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GERSTENHABER BRACKETS
ON HOCHSCHILD COHOMOLOGY
OF QUANTUM SYMMETRIC ALGEBRAS
AND THEIR GROUP EXTENSIONS

SARAH WITHERSPOON AND GUODONG ZHOU

We construct chain maps between the bar and Koszul resolutions for a quan-
tum symmetric algebra (skew polynomial ring). This construction uses a
recursive technique involving explicit formulae for contracting homotopies.
We use these chain maps to compute the Gerstenhaber bracket, obtaining
a quantum version of the Schouten—Nijenhuis bracket on a symmetric al-
gebra (polynomial ring). We compute brackets also in some cases for skew
group algebras arising as group extensions of quantum symmetric algebras.

1. Introduction

Hochschild [1945] introduced homology and cohomology for algebras. Gersten-
haber [1963] studied extensively the algebraic structure of Hochschild cohomology
—its cup product and graded Lie bracket (or Gerstenhaber bracket) — and conse-
quently algebras with such structure are generally termed Gerstenhaber algebras.
Many mathematicians have since investigated Hochschild cohomology for various
types of algebras, and it has proven useful in many settings, including algebraic
deformation theory [Gerstenhaber 1964] and support variety theory [Erdmann et al.
2004; Snashall and Solberg 2004].

The graded Lie bracket on Hochschild cohomology remains elusive in con-
trast to the cup product. The latter may be defined via any convenient projective
resolution. The former is defined on the bar resolution, which is useful theoreti-
cally but not computationally, and one typically computes graded Lie brackets by
translating to another more convenient resolution via explicit chain maps. Such
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chain maps are not always easy to find. One would like to define the graded Lie
structure directly on another resolution or to find efficient techniques for producing
chain maps.

In this paper, we begin in Section 2 by promoting a recursive technique for
constructing chain maps. The technique is not new; for example it appears in a book
of Mac Lane [1975]. See also [Le and Zhou > 2016] for a more general setting.
We first use this technique to construct chain maps between the bar and Koszul
resolutions for symmetric algebras, reproducing in Theorem 3.5 the chain maps of
[Shepler and Witherspoon 2011] that had been obtained via ad hoc methods. We
then construct new chain maps more generally for quantum symmetric algebras
(skew polynomial rings) in Theorem 4.6. We generalize an alternative description,
due to Carqueville and Murfet [2016], of these chain maps for symmetric algebras
to quantum symmetric algebras in (4.8). We use these chain maps to compute the
Gerstenhaber bracket on quantum symmetric algebras, generalizing the Schouten—
Nijenhuis bracket on the Hochschild cohomology of polynomial rings (Theorem 5.1).
We then investigate the Hochschild cohomology of a group extension of a quantum
symmetric algebra, obtaining results on brackets in the special cases that the action
is diagonal (Theorem 7.1) or that the Hochschild cocycles have minimal degree as
maps on tensor powers of the algebra (Corollary 7.4). In the latter case, we thereby
obtain a new proof that all such Hochschild 2-cocycles are noncommutative Poisson
structures (cf. [Naidu and Witherspoon 2016], in which algebraic deformation theory
was used instead). Some results on brackets for group extensions of polynomial
rings were given in [Halbout and Tang 2010] and [Shepler and Witherspoon 2012].

Let K be a field. All algebras will be associative K-algebras with unity and tensor
products will be taken over K unless otherwise indicated.

2. Construction of comparison morphisms

Let A be aring and let M and N be two left A-modules. Let P, (respectively, Q.)
be a projective resolution of M (respectively, N). It is well known that given a
homomorphism of A-modules f : M — N, there exists a chain map f, : P, —> Q.
lifting f (and different lifts are equivalent up to homotopy). Sometimes in practice
we need an explicit construction of such a chain map, called a comparison morphism,
to perform computations. In this section, we recall a method to construct chain maps
under the condition that P, is a free resolution (see [Mac Lane 1975, Chapter IX,
Theorem 6.2]). A method for arbitrary projective resolutions will be presented in
[Le and Zhou > 2016].
Let us fix some notation and assumptions. Suppose that

dP dr
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is a free resolution of M, that is, for each n > 0, P, = AXn) for some set X.
(The module 4X") is a direct sum of copies of A indexed by X,. We identify
each element of X}, with the identity 14 in the copy of A4 indexed by that element.)
Suppose that a projective resolution of N,
o o o o
s Q0 0 P D 0y (K0 N 0),

comes equipped with a chain contraction: a collection of set maps t, : O — Opn+1
foreachn >0 and r_; : N — Qy such that for n > 0, we have l,,_ld,,Q +dn+lln =
Idg, and dOQ t—1 =Id. We use these next to construct a chain map, f,: P, — Oy
for n > 0, lifting f_1 := f. As Py, is free, we need only specify the values of f,
on elements of X}, the generating set of P,.

