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COMMENSURATORS OF SOLVABLE S-ARITHMETIC GROUPS

DANIEL STUDENMUND

We show that the abstract commensurator of an S-arithmetic subgroup of
a solvable algebraic group over Q is isomorphic to the Q-points of an al-
gebraic group, and compare this with examples of nonlinear abstract com-
mensurators of S-arithmetic groups in positive characteristic. In particular,
we include a description of the abstract commensurator of the lamplighter
group (Z/2Z) o Z.

1. Introduction

Overview. In this paper we show that the abstract commensurator of an S-arithmetic
subgroup of a solvable Q-group is isomorphic to the Q-points of an algebraic group.
We then include examples to show that the analogous result in positive characteristic
does not hold. As part of these examples, we provide a description of the abstract
commensurator of the lamplighter group.

Background. A Q-group G is a linear algebraic group defined over Q. For S any
finite set of prime numbers, let G(S) denote the set of S-integer points of G, that is,
those matrices in G(Q) whose entries have denominators with prime divisors be-
longing to S. A subgroup of G(Q) is S-arithmetic if it is commensurable with G(S).
When S =∅, an S-arithmetic group is called an arithmetic group.

Remark. Beware of our unconventional choice of notation for S, which by defini-
tion includes only non-Archimedean valuations on Q.

The abstract commensurator of a group 0, denoted Comm(0), is the group of
equivalence classes of isomorphisms between finite-index subgroups of 0, where
two isomorphisms are equivalent if they agree on a finite-index subgroup of 0.

The starting point for our work is the following result, immediate from the fact
that S-arithmetic subgroups of Q-groups are preserved by isomorphism of their
ambient Q-groups; see [Platonov and Rapinchuk 1994, Theorem 5.9, p. 269]. Let
AutQ(G) denote the group of Q-defined automorphisms of G.
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Proposition 1.1. Suppose G is any Q-group. For any finite set of primes S, there is
a natural map 2 : AutQ(G)→ Comm(G(S)).

In the case that G is a higher-rank, connected, adjoint, semisimple linear algebraic
group that is simple over Q, rigidity theorems of Margulis [1991] imply that the
map2 of Proposition 1.1 is an isomorphism. Similarly, if G is unipotent then2 is an
isomorphism by Mal’cev rigidity; see Theorem 3.3. Moreover, in each of these cases
the group Aut(G) has the structure of a Q-group such that AutQ(G)∼=Aut(G)(Q).

Main result. When G is solvable and not unipotent the group G(S) is not rigid
in the above sense. One approach to remedying this lack of rigidity is taken in
[Witte 1997], where solvable S-arithmetic groups are shown to satisfy a form of
Archimedean superrigidity. For solvable arithmetic groups, another study of this
failure of rigidity appears in [Grunewald and Platonov 1999]. Extending these
methods, we prove the main theorem of this paper:

Theorem 1.2. Let G be a solvable Q-group and let S be a finite set of primes. Then
there is a finite-index subgroup Comm0(G(S))≤ Comm(G(S)) and a Q-group D
such that

Comm0(G(S))∼= D(Q).

The group D is constructed explicitly as a quotient of an iterated semidirect
product of groups. See Section 3C for proof and details.

When S = ∅ the arithmetic group G(S) = G(Z) is virtually polycyclic, and
hence virtually a lattice in a connected, simply connected solvable Lie group. In
[Studenmund 2015] it was shown that the abstract commensurator of a lattice in
a connected, simply connected solvable Lie group is isomorphic to the Q-points
of a Q-group. Therefore the S = ∅ case of Theorem 1.2 is a consequence of
[Studenmund 2015].

When S 6= ∅ the group G(S) is no longer necessarily polycyclic, so different
methods are necessary. When U is a unipotent group, for any set of primes S we have

Comm(U(S))∼= Aut(U)(Q).

In particular the abstract commensurator is independent of S. For example, we have
Comm(Z[1/2]) ∼= Comm(Z[1/3]) ∼= Q∗. Note that for each nontrivial unipotent
group this provides an infinite family of pairwise non-abstractly-commensurable
groups with isomorphic abstract commensurator.

When G contains a torus, the abstract commensurator of an S-arithmetic subgroup
may depend on S. For example, let T be the Zariski-closure of the cyclic subgroup
generated by the matrix

( 2
1

1
1

)
. Note that T is diagonalizable over R and over Q11

since 5 has an 11-adic square root, while T is not diagonalizable over either Q
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or Q3. It follows from Theorem 2.1 below that

T (∅) .= Z, T ({3}) .= Z, T ({11}) .= Z2, and T ({3, 11}) .= Z2,

where we write G .
= H if G and H contain isomorphic subgroups of finite index.

Then Comm(T ({11})) and Comm(T ({3, 11})) are each isomorphic to GL2(Q), but
neither is isomorphic to Comm(T ({3})) ∼= Q∗. This dependence on S appears
even for groups whose maximal torus acts faithfully on the unipotent radical; see
Theorem 1.3.

Explicit description of commensurator. A key case is when the action of any
maximal torus of G on the unipotent radical of G is faithful. Such a solvable
algebraic group is said to be reduced. When G is reduced, we have the following
explicit statement whether or not S =∅.

Theorem 1.3. Let G be a connected and reduced solvable Q-group, let S be a
finite set of primes, and let 1 be an S-arithmetic subgroup of G. Suppose G(S) is
Zariski-dense in G. There is an isomorphism of abstract groups

(1) Comm(1)∼= HomQ(Q
N , Z(G)(Q))oAutQ(G),

where N is the maximum rank of any torsion-free, free abelian subgroup of T (S) for
any maximal Q-defined torus T ≤G and HomQ denotes the group of Q-vector space
homomorphisms under addition. There is a subgroup Comm0(1)≤ Comm(1) of
finite index which has the structure of the Q-points of a Q-group.

Note that the semidirect product appearing in (1) is a semidirect product of
abstract groups. However, there is a subgroup of finite index which has the structure
of the Q-points of a Q-group. See Section 3 for details.

