraut and Korányi 1994]. These are

(a) G = Sp(n,R), H = GL(n, R) and Hss = SL(n,R), n > 1;

(b) G = SO(2, n), H = SO(1, 1)SO(1, n− 1) and Hss = SO(1, n), n > 2;

(c) G = SU(n, n), H = SL(n,C)R+ and Hss = SL(n,C);

(d) G = O∗(2n), H = R+ SU∗(2n) and Hss = SU∗(2n);

(e) G = E7(−25), H = E6(−26)R
+ and Hss = E6(−26).

Claims.
• In Example 7(b)–(d) with n large enough L2(G/Hss) is not tempered.

• In Example 7(a) L2(G/Hss) is tempered.

• We expect that in Example 7(e) L2(G/Hss) is tempered.

Proof. The proof is based on case by case considerations of the spectrum of
L2(G/H). Ólafsson and Ørsted [1999] proved that all these spaces are of equal
rank and hence L2(G/H) has a discrete spectrum.

Case (b). The arguments in Example 5 show that the representations in the discrete
spectrum of L2(SO(n, 2)/SO(n− 1, 1)) are tempered if and only if n ≤ 2. So we
can conclude that L2(SO(n, 2)/SO(n− 1, 1)) is not tempered if 3≤ n.

Case (c). It was proved in [Ólafsson and Ørsted 1988] that the discrete spectrum
for SU(n, n)/H contains some nontempered highest weight representations. Hence
L2(SU(n, n)/SL(n,C)) is not tempered.

Case (a). This was proved in Example 6.

Case (d). We have rank(G/H)= n. The Levi of the θ-stable parabolic subgroup
also contains a subgroup of type A2n−1. Since it is not the maximal compact
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subgroup, L has a noncompact subgroup. This implies that the discrete spectrum
of L2(O∗(2n)/SU∗(2n)) is not tempered.

Case (e). We only prove that the discrete spectrum is tempered. The arguments are
the same as in Example 4. Recall that

(1) the rank of G/H is 3;

(2) the maximal compact subgroup K of G is E6 SO(2);

(3) the maximal compact subgroup KH of H is F4;

(4) K/H ∩ K has a one-dimensional compact torus T0 as factor.

The centralizer of this torus T0 is K . Its Lie algebra is a direct summand of the
maximal abelian subalgebra ak of qk = k∩q. Since T0 defines the complex structure
on the symmetric space G/K the centralizer of ak in G is contained in K . Thus
every representation in the discrete spectrum is tempered.

As in Example 6 we conclude that the fixed point set of θτ is a subgroup
isomorphic to H = E6(−26)R

+, which has real rank 3. Hence every conjugacy
classes of parabolic subgroups contains a θτ -stable parabolic Ps = Ms As Ns whose
Levi subgroup is a centralizer of ãH . �

Example 8. G = SL(2n,C) and Hss has a covering T 1 SL(p,C)×SL(q,C), p+q
= 2n for a one dimensional torus T 1. Then

L2(SL(n,C)/SL(p,C)×SL(q,C))=⊕
δ∈T̂ L2(SL(n,C)/Hss, δ),

where L2(SL(n,C)/Hss, δ) are the L2-sections of the line bundle defined by the
character δ of Hss . As in Example 2 we are in the equal rank case.

The same arguments as in Example 4 show:

• If p = q = n the subgroup [L , L] is compact. Hence all representations in
the discrete spectrum of L2(SL(2n,C)/H) are tempered, which implies that
L2(SL(2n,C)/Hss) is tempered.

• If p−q ≥ 2 then [L , L] is not compact and hence the representations in the dis-
crete spectrum of L2(G/Hss) are the Langlands subquotients of representations
which are not unitarily induced. Hence L2(SL(2n,C)/SL(n,C)×SL(n,C))

is not tempered.
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