At first glance, it may appear that f, defined below will be the zero map, since
it is defined recursively by applying the differential more than once. However, the

maps #, are not in general A-module homomorphisms. The formula (2.1) is used
only to define f;, on free basis elements, and f;, is then extended to an A-module
map. In our examples the maps ¢, will be k-linear, but for the construction, they are
only required to be maps of sets, since we apply them only to basis elements. In
this weaker setting, such a collection of maps may be called a weak self-homotopy
as in [Bian et al. 2009].

For n = 0, given x € X, define fo(x) = 1_; dOP(x). Then dOQfo(x) =
d2i_y fdF (x) = fdF (x).

Suppose that we have constructed fy, ..., f—1 such that for 0 <i <n—1,
dl.in = f,-_ldl.P. For x € X}, define
2.1) Ja(X) = taet fu—1d] (%)
Then

d2 fu(x) = A2ty fu_1dFf (x)
= fu1df (¥) = ty2d | fu—1df (x)
= fu—1d} (x) = tya fuad,l_ d} (x)
= fu—1dy (x).
This proves the following.

Proposition 2.2. The maps f, defined in (2.1) form a chain map from P, to Q,
lifting f : M — N.

In the next two sections, we use this formula (2.1) to find explicit chain maps
for symmetric and quantum symmetric algebras, and in the rest of this article we
use the chain maps thus found in computations of Gerstenhaber brackets for these
algebras and their group extensions.
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3. Chain contractions and comparison maps for polynomial algebras

Let N be a positive integer. Let V be a vector space over the field k with basis
X1,...,XpN, and let

S(V):=K[x1,...,xn]

be the polynomial algebra in N indeterminates. This is a Koszul algebra, so there
is a standard complex K,(S(V)) that is a free resolution of 4 := S(V) as an
A-bimodule (equivalently as an 4¢-module where A° = 4 ® A°P). We recall this
complex next: for each p, let AP (V) denote the p-th exterior power of V. Then
K,(S(V)) is the complex

s AN @ AL AN (V)@ AL A0 A (2> 4 —0);

that is, for 0 < p < N, the degree p termis K,(S(V)) =4 ® NP (V)® A. The
differential d), is defined by

dp(l ®(le /\---/\ij)® 1)

p
=3 D @ (g A ARG A A, ]
i=1 p
- Z(_l)i+l ® (le A"'A)%ji /\"'/\le,) ® Xjj;
i=1
whenever 1 < j; <--- < j, < N and p > 0; the notation X;, indicates that the
factor x;j, is deleted. The map d is multiplication.
From now on, we will write £ = (£q,...,€5), an N-tuple of nonnegative
integers, x = (xq,...,xy) and xt= xfl - 'xﬁ,N . We shall give a chain contraction
of K,(S(V)) consisting of maps7_; : 4 - A ® A and

AN (V)®A— AN (V)@ 4

for p > 0. These maps will be left A-module homomorphisms, and thus we need
only define them on choices of free basis elements of these free left A-modules.

To define 7_1, it suffices to specify 7_;(1) = 1 ® 1 and extend it A-linearly. If
p =0and £ e NV, define

N ¢

Li—r £ L
(1@xH) ==Y/ x5 ) @x @ (v x T,
j=1r=1

If p > 1, it suffices to give

(1 ® (xj; A== AXj,) ®gc£)
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for £ e NV and 1 < j <.+ < jp =N, and we set

L
ip(1® (xj; A= AXj,) ®XF)
Gt
= (—1)Pt! Jp+1 Jpr1tl AN
=D Z Z Yjpt1 Ypri+1 TN )
jp+1—111+1 r=1 ¢
. . 4 Jp+1=1_r—1
® (Xj; Ao AXj,) ® (X g1 J'p+1)'
In the case j, = N, the sum is empty, and so the value of 7, on such an element is 0.

Proposition 3.1. The above-defined maps tp, p > —1, form a chain contraction for
the resolution K,(S(V)).

Proof. 1t is easy to verify that dgt—; = Id. We need to show that for p > 0,
tp—1dp +dp411p =1d. We first let p = 0, and show that 7_1do + dy1o = 1d.
For £ e NV, we have 1_;do(1 ® x¥) = 1_1(x¥) = xt ® 1, and

N 4
A Li—r 51+1 9% . 4 Z1—1 -1
dio(1 @3 =y (= 30 Y el o wttx
j=1r=1

]
_ —r+l €J+1 LN £y i1 _r—1
—_ZZX Njg1 XN @X X X

j=1r=1
g N ¢ ¢ ¢
—r _ti+1 N 1 j—1.r
+ZZ Xjg1 AN XXX
j=1r=1
N £i—1
_ Li—r K!+l In 4 i—1_r
== 2% N1 XN @X X
j=1r=0

N &

—r e].l,_] In £y Li—1 _r
+ZZ Yigr XN ®Xp XX

j=1r=1

N
L L i
:_ZX.JX.J"FI ._.x€N®x€1 ___x.]_ll

J i+l N 1 j

Jj=1

Lj+1 % 4y bi—1 &

+Z Njp1 XN @X XX

N ‘ ‘ N+1 ‘. ‘

— i, N 41_' 1—1 i AN & G-

= ij ®x] +Zx Xy ®Xy X
Jj=1

=x®l+1ext
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We thus obtain (1—1dy + d1tp) (1 ®gc£) =xt@l-xt®l+10xt=1x®xtand
therefore confirm the equality. Note that in the above proof, there are many terms
which cancel one another.