Remark. In the case S = ∅, Theorem 1.2 follows from Theorem 1.3 by the
fact that any solvable arithmetic group 0 is abstractly commensurable with an
arithmetic subgroup of a reduced solvable group. See [Grunewald and Platonov
1999, Theorem 3.4] for a proof of this fact. This is possible because arithmetic
subgroups of tori are abstractly commensurable with arithmetic subgroups of abelian
unipotent groups; both are virtually free abelian. The same method does not work
when S is nonempty: S-arithmetic subgroups of tori are virtually free abelian while
S-arithmetic subgroups of unipotent groups are not.

Remark. Bogopolski [2012] has computed abstract commensurators of the solvable
Baumslag–Solitar groups to be

Comm(BS(1, n))∼=QoQ∗.
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Theorem 1.3 recovers Bogopolski’s result in the case that n is a prime power, since
BS(1, p2) is isomorphic to the group G(S), where S = {p} and G = B2/Z(B2) for

B2 =

{(
x z
0 y

)∣∣∣∣ xy = 1
}
⊆ GL2(C).

Note that BS(1, nk) is a finite-index subgroup of BS(1, n); hence the two groups
have isomorphic abstract commensurators.

When n is not a prime power, BS(1, n) is no longer commensurable with an
S-arithmetic group. However, BS(1, n2) embeds as a Zariski-dense subgroup of

(B2/Z(B2))(S),

where S consists of the prime factors of n. It may be possible to modify the proof
of Theorem 1.3 to compute Comm(BS(1, n)) for any n from this embedding.

Number fields. Above we have defined S-arithmetic subgroups only of Q-groups,
but S-arithmetic groups may be defined over any global field. Our methods fail
to prove any obvious analog of Theorem 1.2 for S-arithmetic groups over general
number fields. In particular, if 0 is an S-arithmetic subgroup of a unipotent group U
defined over K then Comm(0)may depend on S, in contrast with the case of K =Q.
This is explained in more detail in Section 4.

Despite this difference, the conclusion of Theorem 1.2 holds for unipotent
groups G and may hold for general solvable G. The difficulty in finding a proof
lies in finding an alternative to the use of Proposition 1.1; see the remarks at the
end of Section 4.

Function fields and the lamplighter group. In contrast to the case of S-arithmetic
groups over number fields, Theorem 1.2 has no obvious analog for S-arithmetic
groups over global fields of positive characteristic. Section 5 includes examples
demonstrating this failure.

A well-known example of a solvable S-arithmetic group in characteristic 2 is the
lamplighter group (Z/2Z) oZ. Section 6 describes the abstract commensurator of
the lamplighter group, with the following main result.

Theorem 1.4. Using the definitions in Equations (6) and (7) of Section 6, there is
an isomorphism

Comm((Z/2Z) oZ)∼= (VDer(Z, K )oComm∞(K ))o (Z/2Z).

Using this decomposition we show, for example, that the abstract commensurator
of the lamplighter group contains every finite group as a subgroup.
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2. Background and definitions

For any group 0, a partial automorphism of 0 is an isomorphism between finite-
index subgroups of 0. Two partial automorphisms φ1 and φ2 are equivalent if there
is some finite index 1≤ 0 such that φ1

∣∣
1
= φ2

∣∣
1

; an equivalence class of partial
automorphisms is a commensuration of 0. The abstract commensurator Comm(0)
is the group of commensurations of 0. If 01 and 02 are abstractly commensurable
groups then Comm(01)∼= Comm(02). We will implicitly use this fact often.

A subgroup 1≤0 is commensuristic if φ(1∩01) is commensurable with 1 for
every partial automorphism φ :01→02 of 0. Say that1 is strongly commensuristic
if φ(1∩01)=1∩02 for every such φ. If 1 is commensuristic, restriction induces
a map Comm(0)→ Comm(1). If 1 is strongly commensuristic, then there is a
natural map Comm(0)→ Comm(0/1).

A group 0 virtually has a property P if there is a subgroup 1≤ 0 of finite index
with property P . For any 3, a virtual homomorphism 0→3 is a homomorphism
from a finite-index subgroup of 0 to 3. Two such virtual homomorphisms are
equivalent if they agree on a finite-index subgroup of 0.

By a Q-defined linear algebraic group, or Q-group, we mean a subgroup
G ≤ GLn(C) for some n that is closed in the Zariski topology and whose defining
polynomials may be chosen to have coefficients in Q. The Q-points of G are
G(Q) = G ∩GLn(Q). If S is a finite set of prime numbers, we define the group
of S-integer points of G, denoted G(S), to be the subgroup of elements of G(Q)
with matrix coefficients having denominators divisible only by elements of S. A
subgroup of G(Q) is S-arithmetic if it is commensurable with G(S). An abstract
group 0 is S-arithmetic if it is abstractly commensurable with an S-arithmetic
subgroup of some Q-group G.

Now let G be a solvable Q-group, S be a finite set of primes, and 0 = G(S).
Since [G : G0

] < ∞, we will assume G is connected. The subgroup U ≤ G
consisting of all unipotent elements of G is connected, is defined over Q, and is
called the unipotent radical. For any maximal Q-defined torus T ≤ G, there is a
semidirect product decomposition G = U o T .

For any Q-defined torus T and any field extension F of Q, the F-rank of T ,
denoted rankF (T ), is the dimension of any maximal subtorus of T diagonalizable
over F . We will use the following special case of [Platonov and Rapinchuk 1994,
Theorem 5.12, p. 276].

Theorem 2.1. Let T be a torus defined over Q and S a finite set of prime numbers.
Then T (S) is isomorphic to the product of a finite group and a free abelian group of
rank

N = rankR(T )− rankQ(T )+
∑
p∈S

rankQp(T ).
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If U is a connected unipotent Q-group, then Aut(U) may be identified with the
automorphism group of the Lie algebra of U and thus has the structure of a Q-group.
This structure is such that Aut(U)(Q)= AutQ(U), where AutQ(U) is the group of
Q-defined automorphisms of U .

A solvable Q-group G is said to be reduced, or to have strong unipotent radical,
if the action of any maximal Q-defined torus on the unipotent radical is faithful.
If G is reduced then Aut(G) naturally has the structure of a Q-group such that
Aut(G)(Q)= AutQ(G) (see [Grunewald and Platonov 1999, Section 4] or [Baues
and Grunewald 2006, Section 3]) and the identity component Aut0(G) is a finite-
index subgroup of Aut(G) that acts trivially on the quotient of G by its unipotent
radical.

3. Proof of main theorems

3A. Setup. In this section we begin the work necessary to prove Theorem 1.2, by
way of Theorem 1.3. Let G be a connected solvable Q-group, let S be a finite set of
prime numbers, and let 0≤G(Q) be an S-arithmetic subgroup. Replacing G by the
Zariski-closure of 0, we will assume going forward that 0 is Zariski-dense in G.

Write G = U o T as above. We will assume without loss of generality that 0
decomposes as 0=U(S)o0T for some finitely generated, torsion-free, free abelian
S-arithmetic subgroup 0T ≤ T (S); see [Platonov and Rapinchuk 1994, Lemma 5.9]
and Theorem 2.1.

A group 0 is uniquely p-radicable if for every γ ∈ 0 there is a unique element
δ ∈ 0 such that δ p

= γ .

Lemma 3.1. Suppose1 is any finite-index subgroup of 0 and p∈ S. Then1∩U(S)
is the unique maximal uniquely p-radicable subgroup of 1.

Proof. Since 0T is isomorphic to ZN for some N , it suffices to show that U(S)∩1 is
uniquely p-radicable. Moreover, because the property of being uniquely p-radicable
is inherited by subgroups of finite index, it suffices to check that U(S) is uniquely
p-radicable. It is a standard fact that U is Q-isomorphic to a subgroup of the group
of n× n matrices with 1’s on the diagonal, which we denote Un . Therefore U(S)
is commensurable with a subgroup of Un(S). The desired property is preserved
by commensurability of torsion-free groups, so it suffices to show that Un(S) is
uniquely p-radicable. This may easily be done by induction on n. �

Corollary 3.2. If S 6=∅, then U(S) is strongly commensuristic in 0.

Remark. If S =∅ then Corollary 3.2 is still true when G is reduced. This follows
from the fact that 0 ∩U is the Fitting subgroup of 0 for any arithmetic subgroup
0 ≤ G(Q); see [Grunewald and Platonov 1999, Lemma 2.6] for a proof.

Theorem 3.3. There is an isomorphism Comm(U(S))∼= Aut(U)(Q).
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Proof. Since U(S) has the property that for each u ∈ U(Q) there is some number k
such that uk

∈ U(Z), any partial automorphism φ of U(S) is determined by its
values on U(Z). The resulting map φ

∣∣
U(Z) : U(Z)→ U(Q) uniquely extends to a

Q-defined homomorphism φ̃ : U→ U by a theorem of Mal’cev (see, for example,
the proof of [Raghunathan 1972, Theorem 2.11, p. 33].) Since the dimension of the
Zariski-closure of φ(U(Z)) is equal to the dimension of U by [Raghunathan 1972,
Theorem 2.10, p. 32], the map φ̂ is an automorphism of U .

The assignment [φ] 7→ φ̃ gives a well-defined mapping ξ : Comm(U(S))→
Aut(U)(Q). We see that ξ is injective because U(S) is Zariski-dense in U , and ξ is
surjective because every Q-defined automorphism of U induces a commensuration
of U(S) by Proposition 1.1. �

3B. Reduced case. Now assume that G is reduced. We prove Theorem 1.3 using
methods following those used to prove Theorems A and C of [Grunewald and
Platonov 1999].

Proof of Theorem 1.3. Let U be the unipotent radical of G and fix a maximal
Q-defined torus T ≤ G. We assume without loss of generality that 1= (1∩U)o
(1∩ T ).

Suppose φ : 11 → 12 is a partial automorphism of 1. By Corollary 3.2
and Theorem 3.3, φ induces a Q-defined automorphism 8U ∈ Aut(U). Define
α : G→ Aut(U) to be the map induced by conjugation. Note that α

∣∣
T is injective

since G is reduced.
It is straightforward to check that for any δ ∈11 we have

8U ◦α(δ) ◦8
−1
U = α(φ(δ)).

It follows that conjugation by 8U preserves α(G) inside Aut(U). Conjugation
by 8U therefore induces an isomorphism between α(T ) and α(T ′) for some max-
imal Q-defined torus T ′ ≤ G, and hence an isomorphism 8T : T → T ′. Note
that 8T is defined to satisfy the relation

(2) 8U ◦α(t) ◦8
−1
U = α(8T (t))

for all t ∈ T .
The maps 8U and 8T determine a self-map of G: for each g ∈ G, write g = ut

for u ∈ U and t ∈ T and set

80(g) :=8U (u)8T (t).

Equation (2) implies that 80 is a Q-defined automorphism of G. However, the
map Comm(1)→AutQ(G) defined by [φ] 7→80 is not necessarily a well-defined
homomorphism of groups. We will show that 80 can be modified in a unique way
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to produce an automorphism 8 so that 8(δ)φ(δ)−1
∈ Z(G) for all δ ∈ 11. This

condition will guarantee the map [φ] 7→8 defines a homomorphism.
It is straightforward to check from our definitions that α(80(δ)φ(δ)

−1) is trivial
for all δ∈11. Therefore v(δ) :=80(δ)φ(δ)

−1 defines a function v :11→ Z(U)(Q).
One can check that

v(δ1δ2)= v(δ1)φ(δ1)v(δ2)φ(δ1)
−1.

That is, φ is a derivation when Z(U)(Q) is given the structure of a left 11-module
by δ · z = φ(δ)zφ(δ)−1 for δ ∈11 and z ∈ Z(U)(Q).

The derivation v is trivial on 11 ∩ U , and therefore descends to a derivation
v̄ : 11 ∩ T → Z(U)(Q). Now decompose Z(U)(Q) as a direct sum of weight
spaces for the action of T and let V be the sum of all weight spaces with nontrivial
weights. Let v⊥ be the component of the derivation v̄ in the submodule V . Since
CV (T ) is trivial, it follows from a standard cohomological fact (see [Segal 1983,
Chapter 3, Theorem 2**, p. 44]) that v⊥ is an inner derivation. That is, there is
some x ∈ V such that v⊥(δ)= φ(δ)xφ(δ)−1x−1 for all δ ∈1∩ T . It follows that

v(δ)xφ(δ)x−1φ(δ)−1
∈ Z(G)(Q).