The proof of the equality 7, _1dp +dp4 11, =1d for p > 1 is similar to the above
case p = 0, but is much more complicated. As in the case p = 0, for the cases
p = 1 we must change indices several times in order to cancel many terms. O

Now we can use the chain contraction of Proposition 3.1 to give formulae for
comparison morphisms between the normalized bar resolution and the Koszul
resolution. Such comparison morphisms were found in [Shepler and Witherspoon
2011] by ad hoc methods.

For any K-algebra 4 associative with unity, denote by 4 = A/(k- 1) a k-vector
space. The normalized bar resolution of A has p-th term B,(4) = A® A®P @ A
and differentials §, : 4 ® A®? @ 4 — A ® AP~V ® 4 given by

P
Splag®a | @ - Qap ®ap1) :Z(_l)lao®"'®a_iai+l®"'®ap+l
i=0

for ag,...,ap11 € A, where an overline indicates an image in A. We shall see that
this resolution is suitable for computation using the method from Section 2.
There is a standard chain contraction of the normalized bar resolution,

5p AQA®P @ A — A® A®PTD @ 4,
given by
(32 (1R ® - RapQapy) =(-D"""Qa® Q1 @1 ® 1.

Each s, is then extended to a left A-module homomorphism. For convenience, we
shall from now on abuse notation and write a; in place of a;.

A chain map from the Koszul resolution to the normalized bar resolution is given
by the standard embedding: for p > 0, define

O, AN (V)®A—> AR APP @ 4
by

(3.3) d>p(1®(xj-l/\---/\xj-p)®1)= Z sgnT ® Xj, | ® @ Xj ,®1

7 E€Sym,,

for 1 < j; <---<jp =N, where Sym, denotes the symmetric group on p symbols.
The other direction is much more complicated. We shall define ¥, : A® A®PRA
— A® NP(V)® A for each p > 0. Let W, be the identity map. For p > 1,
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define W, by

G4 V,(1ext @--@xt"®1)

= Z Z ZCQ(;I ..... r;;) ' : ®(le /\"'/\xjp)

I=ji<w<jp=N 0=ry={j —1 Al P D)

s=1,...,p ®2Cf(’l ..... rp) ,

where, as in [Shepler and Witherspoon 2011], the N -tuple Q(g """ 75 J0endn) 4
’ p p ’ p = (rla'"arp)

defined by

1 I
(Q(gl ..... P51y, j,,))_= rpl 4+ if j = Js,
= ters) U V2 if js <J < Js+1.

A (11 .7 ;
and where the N -tuple Q@ AR

is defined to be complementary to
1 p. . = (rl ..... rp)
Q(ﬁ ----- L2 j1sensip)

eklxq,...,xn]

Theorem 3.5 [Shepler and Witherspoon 2011]. Let ®, and WV, be as defined in
(3.3) and (3.4). Then

(1) the map @, is a chain map from the Koszul resolution to the normalized bar
resolution;

(ii) the map VY, is a chain map from the normalized bar resolution to the Koszul
resolution;

(iii) the composition ¥V, o ®, is the identity map.

Proof. (i) We check that this standard map follows from the method in Section 2,
in order to illustrate the method. We proceed by induction, applying (2.1) to the
chain contraction s, of the normalized bar resolution defined in (3.2).

The case p = 0 is trivial. Now suppose that for p >0, ®,: 4 ® NIV)®A4—
A® A®P @ A is given by (3.3). We compute P11 (1 ® (xj; A+ AXj,, ) ®1),
where @, is defined by (2.1) in terms of ®,. We have
Dyt (18 (xj, A+ A X)) B 1)

=$pPpdp+1(1 @ (xj; A AXj, ) ®1)
p+1 .

= Spq)P( Z(—l)"Hx]'i ® (Xjy A AXjy A AXj, ) ® 1)
i=1

p+1
_SP(DP( Z(_I)I—H ® (xj; Ao  AXjp A AXj ) ®xji)'

i=1
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Notice that the value of s, on

p+1
<I>p( D DTG @ oy A AR A AN, ) ® 1)

i=1

is 0, since the rightmost tensor factor is 1, and we work with the normalized bar
resolution. For a permutation 7 € Sym,, that ﬁXf:s some letter i, 1 <i < p+1,
consider the permutation 7 of the set {1, ...,i—1,i,i+1,..., p+1} corresponding
to 7 via the bijection

(A, i—lii+1,...,py~{,...i—lLii+1,....p+1}

sending jto jforl <j<i—1landtoj+1fori <j=<p.
Define a new permutation 7 € S, by imposing

7(J) for j <1,
a(j)y=qa(j+1) fori <j<p+1,
i for j = p+1.