When x is viewed as an element of Z(U)(Q), the choice of x is unique up to
Z(G)(Q).

Given 80 and x as above, the assignment µ(φ)= cx ◦80, where cx(g)= xgx−1

for all g ∈ G, determines a well-defined map

µ : Comm(1)→ Aut(G)(Q).

One can check using an obvious modification of [Grunewald and Platonov 1999,
Lemma 2.9] that µ is a homomorphism. Because 0 is Zariski-dense in G, the map

2 : AutQ(G)→ Comm(G(S))

of Proposition 1.1 is injective. In fact 2 is a section of µ; to see this, note that if
φ = 2(8) then the associated maps 8U and 8T are 8U = 8

∣∣
U and 8T = 8

∣∣
T ,

which clearly satisfy (2), and moreover the associated derivation ν is trivial. It
follows that there is an isomorphism

Comm(1)∼= ker(µ)oAut(G)(Q).

Now suppose that [φ] ∈ ker(µ). It follows from the above that φ is a virtual
homomorphism 1→ Z(G)(Q) trivial on 1∩U . We can view φ as a virtual homo-
morphism1∩T→ Z(G)(Q). Since1∩T is virtually ZN , the group of equivalence
classes of such virtual homomorphisms is isomorphic to HomQ(Q

N , Z(G)(Q)).
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We therefore have a well-defined map

ξ : ker(µ)→ Hom(QN , Z(G)(Q)).

Clearly ξ is injective. On the other hand, suppose that [1∩ T :3]<∞ and that
f :3→ Z(G)(Q) is a homomorphism. There is a finite-index subgroup 3̃ ≤3
such that f (3̃)≤ Z(G)(S). The map

φ : U(S)o 3̃→ U(S)o 3̃

defined by φ(u, λ)= (u · f (λ), λ) induces a commensuration of 1 mapping to f
under ξ ; hence ξ is surjective. This completes the proof that Comm(1) has the
desired semidirect product decomposition.

Let
Comm0(1)= HomQ(Q

N , Z(G)(Q))oAut0(G)(Q).

Clearly Comm0(1) has finite index in Comm(1). We will show that Comm0(0)

has the structure of the Q-points of a Q-group. We first understand the action
of Aut(G) on Hom(QN , Z(G)). Any 8 ∈ AutQ(G) induces a commensuration
of 1 virtually preserving U(S), hence induces a commensuration of T (S). Let
8̃T ∈GLN (Q) be the automorphism corresponding to the induced commensuration
of T (S). Then the action is given by

(8 ·α)(t)=8U (α(8̃
−1
T t)).

Note that if 8 ∈ Aut0(G) then 8 acts trivially on the quotient G/U ; hence the
induced map 8̃T is trivial.

The group HomQ(Q
N , Z(G)(Q)) is isomorphic to the Q-points of (Ga)

Nd , a
product of additive groups defined over Q, where d is the dimension of Z(G).
Under this identification, the action of Aut(Z(G))(Q) by postcomposition on
HomQ(Q

N , Z(G)(Q)) corresponds to the diagonal linear action of Aut(Z(G))
on (Ga)

Nd . Since the restriction map Aut(G)→ Aut(Z(G)) is defined over Q by
definition of the algebraic structure on Aut(G), the action map

Aut0(G)× (Ga)
Nd
→ (Ga)

Nd

is defined over Q. Hence the semidirect product (Ga)
Nd oAut0(G) is an algebraic

group whose Q-points are identified with Comm0(1). �

3C. Nonreduced case. Now consider the case that G is a connected solvable group,
not necessarily reduced. As above we will assume without loss of generality that 0
is Zariski-dense in G and decomposes as 0 = U(S)o0T . Assume for the rest of
this section that S 6=∅. (The case that S=∅ is addressed by the remarks following
the statement of Theorem 1.2.) Our primary goal is to reduce to a situation where
Theorem 1.3 can be applied. This reduction will occur over several steps.
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Define T0 ≤ T to be the centralizer of U in T , a Q-defined subgroup of T .
There is a Q-defined subgroup T1 ≤ T such that T = T0T1 and T0 ∩ T1 is finite.
Without loss of generality we replace G by G/(T0 ∩ T1) and henceforth assume
that T0∩T1 = {1}. Note that now U oT1 is a reduced solvable Q-group. Moreover,
without loss of generality we replace 0T with 00 × 01, where 0i ∼= ZNi is an
S-arithmetic subgroup of Ti for each i = 0, 1. See Theorem 2.1 for the formula
used to determine Ni .

From the semidirect product decomposition 0= (U(S)×00)o01, let us denote
elements of 0 by triples (u, γ0, γ1), where u ∈ U(S) and γi ∈ 0i for i = 0, 1.

Define ZU (0)= Z(0)∩U . Clearly we have

Z(0)= ZU (0)×00.

If1 is any finite-index subgroup of 0, then Z(1)=1∩Z(G) by the Zariski-density
of1. It follows that Z(0) is strongly commensuristic in 0. Moreover, since U(S) is
strongly commensuristic in 0 it follows that ZU (0) is strongly commensuristic in 0.

Any virtual homomorphism α : 00×01→ ZU (0) determines a partial automor-
phism ψα of 0 defined on an appropriate subgroup of 0 by

ψα(u, γ0, γ1) := (u+α(γ0, γ1), γ0, γ1).

Let W denote the subgroup of Comm(0) arising in this way from equivalence
classes of virtual homomorphisms 00×01→ ZU (0). There is an isomorphism

W ∼= Hom(QN0+N1,Qd),

where d is the dimension of Z(G)∩U .
Let

Comm00(0)= {[φ : H → K ] ∈ Comm(0) | φ(H ∩00)= K ∩0o}.

Lemma 3.4. W ·Comm00(0)= Comm(0).

Proof. We first show that W is a normal subgroup of Comm(0) so that the product
W ·Comm00(0) is well defined. To see this, take any φ ∈ Comm(0). Since U(S)
is commensuristic in 0 and is fixed by any ψα ∈W we see that φ ◦ψα ◦ φ−1 is
trivial on U(S). It follows by direct computation that

φ ◦ψα ◦φ
−1
= ψφU◦α◦φ

−1
T
,

where φU is the restriction of φ to ZU (0) and φT is the commensuration of 00×01

induced by φ under the quotient map 0→ 0/U(S). The map φU ◦ α ◦ φ
−1
T is a

virtual homomorphism from 0o×01 to ZU (0) because ZU (0) is commensuristic
in 0. This shows that W is normal in Comm(0).
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Suppose φ : H → K is a partial automorphism of 0. Since U(S) is strongly
commensuristic, φ induces a commensuration [ν] ∈ Comm(00×01). There is a
function α : H ∩ (00×01)→ K ∩ ZU (0) such that

φ(0, γ0, γ1)= (α(γ0), ν(γ0, γ1))

for all (γ0, γ1) ∈ H ∩ (00×01). In fact the function α is a virtual homomorphism
00×01→ ZU (0).

Define a virtual homomorphism β : 00 × 01 → ZU (0) by β = −α ◦ ν−1. A
straightforward computation shows that

(ψβ ◦φ)(0, γ0, γ1)= (0, ν(γ0, γ1))

for all (γ0, γ1) ∈ H ∩ (00×01). Since Z(0) is commensuristic in 0, it follows that
(ψβ ◦ φ)(0, γ0, 0) = (0, ν(γ0), 0) for all γ0 ∈ H ∩ 00. This means that ψβ ◦ φ ∈
Comm00(0), which completes the proof. �

We now turn to the task of elucidating the structure of Comm00(0). There is a
natural map

ξ : Comm00(0)→ Comm(0/00).

Define CommT (0) to be the kernel of ξ . Because 0/00 is naturally identified with
the subgroup U(S)o01 ≤ 0, it is easy to see that ξ is surjective. Therefore there
is a short exact sequence

(3) 1→ CommT (0)→ Comm00(0)→ Comm(0/00)→ 1.

Because 0 decomposes as a direct product 0 = (U(S)o01)×00, the sequence (3)
splits and we can identify Comm(0/00)∼= Comm(U(S)o01). By Theorem 1.3
there is an isomorphism

Comm(0/00)∼= HomQ(Q
N1, Z(U o T1)(Q))oAut(U o T1)(Q).

Note that Z(U oT1)= Z(G)∩U , so recalling that d is the dimension of Z(G)∩U
we may write

Comm(0/00)∼= HomQ(Q
N1,Qd)oAut(U o T1)(Q).

Lemma 3.5. Let 0i ∼= ZNi for i = 0, 1 be as above. There is an isomorphism

CommT (0)∼= HomQ(Q
N1,QN0)oGLN0(Q),

where the action is by postcomposition.

Proof. There is a homomorphism 9 : CommT (0)→GLN0(Q) given by restriction
to 00. Because 00 splits off as a direct product factor, 9 is surjective and the
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following exact sequence splits:

1→ ker(9)→ CommT (0)→ GLN0(Q)→ 1.

The kernel of 9 is given by equivalence classes of virtual homomorphisms
U(S)o01→ 00. There are no virtual homomorphisms U(S)→ 00 because 00

is free abelian and every finite-index subgroup of U(S) is p-radicable for any
p ∈ S. Therefore the kernel of 9 may be identified with equivalence classes
of virtual homomorphisms from 01 to 00, which form a group isomorphic to
HomQ(Q

N1,QN0). The fact that the action is by postcomposition is immediate. �

Define
Comm0

00
(0)= CommT (0)oComm0(0/00),

where Comm0(0/00) is as defined in Theorem 1.3. This is a finite-index subgroup
of Comm00(0). Note that the subgroup HomQ(Q

N1,Qd)≤ Comm0
00
(0) acts triv-

ially on CommT (0), and the subgroup GLN0(Q) ≤ CommT (0) is centralized by
the action of Comm0(0/00). There is therefore a normal subgroup of Comm0

00
(0)

isomorphic to
HomQ(Q

N1,QN0)×HomQ(Q
N1,Qd),

which is isomorphic to HomQ(Q
N1,QN0+d). So we may write

(4) Comm0
00
(0)∼= HomQ(Q

N1,QN0+d)o (GLN0(Q)×Aut0(U o T1)(Q)),

where the commuting actions of GLN0(Q) and Aut0(U o T1)(Q) are each by
postcomposition.

Lemma 3.6. There is a Q-group C such that Comm0
00
(0)∼= C(Q).

Proof. For each i = 1, . . . , N1 and j = 1, . . . , N0 + d, let Ai, j be a copy of the
1-dimensional additive Q-group Ga . Define

CT =

N1∏
i=1

N0+d∏
j=1

Ai, j .

Fix bases {vi }
N1
i=1 for QN1 , and {wi }

N0
i=1 for QN0 , and {wi }

N0+d
i=N0+1 for Qd , so that

{wi }
N0+d
i=1 is a basis for QN0+d . Let ei, j be the element of HomQ(Q

N1,QN0+d) that
sends vi to w j and each vk to zero for k 6= i . Then the collection of {ei, j } are a
basis for HomQ(Q

N1,QN0+d). Fix an isomorphism CT (Q)∼=HomQ(Q
N1,QN0+d)

that takes a generator of Ai, j to ei, j for each pair i, j .
The algebraic group GLN0 acts on CT by acting in the standard way on each

group
∏N0

j=1 Ai, j for fixed i and trivially on each factor Ai, j for j > No. This action
is defined over Q. The restriction of this action to the group action of GLN0(Q) on
HomQ(Q

N1,QN0) inside HomQ(Q
N1,QN0+d) is the action in (4).
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Identify each group
∏N0+d

j=N0+1 Ai, j with Z(U oT1). This determines an action of
the group Aut0(U o T1) on each group

∏N0+d
j=N0+1 Ai, j for fixed i , hence an action

on all of CT . This action is defined over Q, and its restriction to Aut0(U o T1)(Q)

agrees with the action in (4).
Using the actions defined above, the algebraic group

C = (Ga)
N1(N0+d)o (GLN0 ×Aut0(U o T1))

is a Q-group with C(Q)= Comm0
00
(0). �

The group Comm0
00
(0) acts on W by conjugation. Under the identification

W ∼= HomQ(Q
N0+N1,Qd) and the decomposition of (4), this gives actions of each

of HomQ(Q
N1,QN0+d), GLN0(Q), and Aut0(U o T1)(Q) on HomQ(Q

N0+N1,Qd).
We record here some facts about these actions that are straightforward to verify.