Then we have sgn 7 = (—1)?~/T1 sgn 7, and so

Bpi1 (18 (), A+ ANy ® 1)

p+1
= _Sl’q)l’( Z(_l)l+l ® (Xjy A AXj A AXjy ) ®xji)

i=1

p+1
= _SP( Z (-1 *! Z (=Pt SN T X)) - '®xjﬁ(p)®xjﬁ<p+1))

i=l1 TESp+1
A(p+1)=i
p+1 ) .
==CEDPT Y EDT D DI s @y,
i=1 TESpt1
mR(p+1)=i ® @ Xja(p) @ Xjrpyn® 1

= Z SENTT @ Xjz (1) @+ @ Xjz (1) ® Xz 11y ® 1.

TESp+1

This completes the proof of (i).

(ii) As in (i), we apply the method in Section 2 to the chain contraction ¢, of
Proposition 3.1 to show that W, as defined in (3.4) is indeed the resulting chain
map. We proceed by induction on p.
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Suppose that W, is given by (3.4). Let us apply (2.1) and show that W, 1 | results.
First notice that we can write

(1@ (xj; A=+ Axj,) ®x)

bipy1

(Z Jp+1) ~AWiip1)
:(_I)P'H Z Z X= ®xj1/\"'/\xjp/\xjp+l®zcgr :
Jp+1=jp+1 r=1

We have

gn-l—l

dp+1(1®26£1®"'® ®1)

=xt'@xf® @y ”+®1+Z( DP@xt @ -oxt g ext" g1
i=1

TP et g e ext" .

Now consider

v, 9x @ 9x" @

D

1<ji<-<jp=<N ISrsSZ;+1
s

1=s=p A2 P T
® Xj; A+ AXj, @ X= 1)
L2, 8Pt G .. .
However, QE ) YR by definition, has no terms of the form x, with
seeeslip

u > jp. Thus, we have 1y, (xt 'ext’®- ®)ch+1

Similarly we can prove that for 1 <i < p,

®1)=0.

pY(1ext @ ext g ot e =0
The only term left is ZP\IJP((—I)P‘"1 ®2€gl ®gc£2 ®-- -®gc£p®gc£p+l ). We obtain

Y, (=P H! 2l ®rl @ o a ")

= (_1)p+1 Z Z Ip (ZC

1=j1<+<Jp=N 1=ry=tj
1<s<p
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et
N Ip+1 @!

el ePjyip) S Wipg1)
= E E E E xQ("l ~~~~~ p) ern+l
1<ji<+<jp=<N ISrSSKjSJpH Jjp+1 r=1

1=s<p
~(Ljp41)
Q p+

. r 1
R xj; N ijp+1®x pt+ s

where
'5, a]la :]p)_i_gp-i-l

|tQ>

Now notice that

(€1 P 1) s pt+1) — AP 1 dipt1)
Q(rl, Tp) + Qrp+1 Q(H, oTp+1)

and

Q(f S ip+1) — Q(lf1 AP i dpg1)
Fp+1 (F1yeeestp41) .

We have the desired result:

¢+l

Uy (1028 @ @xt" ®1)

— tp‘llp((—l)p+1 ®2€£1 Q- ®2€ﬁ”®5£"+1

(131 ..... el

_ 7(r ..... r ) . :
— Z Z X 1 p+1 ®le/\ /\X]p+1

1<ji<-<jpr1<N 1<rg <ty
1<s<p+1

= p+1(1®xe ®- ®xep+1

®1).
(iii) For 1 <i; <---<ip < N, we have

Yy ®p(1® (X3 A--AXG,) ® 1)

N \pp( D SENT® Xiy @+ @ Xi ) ® 1)

meSym,,

= Z sgn Z Z ch(rl ..... Ip)e

mESym, 1<ji<+<jp=N 0=ry=(ei_)js—1
s=1,...,p Q
® Xj, A+ AXj, XZ,
where e, is the u-th canonical basis vector (0,...,0,1,0,...,0), the 1 in the u-th

position, and

A(ez,,(l), ,e,n(p),h, ,Jp)

Q Q(rl,
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Notice that Q( Cimny > )’e’”“’)’“’ =2) oceurs in the sum only if (i (1), - - l',,(p)) =

e 9 Se bl 9eeey
(J1,-.., Jp). Here, m is the identity, r; =---=r, =0 and Q ’ﬂ(U ) ire(py3 15T
is the zero vector. Therefore,

lIJp<I>p(1®x,-1/\-~/\x,~p®1)=1®x,~1/\---/\x,-p®1. O

For comparison, we give an alternative description of the maps ¥, due to
Carqueville and Murfet [2016]: for each 7, let 7; : S(V)¢ — S(V)¢ be the k-linear
map that is defined on monomials as follows. (We denote application of the map t;
by a left superscript.)

ti(xfl...x]ij®xil ...xlN)

Jv i1 JJi+1

Ly _Jji+l; li—i—l In
1 X1 Xig1 o

— IN o ...
=X XN QXXX Xy Xy

Define difference quotient operators dj;) : S(V) — S(V)¢ foreachi, 1 <i <N,
as in [Carqueville and Murfet 2016, (2.12)] by

TS QD= @)

ar; =
i1(f) ol 1o

For example, t1(x12)C2 RN=x® xlz, so that

x12x2®1—x2 ®x12
X1 ®1—1®X1

8[1](3612?Cz)= =X Q@1 +x,®x7.

Similarly, dpp)(x7x2) = 1 ® x7.

Identify elements in S(V)¢® AP (V) with elements in S(V)® /AP (V)®S(V) via
the canonical isomorphism between these two spaces. Then W, may be expressed
as in [Carqueville and Murfet 2016, (2.22)]:

vlext oo en= Y (ﬁ 3[js](zces)) ® Xjy Aver A X,
1<ji<<jp<N “s=1
For example, if N = 2, then
V(1®XIx®1) =X 10 ®1®x +x2 Q% ®x1 +1®x7 ®xs.
We may similarly express the chain contraction 7, as

N
l‘p(1®xj'l/\---/\ij®2€£)=(—1)1]+1 Z 3[jp+l](gcg)®xj'l/\---/\ijJrl.
Jp+1=Jp+1
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4. Chain contractions and comparison maps for quantum symmetric
algebras

Let N be a positive integer, and for each pair i, j € {1,2,..., N}, letg; j be a
nonzero scalar in the field K such that ¢;; = 1 and g; ; = q;. ]1 for all i, j. Denote
by ¢ the corresponding tuple of scalars, ¢ := (¢i,j)1<i,j<n. Let V be a vector
space with basis x1,...,xy, and let

4.1 Sq(V):=k(xy,....,xn | xixj =q;,jxjx; forall 1 <i, j < N),

be the quantum symmetric algebra determined by ¢. This is a Koszul algebra,
and there is a standard complex K.(S,(V)) that is a free resolution of Sy (V')
as an Sy (V)-bimodule (see, e.g., [Wambst 1993, Proposition 4.1(c)]). Setting
A = 84(V), the complex is

AN R AL AN (V)@ 4L A0 4 (L5 4 —0),
with differential d,, defined by

dp(1® (xj, /\"'/\xjn)® 1)

D i
= Z(_l)l+l(1_[qjs,ji) Xj; @ (Xj; A AXj; A AXj) @]

i=1 s=1

_Z( 1)l+1(1_[qh JS)®(XJI '/\)%ji/\'“/\xjp)(ngi

i=1

whenever 1 < j; <--- < j, <N and p > 0; the map d is multiplication.
As in the previous section, we write £ = (£1,...,€n), x = (x1,...,xn) and
xt = xfl xi,” . We shall give a chain contraction of K,(Sg (1)),

L AN V)@ A— AN (V)@ 4

for p>0and?_q: A — AQ® A, which are moreover left 4-module homomorphisms
(cf. [Wambst 1993]).

Let7_;(1) = 1 ® | and extend 7_; to be left A-linear. For p >0, £ € NV, and
l<ji<---<jp=N,let

{
lp(1® (xj; A= AXj,) @ X7)
ot ¢ ¢
— (_1)p+l Z Z (E J1seees Jp) Jp+1 rx Jp+1+1 "'XKN
Jp+1,7 Xjp1 Jp+1+1 N
jp-l,—l ]p+1 r=1

4 ejp-i—l—l r—1
®le /\'.'/\x]p—&-l@xl .-.xjp-‘,-l_l jp—i—l’
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where
(é;jla"'ajp)
Jp+1,7
Jp+1— w D ‘; _ p+1
stt jl’+1
(T T ) (Tt (T )(TT 1T o)
s=1 t=jp41 t=1 t=1 s=1t=j,41+1

Compared with the maps in the previous section for polynomial algebras, the
only difference is that now there is a new coefficient. This (rather complicated)
coefficient A( ] 1’ »7) can be obtained as follows: in the right side of the formula
for ,, in comparlson to its argument 1 ® xj; A+ A Xj, ® xt on the left side,
whenever a factor x; of x¢ has changed positions so that it is now to the left of a
factor x; with i > j (including factors of the exterior product), one should include
one factor of ¢;j ;. One can verify easily that AL 1) g the given form. We

Jp+1.r
shall call this rule the twisting principle and we use it several times later.

Proposition 4.2. The above-defined maps tp, p > —1, form a chain contraction
over the resolution K,(Sq(V)).