Lemma 3.7. The action of Comm0
00
(0) on W is given by the following:

(1) the action of HomQ(Q
N1,QN0+d) on HomQ(Q

N0+N1,Qd) factors through the
quotient HomQ(Q

N1,QN0) acting on HomQ(Q
N0+N1,Qd) by precomposition

by the inverse;

(2) the action of GLN0(Q) is by precomposition by the inverse acting on QN0 ≤

QN0+N1 ;

(3) the group Aut0(U o T1)(Q) acts on HomQ(Q
N0+N1,Qd) by postcomposition,

where Qd is identified with Z(U o T1)(Q).

We now complete the proof of the main theorem of this paper in the case S 6=∅.

Proof of Theorem 1.2. Continue using the notation of Section 3C and Lemmas
3.4–3.7. We will define a Q-group D so that D(Q)∼=W ·Comm0

00
(0). Because

W ·Comm0
00
(0) is a subgroup of finite index in Comm(0), this is the desired result.

Because W is normal in Comm(0), the group Comm0
00
(0) acts on W by con-

jugation. This determines an action of C(Q) on W . We will show there is an
algebraic group W with W(Q)∼=W and an algebraic action of C on W such that
the induced action of C(Q) on W(Q) agrees with the action of Comm0

00
(0) on W

under our identifications.
Consider indexed copies of the additive group Gi, j

a for i = 1, . . . , N0+ N1 and
j = 1, . . . , d . Let

W =
N0+N1∏

i=1

d∏
j=1

Gi, j
a .

Fix bases {xi }
N0
i=1 for QN0 , and {xi }

N0+N1
i=N0+1 for QN1 , and {yi }

d
i=1 for Qd , so that

{xi }
N0+N1
i=1 is a basis for QN0+N1 . Let fi, j be the element of HomQ(Q

N0+N1,Qd)

that sends xi to y j and each xk to zero for k 6= i . Then the collection of { fi, j } are a
basis for HomQ(Q

N0+N1,Qd). Fix an isomorphism W(Q)∼= HomQ(Q
N0+N1,Qd)
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that takes a generator of Gi, j
a to fi, j for each pair i, j . This gives an isomorphism

W(Q)∼=W .
For each fixed i we may identify the group

∏d
j=1 Gi, j

a with Z(U o T1). This
identification determines an action of Aut0(UoT1) on each group

∏d
j=1 Gi, j

a , hence
an action on all of W which is defined over Q. This action restricts to an action of
Aut0(U o T1)(Q) on W(Q) which agrees under our identifications with the action
of the subgroup Aut0(U o T1)(Q)≤ Comm0

00
(0) on W .

For each fixed j , the algebraic group GLN0 acts on
∏N0

i=1 Gi, j
a by the dual (inverse

transpose) of the standard action. Letting GLN0 act trivially on each Gi, j
a for i > N0,

this induces an action of GLN0 on W . The restriction of this action to GLN0(Q)

on W(Q) agrees with the action of the subgroup GLN0(Q)≤ Comm0
00
(0) on W .

Finally, the group
∏N1

i=1
∏N0

j=1 Ai, j embeds as a unipotent subgroup of GLN0+N1 ,
and through this embedding acts by the inverse transpose on

∏N0+N1
i=1 Gi, j

a for each
fixed j . There is a natural quotient map CT →

∏N1
i=1

∏N0
j=1 Ai, j , and through this

map CT acts on W in such a way that the restriction to the Q-points agrees with
the action of HomQ(Q

N1,QN0+d) on HomQ(Q
N0+N1,Qd).

In total these define an action of C on W which is defined over Q. Therefore
W o C has the structure of a Q-group.

The unipotent group (Ga)
N1d embeds in W and CT , via maps α : (Ga)

N1d
→W

and β : (Ga)
N1d
→ CT , such that the image of (Ga)

N1d(Q) is identified with
HomQ(Q

N1,Qd) under each of α and β. Let 2 ≤ W o C be the embedding
of (Ga)

N1d under the product map (−α)× β. Note that 2 is a normal unipotent
subgroup of W o C , so the quotient D = (W o C)/2 is a Q-group with D(Q)=
(W(Q)o C(Q))/2(Q).

There are isomorphisms W(Q)→W and C(Q)→ Comm0
00
(0) which induce

a surjective map

8 :W(Q)o C(Q)→ Comm0(0)

because the action of C on W is compatible with the action of Comm0
00
(0) on W .

The kernel of 8 is precisely the subgroup 2(Q), so 8 descends to an isomorphism
D(Q)∼= Comm0(0). �

4. Number fields

Linear algebraic groups can be defined over arbitrary fields. Let K be a global field
and S a set of multiplicative valuations of K . The ring of S-integral elements of K ,
denoted K (S), is the ring of x ∈ K such that v(x)≤ 1 for each non-Archimedean
valuation v /∈ S. If G is a linear algebraic group defined over K , let G(K (S)) denote
the group of matrices in G with entries in K (S). See [Margulis 1991, Chapter I]
for details.
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The following example shows that if U is a unipotent group defined over a
number field K and S is a set of multiplicative valuations, then Comm(U(K (S)))
may depend on S. This stands in contrast with Theorem 3.3, which directly implies
that Comm(U(K (S))) is independent of S when K =Q. The author is grateful to
Dave Morris for suggesting this example.

Example 4.1. Take U to be the additive group Ga defined over K =Q(i). On the
one hand, we have U(K (∅))= Z[i] and so

Comm(U(K (∅)))∼= GL2(Q).

On the other hand, let p = 5 and write p = ab for a = 2+ i and b = 2− i . Let va

and vb be the valuations corresponding to the distinct prime ideals (a) and (b)
of Z[i], respectively. Set S = {va} and 0 = U(K (S)). Note that 0 = Z[i, 1/a]. We
will show that Comm(0) is much smaller than GL2(Q).