Proof. One needs to verify that for n > 0, we have t,_1d, + dp4+1t, = 1d and
dot—1 = Id. Notice that the computation used in the above equalities is the same as
that for polynomial algebras, except that now for quantum symmetric algebras, we
have some extra coefficients. One needs to show that these extra coefficients do not
cause any problem.

Recall that in the proof of Proposition 3.1, the concrete computation is simplified
by many terms which cancel one another. For example, this occurs in the verification
of the equation 7_;dy + d1t¢ = Id in the proof of Proposition 3.1. For polynomial
algebras, the proof works due to these cancelling terms.

For quantum symmetric algebras, things are not so easy. However, the twisting
principle always holds; that is, when we apply a differential or chain contraction,
once we produce a monomial (always in lexicographical order) or tensor of monomi-
als, we need to include a coefficient before this monomial according to the twisting
principle. Thus, if two terms cancel each other for polynomial algebras, as we have
included the same coefficient, they still cancel for quantum symmetric algebras. [

Now we can use (2.1) and the chain contraction of Proposition 4.2 to give
formulae for comparison morphisms between the normalized bar resolution and the
Koszul resolution.

A chain map from the Koszul resolution to the normalized bar resolution is
induced from the standard embedding of the Koszul resolution into the (unnormal-
ized) bar resolution. See also [Wambst 1993, Lemma 5.3 and Theorem 5.4] for
a more general setting. We give the formula as it appears in [Naidu et al. 2011,
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§2.2(3)]. For p > 0, we define
O, AN (V)®A—> AR APP? @ 4

by

(43) Qp(I@(xjy A-AX)®D = D sen gz @)y )@+ BXjr D]
7 E€Sym,,

for1 < j; <--- < jp =< N. In the above formula, the coefficients g27" are the

scalars obtained from the twisting principle, that is,

J1seees Jp .. . e e v
4.4) dr Xjiz)y " Xizpy = X1 Xjp-

The other direction is much more complicated. We shall see that for quantum
symmetric algebras, the comparison morphism is a twisted version of that for a
polynomial ring given in the previous section, with certain coefficients included
according to the twisting principle.

We define the maps

U,: AR A®’ R4 - A N (V)® A
as follows. Let Wy be the identity map. For p > 1, define ¥, by

45 v,(1ext ®--@xt"®1)

..... Py,
—_ (ely 5ep .]l» 7.]17) Q('l ,,,, ;p) 1 jp)
= Ry o)
1=j1<<jp=N 0<ry=<tj —1
s=1,...,p

1 - :
where, as before, we define the N -tuple Q%l f:)n ..... Jp) by

1 _1 . ..
(le ..... f”);h ..... j,,)).: rp+d 4+ ?f‘/_‘]s,
= Veeslp J E}+"'+£; if js <Jj < Jjst1,
(Z 9. a 7jla"'ajp) (Z I 7 sj]:"'aj]?)
and where the N -tuple Q ) and scalar p (F1ooor) are defined
(uniquely) by
1 . , @€l P ip) Al P i)
Efl :”':fpp)s J1seees JP)IQ(I‘I ..... p) le xjpr ry.... p)
1
=xt - xt e s,
(E e 7 7jl5 ij)

The coefficient K, is obtained using the twisting principle in the
right side of the formula for WV, and Q(Zl """ L5 j1>---2Jp) and Q@1 """ £75 J1se2d0) are

(7 ,...,r,,) (F1seeestp
the same as in the case of the polynomial algebra K[xq, .. xn] For comparison,

we note that Wambst [1993, Lemma 6.7] gave such a chaln map in degree 1.
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Theorem 4.6. Let O, and ¥, be as defined in (4.3) and (4.5). Then

(1) the map @, is a chain map from the Koszul resolution to the normalized bar
resolution;

(1) the map \V, is a chain map from the normalized bar resolution to the Koszul
resolution;

(iii) the composition ¥, o D, is the identity map.

Proof. (i) One direct proof was given in [Naidu et al. 2011, Lemma 2.3]. (The
characteristic of Kk was assumed to be 0 in that paper; however, this assumption is
not needed in that proof.) Another proof can be given by applying (2.1) to a chain
contraction s, over the normalized bar resolution as in the proof of Theorem 3.5(i).
The twisting principle gives the coefficients.

(i1) One direct computational proof can be given by applying (2.1) to the chain
contraction #, of Proposition 4.2, as in the proof of Theorem 3.5(ii). Thus the same
proof as that of Theorem 3.5(ii) works, taking care with the coefficients, by the
twisting principle.

(iii) The same proof as that of Theorem 3.5(iii) works; by the twisting principle,
the coefficients on both sides of the equation coincide. O

We now give alternative descriptions of the maps 7, and W, in this case of
a quantum symmetric algebra. The description of W, will generalize that of
Carqueville and Murfet [2016] from S(V') to S4 (V). To this end, it is conve-
nient to replace each term S, (V) ® AP (V) ® Sy (V) of the Koszul resolution by
Sq(V)® Sq(V)® NP(V), using the canonical isomorphism

0 Sqg(V) @SN @ N (V) > Sg(V)@ N (V) ® Sg(V)

in which coefficients are inserted according to the twisting principle. For example,
for xt € Sq(V)and1 < j; <---<j, =N,

op(1 ®2(;£®le /\..-/\xjp) = (1_[ qufjt) ® Xj; At AXj, ®2€£'
s=1t=1

Via this isomorphism, consider 7, as a map from Sg(V) ® Sg(V) ® N (V) to
Sg(V)R S, (V) ® N (V). By abuse of notation, we still denote by 7, this new
map; the same rule applies to W,.

For 1 < j < N, define 7 : Sq (V)¢ — S, (V)¢ to be the operator that replaces
all factors of the form x; ® 1 with 1 ® x;, but with coefficient inserted according
to the twisting principle. For example, if x¢ € Sq (V), then

N
0 il L Li—1 i+ L £
T](z(j@l):( | | qusb)xll,..xjj_l xj{‘rl .“'XNN®XJ‘]-
s=j+1
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It is not difficult to see that for 1 <7 # j < N, 1;7; = 7j7;. Define quantum differ-
ence quotient operators d[;1 : Sg (V) — Sg (V) ® Sq (V) foreachi, 1 <i < N, by

4.7) ()= (i ®@1=1@x) " ("FI(f @ 1) =7F(f ®1)).

This definition should be understood as follows: by writing f as a linear combi-
nation of monomials, it suffices to define d[;; on each monomial gcg. The difference
Ti-i(xt @ 1) — 1% (x¢t @ 1) may be divided by x; ® 1 — 1 ® x; on the left, by
first factoring out xie" R1-1Q® xie" on the left. Applying the twisting principle,
one sees that this is indeed always a factor. One must include a coefficient given
by the twisting principle, then use the identity

L
(x,-®1—l®xi)_1(xff ®1—1®xfi) = foi_r ®xI1
r=1
For example, for f = xlxg, let us compute dp1( /). We have
Bxxs ® 1) = g7 ,x5 ® X1 =4q7 (x5 ® (1 ®x1),
(@ 1) = 1@ x1x; = ¢ ,(1®x3)(1 ®x)),
and so
U x2 @) —"12(xxs®1) = q12’2(x§ ®1-1®x3)(1®x)).
We obtain thus
0p1(f) = (2 ® 1= 1®x2) " (I ® 1) =12 (x1x) ® 1))
= (2®1-18x) (¢} ,(F®1-18x3)(1®x)
=¢i,(2®1+1®x)(1®x1)
= qlz,zxz QX1 +g1,2@x1x2.
In general, we have

j—1 j—1 N
I (xh) = (]_[ qffj) Z( I1 qf;‘ft)

s=1 r=1 "s=1t=j+1
N y/ y/ l
Li(r—1) i Li+1 In 4y j—1 _r—1
X( 1_[ 9j,t Xpt X4y Xy ®@Xp XD X
r=j+1

That is, one has an extra coefficient (H;;} qfsj) as well as the coefficient included
according to the twisting principle.
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The chain contraction
tp: Sqg(N)®Sg(N@N (V) > Sg(V) @ Sg(V) @ N (V)
may be expressed as

lp(1®26£®)€j1 /\---/\ij)

N p
14
= (—DP*! E (l_[qu_,_l, )(1_[‘1]1;+1,jt)8[jp+1](2c)®xj1/\"'/\xjp+1'
]p—‘rl ]p+1 t=1

This is justified by the fact that the coefficient in d[;, l](x ) is nearly the coef-
ficient needed by the tw1st1ng principle. The discrepancy is that d[;, +1](gc ) has
J 1 2

an extra factor [ [s25'™ qt Yjp4y» and we still need to insert [Ti=j, i1 +1 4’
and ]_[t \ Dips1je because the last factor in xj; A---AXj,,, lies to the right of
Xj, A+ A Xj, and of xé’”ﬁll . x]{, in 9, j(x*t ) Altogether then, we need
to include an extra factor of (TTY, qf{fﬂ’ J(TT2_, 4jp41.j.) in the coefficient in
8[Jp+1](x ).

The chain map ¥, : Sy (V) ® Sq (V) ® Sy (V)®2 — Sg(V) @ S (V) N (V)
may be expressed as

48) V,(1olext @ --oxt)

14
(1&1 ..... vy /s
- Z (.]l: 7]p)(1_[a[JY](2C ))®xj1/\"'/\xjp,
s=1

1<j1<-<jp=<N

where the scalar is defined according to the twisting principle by

.....

1 l,...,
9) ot =l ,p)(l_[a[h]@ )Xn---xj'pGSq(V).