Let Kb be the Cauchy completion of K with respect to the valuation vb, and
let Ob be the ring of integers of Kb. Note that Kb is a finite extension of Q5, and
that 0 is a dense subgroup of Ob. Any commensuration [φ] ∈ Comm(0) induces a
map 8 : Kb→ Kb that is continuous and Q-linear, hence Kb-linear. Therefore 8
is multiplication by some nonzero x ∈ Kb. In fact it follows that x ∈ K since 0
is virtually preserved and Zariski-dense in K . Every element of K× induces a
nontrivial commensuration, so we have

Comm(0)∼=Q(i)×.

In this example, Comm(0) has the structure of the Q-points of a Q-group. Hence
the conclusion of Theorem 1.2 holds even though the method of proof does not.

Dave Morris has pointed out that the arguments of Example 4.1 extend to prove
the following:

Proposition 4.2. Let U be a unipotent group defined over a number field K . For
every finite set S of valuations of K , there is a subfield L ≤ K such that

Comm(U(S))∼= Aut(RK/L U)(L),

where RK/L is the restriction of scalars operator.

With this, much of the proof of Theorem 1.2 still applies. For example, Theorem
2.1 generalizes to tori T defined over number fields K to show that T (K (S)) is
virtually a finitely generated, free abelian group for any finite S. However, there is
an obstruction to extending the proof of Theorem 1.2: Proposition 1.1 no longer
applies on passage to the restriction of scalars over L .
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5. Function fields

In this section we provide examples of S-arithmetic groups over a global field of
positive characteristic for which no obvious analog of Theorem 1.2 holds.

In what follows we use the global field K = Fq(t), the field of rational functions
in one variable over the finite field with q elements. Choose S = {vt , v∞}, where
the valuations v∞ and vt are defined as follows. Given any r ∈ Fq(t), write
r(t)= tk( f (t)/g(t)), where f and g are polynomials with nontrivial constant term
and k ∈ Z. Then define

vt(r)= q−k and v∞(r)= qdeg( f )+k−deg(g).

In this case, K (S) is the ring of Laurent polynomials over Fq , denoted Fq [t, t−1
].

Example 5.1. Consider the 1-dimensional additive algebraic group

Ga =

{(
1 ∗
0 1

)}
⊆ GL2 .

Then Ga(K (S)) ∼= K (S) is an S-arithmetic group. There is an isomorphism of
abstract groups

K (S)∼=
∞⊕

k=−∞

Fq .

Proposition 5.2. For any field F and any linear algebraic group G over F , there
is no embedding Comm(K (S))→ G(F).

Proof. It suffices to treat the case that G = GLd for some d. We will show that
Comm(K (S)) contains GLn(Fq) for every n, which implies that Comm(K (S))
contains every finite group. This completes the proof, since GLd(F) does not
contain every finite group. (See, for example, [Serre 2007, Theorem 5].)

For each n ∈N, embed GLn(Fq) into Comm(K (S)) “diagonally” as follows: Let
V =

⊕
∞

k=−∞ Fq , and for each `∈Z define a subgroup V`≤V by V`=
⊕n(`+1)−1

k=n` Fq .
Given any automorphism φ ∈ GLn(Fq), define an automorphism 8 ∈ Aut(V )
piecewise by8

∣∣
V`
=φ. In this way every nontrivial element of GLn(Fq) determines

a nontrivial commensuration of V ∼= K (S). �

In particular, Proposition 5.2 implies that Theorem 1.2 does not hold when Q is
replaced by a global field of positive characteristic.

Example 5.3 (lamplighter group). Consider the algebraic group

B2 =

{(
x z
0 y

)∣∣∣∣ xy = 1
}
⊆ GL2 .
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Set q = 2. The S-arithmetic group B2(F2[t, t−1
]) is isomorphic to the (restricted)

wreath product F2
2 oZ, which is an index-2 subgroup of the lamplighter group F2 oZ.

The lamplighter group is isomorphic to the semidirect product(⊕
Z

Z/2Z

)
oZ,

where the Z acts by permutation of the Z/2Z factors through the usual left action
on the index set.

The abstract commensurator of F2 o Z is fairly complicated, and has not been
well studied. See Section 6 for a more detailed discussion of Comm(F2 oZ). For
now we use the fact that Comm(F2 oZ) contains the direct limit

lim
−−→
n∈N

Aut(Fn
2),

where the maps are the diagonal inclusions of Aut(Fn
2) into Aut(Fm

2 ) whenever n |m.
It follows now as in Proposition 5.2 that Comm(B2(F2[t, t−1

])) is not a linear group
over any field. This shows that Theorem 1.2 does not apply in positive characteristic
even in the presence of a nontrivial action by a torus.

6. Commensurations of the lamplighter group

Define K to be the direct product

K :=
⊕

Z

Z/2Z.

The group of integers Z acts on itself by left-translation, inducing an action on K
by permutation of indices. The lamplighter group, which we will denote by 0
throughout this section, is the semidirect product 0 = K o Z. The goal of this
section is to show that Comm(0) admits the following decomposition.

Theorem 1.4. Using the definitions in (6) and (7) below, there is an isomorphism

(5) Comm(0)∼= (VDer(Z, K )oComm∞(K ))o (Z/2Z).

See [Houghton 1962] for an analogous description of automorphism groups of
unrestricted wreath products.

Let ei ∈ 0 be the element of the direct sum subgroup which is nontrivial only at
the i-th index and let t ∈ 0 be a generator for Z. By definition we have the relation
tmei t−m

= ei+m . Then 0 is generated by the set {e0, t} and has the presentation

0 = 〈e0, t | e2
0 = 1 and [tke0 t−k, t`e0 t−`] = 1 for all k, ` ∈ Z〉.

Lemma 6.1. The quotient map 0 → 0/K induces a surjective homomorphism
2 : Comm(0)→ Z/2Z.
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Proof. The subgroup K ≤ 0 is equal to the set of torsion elements of 0, and
is therefore strongly commensuristic. It follows that there is a homomorphism
2 : Comm(0)→ Comm(0/K ) ∼= Comm(Z). The nontrivial automorphism of Z

induces an automorphism, hence a commensuration, of 0 by t 7→ t−1 and ei 7→ e−i

for each i ∈ Z. It remains to show that the image of 2 is in Aut(Z)≤ Comm(Z).
Suppose φ : 11 → 12 is a partial automorphism of 0. In what follows, let

i = 1, 2. Let Ki = K ∩1i . Choose gi ∈ 1i so that its equivalence class [gi ]

generates the image of the quotient map 1i→1i/Ki . Let Gi = 〈gi 〉. Note that 1i

admits a product decomposition 1i = Ki Gi .
Let mi be the integer such that gi = atmi for some a ∈ Ki . Replacing gi with its

inverse if necessary, assume that mi > 0. Each group Gi naturally acts on K/Ki .
Since K/Ki is finite, after replacing gi with a power if necessary we assume that
the action of Gi on K/Ki is trivial for i = 1, 2. Our goal is to prove m1 = m2.

One can check that φ induces an isomorphism [K1,G1] ∼= [K2,G2], where
[Ki ,Gi ] is the group generated by commutators of the form [a, g] := aga−1g−1

for a ∈ Ki and g ∈ Gi . (In fact, in this case we know [Ki ,Gi ] is equal to the
set of elements of the form [a, gi ], which is equal to [a, tmi ], for some a ∈ Ki .
This is helpful in understanding the proof of the claim below.) Since φ induces an
isomorphism

K1/[K1,G1] ∼= K2/[K2,G2],

the desired result is apparent from the following claim.

Claim. There are isomorphisms Ki/[Ki ,Gi ] ∼= (Z/2Z)mi for i = 1, 2.

Proof of claim. Let Hmi ≤K be the subgroup generated by the set {e0, e1, . . . , emi−1}.
Clearly Hmi is isomorphic to (Z/2Z)mi . Let Pi = Ki ∩ Hmi , and let Qi ≤ Hmi be a
complement to Pi so that Hmi = Pi ⊕ Qi . Consider the subset Si ⊆ Ki defined by

Si = {g ∈ K | g = p[q, gi ] for some p ∈ Pi and q ∈ Qi }.

The condition that Gi act trivially on K/Ki ensures that [a, gi ] ∈ Ki for any
a ∈ K , and so Si ⊆ Ki . By construction Si is in bijection with Hmi , hence has
cardinality 2mi . Consider the map of sets ρi : Si→ Ki/[Ki ,Gi ] sending an element
to its equivalence class. Since [Ki ,Gi ] consists of elements of the form [a, gi ] for
some a ∈ Ki , it is not hard to see from the construction of Si that ρi is injective.
We leave as an exercise to check that ρi is surjective. �

Let 2 be the surjection of Lemma 6.1. The short exact sequence

1→ ker(2)→ Comm(0)→ Z/2Z→ 1

splits, so that Comm(0)∼= ker(2)o (Z/2Z). Since K is strongly commensuristic,
there is a natural map 8 : ker(2)→ Comm(K ). We describe first the kernel of 8
and then the image of 8.
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If G is a group and A is a left G-module, then τ : G → A is a derivation if
τ(g1g2)= τ(g1)+ g1 · τ(g2) for all g1, g2 ∈ G. The set of derivations from G to A
forms an abelian group, denoted Der(G, A). A virtual derivation from G to A is
a derivation from a finite-index subgroup of G to A. Two virtual derivations are
equivalent if they agree on a finite-index subgroup of G. The set of equivalence
classes of virtual derivations forms a group

(6) VDer(G, A) := lim
−−→

[G:H ]<∞
Der(H, A).

Lemma 6.2. There is an isomorphism ker(8)∼= VDer(Z, K ).

Proof. Given any [φ] ∈ ker(8), find m ∈ Z so that φ(tm) is defined. Then define
a map τ : mZ → K by τ(tk) = φ(tk)t−k for any k ∈ mZ. It is easy to check
that τ is a derivation from mZ to K , and that the assignment [φ] 7→ τ gives a
homomorphism Comm(0)→ VDer(Z, K ). This assignment is clearly injective.
On the other hand, if τ ∈ Der(mZ, K ) then setting φ(xt`) = xτ(t`)t` for x ∈ K
defines an automorphism φ of 0m ≤ 0. �

Let Comm(K )mZ denote the group of mZ-equivariant commensurations of K .
There are natural inclusions Comm(K )mZ

→Comm(K )nZ whenever m | n. Define

(7) Comm∞(K ) := lim
−−→

m
Comm(K )mZ.

Lemma 6.3. There is an isomorphism 8(ker(2))∼= Comm∞(K ).

Proof. Suppose α =8([φ]) for some partial automorphism φ of 0. Find m ∈ Z so
that tm is in the domain of φ. Define x0 = φ(tm)t−m

∈ K . Then given any x ∈ K ,
we have

φ(tm xt−m)= x0 tmφ(x)t−m x−1
0 = tmφ(x)t−m .

From this we see that any α ∈8(ker(2)) is mZ-equivariant for some m.
On the other hand, suppose β : H1 → H2 is any partial automorphism of K

that is mZ-equivariant. Define 0m = K o 〈tm
〉, an index-m subgroup of 0. The

formula φ(xt`) = α(x)t` defines an automorphism φ ∈ Aut(0m). Hence [φ] is a
commensuration of 0 which evidently satisfies 8([φ])= β. �

Proof of Theorem 1.4. It is clear from the proof of Lemma 6.3 that the short exact
sequence

1→ VDer(Z, K )→ ker(2)→ Comm∞(K )→ 1

splits. Putting together Lemmas 6.1, 6.2, and 6.3, we have the semidirect product
description of (5):

Comm(0)= (VDer(Z, K )oComm∞(K ))o (Z/2Z).
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The action of Comm∞(K ) on VDer(Z, K ) is the action by postcomposition. The
factor of Z/2Z preserves VDer(Z, K ) and Comm∞(K ), and acts on VDer(Z, K )
by precomposition. �

It is not clear whether a more explicit description of Comm∞(K ) exists, but we
can describe some subgroups. For example, the “diagonal embedding” construction
of Proposition 5.2 shows that Comm∞(K ) contains the direct limit

lim
−−→

m
GLm(F2),

where GLm(F2) includes into GLn(F2) diagonally whenever m | n. So Comm∞(K )
contains every finite group.

Note that VDer(Z, K ) contains every commensuration induced by conjugation
by some a ∈ K . However, some elements of VDer(Z, K ) do not arise in this way.
For example, any virtual derivation τ : mZ→ K such that τ(tm) is nontrivial in an
odd number of coordinates cannot arise from conjugation.
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