Here the factor ([T7_, dfj,1(x* "))’ is understood as follows: if 3 j(x¢") = as ® by
(symbolically), then the product (]_[s ) 8[h](xes)) is ([T as) (I, bs) €

5. Gerstenhaber brackets for quantum symmetric algebras

The Schouten—Nijenhuis (Gerstenhaber) bracket on Hochschild cohomology of
the symmetric algebra S(V') is well known. In this section, we generalize it
to the quantum symmetric algebras S, (V). First we recall the definition of the
Gerstenhaber bracket on Hochschild cohomology as defined on the normalized bar
resolution of any K-algebra A (associative with unity).
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Let f € Homye (A® A®P ® A, A) and f’ € Homye (A ® A®? ® A, A). Define
their bracket, [/, /'] € Homye (4 @ APT4-D @ A, 4), by

[f, f]= i(_l)(q—l)(k—l)fok f/_(_l)(P—l)(q—l) i(_l)(p—l)(k—l)f/ok /.

where

(for fY1®a; ® ®dprg—1 ® 1)
:f(1®611®..-®ak_1 ®f’(1®ak®"‘®ak+q—1®1)
®ak+q®"'®ap+q_] ®1)

In the above definition, the image of an element under f or f” is understood in A,
whenever required.

Let A g-! (V*) be the quantum exterior algebra defined by the tuple ¢ ~!; that
is, /\g—1 (V") is the algebra generated by the dual basis {dxy,...,dxy} of V*
with respect to the basis {x;,...,xy} of V, subject to the relations (dx;)?> = 0
and dx; dx; = —qi_’jl dx; dx; for all i, j. We denote the product on A\ —1(V*)
by A. It is convenient to use abbreviated notation for monomials in this algebra:

if 1 is the p-tuple I = (iy,...,ip), denote by dxj the element dx;; A---AdXx;, of
/\q—l (V*). We also write x"! for Xi; A -+ A Xj,. Another notation we shall use
is dxp, defined for any b in {0, I}N to be dx;; A--- Adx;,, where iy, ... i, are

the positions of the entries 1 in b, all other entries being 0. In this case we say the
length of b is p, and write |b| = p.

In [Naidu et al. 2011, Corollary 4.3], the Hochschild cohomology of S4 (V) is
given as the graded vector subspace of S, (V) ® /\qfl (V*) that in degree m is

HH" (S, (V)) = @ GB Spang {x* ® dxp},

be{0,1}V geNN
|b|=m a—beC

where
N
C= {ye(NU{—l})N‘foreachi e{l,....N}L, [Tgr=1ory =—1}.
s=1

We wish to compute the bracket of two elements
a=x?®dx; and B=x®dxy,

where J = (ji,..., jp) and L = (/1,...,l;). We fix some notations. We denote
by J U L the reordered disjoint union of J and L (multiplicities counted if there
are equal indices), so dxyr = 0if J N L # @& and the entries of J U L are in
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increasing order. For 1 <k < p, set

Ikiz (jlv---vjk—l’ll:--~’lqvjk+1’---’jp):

although we do not have j; <--- < jx_1 <Ij <---<ly < jg41 <---< jp in general.
So we have dxj, = sgnn q5* dxj ur, where Jx = (i, ...\ jk—1. Jk+1+-- - Jp)-
Similarly for 1 <k <g¢, set

Illc = (l],...,Zk_l,jl,...,jp,lk+1,...,lq).

Once we know the bracket of two elements of this form, others may be computed
by extending bilinearly. The scalars arising in each term from the twisting principle
are potentially different, so it is more convenient to express brackets in terms of
these basis elements of Hochschild cohomology.

Theorem 5.1. The graded Lie bracket of « = x2 ® dxy and p = x2 @ dxy, is

. fl= > (~D@DEDEIL G (b)) 38 @ dxgr

1<k<p
— _ — L,J
= ()PP R T D ETVED R g () - ¥ @ dx oy
1<k=<gq
for certain scalars ,0*’ TL and ,ok , where 3[Jk](xb) is defined in (4. 7) and

8[Jk](xb) x4 is given by the A®-module structure over A, that is, lfa[]k]Qc ) =
YuUi®uie A® A, thena[Jk](gc )- x4 =) ux%;.

Proof. We denote by - the composition of two maps instead of o, in order to avoid
confusion with the circle product. We compute the bracket using the formula

o, Bl =[x - Wp. B - Wy]- Ppyg—1.

The element @ = x4 ®dx ; as amap from AQ AR\’ (V) to A sends 1®1®x"
to 87y x4 for I = (iy,...,ip); similarly the element 8 = x2 ® dxy as a map from
AQRARN(V)to Asends 1 ®1® x™ to §;7x2. By formula (4.8) for ¥, the
mapa-V,: AR A® A®? - A® A® N\ (V) — A is given by

.....

1
@ V(1R 1®x™ ®~-®zc’f”')—ubml’ ;':))(]_[(3[]](96 ))) x4,

where the scalar coefficient is defined by (4